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Abstract

Exploiting locality is critical to achieving good performance. For regular programs, which operate on dense arrays
and matrices, techniques such as loop interchange and tiling have long been known to improve locality and deliver
improved performance. However, there has been relatively little work investigating similar locality-improving transfor-
mations for irregular programs that operate on trees or graphs. Often, it is not even clear that such transformations are
possible. In this paper, we discuss two transformations that can be applied to irregular programs that perform graph
traversals. We show that these transformations can be seen as analogs of the popular regular transformations of loop in-
terchange and tiling. We demonstrate the utility of these transformations on two tree traversal algorithms, the Barnes-Hut
algorithm and raytracing, achieving speedups of up to 251% over the baseline implementation.
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1 Introduction

It has long been understood that achieving good perfor-
mance in scientific applications requires attending to lo-
cality. Decades of research has led to a number of break-
throughs in automatic and semi-automatic transforma-
tion techniques for loop-based programs that operate over
dense matrices and arrays (regular programs) [11]. This
catalog of transformations, which includes entries such as
loop interchange, strip mining, and loop tiling, provides
programmers and compilers with an arsenal of tools for
enhancing locality in regular programs.

While there has been significant research attention
paid to automatic and semi-automatic locality-enhancing
transformation techniques for loop-based programs that
operate over dense arrays and matrices [11], far less atten-
tion has been paid to locality concerns in irregular pro-
grams, those that operate over pointer-based data struc-
tures such as trees and graphs. This relative dearth of at-
tention is unsurprising: pointer-based data structures are
highly dynamic, and are not amenable to the automated
techniques for reasoning about locality that have been suc-
cessfully applied to regular programs. In fact, the unstruc-
tured nature of irregular programs in many cases makes
chasing after locality seem pointless.

The apparent lack of structure in irregular programs can
be misleading. While the particular set of concrete mem-
ory accesses may exhibit little regularity, at an abstract
level there are organizing principles governing these ac-
cesses, such as the topology of the irregular data structure,
or the nature of operations on that data structure. Recent
work by Pingali et al. has suggested that there may, in-
deed, be significant structure latent in irregular applica-
tions [17]. Can this structure be exploited to transform
irregular applications so as to enhance locality?

In this paper, we focus on enhancing and exploiting lo-
cality in tree-traversal applications. Such applications are
widespread; examples include scientific algorithms such
as Barnes-Hut [3], graphics algorithms such as bounding
volume hierarchies [21] and Lightcuts [23], and data min-
ing algorithms such as k-nearest neighbor [8]. The goal
of each of these algorithms is to compute a value (force,
illumination, etc.) for each of a set of entities (bodies,
rays, etc.). This computation is performed by construct-
ing a tree-based acceleration structure and then traversing
that structure for each entity to compute the desired value.
In other words, these algorithms perform repeated series
of tree traversals. Section 2 describes these applications
in more detail.

The tree traversals performed by the aforementioned al-
gorithms are highly irregular in nature. This is because the
structure of the tree is determined primarily by the input
data and because the actual layout of the tree in memory
is unpredictable. Nevertheless, the trees constructed in

these algorithms are traversed numerous times, leading to
significant data reuse. Any time there is data reuse, there
may be an opportunity to exploit temporal locality. This
paper discusses a series of approaches for doing just that.

One of the motivating insights of this paper is that tree
traversal algorithms exhibit similar locality properties to
vector-vector outer product, a simple, regular algorithm.
Moreover, loop transformations such as loop interchange
and tiling have analogues that apply to tree traversals. By
developing an abstract model of tree traversals based on
outer products, we can reason about the locality effects of
transformations on irregular tree traversals by appealing
to their effects on the abstract model.

Our locality model also allows us to assess the relative
impacts of various transformations proposed in the litera-
ture [20, 2, 15]. Our model implies, and experimental re-
sults bear out, that these transformations lose their effec-
tiveness as data sets increase. However, by leveraging the
correspondence between loop transformations on regular
programs and transformations for tree traversal codes, we
develop a new transformation, based on loop tiling, that
more thoroughly exploits locality for large data sets.

We demonstrate the effectiveness of our transforma-
tion through two case studies of tree traversal algorithms,
the Barnes-Hut n-body code and a raytracing benchmark
based on bounding volume hierarchies. We show that
our transformation can yield performance improvements
of up to 251% over an optimized sequential baseline,
and that this advantage persists when running in paral-
lel. While the efficacy of these loop transformations is de-
pendent on particular transformation parameters, we also
present evidence that there may be an underlying model
governing the appropriate selection of parameters.

The remainder of this paper is organized as follows.
Section 2 discusses the structure of tree-traversal codes
in more detail, with an emphasis on Barnes-Hut. Sec-
tion 3 describes the analogy between outer products and
tree-traversals, Section 4 describes how to interpret sev-
eral popular loop transformations, loop interchange, loop
strip-mining, and loop tiling, in the context of tree-
traversal codes, and Section 5 discusses how a tree traver-
sal code can be systematically modified to implement
these transformations. Section 6 presents our case stud-
ies on Barnes-Hut and raytracing, demonstrating signifi-
cant speedup over untransformed code. Related work is
discussed in Section 7, and we conclude in Section 8.

2 Tree-traversal codes

As discussed in the introduction, tree-traversal codes in-
clude scientific applications such as Barnes-Hut (BH),
graphics applications such as bounding volume hierar-
chies (BVH) and Lightcuts (LC), and data-mining appli-
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1 Set<E n t i t y> e n t i t i e s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /
2 Set<Objec t> o b j e c t s = /∗ e n v i r o n m e n t a l o b j e c t s ∗ /
3 foreach ( E n t i t y e : e n t i t i e s ) {
4 foreach ( O b j e c t o : o b j e c t s ) {
5 u p d a t e C o n t r i b u t i o n ( e , o ) ;
6 }
7 }

Figure 1: O(mn) algorithm for tree-traversal codes

cations such as nearest neighbor (NN). Despite the dif-
ferent purposes of these applications, they all behave in
roughly the same manner. Each application consists of
a set of entities, be they bodies or particles (as in BH or
NN), rays from a ray-tracer (in BVH), or points in a scene
to be illuminated (in LC). For each entity, some objective
value must be computed. For example, in BH, this value
is the force on the body or particle while in BVH, this
value is the color associated with a particular ray.

The objective values are based on the locations of en-
vironmental objects. In BH, these environmental objects
are the other bodies in the system; in BVH, they are the
objects in the scene. A naı̈ve approach to computing each
entity’s objective value is shown in Figure 1: visit each
environmental object and compute its contribution to the
objective value of the current entity. In BH, we compute
the force applied to the current body by the environmental
body; in BVH, we determine if the ray intersects the envi-
ronmental object; in LC, we calculate the contribution to
the illumination of the scene point by the environmental
light source; in NN, we find the nearest environmental ob-
ject to a given entity. With n entities and m environmental
objects, this is an O(nm) algorithm.

To improve on this running time, tree-traversal codes
organize their environmental objects into tree structures
based on spatial locality1. For example, in Barnes-Hut,
an oct-tree is built over the particles. All of the particles
are placed into the root cell, and the cell is recursively
subdivided into eight equal parts until each cell contains
only one particle. Each cell of the oct-tree is processed to
determine the center-of-mass of the particles contained in
that cell. Similar acceleration structures can be built for
BVH, LC and NN. Note that building these acceleration
structures is a small fraction of the overall computation
time of a tree-traversal algorithm [22].

To use the oct-tree in Barnes-Hut, the objective value
computation is modified. Rather than visiting every en-
vironmental object and calculating its contribution to the
objective value, the oct-tree is traversed. Cells whose
center-of-mass is sufficiently far from the current particle
are treated as if all the points in the cell are at the center-
of-mass, obviating the need to traverse deeper down that
subtree. If the center-of-mass is close to the current par-
ticle, then the subtrees of the cell are traversed. In this

1Note that this is spatial locality in the geometric sense (i.e., particles
that are near each other in space), not in the memory locality sense

1 Set<P a r t i c l e > p a r t i c l e s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /
2 Set<P a r t i c l e > o b j e c t s = p a r t i c l e s ; / / e n v i r o n m e n t a l o b j e c t s
3 O c t T r e e C e l l r o o t = buildTreeAndComputeCofM ( o b j e c t s ) ;
4 foreach ( P a r t i c l e p : e n t i t i e s ) {
5 Recur se ( p , r o o t ) ;
6 }
7
8 void Recur se ( P a r t i c l e p , O c t T r e e C e l l c ) {
9 i f ( f a rEnough ( p , c . cofm ) | | c . i s L e a f ) {

10 u p d a t e C o n t r i b u t i o n ( p , c . cofm ) ;
11 } e l s e {
12 foreach ( O c t T r e e C e l l c h i l d : c . c h i l d r e n ) {
13 i f ( c h i l d != n u l l )
14 Recur se ( p , c h i l d ) ;
15 }
16 }
17 }

Figure 2: O(n log m) algorithm for Barnes-Hut

Figure 3: Portions of quadtree traversed

way, to compute the contributions of the environmental
objects to the objective value, only a partial tree traver-
sal need be performed, turning an O(nm) algorithm into
an O(n log m) algorithm [4]. Figure 2 shows the pseu-
docode for this accelerated algorithm. Other tree traversal
codes use similar algorithmic skeletons. Figure 3 provides
a graphical representation of the algorithm: to compute
the objective value for the point selected from the vector
of entities, only the shaded portion of the tree need be tra-
versed.

Improving locality in Barnes-Hut Because the oct-
tree is a highly dynamic data structure, exploiting locality
in the traversals is difficult. (consecutively visited chil-
dren may not share a cache-line, preventing the exploita-
tion of spatial locality). However, as the same tree is tra-
versed by each particle (the outer loop in Figure 2), it is
often possible to exploit locality in the traversals. Parti-
cles that are nearby in space are likely to perform very
similar traversals of the oct-tree, visiting the same set of
tree cells. Thus, if these traversals are performed consec-
utively, the cells visited during the first traversal are likely
to remain in cache during the second traversal, exploiting
temporal locality.

Such a locality-exploiting order of traversals can be ar-
ranged by sorting the particles according to their geomet-
ric position, so that adjacent particles in the sorted order
are nearby geometrically [2, 20]. This is a common op-
timization, and is implemented in the version of Barnes-
Hut in the LoneStar benchmark suite [12], that we use as a
baseline in this work. As we shall see in the next section,
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1 Set<P a r t i c l e > p a r t i c l e s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /
2 Set<P a r t i c l e > o b j e c t s = p a r t i c l e s ;
3 O c t T r e e C e l l r o o t = buildTreeAndComputeCofM ( o b j e c t s ) ;
4 foreach ( P a r t i c l e p : p a r t i c l e s ) {
5 foreach ( O c t T r e e C e l l c : t r a v e r s e ( r o o t , p ) ) {
6 i f ( f a rEnough ( p , c . cofm ) | | c . i s L e a f ) {
7 u p d a t e C o n t r i b u t i o n ( p , c . cofm ) ;
8 }
9 }

10 }

Figure 4: Abstract algorithm for tree-traversal

however, this optimization loses effectiveness as the input
size (and hence the tree size) increases.

3 An abstract model

Reasoning about locality in tree-traversal codes is difficult
for a number of reasons. First, unlike in regular appli-
cations, the structure of the key data structures is highly
input-dependent. The oct-tree generated in BH is depen-
dent on the particular locations of the particles in the sys-
tem. Furthermore, the data structures are dynamically al-
located, and hence can be scattered throughout memory.
Finally, the traversals of the tree are not uniform; a traver-
sal can be truncated (e.g., due to the distance check in line
9 of Figure 2), and traversals for two different points are
not necessarily similar.

However, we can still reason about locality by consid-
ering the behavior of a tree-traversal algorithm in a more
abstract sense. Rather than viewing a traversal as a recur-
sive, pre-order walk of a tree, we can instead visualize the
traversal in terms of the actual tree cells touched. Fun-
damentally, processing a single particle in BH requires
accessing some sequence of tree cells. The particular ar-
rangement within the tree of those cells is irrelevant; all
that matters is the ultimate sequence in which those cells
are touched. If we imagine that there is an oracle function
traverse that generates the sequence of cells accessed
while processing a particular particle, we can rewrite the
accelerated BH code as shown in Figure 4. In other words,
we can view the algorithm as a simple, doubly-nested
loop. Notably, for the purposes of locality, the behav-
ior of the original BH code is equivalent to the abstract
algorithm. All that matters to locality is the sequence of
accesses; the additional computations required to deter-
mine whether to continue a traversal or not do not affect
locality. Thus, the sequences of memory accesses for the
code in Figure 2 and Figure 4 are identical. Moreover,
locality-enhancing transformations on the abstract code
will also enhance locality in the original code, if an equiv-
alent transformation can be applied (Section 4 discusses
this in more detail).

1 P a r t i c l e p [ n ] = /∗ p a r t i c l e s ∗ /
2 O c t T r e e C e l l c [m] = /∗ t r a v e r s a l ∗ /
3 f o r ( i n t i = 0 ; i < n ; i ++)
4 f o r ( i n t j = 0 ; j < m; j ++)
5 Update ( i , j ) ; / / A[ i ] [ j ] = p [ i ]∗ c [ j ]
6
7 void Update ( P a r t i c l e p , O c t T r e e C e l l c ) {
8 i f ( f a rEnough ( p , c . cofm | | c . i s L e a f ) )
9 u p d a t e C o n t r i b u t i o n ( p , c . cofm ) ;

10 }

Figure 5: Tree traversal as outer product

3.1 Tree traversals as outer products

This abstract algorithm provides insight into why sorting
the particles (as discussed in Section 2) is useful for lo-
cality. Consider the behavior of two consecutive particles,
p1 and p2. In the unsorted algorithm, there is little over-
lap between traverse(p1) and traverse(p2). Most of the
inner-loop accesses for the p2 iteration will result in cache
misses. However, sorting the particles such that consecu-
tive points have similar traversals will result in cache hits.

When the points are sorted, the variability between con-
secutive traversals will be a fairly small second-order ef-
fect, so we can simply consider consecutive traversals in
the sorted case to be the same. This approximation lets
us further simplify the abstract algorithm. The outer loop
iterates over a vector (of particles) and, for each particle,
the inner loop iterates over a vector (containing the cells
of the traversal). If there are n particles, and the average
traversal is m cells, then this is an O(mn) algorithm with
an access pattern equivalent to an m × n outer product.
Figure 5 demonstrates this correspondence, showing how
a tree traversal is analogous to the outer product of a vec-
tor p and a vector c.

One insight we can glean from this model is that the ef-
ficacy of sorting points to improve locality diminishes as
the tree, and hence traversals, get larger. Consider the be-
havior of outer product when the c vector is small enough
to fit in cache. For an element from the p vector, every ele-
ment from the c vector is touched. When the next element
is drawn from the p vector, all of c will be in cache, and
there will be no further cache misses. Unfortunately, once
c is too large to fit in cache, an LRU replacement policy
will lead to disastrous results: when the second iteration
of the outer loop begins, although some of c is in cache,
the first element(s) will not be. Bringing those elements
into cache will kick the next elements out of cache, and
no accesses to c will ever hit.

Analogously, we would expect that for small input
sizes, when the average tree traversal fits in cache, we
would see a relatively small number of cache misses. As
the average tree traversal grows, we would expect far
more misses. To test this hypothesis, we investigated
the cache behavior of the Barnes-Hut benchmark from
the Lonestar benchmark suite [12] on three different in-
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# particles Traversal size L2 miss % improvement
(bytes) rate (%) over unsorted

10000 63, 944 21.61 67.3
100000 108, 656 44.97 45.9

1000000 139, 616 55.30 26.4

Table 1: L2 miss rates for various traversal sizes

put sizes when run on a Pentium machine with 1M of L2
cache. Table 1 shows, for each input, the input size (in
number of particles), the average traversal size (in bytes of
the oct-tree touched per particle), the L2 miss rate and the
percentage improvement of the sorted version over the un-
sorted version. As predicted, the miss rate increases as the
traversal size increases (note that traversal sizes increase
as the log of the number of points). As the final column of
the table shows, we see that this increased miss rate hin-
ders the efficacy of sorting. For small inputs, which re-
sult in small traversals, sorting the points can lead to large
(67%) improvements in performance. Unfortunately, as
the traversal sizes get larger, sorting the points is insuffi-
cient to exploit locality, and we see correspondingly less
improvement from the sorting optimization.

If sorting the points is of limited utility for larger inputs,
what can be done to improve locality in such situations?
As we shall see, loop transformations developed for regu-
lar algorithms hold the key.

4 Loop transformations for tree-
traversal codes

By viewing the locality behavior of tree-traversal codes as
an analog of vector-vector outer product, we can predict
the effects that various computation re-orderings might
have on the tree-traversal algorithm by considering the ef-
fects that an analogous transformation would have on the
corresponding outer product algorithm. Since outer prod-
uct is a regular algorithm, there are many well-understood
loop transformations that can be applied to improve its lo-
cality behavior. These transformations will inform the de-
velopment of similar transformations to enhance locality
in tree-traversal codes.

In this section, we consider three well-known loop
transformations: loop interchange (also called loop per-
mutation), loop stripmining and loop tiling (also called
loop blocking) [11]. For each of these transformations,
we will discuss what the transformation means in the con-
text of tree traversals, and elucidate their locality effects
through analogy with the outer-product model.

4.1 Loop interchange

Loop interchange is one of the simplest loop transforma-
tions that can be applied to doubly-nested loops such as

Figure 6: Portions of particle list accessed while process-
ing shaded tree node

outer product. It merely consists of swapping the order of
the loops:

f o r ( i n t i = 0 ; i < n ; i ++)
f o r ( i n t j = 0 ; j < m; j ++)

A[ i ] [ j ] = p [ i ]∗ c [ j ]

becomes

f o r ( i n t j = 0 ; j < m; j ++)
f o r ( i n t i = 0 ; i < n ; i ++)

A[ i ] [ j ] = p [ i ]∗ c [ j ]

In the original version of outer product, an element of p
is “pushed through” the entire vector of c before moving
to the next element of p. In the new version, every element
of p interacts with the first element of c before moving to
the next element of c.

What does loop interchange mean in the context of
tree traversals? Recall the abstract algorithm of Figure 4,
where the traversal is provided by an oracle. This is a
simple doubly-nested loop that can be interchanged just
as in the outer product analog. This places the traversal
loop on the outside. However, as there is no longer a spe-
cific point associated with the traversal, iterating over a
particular traversal is nonsensical. Instead, we consider
the outer loop as iterating over each oct-tree cell, while
the oracle tells us which particles should interact with this
cell:

foreach ( O c t T r e e C e l l c : o c t t r e e )
foreach ( P a r t i c l e p : i n t e r a c t ( c , p a r t i c l e s ) )

/ / do work

In other words, we take all the points and push them
through the root of the oct-tree. We then move to a child
node and process all points whose traversals would take
them down to this child. We continue for every cell in the
tree until every point has interacted with every oct-tree
cell that it would have in the original traversal2.

Rather than performing a partial tree traversal for each
particle, as the original Barnes-Hut algorithm does, this
transformed version instead surveys a subset of the parti-
cles for a particular tree node. (as shown in Figure 6) The
transformed code is quite complex, and assessing its lo-
cality behavior is difficult. We instead analyze the effects

2This is broadly similar to a transformation proposed by Makino,
though he did not consider its locality effects [15].
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of interchange on the outer product model, and thereby
infer its effects on the traversal code.

In the original outer product code, we note that regard-
less of how large p is, we incur only cold misses on its
elements, while we incur only cold misses on c until it ex-
ceeds cache, at which point we continually suffer capacity
misses. Interchanging the loops reverses this effect: we
will only see cold misses for c, and the misses in p de-
pend on how large the p is. It is thus useful to place the
smaller vector in the inner loop, as it is more likely to fit
in cache.

Note that loop interchange is usually performed to ex-
pose spatial locality in one of the loops. However, be-
cause tree traversals are irregular, there is no guarantee
that traversing the nodes in order, or the tree cells in or-
der, will actually exploit spatial locality. The adjacency
of nodes in the tree, and the order of particles to be pro-
cessed, has no relation to their actual location in memory.

The outer product analysis suggests the following be-
havior for Barnes-Hut: if the outer loop is the point loop,
then we will suffer no misses (other than cold misses) on
the points, while we will suffer misses on every tree cell
access. Conversely, if the outer loop is the tree loop, we
will suffer only cold misses in the tree, but miss on ev-
ery point access. Because the average traversal size is
O(log n), while there are n points, this analysis argues
for keeping the particle loop on the outside, a hypothesis
confirmed by the experimental results of Section 6.

4.2 Loop stripmining
Loop stripmining is perhaps the simplest loop transforma-
tion, as it merely tiles a single loop:

f o r ( i n t i = 0 ; i < n ; i ++)

becomes

f o r ( i n t i i = 0 ; i i < n ; i i += B)
f o r ( i n t i = i i ; i < i i + B ; i ++)

In other words, we split the loop into blocks of size
B, and iterate over the blocks first, and then within the
blocks. Note that stripmining alone does not change the
traversal pattern of an algorithm—it has no effect on lo-
cality.

In Barnes-Hut, stripmining the particle loop is intuitive:
the worklist of particles is instead a worklist of chunks of
particles. After removing a chunk from the worklist, the
points within the chunk can be operated on. The interpre-
tation of stripmining the traversal loop is somewhat more
abstract. Effectively, the tree is split into “tiles,” and each
tile is considered a block of the stripmined loop. Again,
however, stripmining does not change the traversal pat-
tern. It is only when combined with loop interchange that
stripmining becomes interesting, producing the transfor-
mation known as loop tiling.

4.3 Loop tiling
One of the most complex, and most effective, loop trans-
formations is tiling: This can be viewed as stripmining
followed by interchange:

f o r ( i n t i = 0 ; i < n ; i ++)
f o r ( i n t j = 0 ; j < m; j ++)

A[ i ] [ j ] = p [ i ]∗ c [ j ] ;

becomes

f o r ( i n t i i = 0 ; i i < n ; i i += B)
f o r ( i n t j = 0 ; j < m; j ++)

f o r ( i n t i = 0 ; i < i i + B ; i ++)
A[ i ] [ j ] = p [ i ]∗ c [ j ] ;

To see what loop tiling means for locality, consider ap-
plying the transformation to the outer product algorithm
when both vectors are too large to fit in cache. The outer
loop chooses a block pB (of size B) from p. It then it-
erates over c, processing every element from pB for each
element of c. If B is chosen appropriately, then the ele-
ments of pB are never evicted from cache while the block
is processed, and elements of c only incur misses the first
time they are touched per block. This results in radically
fewer cache misses than the non-tiled version of the code.

What does tiling Barnes-Hut entail? While tiling
the traversal loop is complex, tiling the particle loop is
straightforward:

foreach ( P a r t i c l e B l o c k b : p a r t i c l e s )
foreach ( O c t T r e e C e l l c : t r a v e r s a l ( b ) )

foreach ( P a r t i c l e p : b )
/ / do work

Note that because the particle vector is sorted, the traver-
sals of all of the particles in a given block b are likely to
overlap significantly, and hence the middle loop will per-
form O(log n) iterations. To gauge the behavior of this
loop, we note that the inner two loops are equivalent to the
interchanged algorithm presented earlier, except that the
number of particles in b is far fewer than the total number
of particles. Hence b is likely to remain in cache as we
visit each tree cell in the traversal. Thus, we incur only
cold misses on the particles, and we suffer a miss on a
tree cell once per block.

Realizing this transformation in tree-traversal codes
is non-trivial. Section 5 discusses the specific changes
that are necessary to efficiently implement tiling in tree-
traversal codes.

Because blocking the particles loop can result in good
locality regardless of the size of the particle list or the oct-
tree, we apply this transformation to Barnes-Hut and ray-
tracing. Section 5 discusses the specific changes that are
necessary to efficiently implement tiling for tree-traversal
codes.

Note, the right choice of tile size is crucial. Too large,
and the particle block will not remain in cache, defeat-
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ing the purpose of tiling. Too small, and the program
will suffer more misses (since a tree cell suffers one miss
per particle block). In the world of dense linear algebra,
there has been significant research into choosing the right
tile size, from empirical search [24] to analytical mod-
els [25]; ultimately, the appropriate tile size for dense lin-
ear algebra kernels is dependent on cache parameters. It
is unclear whether similar approaches are feasible for ir-
regular applications such as tree traversal codes. In Sec-
tion 6, we discuss the sensitivity of the blocked version’s
performance to tile size, and present evidence that the op-
timal tile size is correlated with underlying architectural
features.

5 Implementation

To investigate the utility of our loop transformations for
tree traversal codes, we performed a case study on Barnes-
Hut (BH) and bounding volume hierarchy-based raytrac-
ing (BVH).

5.1 Barnes-Hut

Here we discuss several implementations of Barnes-Hut:
the baseline implementation; a sequential blocked imple-
mentation, which exploits the tiling transformation dis-
cussed in the previous section; and a parallel version of
the blocked implementation.

5.1.1 Baseline

We used the Barnes-Hut implementation from the Lon-
estar benchmark suite [12] as our baseline. The baseline
performs its force computation using the algorithm of Fig-
ure 2; each particle is pushed through its entire traver-
sal of the tree before moving on to the next particle. As
discussed earlier, the particles are processed according to
their locations in space, enhancing locality through the
techniques described in [2, 20].

The baseline is parallelized by processing multiple par-
ticles at the same time. No synchronization is necessary
on the tree or the particles: the tree is only read during the
force computation phase, and the state of each particle is
only updated by the thread it is assigned to. To maintain
the locality provided by sorting the particles, particles are
distributed equally to threads at the beginning of execu-
tion. Work stealing is performed for load balance, imple-
mented via lock-free double-ended queues as in Cilk [6].
Cilk style work stealing is used for both the baseline and
blocked version for both Barnes-Hut and raytracing.

1 Set<P a r t i c l e > p a r t i c l e s = /∗ e n t i t i e s i n a l g o r i t h m ∗ /
2 Set<P a r t i c l e > o b j e c t s = p a r t i c l e s ;
3 Set<Block> b l o c k s = makeBlocks ( p a r t i c l e s ) ;
4 O c t T r e e C e l l r o o t = buildTreeAndComputeCofM ( o b j e c t s ) ;
5 foreach ( Block b : b l o c k s ) {
6 s t a c k [ 0 ] = b ;
7 r e c u r s e F o r c e ( r o o t , 0 ) ;
8 }
9

10 void r e c u r s e F o r c e ( O c t T r e e C e l l c , i n t l e v e l ) {
11 Block b = s t a c k [ l e v e l ] . b l o c k ;
12 Block nextB = s t a c k [ l e v e l + 1 ] . b l o c k ;
13 nextB . r e c y c l e ( ) ;
14 foreach ( P a r t i c l e p : b . p a r t i c l e s ) {
15 i f ( f a rEnough ( p , c . cofm ) | | c . i s L e a f ) {
16 u p d a t e C o n t r i b u t i o n ( p , c . cofm ) ;
17 } e l s e {
18 nextB . add ( p ) ;
19 }
20 }
21 i f ( ! nextB . i sEmpty ) {
22 foreach ( O c t T r e e C e l l c h i l d : c . c h i l d r e n ) {
23 i f ( c h i l d != n u l l ) {
24 R e c u r s e F o r c e ( c h i l d , l e v e l + 1 ) ;
25 }
26 }
27 }
28 }

Figure 7: Pseudocode for blocked implementation

5.1.2 Blocked

The sequential blocked algorithm is a transformed ver-
sion of Barnes-Hut that uses the loop tiling optimization
discussed in Section 4. Pseudocode for the algorithm is
given in Figure 7. It begins with a list of sorted particles,
and splits them into blocks, each containing b particles,
where b is the block size. Each block is then considered
in turn (line 5), and is recursively “pushed” through every
tree cell (the call to recurseForce in line 7).

For each tree cell, we process each particle in the block.
If the cell is a leaf (it contains a single particle) or far
enough away (the many particles it represents can be ap-
proximated as a single particle), we compute its contri-
butions to the particle (line 16). If the particle does not
interact with the cell, it needs to traverse the children of
the cell, and the particle is added to the next block (line
18), which contains all particles that must interact with
children of the current cell. Finally, we recursively call
recurseForce on the children of the cell (line 24).

Note that the high level algorithmic structure of this
implementation, despite its recursive nature, is “for each
block of particles, for each tree cell, for each (valid) par-
ticle in the block, do work.” This matches the tiled algo-
rithm described in Section 4.

For efficiency reasons, the blocks of valid particles are
held in preallocated arrays drawn from a global stack.
This avoids the need to reallocate the blocks at each re-
cursive steps. We only need to maintain one set of parti-
cle arrays per level, since the recursion is done in depth
first order. The nextB array is the preallocated block for
the next level (e.g. level + 1) and is cleared at the start
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of recurseForce (line 13) so that it contains only par-
ticles added for the cell being processed. Managing the
particle blocks adds instruction overhead to the blocked
implementation compared to the baseline. As we will see
in Section 6, this additional overhead is more than com-
pensated for by improved locality.

One of the nice features of the blocked implementation
is that it lends itself to parallelization. We simply paral-
lelize the outer loop, assigning particle blocks to threads
and running recurseForce on blocks in parallel. In
other words, we can treat the loop in line 5 as a data par-
allel loop. As in the baseline, no synchronization is nec-
essary.

5.2 Raytracing
As our baseline raytracing implementation, we used the
BVH-based raytracer from [22]. The baseline uses a bi-
nary tree to represent the bounding volume hierarchy rep-
resenting the scene to be rendered. The baseline renders
the image by traversing the BVH for each ray to deter-
mine which object it intersects, before moving on to the
next ray. The rays are naturally sorted by being processed
in an order corresponding to the pixels of the screen. The
baseline is parallelized by processing multiple rays at the
same time. As in Barnes-Hut, the tree is only read during
the rendering phase, and no synchronization is necessary.

Raytracing is different from Barnes-Hut in that each
original entity generates additional entities, each incident
ray generates a shadow ray for each light source. We
found that shadow rays from different incident rays but
from the same light source had more similarity in their
traversals compared to shadow rays from the same inci-
dent ray but different light sources. Hence we processed a
block of incident rays first, and gathered shadow rays for
each light source into separate blocks of shadow rays, and
then processed the shadow ray blocks. The algorithm for
processing a single block (be they incident rays or shadow
rays) is similar to blocked Barnes-Hut. Rays which need
to proceed to the next level are passed via the nextB ar-
ray as described in Section 5.1.2. Parallelization is ac-
complished by processing blocks at the same time.

6 Evaluation
We evaluated our blocked algorithm, as well as the loop-
interchanged version (outer traversal loop, inner particle
loop) and the baseline algorithm on three systems with
different cache configurations.

• The Niagara system runs SunOS 5.10 and contains
two 8-core UltraSPARC T2 chips in SMP configura-
tion. Each chip has 8K L1 data cache per core and
4M shared L2 cache. We present results up to 32

threads, at which point our system is employing 2-
way multithreading.

• The Opteron system runs Linux 2.6.24 and contains
four dual-core AMD Opteron 2222 chips in SMP
configuration. Each chip has 128K L1 data cache per
core and 1M L2 cache per core. We present results
up to 8 threads.

• The Pentium system runs Windows Vista SP2 and
contains a dual-core Intel Pentium T4200 chip. The
chip has 32K L1 data cache per core and 1M shared
L2 cache. We present results up to 2 threads.

The baseline and our new blocked algorithm were
implemented in the Galois system [13]. The applica-
tions were written in Java 6 and executed on the Java
HotSpot VM version 1.6 for all systems. The Niagara
and Opteron systems used a 12GB heap, and the Pen-
tium system used a 1.5GB heap. To account for the ef-
fects of JIT compilation, each configuration was run 10
times, and the average of the latter 7 runs was recorded.

6.1 Barnes-Hut
For Barnes-Hut, we used the one million particle input
from the Lonestar benchmarks [12]. We first present re-
sults that assume we know the optimal block size for a
particular architecture (recall that block size affects tiling
performance) and show that our blocking transformation
both attains significant performance gains, and scales well
with many parallel threads. Then we will discuss the sen-
sitivity of our transformation’s performance to different
block sizes, and investigate the relationship between the
optimal block size and cache configurations.

6.1.1 Speedups of optimal block

Figure 8 shows speedups of the blocked implementa-
tion with an empirically determined optimal block size
compared to the serial baseline. Figure 9 shows % im-
provement of the blocked implementation compared to
the parallel baseline. We attain improvements of up to
251%, 113% and 85% over the parallel baseline respec-
tively for the Pentium, Opteron and Niagara systems.
These speedups are sustained as we increase the number
of threads for the Pentium and Opteron systems.

For the Niagara system, we note that our optimized
implementation’s advantage over the baseline tapers off
as the number of threads increases. We believe this is
because the L2 cache on the Niagara is shared among
cores, and hence the effective L2 cache size decreases as
the number of threads increases (note that our implemen-
tation is more sensitive to caching effects than the base-
line, which demonstrates poor locality regardless). There
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Figure 8: Speedup vs serial baseline for Barnes-Hut
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Figure 9: % Improvement vs parallel baseline for Barnes-Hut

is no similar degradation of performance as the number
of threads increase on the Pentium and Opteron because
each core has its own individual L2 cache.

More interesting than the slight decline in advantage
from 2–16 threads is the behavior of our blocked imple-
mentation on 32 threads, where its advantage over the
baseline is notably smaller. This is because on 32 threads,
the Niagara uses 2-way multithreading. The Niagara’s im-
plementation of multithreading is meant to hide latency:
when one thread stalls due to a cache miss, the second
thread can execute. As the Niagara is already hiding la-
tency through multithreading, it obviates the need for our
transformations, which hide latency through restructur-
ing.

6.1.2 Sensitivity of performance to block size

To investigate the sensitivity of our algorithm’s perfor-
mance to block size, we evaluated the algorithm with
many different block sizes. Figure 10 shows the serial
runtimes in seconds with varying block sizes for the three
systems.

In general, we would expect that a block size that is
too small would perform poorly due both to the addi-
tional instruction overhead and to the fact that misses in
the tree are incurred for every block (as discussed in Sec-
tion 4)—hence, fewer blocks will result in fewer misses in
the traversal. However, if the block becomes too large to
fit in cache, then we will begin to incur misses on the par-
ticles instead. We thus expect there to be a “sweet spot,”
where the blocks are large enough to avoid most misses in
the tree, but small enough to fit in cache, an expectation
borne out by the results. In each figure, the best block
size is highlighted, and is surrounded by block sizes that

perform worse.
The leftmost point on the x axis is the baseline which

corresponds to a block size of 1. The baseline is gener-
ally faster than block sizes of 2 or 4 because it executes
fewer instructions than the more complex blocked algo-
rithm. The opposite extreme would be a block size of
1000000 (all the particles in the input), which corresponds
to the loop interchange described in Section 4.1. We con-
jectured that this would result in much worse performance
as the average traversal size is O(log n), while there are
n points, and having the larger set of n points as the inner
loop leaves less room to exploit locality. With 1000000
particles cycling through cache and up to 6 doubles ac-
cessed per particle, it is apparent that they would not fit in
even the relatively large 4M L2 cache of the Niagara sys-
tem. Indeed, performing the interchange results in 58%,
460% and 204% increases in sequential runtime on the
Pentium, Opteron and Niagara systems respectively.

The optimal block sizes were found to be 24, 76 and
128 for the Niagara, Pentium and Opteron systems respec-
tively (these are the highlighted points in Figure 10). We
note that the optimal block size is correlated with the L1
data cache sizes of the systems. The relationship is not
linear due to the irregularity of the application, and other
locality effects (such as those from the L2).

To examine these tradeoffs in more detail, we used Intel
VTune to access the performance counters on the Pentium
system, and recorded the L1 and L2 miss rates for differ-
ent block sizes, as plotted in Figure 11. Recall that the
locality we are trying to exploit is temporal locality be-
tween particles within a block, which we can get as long
as all the particles in a block stay in cache. Increasing the
block size decreases L1 miss rates up to a block size of 64.
Blocks larger than 64 particles exceed L1, and miss rates
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Figure 10: Runtime with varying block sizes for Barnes-Hut

Figure 11: Miss rate vs. block size on Pentium

increase significantly. However the increase in L1 misses
is covered by L2 which is 32 times larger than L1 on the
system. L2 is able to handle a block size of up to 512 be-
fore the block footprint starts to outstep L2. The optimal
block size comes at a point where the combined effects of
L1 and L2 provide the best balance, and this block size is
76.

6.2 Raytracing (BVH)
For BVH we used a randomly generated scene with 1 mil-
lion triangles. We shot 4 million rays for the Niagara and
Opteron systems, and 1 million rays for the Pentium sys-
tem.

6.2.1 Speedups of optimal block

Figure 12 shows speedups of the blocked implementation
of BVH using an empirically determined optimal block
size compared to the serial baseline. Figure13 shows %
improvement of the blocked implementation compared to
the parallel baseline.

The blocked algorithm attains improvements of up to
87%, 44% and 16% over the parallel baseline respectively
for the Pentium, Opteron and Niagara systems. As in
Barnes-Hut these speedups are sustained as we increase
the number of threads for the Pentium and Opteron sys-
tems. For the Niagara system, speedups decline for many
threads because the L2 is shared among cores, and multi-
threading hides cache latency.

To understand why the speedups for BVH are less than
those for BH, we compared the average traversal size for a
single entity (e.g. particle in BH and ray in BVH), shown

Benchmark # objects Traversal size L2 miss
(bytes) rate (%)

Barnes-Hut 1000000 139, 616 55.30
Raytracing 1000000 35, 834 8.49

Table 2: Average traversal sizes for BH and RT

in Table 2. Even with the same number of objects, BVH
has a much smaller traversal and L2 miss rate than BH.
This is because particles in BH traverse many paths of the
oct-tree to multiple leaves to calculate the force contribu-
tion by other nearby particles, whereas rays in raytracing
typically follow a single path toward the leaf containing
the object in the direction the ray is shot.

6.2.2 Sensitivity of performance to block size

Figure 14 shows the serial runtimes in seconds with vary-
ing block sizes for raytracing. As in Barnes-Hut, we can
see that there is a “sweet spot,” where the blocks are large
enough to avoid most misses in the tree, but small enough
to fit in cache. In each figure, the best block size is high-
lighted, and is surrounded by block sizes that perform
worse.

7 Related Work

7.1 Locality Transformations

Salmon used Orthogonal Recursive Bisection [5] to di-
rectly partition the particle space to provide physical lo-
cality [19]. Singh et al. recognized that N-body prob-
lems already have a representation of the spatial distribu-
tion encoded in the tree data structure and partitioned the
tree instead of partitioning the particle space directly [20].
Amor et al. exploited locality among particles by lin-
earizing them using space filling curves [2]. Both these
approaches improve locality up to a point, as discussed
in Section 2, and both our baseline and transformed code
exploit this particle ordering. These approaches have the
limitation that as the traversal sizes get larger, simply sort-
ing the particles is insufficient to exploit locality, whereas
our work exploits localitly even in this case by tiling the
traversals with a group of particles which will fit in cache.
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Figure 12: Speedup vs serial baseline for Raytracing
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Figure 13: % Improvement vs parallel baseline for Raytracing
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Figure 14: Runtime with varying block sizes for Raytracing

Singh et al. also proposed costzones to improve load
balance across multiple Barnes-Hut timesteps; we expect
their effects are largely orthogonal to the transformations
presented here. Amor et al. proposed communication op-
timizations for distributed memory systems. While we
evaluate our techniques on shared memory systems, we
expect similar improvements if applied to an optimized
distributed memory implementation.

Mellor-Crummey et al. proposed a combination of
data reordering and computation reordering to improve
memory hierarchy performance for n2 interaction algo-
rithms [16]. They use space filling curves to linearize the
set of objects, and reallocate them into contiguous mem-
ory to exploit spatial locality. This is infeasible for hi-
erarchical O(n log m) algorithms, as objects in the hier-
archy encompass other objects, and it is not possible to
map the hierarchy to a single dimensional space. There
is no notion of the root being closer to one object than
another; it encompasses all the objects. They also pro-
pose loop blocking, but this is after the entire interaction
list has been computed, and is equivalent to loop tiling in
regular applications.

7.2 Vectorization Transformations

Hernquist vectorized Barnes-Hut across nodes of the tree,
so that each particle traverses all nodes at the same level
simultaneously [10]. This approach effectively changes
the order of the tree traversal from depth-first to breadth-
first. This has two drawbacks. First, it changes the traver-
sal order of the tree, affecting the result in the presence of
non-commutative operations (such as floating-point addi-
tion). Second, there typically are not many nodes per tree
level, leading to short vectors (and less parallelism).

Makino vectorized the tree traversal across particles, in-
stead, leading to a per-particle parallelization similar to
our baseline [15]. An interesting aspect of Makino’s ap-
proach is that to enable vectorization, the code is trans-
formed in a manner similar to the loop interchanged im-
plementation described in Section 4.1. However, there are
a few key points to note. First, as we demonstrated in
Section 6, a simple loop interchange does not suffice to
exploit locality. Second, Makino’s transformation relies
on a pre-computed traversal of the tree, and changes the
order in which particular tree nodes are visited by differ-
ent points, reducing the generality of his transformation.
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Work on vectorizing Barnes-Hut have naturally ex-
tended to GPU implementations of n-body algo-
rithms [14, 9]. These implementations generally group
many particles in the leaves of the tree, so that the parti-
cles within a single leaf are ensured to have identical in-
teraction lists and can be divided among processing units.
The interaction lists are computed on the CPU and sent to
the GPU for mass parallel force computation. The GPU’s
natural execution model results in traversals of the interac-
tion list similar to tiling. However, computing the interac-
tion lists still requires traversing the tree, and the locality
penalties of a naı̈ve traversal remain.

7.3 Other Tree Traversal Transformations

Aluru et al. discussed changing the tree structure of
Barnes-Hut to improve performance [1]. We note that
our transformations are independent of the type of tree
used (indeed, the tree in raytracing is different from that
in Barnes-Hut), and hence our approach can apply to their
algorithm as well.

Rinard and Diniz used a commutativity analysis to par-
allelize an N-body code in a unique manner [18]. Rather
than distributing the particles among threads, they are able
to prove through compiler analysis that updates to the par-
ticles commute, and hence multiple threads can update
particles simultaneously. This is akin to parallelizing the
traversal loop in our abstract model, rather than the parti-
cle loop.

Ghiya et al. proposed an algorithm to detect paral-
lelism in C programs with recursive data structures [7].
These tests rely on shape analysis to provide informa-
tion on whether the data structure is a tree, DAG or gen-
eral graph, and apply different dependence tests depend-
ing on data structure shape. Their analyses focus on par-
allelization and do not consider locality, but we believe
their approaches might inform an automatic transforma-
tion framework that implements our techniques.

8 Conclusions and future work
In this work, we demonstrated that, despite their seem-
ing irregularity, many tree-traversal codes possess a com-
mon algorithmic structure. Furthermore, this algorithmic
structure has an interesting analog to vector-vector outer
product, a simple regular algorithm. By exploiting this
analogy, we were able to show that classical loop transfor-
mations such as loop tiling have a corresponding instantia-
tion for tree traversal algorithms, and crucially, both trans-
formations have similar effects on locality.

To demonstrate the effectiveness of our tiling transfor-
mation, we applied tiling to two tree-traversal algorithms,
Barnes-Hut and raytracing. We showed that our tiled im-

plementation of tree traversal exhibits far better locality
than the baseline implementation and that our locality
gains persist even as we scale up the parallelism.

Future work There is ample opportunity for further in-
vestigation in this area. As suggested by our results, there
appears to be an underlying model, based on cache pa-
rameters, that determines the optimal tile size for tiled tree
traversals. There may be an analytical approach to deriv-
ing this model, or it may be necessary to apply machine
learning techniques to infer the model.

At present, the transformations to tree traversal codes
are performed by hand. However, the tiling transforma-
tion is a fairly systematic restructuring of the application,
and automation may be possible. It is an open ques-
tion whether a compiler could perform the transformation
by inferring that a tree traversal is being performed, or
whether a small amount of programmer intervention will
be required to guide the transformation process.
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