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Abstract

Modern hyperspectral imaging sensor technology provides detailed spectral and spatial in-
formation that enables precise analysis of land cover usage. From a research point of view,
traditional widely used statistical models are often limited in the sense that they do not in-
corporate some of the useful angle information contained in the feature vectors, and hence
alternative modeling methods are required. In the study to be presented, the use of cosine
angle information and its embedding onto a spherical manifold is investigated. The trans-
formation of hyperspectral images onto a unit hyperspherical manifold is achieved by using
the recently proposed spherical local embeddings approach. Spherical local embeddings is
a method that computes high-dimensional local neighborhood preserving coordinates of data
on constant curvature manifolds. We further develop a novel Kent mixture model for unsu-
pervised classification of embedded cosine pixel coordinates. A Kent distribution is one of
the natural models for multivariate data on a spherical manifold. Parameters for the model
are estimated using the Expectation-Maximization procedure. The mixture model is applied
to two different Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) datasets that were
acquired from the Tippecanoe County in Indiana. The results obtained present insights on co-
sine pixel coordinates and also serve as a motivation for further development of new models to
analyze hyperspectral images in spherical manifolds.

1 Introduction
For several years, spectral unmixing techniques have been widely used for hyperspectral data anal-
ysis and quantification. Many novel applications have been developed from the unmixing point
of view, including surface constituent identification for land use mapping, geology and biological
process analysis(Plaza et al., 2002). Feature extraction methods in the form of best band combina-
tions have been the most applied standards in such analysis. The best band approach relies on the
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presence of narrowband features which may be the characteristic of a particular category of interest
or on known physical characteristics of broad classes of data, e.g., vegetation indices (Clark et al.,
1992). On the other hand, the underlying assumptions of feature extraction methods are that each
pixel in a scene may be decomposed into a finite number of constituent endmembers, which repre-
sent the purest pixels in the scene. A number of algorithms have been developed and have become
standards; these include the pixel purity index and iterative spectral unmixing (Bachmann et al.,
2005). Although the use of endmembers and indices based on narrowband features have yielded
very useful results, these approaches largely ignore the inherent nonlinear characteristics of hy-
perspectral data. There are multiple sources of nonlinearity. One of the more significant sources,
especially in land-cover classification applications, stems from the nonlinear nature of scattering
as described in the bidirectional reflectance distribution function (Sandmeier et al., 1999). In land-
cover applications, bidirectional reflectance distribution function effects lead to variations in the
spectral reflectance of a particular category as a function of position in the landscape, depending
on the local geometry. Factors that play a role in determining bidirectional reflectance distribution
function effects include the optical characteristics of the canopy, canopy gap function, leaf area in-
dex, and leaf angle distribution (Sandmeier et al., 1999). It also has been observed that wavelengths
with the smallest reflectance exhibit the largest nonlinear variations (Sandmeier et al., 1999). An-
other source of nonlinearity, especially in coastal environments such as coastal wetlands, arises
from the variable presence of water in pixels as a function of position in the landscape. Water is
an inherently nonlinear attenuating medium. Other effects that contribute to nonlinearities include
multiple scattering within a pixel and the heterogeneity of sub pixel constituents. Classification of
hyperspectral image data that exhibits these non-linearities poses a huge challenge to linear meth-
ods. Better modeling of such data can be aided by use of better transformation methods. Recently,
there has been ongoing work in the field of manifold learning, to develop methods that capture
the low dimensional embeddings of high-dimensional data from which the nonlinear properties of
observed data can be captured and incorporated into the model with all the redundant information
eliminated.
Many of the manifold learning methods embed objects into a lower dimensional vector-space using
techniques such as Multidimensional Scaling(Cox & Cox, 2001), Diffusion Maps (Coifman & La-
fon, 2006), Locally Linear Embedding (Roweis & Saul, 2000), or Principal Component Analysis
(Jolliffe, 1986). Each of these approaches represents an attempt to derive a coordinate system that
resides on (parameterizes) the nonlinear data manifold itself. The methods represent a very power-
ful new class of algorithms that can be brought to bear on many high-dimensional applications that
exhibit nonlinear structure, e.g., the analysis of remote sensing imagery. Once embedded in such a
space, the data points can be characterized by their embedding co-ordinate vectors, and analyzed
in a conventional manner using Euclidean space methods. Models can be developed for the low
dimensional embedded data, but the challenge remains on how to interpret the geometrical char-
acteristics of the new space so that decision making tools can take advantage of these properties.
There also exists some limits to these paradigms; Euclidean distances are always definite and are
intrinsically unable to represent dissimilarities which are indefinite. A new approach to embedding
similar objects has been recently proposed. The spherical local embeddings (SLE) method maps
the dissimilarities of feature vectors onto a constant curvature manifold (Wilson et al., 2010). SLE
is a method that embeds indefinite data onto a non-Euclidean, but metric space optimizing over the
kernel distance matrix of positional vectors.
In this paper we exploit the nonlinear structure of hyperspectral imagery using the SLE method
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as a feature transformational tool. The approach seeks a constant curvature coordinate system
(Riemannian manifold) that preserves geodesic distances in the high-dimensional hyperspectral
feature space. A Riemannian manifold is curved, and the geodesic distances are metric. With data
embedded onto a spherical manifold, modeling techniques can now be developed. We first outline
the intuition and motivation explaining why a constant curvature manifold is relevant for remote
sensing data.
Traditional supervised and unsupervised classification algorithms involve multivariate data drawn
from Rd with most emphasis attached to the magnitude of the feature vectors while the directional
element of the feature vectors is usually not sufficiently considered. For some non-linearities ob-
served in remote sensing imagery data, e.g. presence of water, it makes sense to transform the
observed data onto manifolds on which the coordinate system allows for the directional nature of
the features to be more significant. It has been observed that for most high-dimensional remote
sensing feature vectors, the cosine similarity measure which is the function of an angle between
a pair of vectors, performs better than the Euclidean distance metric (Bao & Guo, 2004). Such
an observation suggests pursuing a directional model for hyperspectral images. With the above
insight, we develop a novel Kent distribution based approach for unsupervised classification of hy-
perspectral images on spherical manifolds. This is an approach for unsupervised classification of
embedded hyperspectral data based on a mixture model, where the distribution of the entire data is
considered to be a weighted summation of the Kent class conditional densities. The Kent distribu-
tion can be thought of as a generalization of the Fisher distribution (Mardia & Jupp, 2000),(Kent,
1982). The distribution is comparable to a bivariate normal distribution where the covariance ma-
trices are unconstrained. This allows for distributions of any elliptic shape, size, and orientation
on the surface of a sphere. Thus, the Kent distribution is more appealing for clustering of di-
rectional data since it provides more flexibility than the von Mises distributions (Mardia & Jupp,
2000),(Kent, 1982).
Our main aim is to introduce constant curvature manifolds to remote sensing data using the SLE
method and then propose a model for identifying cluster components of similar land cover usage.
Unsupervised classification of AVIRIS data is performed with each pixel allocated a class label
with the highest posterior probability. Cluster components are mapped to corresponding classes
using the best permutation mapping obtained from the Kuhn-Munkres algorithm (Lovasz & Plum-
mer, n.d.). In the next section, we first discuss the embedding space and the method of transforming
hyperspectral images to a constant curvature manifold. We then present the model based cluster-
ing on a spherical manifold. Experimental results are provided with discussions on why spherical
manifolds with neighborhood preserving properties have a potential impact on future models for
hyperspectral images. The last section concludes with a brief discussion and future work.

2 On Riemannian Space
In non-Euclidean spaces, computations are carried out by using different tools than the standard
methods used in a Euclidean space. The goemetry that exist in Riemannian manifolds dictates how
these tools are formulated. On a spherical manifold, a convenient way to measure the distance
between two points is no longer the straight line between the points as in the Euclidean space.
Distances on spherical surfaces are defined as the length of the shortest curve between a pair of
points (this defines the notion of goedesic). The method of embedding onto a constant curvature
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Riemannian space has recently been proposed in (Wilson et al., 2010). In this section, we simply
revisit the spherical local embeddings (SLE) formulation. A d-dimensional Riemannian space is
defined by its tensor gij in some local coordinate system u1, u2, . . . , ud. This is usually related to
an infinetesimal distance element in the space by

ds2 =
∑
ij

gijduiduj (1)

The metric must be positive definite, and any metric tensor defines a particular Riemannian space.
A simple form of a Riemannian manifold that easily relates to directional data is the elliptic mani-
fold (Wilson et al., 2010).

2.1 Constant Curvature Manifolds
An elliptic manifold is an example of a constant curvature manifold. This manifold is defined as the
geometry on the surface of a hypersphere. In some cases, a hypersphere can easily be embedded
in the Euclidean space, for example, the embedding of a sphere in three dimensions is

x = (r sinu sin v, r cosu sin v, r cos v)T (2)

A spherical embedding implies a metric tensor of the form

ds2 = dx2 + dy2 + dz2 (3)
= r2sin2vdu2 + r2dv2 (4)

The embeddings of an d − 1 dimensional hypersphere in a d dimensional space follows from this
equation. The surface of the hypersphere can be implicitly defined by the constraint∑

i

x2
i = r2 (5)

The surface is curved with a constant radius of curvature R = 1/r2. The geodesic distance of two
points on a curved space is the length of the shortest curve lying in the space and joining the two
points. For elliptic manifolds, the geodesic is a great circle on the hypersphere. The distance is the
length of the arc of a great circle which joins the two points. If the angle substended by the two
points at the center of the hypersphere is θij , then the distance between them is given by

dij = rθij (6)

Given that the coordinate is at the center of the hypersphere, we can represent any point by a
position vector xi of length r. Since the dot product is < xi, xj >= r2 cos θij we obtain

dij = r cos−1(
< xi, xj >

r2
) (7)
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2.2 Cosine Coordinates on Hyperspherical Manifolds
Given a distance matrix D from the Euclidean space, the goal is to find a Riemannian space kernel
matrix with approximately the same distance position for each pair of sample vectors. In (Wilson
et al., 2010) the authors consider as first step the determination of the radius of curvature for the
manifold. However, we relax this requirement and fix the manifold to be a unit hypersphere. Given
n objects, the goal would be to determine a n− 1 dimensional Euclidean space. With the freedom
to choose the radius of curvature, the task is then to search for a n−2 dimensional space embedding
in an n− 1 dimensional Euclidean space.
The first step is to construct a space with the origin at the center of the hypersphere. If the point
positions are given by xi, i = 1, . . . , n, then

< xi, xj >= r2 cos θij = r2 cos(
dij
r

) (8)

From (8) a matrix of positional hyperspherical vectors is defined to be X , with each position
vector as a row. The goal is to match the Riemannian kernel matrix from the outer product of the
positional matrix to the cosine similarity kernel Z

XXT = Z (9)

where Zij = r2 cos(
dij
r

) and dij ∈ D. Since the embedding space has dimension n− 1, X consists
of n points of dimension n − 1 and Z is a (n × n) positive semi-definite matrix with rank n − 1.
Z has a single eigenvalue that is zero, with the rest positive. This observation led the authors in
(Wilson et al., 2010) to compute the radius of curvature by exploring the eigenspectrum of the
kernel. Thus, Z is computed as a function of r, and finding the smallest eigenvalue λ1 determines
the objective function to be minimized. Therefore, r? is determined by minimizing the magnitude
of the smallest eigenvalue as a function of r:

r? = argminr|λ1{Z(r)}| (10)

Given the optimal radius r?, the embedding positions are determined through the eigendecompo-
sition of Z(r?):

Z(r?) = UΛUT (11)

We however fix the radius to r = 1 so that the curvature is maintained to be a unit hypersphere, and
that enables our proposed approach to use some of the existing tools from directional statistics. The
intuition of modeling on hyperspherical surfaces is also somehow simplified when the discussion is
centered on the directional components of the positional vectors. The matrix of spherical positional
vectors X is determined as

X = UΛ1/2 (12)

2.3 Dimensionality Reduction
The data matrix obtained by the embedding method described above is high dimensional. We
propose a method to reduce the dimension to a lower spherical manifold by computing a lower
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rank approximation to the positional matrix X subject to fixing the radius of the hypersphere and
the norm of each positional vector to be of unit length. We achieve this by applying a well known
theorem, due to Eckart and Young (Eckart & Young, 1936), which computes for a matrix of the
required rank with lowest possible Frobenius error.

Theorem 1.

argmin︸ ︷︷ ︸
Y |rank(Y )=k,‖y‖=1

‖X − Y ‖F = ‖X −Xk‖F (13)

=

√√√√ n−2∑
i=k+1

σ2
i . (14)

Having the singular values in decreasing order σ1 ≥ σ2 ≥ . . . , Xk can be observed to be the best
rank-k approximation to X , incurring an error (measured by the Frobenius norm of X−Xk) equal
to σk+1. Thus, the larger k is, the smaller this error becomes, but then the dimension increases with
larger k. So a tradeoff has to be reached in achieving a low dimension positional matrix Xk and
achieving a smaller Frobenius error. Once the feature matrix is embedded to the required lower
dimensional hypersphere, analysis can be performed.

3 Polar Coordinates
Restricting the rank approximation to the first three singular values of the positional matrix from
the previous section, we obtain sample points that lie on the surface of a unit sphere. These sample
points can be further represented using polar coordinates. The polar coordinates are denoted by
(γ1, γ2) (0 ≤ γ1 ≤ 2π, 0 ≤ γ2 ≤ π

2
), where γ1 represents the dip angle and γ2 is the dip

direction (Kent, 1982),(McLachlan & Peel, 2000). The polar coordinates can be obtained from the
embedded cosine pixel coordinates by

γ1 = arctan(x3/x2), γ2 = arccos(x1) (15)

Following the approach in (McLachlan & Peel, 2000), the polar coordinates are used later for
simplifying the parameter estimation of the model.

4 Mixture of Kent Distributions
We now consider a mixture of J Kent distributions that serves a generative model for the co-
sine pixel coordinates. We also present a convenient method for update equations in estimating
the mixture-density parameters from the embedded pixel coordinates using the Expectation Maxi-
mation procedure. Kent model based approach has been considered in the context of mining rock
fracture studies in (McLachlan & Peel, 2000)(pp 287). In (McLachlan & Peel, 2000), data samples
were represented as dip angle and dip direction for different sites. Kent component distributions
were then used to identify joint sets in the fractured data. Although the motivation of using di-
rectional coordinates may parallel a lot of work in directional statistics, our work is motivated by
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the capability of embedding higher dimensional pixel coordinates in a lower dimensional spherical
manifold on which the neighborhood relations of pixels are preserved and characterized by the
cosine distances.
The mixture model approach assumes each embedded coordinate pixel is a realization of the ran-
dom d−dimensional vector X , which has a probability density given by

f(x; Θ) =
J∑
j=1

πjfj(x; θj) (16)

where the mixing proportions πj ≥ 0 and
∑

j πj = 1, Θ = {α1, . . . , αJ , θ1, . . . , θJ} and fj(x; θj)
is denotes the probability density of the jth component which is denoted by

f(x; θj) = Z · exp
{
κ(xT ξ1) + β(xT ξ2)

2 − β(xT ξ3)
2
}
, (17)

where

Z ≈ exp(−κ)
√
κ2 − 4β2

2π

and θ = (κ, β, ξT1 , ξ
T
2 , ξ

T
3 )T is the parameter vector. The parameter ξT1 is the directional mean of the

component distribution, while β, ξT2 and ξT3 relates to the shape and orientation of the component
distribution, respectively.
For a given cosine coordinate data, we let X={x1, . . . , xn} be the set of feature vectors sampled
according to equation (17). Let Y={y1, . . . , yn} be the corresponding set of latent variables with
each yn ∈ {1, . . . , J}. For example, yi = j if xi is sampled from fj(·|θj).
Since the values in the set Y are unknown, the log-likelihood of the observed features is a random
quantity given by

logP (X ,Y|Θ) =
n∑
i=1

logαyifyi(xi|θyi). (18)

If the set Y is known apriori, the maximum likelihood approach to the estimation of Θ can lead to
estimates obtained from appropriate roots of

∇θyi=j
logP (X ,Y|Θ) =

n∑
i=1

πj · ∂f(xi;θj)

∂θj∑J
k=1 πkf(xi; θk)

(19)

=
n∑
i=1

πjf(xi; θj) ·
∂f(xi;θj)

∂θj

f(xi;θj)∑J
k=1 πkf(xi; θk)

(20)

=
n∑
i=1

πjf(xi; θj) · ∂ log f(xi;θj)

∂θj∑J
k=1 πkf(xi; θk)

(21)

(22)

However since the labels yi for each coordinate pixel xi is unknown, the solutions of (22) can
be found using the expectation-maximization (EM) algorithm (McLachlan & Peel, 2000). On
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the (t + 1)th iteration of the EM algorithm, the E step is equivalent to replacing the unobserved
random quantities in Y by their current conditional expectations, which are the current conditional
probabilities of Y = j given X = xi:

p
(t)
ij =

π
(t)
j f(xi; θ

(t)
j )∑J

k=1 π
(t)
k f(xi; θ

(t)
k )

= p(Y = j|X = xi; θ) (23)

with 1 ≤ i ≤ n; 1 ≤ j ≤ J .
The M step requires finding the value of Θ at the (t+ 1) iteration. Thus Θ(t+1) would be the value
that globally maximizes the objective function

Q(Θ,Θ(t)) =
∑
Y

p(Y|X ,Θ(t)) ln p(X ,Y|Θ)

Thus, in the M step, the quantity that is being maximized is the expectation of the complete-data
log likelihood. This effectively requires the calculation of the component distribution maximum
likelihood estimates. The updated component parameter estimates for the (t + 1) iteration, θ(t+1)

j ,
are obtained by solving the weighted log-likelihood equation

n∑
i=1

p
(t)
ij ∂ log f(xi; θj)/∂θj = 0. (24)

The solution for (24) does not exist in closed form, and so has to be obtained iteratively. Deriving
the corresponding maximum likelihood estimates of (24) poses some challenges due to the curved
exponential family structure of the model. A more convenient approach is to use the method of
moments for each component distribution as proposed in (Kent, 1982). Moment estimates can be
shown to be consistent estimates of the true parameters and hence provide suitable starting values
for maximum likelihood iteration. If the data are highly concentrated, the concentration parameters
κ̂ and β̂ can also be calculated explicitly.

4.0.1 Weighted Moment Estimates

Moment estimates were first proposed in (Kent, 1982) to estimate the parameters of a single Kent
distribution from a sample ((γ11, γ21), · · · , (γ1n, γ2n))T . We adopt the approach for a mixture of
Kent distributions. We let

(
(x11, x21, x31)

T , · · · , (x1n, x2n, x3n)T
)

denote the respective embedded
cosine pixel coordinates of equation (14). The the weighted moment estimates for each cluster
Y = j during iteration t are calculated as follows:
Step 1: Calculate the sample mean direction

γ̄1,j =
n∑
i=1

p
(t)
ij γ1i/nj, γ̄2,j =

n∑
i=1

p
(t)
ij γ2i/nj,

and
R2
j = S2

x1,j
+ S2

x2,j
+ S2

x3,j
,

where Sx1,j =
∑n

i=1 p
(t)
ij x1i, Sx2,j =

∑n
i=1 p

(t)
ij x2i, Sx3,j =

∑n
i=1 p

(t)
ij x3i and nj =

∑n
i=1 p

(t)
ij . The

mean resultant length is
R̄j = Rj/nj
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and the matrix Sj is given by

Sj =
∑n

i=1 p
(t)
ij x

2
1i

∑n
i=1 p

(t)
ij x1ix2i

∑n
i=1 p

(t)
ij x1ix3i∑n

i=1 p
(t)
ij x1ix2i

∑n
i=1 p

(t)
ij x

2
2i

∑n
i=1 p

(t)
ij x2ix3i∑n

i=1 p
(t)
ij x1ix3i

∑n
i=1 p

(t)
ij x2ix3i

∑n
i=1 p

(t)
ij x

2
2i


Step 2: Compute the matrix

Hj = cos γ̄2j − sin γ̄2j 0
sin γ̄2j cos γ̄1j cos γ̄2j cos γ̄1j − sin γ̄1j

sin γ̄2j sin γ̄1j cos γ̄2j sin γ̄1j cos γ̄1j


and then compute matrix Bj by

Bj = HT
j SjHj.

Define α̂ to be
α̂j =

1

2
arctan{ 2b23

(b22 − b33)
}.

Step 3: Compute the matrix

Kj = 1 0 0
0 cos α̂ − sin α̂
0 sin α̂ cos α̂


Let

Ĝj = HjKj (25)
= (ξ1, ξ2, ξ3), (26)

where ξ1, ξ2 and ξ3 are 3× 1 column vectors. Calculate

Vj = ĜT
j SjĜj

and
Wj = v22 − v33,

where vij denotes the element of matrix Vj in the ith row and jth column.
Step 4: When κ is large, the limiting bivariate normal approximation gives the high-concetration
approximations as

κ̂j ≈
1

2(1− R̄j)−Wj

+
1

2(1− R̄j) +Wj

,

β̂j ≈
1

2

{
1

2(1− R̄j)−Wj

− 1

2(1− R̄j) +Wj

}
.
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Step 5: Let the mean direction be given by (x1, x2, x3)
T = ξ1. For each EM iteration, we weigh

the corresponding data dependent moment estimates by equation (23) to obtain the M step. The
moment estimates ensures that the inequality

Q(Θ(t+1); Θ(t)) ≥ Q(Θ(t); Θ(t))

is true for each Θ(t+1). This is sufficient to ensure that the likelihood is not decreased. The spher-
ical Kmeans algorithm(Dhillon & Mudha, 2001) provides the seeding required to initialize the
proposed Kent mixture model.

5 Experiments
We consider a random unit vector X , whose elements are positional coordinates of the intensity
values of a pixel sample (with its neighborhood) from the corresponding spectral bands of a hy-
perspectral image. The randomness in the vector is introduced by physical, scattering effects and
atmospheric features. As such, it makes sense to consider the physical properties of an area as
being characterized more by the distribution of the vector of directional positional intensities than
by the value of the vector. We make the assumption that sample directional unit pixel positional
vectors were generated by selecting the class yi = j, with prior probability πj and then selecting
X , according to f(X|θj) so that the mixture model derived above can now be applied.

5.1 Data
5.1.1 AVIRIS Hyperspectral Image 1992:

As to establish the effectiveness of the proposed hyperspectral feature transformation onto spher-
ical manifold, and the application of the proposed mixture model, we generated results with the
AVIRIS multispectral image. The West Lafayette image was used in the experiments. It is a mul-
tispectral image obtained with the Airborne/Infrared Imaging Spectrometer that was built by Jet
Propulsion Laboratory and flown by NASA/Ames on June 12, 1992 (Landgrebe & Biehl, 1992).
The scene is over an area that is 6 miles west of West Lafayette. It contains a subset of 9 bands from
a significantly larger image with 220 bands. The bands considered have wavelengths 0.828−0.838,
0.751− 0.761, and 0.663− 0.673 µm. The image has 17 classes (background, alfalfa, corn-notill,
corm-min,corn, grass/pasture, grass/trees, grass/pasture-mowed, hay-windrowed, oats, soybeans-
notill, soybean-min, soybean-clean, wheat, woods, dldg-grass-tree-drives, and stone-steel-towers).
The image size is 145 × 145 pixels. The pixel resolution is 16 bits, corresponding to 65536 gray
levels. 3403 pixels were selected to generate the ground-reference data. For the experiments, each
sample pixel is of dimension 81 consisting of the pixel’s values from the 9-bands and the 9-bands
values for each of its 8 neighbors. In Figure 1, we show the actual land cover usage from the
AVIRIS image together with the land cover cosine coordinates for each pixel embedded onto a
spherical manifold.

5.1.2 AVIRIS Hyperspectral Image 1986: Tippecanoe County

This is a small segment (169 lines x 169 columns of pixels) of a Thematic Mapper scene of
Tippecanoe County, Indiana gathered on July 17, 1986 (Landgrebe & Biehl, 1992). The subset
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Figure 1: AVIRIS 1992 West Lafayette land cover usage, color coded on ground truth. The corre-
sponding cosine pixel coordinates on a spherical manifold are shown to the right.

consist of 7 bands of a significantly 220 bands. The image has 7 classes (background, corn, soy-
bean, wheat, alfalfa/oats, pasture, and sensor/distortion). Two thousand pixels were selected to
generate the ground-reference data. For the experiments, each sample pixel is of dimension 63
consisting of the pixel’s values from the 7-bands and the 7-bands values for each of its 8 neigh-
bors. In Figure 2, we show the actual land cover usage from the AVIRIS image together with the
land cover cosine coordinates for each pixel embedded onto a spherical manifold. On the final,
clustering we exclude the 7th cluster that is due to sensor distortion.

5.2 Results
To evaluate the performance of the mixture model on hyperspectral data clustering, we used a
metric-accuracy proposed in (Xu et al., 2003). The dataset consist of N samples, all with labeled
clusters. With each sample’s predicted cluster label denoted ti and the corresponding ground truth
labelled gi, the clustering accuracy is defined by

accuracy =

∑N
i=1 δ(gi,map(ti))

N
(27)

where δ(gi,map(ti)) is a delta function equal to 1 if the label gi is equal to the label ti, otherwise
it is 0. The function map(ti) is the best permutation mapping obtained from the Kuhn-Munkres
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Figure 2: AVIRIS 1986 Tippecanoe County land cover usage color coded on ground truth. The
corresponding cosine pixel coordinates on a spherical manifold are shown to the right.

algorithm (Lovasz & Plummer, n.d.). The function maps the predicted cluster labels to the corre-
sponding best permuted representational cluster.
The clustering accuracy of the proposed Kent mixture model is compared to the results obtained
by the spherical K-means and the von-Mises Fisher mixture model (?) . It can be seen from
Table 1 that the accuracies achieved by the proposed algorithm are higher. For all three clustering
methods, higher accuracy was observed for fewer cluster components. We also compare our results
with those obtained in (Shah et al., 2002), from which the authors used an independent component
mixture model to study the same dataset but for only four clusters. We applied our proposed
method to a small subset image with four clusters and observed the clustering accuracy to be
78%. This value is 18% above the value which was reported in (Shah et al., 2002) for the same
ground truth. This indicates that our proposed method has additional capability to carry out better
clustering as compared to an independent component analysis(ICA) mixture model. In order to
give a further quantitative performance evaluation of the proposed algorithm, we collected 2000
pixels from the Tippecanoe County image 2. We applied the SLE followed by the proposed Kent
mixture model and generated the confusion matrix based on the relationship between the mappings
obtained from the Kuhn-Munkres algorithm (Lovasz & Plummer, n.d.) and the ground-truth labels
in Figure 2. The statistical accuracies are shown in Table 2. The mixture model exhibited better
accuracy on clustering the pixel coordinates.
The accuracy is however sensitive to an introduction of new cluster components. In Figure 4, we
show a result of AVIRIS-West Lafayette image clustering accuracy degrading with the introduc-
tion of new cluster components. This artifact could be expected from most unsupervised learning
methods. The argument being that as more and more overlapping structures are introduced, sam-
ple points that are located at the cluster component boundaries are more likely to present more
ambiguity as to which cluster they belong to, as a result degrading the performance of the algo-
rithm. However, the results clearly supports a motivation for exploring a new coordinate space
from which to model hyperspectral images.
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Table 1: Clustering accuracy(%)- AVIRIS 1992 Indian Pine Site
number of clusters sphericalKmeans vonMisesFisher-mixture Kent-Mixture

2 55.10 63.34 87.48
3 69.86 82.93 79.98
4 55.80 61.31 70.00
5 46.41 51.39 59.33
6 50.49 49.14 57.30
7 51.17 51.11 54.29
8 49.63 48.38 57.94
9 52.07 53.31 61.55

10 50.70 50.71 58.50
11 47.64 50.93 59.11
12 43.90 47.91 57.94
13 43.23 45.92 55.69
14 43.45 46.77 56.67
15 44.66 41.81 51.54
16 42.80 41.46 49.55
17 42.03 40.46 47.19

Avg accuracy 46.41 48.64 56.71

Figure 3: Clustering accuracy on AVIRIS-West Lafayette Image
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Table 2: Clustering accuracy(%)- AVIRIS 1986 Tippecanoe County
number of clusters sphericalKmeans vonMisesFisher-mixture Kent-Mixture

2 79.58 77.47 75.89
3 56.41 73.77 76.22
4 55.96 52.89 68.66
5 54.11 44.77 65.65
6 52.74 39.33 65.23

Avg accuracy 49.80 48.03 58.61

Figure 4: Clustering accuracy on Tippecanoe County 1986 Hyperspectral Image
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6 Conclusions
Our primary goal was to seek a constant curvature manifold on which hyperspectral images could
be represented by their cosine coordinates and then develop a clustering technique for analysis of
the data. The motivation of using cosine coordinates was due to observing the success of the cosine
similarity metric in image retrieval systems in Euclidean spaces. We have proposed a novel ap-
proach derived from embedding hyperspectral images onto a spherical manifold using the spherical
local embedding (SLE) method. The approach models cluster distributions with the Kent densi-
ties, resulting in a Kent Mixture Model (KMM). The results presented indicate the benefits of
seeking spherical coordinates for analysis of hyperspectral images. The embedding method used
introduces a neighborhood preserving constant curvature manifold enabling a potential for higher
accuracy in clustering of land cover data.
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