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Abstract

We present an algorithm for the fast and accurate simulatigpower/ground
mesh structures. Our method is a direct (non-iterativeya@gugh for simulation
based upon a parallel matrix inversion algorithm. Through tse of additional
computational resources, this distributed computing rigpke facilitates the sim-
ulation of large-scale power/ground networks. In addititthe new dimension
of flexibility provided by our algorithm allows for a more agate analysis of
power/ground mesh structures using RLC interconnect nsodgpecifically, we
offer a method that employs a sparse approximate inver$mitgee to consider
more reluctance coupling terms for increased accuracymfilsition. The inclu-
sion of additional coupling terms, however, does not leadrtancrease in either
time or memory requirements associated with the primarymaational task in
transient simulation, thus making the simulation procedwalable The parallel
matrix inversion algorithm shows substantial computalomprovement over the
best known direct and iterative numerical techniques thatagplicable to these
large-scale simulation problems.



1 Introduction

The accurate and efficient modeling and simulation of pogvetnd networks has be-
come a difficult problem for modern design. Increases taogiratiion density have ne-
cessitated the use of large-scale power mesh structurwjiinthe scaling of voltages
the need for accurate simulation of these structures isiaru@reviously employed
direct methods for simulation of this problem have becomgrantical due to both ex-
traordinary memory requirements and prohibitive simalatimes. This has prompted
several variations of iterative schemes [1-6] that attetmpheet these rising compu-
tational challenges. In [1], the authors employed a Rantldatk technique where a
stochastic analysis of the supply network allowed for adraffl between accuracy and
simulation time (the Random-Walk based approach of [1] leentadapted to provide
a preconditioner to be used with an iterative linear soleemjuadratic placement [7];
this approach can be directly applied toward the transiemilation of RC mesh struc-
tures). There has also been research into applying stamtemnéin decomposition
techniques known as “alternating” procedures, which a&miive schemes used to re-
lax the stringent memory requirements associated with povash simulation [2]. A
similar domain decomposition based method which used tha@ora walk procedure
to specifically perform computation along the boundary sdde the domains, within
a global iterative scheme, was shown in [3]. Alternativelynethod with the same
goal of facilitating large-scale mesh simulation only tigb a hierarchical framework
was presented in [4]. In [5], a different iterative schemesdd upon the classical SOR
approach, was used to iterate between either rows of therpmvpply grid or across
groups of nodes. In addition, technigques such as the miglliidge [6] method aim
to improve simulation time by extrapolating informatiofin reduced order systems
in order to simulate the global system efficiently. The cogeace for each of these
methods, and therefore the simulation time, is problem deest (i.e. both switching
activity within the network and branch coupling will affebie simulation time).

Although most of these methods have been shown to be quitessfal for large-
scale simulations (millions of nodes) of RC mesh structurese have clearly demon-
strated an efficient and scalable approach to deal with inguicoupling effects. This
can be largely attributed to the fact that with the inclusidmductive coupling, much
of the locality for the problem is lost. Specifically, an agive method that uses small
independent or slightly overlapped subsets of the networrder to infer informa-
tion about the global system dynamics will not converge kjyid there is significant
coupling across different regions of the network. In additias was alluded to by the
authors of [4], the conditioning of the underlying systemtricas would degrade if the
interconnects, which constitute the mesh structure, adeted as RLC. By employing
a parallel direct technique for simulation, we offer a stablternative that allows for
the efficient simulation of networks with a large amount adrich coupling.

In this work, we present a direct method for parallel matnxdrsion that uses ad-
ditional computing resources in order to stably relax baimputational and memory
requirements typically associated with direct technigieesimulation. Specifically,
the parallel method for solving block tridiagonal systemasgented in this workcales
well with the inclusion of additional reluctive couplindexts within an assumed block
tridiagonal structure. In addition, a computationallye&#fnt method based upon sparse



Figure 1: 4x4 RLC mesh structure.

approximate inverses will be demonstrated in order to flgxdbnstruct the coefficient
matrices for simulation. The effects on the accuracy foruation, given these ad-
ditional reluctive coupling terms, as well as the overalpamt for simulation time
are analyzed. Finally, we conclude that the parallel ditechnique for simulation
demonstrates computational advantages over existingt@ing iterative methods. Our
method extends the computational efficiency afforded bgalimethods to consider
large simulation problems. These simulation problems hgpially only been ana-
lyzed through the use of iterative methods, which in gersrfiér from poor scalability
as the amount of branch coupling being considered increddesmethod presented in
this work is specifically designed to avoid a computatioregdehdence on the amount
of branch coupling considered, making it ideally suiteddocurate large-scale tran-
sient simulation.

1.1 Simulation of RLC Mesh Structures

When RLC interconnect models are used for the simulation e$hrstructures (see
Figure 1) the typical Modified Nodal Analysis (MNA) represation yields equations
of the form:
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Here,R, C, andL are the resistance, capacitance, and inductance matsesatively.
The matricesy andA. transform the conductances and capacitances into nodd base
relationships. The matriced andA; link the node voltages and branch currents de-
scribed by the state variabe In addition,ls is the current vector that dictates, through
the matrixA;, the relationship of the current sinks onto the nodes of thelm

A classical algorithm for the numerical integration of ordry differential equa-
tions such as (1) is the trapezoidal method [8]. Consideifaim discretization of the
time axis with resolutiom. Then, using the notatiorf = v,(kh) to denote the voltage
at then™ node we may then solve foft1 in terms ofvk through the Nodal Analysis
(NA) equations [9]:
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whereS = A,TL‘lA.. It is important to note that with the inclusion of inductanéor
the modeling of the interconnects, we must now account effect of this additional
susceptance ter®@

For the transient simulation of RC mesh structures, thefioderit matrix K de-
fined in (2) was symmetric, positive-definite, and sparsdckhllowed for the use of
fast and numerical stable direct techniques for simulateog. the Cholesky factor-
ization [10], multi-frontal methods [11], and other geneparse LU decompositions.
In addition, the diagonally dominance property of the malti along with the small
number of non-zero entries, made the problem ideally stiiteitierative schemes such
as [1-6], including the conjugate gradient method [10] areddeneralized minimal
residual method [12]. As the problem size of interest hasvgrahe memory require-
ments of the direct approaches has restricted their usacaljpthey are only utilized
in conjunction with decomposition based iterative schesueh as [2, 4], or as part of
a hybrid iterative and direct scheme [3].

When considering RLC mesh structures, the simulation nutli@scribed above
are restricted by the use of iterative methods, which in gdreiffer from poor scal-
ability as the amount of branch coupling being consideredeiases. For example,
the presence of the susceptance term in (2) precludes thef tise original random
walk [1] and the new hybrid random walk [7] directly for the tma K. These al-
gorithms rely on the formulation of a stochastic game whithisafoundation places
a requirement that the coefficient mati have positive diagonal entries and non-
positive off-diagonal entries. As was shown in [1] the ramdwalk based methods
could only be used if inductive coupling effects were captlthrough the inclusion of
an additional self-consistent iterative scheme.

The scalable algorithm presented in this work avoids thedrfee any iteration
during transient simulation. In addition, this techniquiewas for the dominant com-
putational task associated with (2) to be performed effibjemd exactly by exploiting



a distributed computing environment. Specifically, we oégarallel matrix inversion
algorithm for the transient simulation of RLC mesh struetirOur algorithm fully ex-
ploits the structure of the coefficient matkx during each solution of linear equations
KX = ¢j, across the time steps This inherently parallel algorithm facilitates a fast
and distributed matrix-vector multiplication to evaluate= K~1c;, for each time step
of the simulation. This matrix-vector multiplication, attterefore the largest portion
of the transient simulation time, is not affected by incemas simulation accuracy
through the inclusion of additional reluctance terms.

2 Coefficient Matrices for Simulation

We begin first with the construction of the coefficient matitrom (2), given a regular
power mesh topology. Thex44 mesh shown in Figure 1 has a total of 40 nodes. Each
direction of the mesh has three groups of four parallel waned if all mutual inductive
couplings are considered both the reluctance matrixand coefficient matrix will

be dense. Thus, in this work we investigate efficiency and@oy for the simulation

of power mesh structures when considering approximatiortbe reluctance matrix
that will finally result in a block tridiagonal susceptancatnx. A matrixY is block
tridiagonal if it has the form

AL —Bp
-Bl A B

Y= '

_B-ll\-ly—Z An-1 =B
Bl Ay

where eachy;, Bj € RNMN. ThusY € RWNN with N, diagonal blocks of size
Ny each. The notatio¥ = tri (Al;Ny, Bl;Ny_l) can be used to compactly represent such
a block tridiagonal matrix. We now offer a new flexible methimdwhich reluctance
values can be approximated to produce a sparse block todé&gusceptance matrix,
allowing for efficient and accurate simulation of power mesfctures.

2.1 Inductance Approximation Methods and the Formulation d
the Susceptance Matrix

In [9, 13] the accuracy for simulation with interconnectssvexplored usingvindow
based techniques. In those works reluctive coupling wasidered only to exist be-
tween neighbors in a given layer of parallel wires. Consttier4dx 4 mesh shown in
Figure 1, the inductor with terminal nodé3, 14) could be assumed to interact only
with the inductors between nodé¢g,3) and (24,25) in the reluctance matrix. The
capacitance matrix in this case is considered to be a didguatax with non-zero en-
tries only in the 16 node positions from which the capacitwench. Therefore, for a
mx m= 4 x 4 mesh structure, we can form a block tridiagonal matrix Wwfh=m=4
blocks of sizeNy = 3m— 2= 10. Thus, the block sizi, is the result of an even distri-
bution of the nodes in the RLC mesh structure imtgroups. This block decomposition



2.002

1.998H ft

-
©
©
>
T

Voltage (V)

— Full Inductance
- - -Window i

N
©
©
R
T

1.992 !
!

1.99r '

1.988 L L
0 05 ) 1 15
Time (s) %107

Figure 2: Accuracy for transient o = 16 power mesh using windowing.

is illustrated in Figure 1, where all nodes enclosed togedine considered to be part
of the same block. The fact that the nearest neighbor wingigwéchnique results in
a block tridiagonal coefficient matrix can be justified byinity that no coupling (i.e.
resistive, capacitive, and reluctive) can bridge more @ block separation.

In order to first motivate the necessity of a more accuratehotefor inductance
modeling over the traditional windowing based technique pansider a slightly larger
example. Figure 2 shows a comparison of the transient behtosia 16x 16 power
mesh. The solid line corresponds to all mutual inductaneegédeing included in the
analysis and the dotted line to the window based techniguibis case an exaggerated
undershoot can be seen when the switching activity subaidgshe voltage begins to
return toVyg. In addition, the window based approximation assumes Heatvoltage
will return more quickly to that of the supply than is evidémm the exact case.

In this work we consider the use of a sparse approximatesemechnique (SPAI) [14].
Although this technique was originally developed as a me¢thdorm a preconditioner
for iterative linear solvers, the metric used by the authiorder to construct the pre-
conditioner directly translates into improved accuracyhe case of power mesh sim-
ulation. Specifically, given an inductance mattixhe SPAI method can be used to
form another matrixM that is constructed in an attempt to match the inverse of the
inductance matrix under the Frobenius norm:

ILM—1[E = 3Ly [ (LM —1)al3, (4)

wheren in the number of columns df ande is theit" euclidean basis vector. There-
fore, we can solva independent least squares problems:

min|Lm —e|3, i=1,2,...,n (5)

in order to construct the columms of the approximate inverse matrd. Ref. [14]



16x 16 32x 32 48x 48 64 x 64
Matrix Size: 736 Matrix Size: 3008 Matrix Size: 6816 Matrix Size: 12160

Data NNZ [S% | RMSE | NNZ [ S%|[RMSE | NNZ [S% | RMSE | NNZ [S%

window | 6256 98.9 | 6.75E-04 | 26320 | 99.7 | 1.30E-03 | 60208 99.9 | 2.29E-03| 107920 | 99.9

1=094 | 14040 | 97.4 | 3.48E-04| 60280 | 99.3 | 5.83E-04 | 138776 | 99.7 | 1.14E-03 | 249528 | 99.8
1=095| 19612 | 96.4 | 3.31E-04 | 84956 | 99.1 | 4.47E-04 | 196124 | 99.6 | 1.10E-03| 353116 | 99.8
=096 | 30032 | 945 | 2.76E-04 | 132736 | 98.5 | 3.92E-04 | 308400 | 99.3 | 5.26E-04 | 557024 | 99.6
1=0.97 | 45564 | 91.6 | 2.42E-04 | 206156 | 97.7 | 3.76E-04 | 482460 | 99.0 | 1.74E-04| 874476 | 99.4
1=098 | 73114 | 86.5 | 2.01E-04 | 346558 | 96.2 | 1.36E-04 | 817778 | 98.2 | 2.29E-04| 1499314 | 99.0
=099 | 119188 | 78.0 | 1.82E-04 | 649208 | 92.8 | 1.24E-04 | 1598196 | 96.6 | 1.84E-04 | 1758736 | 98.8

Table 1: Accuracy comparison for reluctance approximati@thods against full in-
ductance, mesh sizes= 16,32 48 64, with associated number of unkowns given as
“Matrix Size”.

offers several heuristics in an attempt to satisfy (5) byatigely filling dominant en-
tries of the inverse matrik. In this work the threshold based approach is employed to
create a matrix whose entries must be significant with raspehe absolute maximum
in a column:

IMi j| > (1—T1)maxj[Mi ], (6)

where the diagonal entriéd; ; are always included. [f is close to zero, this criterion
would prevent fill-in and result in a matrix that is very spar3he valua = 1 would
correspond to a matrikl where the entire pattern &f * will be considered.

Finally, we are interested in having the structure of therima&, defined in (2),
be block tridiagonal in order to allow for efficient simulati through the use of our
divide-and-conquer approach. This in turn would imply ttreg structure of the sus-
ceptance matrix:S= A,TL‘1A| be block tridiagonal as well (note that the window
based technique referred to above will produce a sparsé& diagonal approximation
to the reluctance matrix, which also corresponds to a bladlagonal structure for the
matrix K). Therefore, we construct a framework where the sparsithefreluctance
matrix L~ is governed via the matri; to produce the final desired form for the sus-
ceptance matrix. Through the use of the SPAI procedure ilbestabove, assuming a
fixed threshold value of, we can form an approximation for the reluctance maitfix
which aims to satisfy (5). Next, a symmetric truncated \v@rf this matrix is formed
so that the susceptance mat8xvill be block tridiagonal, given some assumed block
SizeNy.

Given this framework for approximation we can examine theusacy of simula-
tion considering increases to the drop tolerance parametégure 3(a) demonstrates
that using a tolerancea:= 0.94 for the SPAI approximation method we can already see
the waveform more closely track the return to supply voltagth a less exaggerated
undershoot. This level of approximation results in appmadely a factor of 25x
increase to the number of non-zero entries (refer to Tablef e coefficient matrix,
where all inductive couplings considered where determireesbd upon the metric de-
scribed in (5). The column labeled “NNZ” is the number of rmero entries in the
coefficient matrix and the column labeled “S %” is the peragetof the matrix whose
entries are zero.
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Figure 3: Accuracy for transient behaviormwf= 16 power mesh using SPAI.



Figure 3(b) shows the same comparison for the tolerarice:0.99. It can be
seen that for this power mesh simulation we are able to traekyenflection of the
waveform using strictly a block tridiagonal representatfor the coefficient matrix.
Finally, the root mean-squared error (RMSE) for the case€0.99, when compared to
the waveform corresponding to the full inductance matrismgeconsidered, was less
than 27% of that using the window based technique. From Thble can observe that
for a larger 48x< 48 mesh the SPAI based inductance approximation proceesuéed
in a reduction of more than X2the RMSE achieved using the nearest neighbor win-
dowing technique. The case= 64 provided in the summary tables does not include
an accuracy comparison due to memory limitations as a restiie greater than four
thousand inductors associated with each direction of thehrtepology.

2.2 Inverses of Block Tridiagonal Matrices

Given the flexibility afforded by the SPAI based approachdonstructing the sus-
ceptance matrix, we can now formulate the coefficient medgriceeded for accurate
RLC mesh simulation. The problem then turns to addressiagtimerical challenges
associated with using a direct (non-iterative) approackhfe simulation of these struc-
tures. The inverse of a symmetric block tridiagonal mater e computed explicitly,
as demonstrated in [15-17]. However, the mathematicakbsgmtations presented in
these works suffer numerical instability issues and aralivettly applicable for large
scale problems such as power mesh simulation. A numeristdlyle mathematical
representation for producing the inverse of a symmetrickiwidiagonal matrix has
been demonstrated in [18]. Specifically, there exists tvgmeaces of “ratio” matrices
{Ri},{S} so that the inverse of a block tridiagonal matkxcan be written as:

Ny—1

D; D1S - D1 &
2!
. Ri1D1 D2 - D2 S
K™= k=2 . (7)
1 2
(N RJD1 (1 RJD2 - Dny
k=Ny—1 k=Ny—1

Here, the diagonal blocks of the inveri, and the ratio sequences satisfy the follow-



ing relationships:

Ri=A;'By,

R=(A-BlR1) "B, i=2..N-1

SN-1= BNyflAﬁya

S=Bi(Ar1-SuBlLy) T, i=N 2.1 (®)

D1= (A—SiB]) 7, )
Di+l: (Aj+l-S+lBiT+1)_ (I+B;[-DIS)7 I :17"')Ny_27
Dy, = Ay? (1+BL,1Dn, 1Sy 1)

The time complexity associated with determining the pataizeion of K—1 by the
above approach ®(N3Ny), with a memory requirement @(N2N, ).

2.2.1 Alternative Approach for Determining the Compact Repesentation

It is important to note that if the block tridiagonal portiohK ~1 is known, the ratio
sequenceR and S can be extracted directly, i.e. without the use of entriesnfkK
through the ratio expressions (8). Examining closely tleekltridiagonal portion of
K1

D: Di1&
R1D1 Do

tri(K 1) = 3 ,

Dny-1 Dny-1Sy-1
Ry-1Dny-1 Dy

we find the following relations:

DIS=Z — S=D;'z, i=1..N—-1,
(9)
RDi=Z' — R=Z'Dj%, i=1,... N1,

wherez; denotes théi, i + 1) block entry ofkK ~1. Therefore, by being able to produce
the block tridiagonal portion ok~ we have all the information that is necessary to
compute the compact representation.

As was alluded to in Section 1, direct techniques for simaitedf realistic power
mesh topologies often require prohibitive memory and cotafpenal requirements due
to the large number of distributed RLC segments involvedaddress these issues we
offer a parallel divide-and-conquer approach in order tostauct the compact repre-
sentation folk 71, i.e. the framework allows for the parallel inversion of theefficient
matrix for simulation. Specifically, we introduce an efficienethod for computing the
block tridiagonal portion oK~ in order to exploit the process demonstrated above.



3 Parallel Inversion of Block Tridiagonal Matrices

The compact representation Kf 1 can be computed in a distributed fashion by first
creating several smaller sub-matriags That is, the total number of blocks for the
matrix K are divided as evenly as possible amongst the sub-matrifés:. each in-
dividual sub-matrix inverse has been computed they can b#&ieed in a Radix-2
fashion using the matrix inversion lemma from linear algebFigure 4 shows both
the decomposition and the two combining levels needed ta foe block tridiagonal
portion ofK ~1, assumind< has been divided into four sub-matrices. In genera, i
separated intg sub-matrices there will be lggcombining levels with a total gh — 1
combining operations or “steps”. The notatmﬁlj is introduced to represent the result
of any combining step, through the use of the matrix inverégmma. For example,
(p{jz is the inverse of a matrix comprised of the blocks assigndabtbq; andgy. Itis
important to note that using the matrix inversion lemma edeély to join sub-matrix
inverses will result in a prohibitive amount of memory anamuutation for large simu-
lation problems. This is due to the fact that at each compietep all entries would be
computed and stored. Thus, the question remains on the fffiostrg way to produce
the block tridiagonal portion ok ~1, given this general decomposition scheme for the
matrix K.

In this work, we introduce a mapping scheme to transform @ohgepresentations
of smaller matrix inverses into the compact representatio —1. The algorithm is
organized as follows:

e Decompose the block tridiagonal matixinto p smaller block tridiagonal ma-
trices.

e Assign each sub-matrix to an individual CPU.

¢ Independently determine the compact representationsiassg with each sub-
matrix.

e Gather all information that is needed to map the sub-matirgact representa-
tions into the compact representation or?.

¢ Independently apply the mappings to produce a portion oftimepact represen-
tation fork —! on each CPU.

The procedure described above results in a “distributedoamtrepresentation” allow-
ing for reduced memory and computational requirementsciBpally, each CPU will
eventually be responsible for the elements from both thie sequences and diago-
nal blocks that correspond to the initial decompositiogy.(&f ¢y is responsible for
blocks 12, and 3 from the matriX, the mappings will allow for the computation of
Si.3, Ri.3, andDy 3).

In order to derive the mapping relationships needed to predudistributed com-
pact representation, it is first necessary to analyze hownsatoix inverses can be
combined to form the complete inverse. Consider the decsitipo of the block
tridiagonal matrixK into two block tridiagonal sub-matrices and a correctiomte
demonstrated below:

10
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Thus, the original block tridiagonal matrix can be decongubisito the sum of a block
diagonal matrix (with its two diagonal blocks themselvembélock tridiagonal) and
a correction term parameterized by fRex Ny matrix By, which we will refer to as the
“bridge matrix”. Using the matrix inversion lemma, we have

KL= (R+XY) =R (R1X) (1 + YR 2X) * (YR D),

where
= (TR i) o
(1+YRIX) ™ = (—(p{l(lk,k)B, —<Pz_l(|1a1)BiT)l,



and@;* (:,k) andg,* (:,1) denote respectively the last and first block columnedf
andg, .

This shows that the entries & are modified through the entries from the first
rows and last columns cqﬁ;l andqgl, as well as the bridge matrig;. Specifically,
sinceq is before or “above” the bridge point we only need the lastioot of its inverse
to reconstruck ~1. Similarly, sinceg; is after or “below” the bridge point we only need
the first column of its inverse. These observations werechiotfl 9], where the authors
demonstrated a parallel divide-and-conquer approachtesmee the diagonal entries
for the inverse of block tridiagonal matrices. In this work Wuild upon these ideas to
create a scalable distributed framework for the transientigtion of mesh structures.
We begin by generalizing the method from [19] in order to caepall information
necessary to determine the distributed compact reprasemtsf K1 (8). That is, we
would like to create a combining methodology for sub-maitmiserses with two major
goals in mind. First, it must allow for the calculation of aformation that would
be required to repeatedly join sub-matrix inverses, in otdemimic the combining
process shown in Figure 4. Second, at the final stage of théioimg process it must
facilitate the computation of the block tridiagonal portifor the combined inverses.

It is important to note that the method in [19] has been deeiospecifically to
determine the diagonal entries for a matrix with structuneilar to that ofK—1. We
can observe from Figure 4 that the diagonal entrie& of are restricted to the larger
diagonal blocks (corresponding the size of each divisidhg method from [19] does
not illustrate the process for reconstructing any infoliorabutside of these ranges. In
addition, as the final goal for the application in [19] is tlaonlation of a small subset
of the entries fronK ~1, there is no discussion of the process for efficiently retros
ing a distributed compact representation and its use indhgisn of block tridiagonal
systems of linear equations. In this work we offer the follogvcontributions:

e Considering a block tridiagonal coefficient matrix for silation K, we offer a
parallel matrix inversion algorithm. Specifically, we fisdtow that a distributed
mapping scheme can be used to determine the block tridihgomdes from
K~1. Subsequently, these entries can be used to form a digtdbzampact
representation ok~ using the procedure demonstrated in (9).

e A computationally efficient parallel matrix-vector mulligation approach using
the distributed compact representatiorof’.

Our algorithm is a scalable alternative for the repeatedtsmi of block tridiagonal
systems of linear equations, with respect to the presenaddifional reluctance cou-
pling terms.

3.1 Matrix Maps

Matrix mappings are constructed in order to eventually pazdthe block tridiagonal
portion of K~ while avoiding any unnecessary computation during the goimg

process. Specifically, we will show that both the boundanchklentries (first block
row and last block column) and the block tridiagonal entfiem any combined inverse
(g‘wlj must be attainable (not necessarily computed) for all combisteps. We begin

12



by illustrating the initial stage of the combining proces$geg four divisions, where
for simplicity each will be assumed to haiy blocks of sizeNy. First, the two sub-
matrices@; and ¢, are connected through the bridge matly, and together they
form the larger block tridiagonal matrig,.>. By examining Figure 4 it can be seen
that eventuallyp; %, and @3, will be combined and we must therefore produce the
boundaries for each combined inverse. From (10) the firatkbtow and last block
column ofg; %, can be calculated through the use of an “adjustment” matrix:

J:< i o (LB 71,
— @~ (Ny, Ny) B, |

as follows:

(‘Pfl(la :) 0) -

([—mﬁl, Ny)BNan(PIl(:,Ny)T]lT)T’
[0 (L N)Bry, 11y (1))

(pI~12(17 :)

(11)
BN = (0 %' (N) -~
([—%1(Ny,1>BLszzwll(:,M>T T)
RO A

In addition, ther™™ diagonal block ofp; 1, can be calculated using the following rela-
tionships for <Ny :

() = @ () = (—0 (1 Ny By Jiz (1 Ny)T)
(12)

QLo Ny +Ny) = ()
(- 8L e (1)

where the'™ off-diagonal block otp[jz can be calculated using the following relation-
ships:
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(1) =@ t(rr+1)—

(—@ 1 (rNy)By Ji2g H(r+ L Ny)T)
(13)

O p(r+ Ny, r+ 14 Ny) = @5 (rr +1)—
T

(~@ "+ L DBY g "(L1))

r <Ny,

(PIle(rv r-+ 1) =0- (_(pil(rv NV)BNy‘Jll(pEl(lv 1)) )
r=Ny.

The combination ofp; and @ through the bridge matriBsy, results in similar rela-
tionships to those seen above. Thus, in order be able to pedshth the boundary and
block tridiagonal portions of each combined inverse wegasaitotal of twelveNy x Ny
matrix maps for each sub-matrkk My.1_4 describe effects for thith portion of the
boundaryMy.5_g describe the effects for a majority of the tridiagonal blsclwhile
Ci:1—4, Which we will refer to as “cross” maps, can be used to prodhegemainder
of the tridiagonal blocks.

Initially, for each sub-matrix the mapping®i =1, k= 1,4, with all remaining
mapping terms set to zero. This ensures that initially thendary of(g‘wli matches
the actual entries from the sub-matrix inverse, and the fioadions to the tridiagonal
portion due to combining are all set to zero. By examiningfitet block row, last
block column, and the tridiagonal portion of the combinedeiseq; %, we can see
how the maps can be used to explicitly represent all of thelegénformation. The
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My Moy

M2 Mo ‘
—1
()
M3 Mgy
M3 My

Figure 5: Mapping dependencies when combirgnd andg, * to form g 2.

governing responsibilities of the individual matrix mape detailed below:

" [Meay (1,3 + Mzagy 1) )T |
02(L) = [ M2, 2(2,:) + Mooy 1(:,Ny) ] ’

1 [M3?1¢Il(1v:)+M4;1¢Il(:’NY) ]
¥ ( ZNY)_ [MS;Z(PEl(l,Z)+M4;2(p£l(Z,Ny)T]T )

O (r,S) = @ (r,9) — [0y H(r, HMsu@; H(1,9)+

@ (, DMea@; (5, Ny) T+ @1 (1 Ny ) M7 (1, 9)+ (14)
@ (1, Ny)Mga@; (s, Ny) T,

@5 (rs+Ny) = — (@ (r, 1)Crag, 1(1,9)+

@ (r D)C2105 (s Ny)T + 0y H(r Ny)Caa5 (1, 9)+

@ (1, Ny)Cand (s, )T],

L0+ Ny s+ Ny) =@ 2(r,9) — [0, 1)Ms205 1 (1,9)+
L(r, DMe20 1 (s Ny) T+ @5 (1, Ny ) M7 1 (1, 5) +
L(r,Ny) Mg 1 (s.Ny) 7],

@‘ N

rs<Ny,

Itis important to note that all of the expressions (11)-(d&) be written into the matrix
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map framework of (14). Figure 5 shows the mapping dependsrior the first block
row and last block row (or column sindé€ is symmetric). From (11) we see that
both of the block rows are distributed based upon the lonaifeach sub-matrix with
respect to the bridge point, i.e. the mapping terms assatiaith (pgl can be used to
produce the first portion of the rows while those associatid qxgl can be used for
the remainder. In fact, this implicit division for the mappgidependencies holds for
the block tridiagonal portion of the combined inverses adl,vemabling an efficient
parallel implementation. Thus, from this point we can deglilnat the matrix maps for
the first block row (14) must be updated in the following mamne

M1;1 — M1+ (@ (1, Ny) By J12)Mayg;
Ma;1 < Ma;1+ (@7 (1, Ny)BnyJ12)Ma;1;
Mz — (@ *(1,Ny)Bn,J11)M1.2;
Maa — (@ "(1,Ny)Bn,J11)M22;

In order to understand these relationships it is importadirst recall that the up-
dates to the maps associated with sub-matriare dependent on the last block column

@ *(:,Ny). Thus, we see a dependence on the previous state for thédektdolumn

(p{l(., Ny), i.e. the new state of the mapping terMs;; andMo;; are dependent on the
previous state of the mapping terrivk.1 andMgy.1 respectively. Similarly, a depen-
dence ortpgl(l, ;) results in the new state of the mapping teuhs, andMz.» being
functions of the previous state of the mapping telvhs, andM1.» respectively. Fi-
nally, although some of the mapping terms remain zero ditetinitial combining step
(M2:> for example), the expressions described in (14) need to hergkenough for
the methodology. That is, the mapping expressions mustleg¢@bapture combining
effects for multiple combing stages, regardless of thetmosdf the sub-matrix with
respect to a bridge point. For example, if we consider subirme@, for the case seen
in Figure 4, during the initial combining step it would be saered a lower problem
and for the final combining step it would be considered a uppaslem. Alternatively,
sub-matrixgs would be associated with exactly the opposite modificatitins impor-
tant to note that every possible modification process, feirividual mapping terms,
is encompassed within this general matrix map framework.

3.2 Recursive Combining Process

In order to formalize the notion of a recursive update schemavill continue the ex-
ample from Section 3.1. By examining the final combing stagetie case of four
divisions, we notice that the approach described in (1B)-€Aan again be used to com-
bine sub-matrix inverseg %, andg, %, through the bridge matrin, . The first block
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row and last block column af %, can be calculated as follows:
(PIN14(17:) = ((pIle(l, ) O) -
( [~ @1 25(1,2Ny)Bany J12 S5 2Ny)T1j T) !
[_(Pilz(la 2Ny) BZNlel(9§~14(17 3)] 7
(15)
Bl AN) = (0 @ ly(@N)" -
([—mgh(zw Bl i 2] T)
02N DB s (1)) )
given the adjustment matrix:

o AL A
— @5 (2Ny, 2Ny) Ban, '

In addition, ther™" diagonal block ofg; %, can be calculated using the following
relationships:

(priL4(ra r) = (ij-Z(ra r)_

(— @25 (r, 2Ny) Bany J120 1, (1, 2Ny)T)
(16)

@24+ 2Ny, 1 4+ 2Ny) = @3l (rr)—

1 T _q T
( P34, 1)52Ny‘]21(93~4(1ar))) ,
r < 2Ny,

where the'™ off-diagonal block otp[~l4 can be calculated using the following relation-
ships:

(PIN14(I’, r-+ 1) = (pI~12(r’ r-+ 1)_

(=@ 25(r, 2Ny) By, J1203 (1 + 1,2N,)T)
17)

QO (r+ 2Ny, 1 + 14+ 2Ny) = @3 L, (r,r +1)—
(~osku(r+ LR, e ty(Lr)
r < 2Ny,

L1, (rr+1)=0-
(_(PIle(rv ZNy) BZNlel(pgj:zl(la 1)) )
r=2Ny.
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Again, it is important to note that each of the expressio®3-(17) are implicitly di-
vided based upon topology. For example, the fifd§ @iagonal blocks otp;j4 =K1
can be separated into two groups based upon the size of thmauiizesg; and @,.
That is,

9LLa(rr) =91 55(nr) -
(=@ 25 (r, 2Ny)Bany J129, 25 (1, 2Ny) )
r < 2Ny,
can be separated for< Ny as:
(pI~14(rv r) = (PIl(I’, r)_
([‘Pgl(Ma 1)BY, Ja20; Ny)T}T) - BonyJ12-

(e N, DBY, %o (1 N)T] ).

@Lla(r+ Ny, T+ Ny) = @ (rr)—

)
([@ ") +05 0N, DBY das (1.1)] ) By a2
([0 Nr) + 0 (N, DBE, I (1.1 ).

Thus, the modifications to the diagonal entries can be wrgtejust a function of the
first block row and last block column from the individual soiatrices, using the matrix
map framework introduced in (14) for< Ny :

(pI~l4(r’ r= (PIl(I’, r—
([Ml;l(PI]'(l, r+ M2;1¢I1(r, Ny)T]T) -BonyJ12-
([Ml;l@fl(l, r) + Mz;lq)Il(r, Ny)T]) ,

Ay + Ny T+ Ny) = @57 (1)~
(M2 (1,1) + Moy *(1.Ny)] ) - By 2

([M1;205 (1, 1) + Ma205 (1, Ny)] ) -
Here, the matrix maps are assumed to have been updated hmmethe formation of
the combined inverseg t, andgs?,. Therefore, we can begin to formulate the recur-
sive framework for updating the matrix maps to representffext of each combining
step.

3.3 Update Scheme for Parallel Inversion and the Distributd Com-
pact Representation

The procedure begins with each division of the problem beisgjgned to one ob
available CPUs. In addition, all of the— 1 bridge matrices are made available to
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each of the CPUs. After the compact representation for eaarse has been found
independently, the combining process begins. Three nederpositions are defined
for the formation of a combined inverge; L. the “start” position[st] = i, the “stop”

position [sp] = j, and the bridge posmo[bp] = [117. Due to the fact that a CPU
will only be involved in the formulation of a combined inversthen[st] <t < [sp]

all combining stages on the same level (see Figure 4) cantfermed concurrently.
When forming a combined inverqﬁlj, each CPUst| <t <[sp] will first need to form
the adjustment matrix for the combining step. Assuming dd®imatrixBy, we begin
by constructing four “corner blocks”. If the upper combiriederse is assumed to have
Ny blocks and the lower to havg, the two matrices need from the upper combined
inverse are{UR] = (p[;i]w[bp} (1,Ny) and[LR] = (p[*l} b }(Nu, Nu), with the two matrices
from the lower being:[UL] = (p[;;HMSp}(l,.l) and[LL] = @7, 41 g (NS 1)- These
matrices can be generated by the appropriate CPU throughédbpective matrix maps
(recall the example shown in Figure 5). Specifically, the GROrresponding to the

[st], [bp], [bp+ 1] and[sp] divisions govern the required information. The adjustment
matrix for the combining step can then be formed:

J= (—[LIR]Bk _[U|L]BI>1'

After the adjustment matrix has been calculated the prooEsgpdating the matrix
maps can begin. For any combining step, the cross maps eddh @Bst be updated
first:

if (t <[bp]) then
C1 — C1 — M3y (Bidi2)May s 1;
C—Co— M31(BKJ12)M41+1,
Cs < C3 — My (Bkdi2)Msys1;
Cs — Ca— My (Bkd12)Mag1;
elseif (t == [bp]) then (18)
CL—Ci— M31(Bk~]11)|\/|1,1+1;
C—C— BiJ11)M21+1;

Mg ( )
Cs < C3— My (Bkh1)Mug1;
Cs  Ca— Mz (Bidrn)Maygs1;
elseif (t < [sp]) then

C1 « C1—M{; (B} J1)M1s41;
Co « Co — M{;(Bf Jo1)Mays1;
Cy—C3— M2 (B J21)M1t11;
Ca — Ca— M2 (B} J1)Mas41;
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Notice that the cross maps for CRldre dependent on information from its neighbor-
ing CPUt + 1. This information must be transmitted and made availabfere the
cross updates can be performed. Next, updates to the remgagight matrix maps
can be separated into two categories. The updates to théxmmeps for the upper
sub-matricest < [bp]), are summarized below:

Mgy < Mgy — ML BiJ12)May; (19)

May ([LL]TBIJZZ)M&T:
M41 — ([LL]T B-kr‘.]zz) M41 ;

The updates to the matrix maps for the lower sub-matiices[bp|), will be:

Msg < Msg — M1 (Bf J21)M1y;

Mey < Mez — M1 (Bf J21)May;

Mz < Mz — M3 (Bf Jo1)M1y;

Mgz < Mgz — M3, (Bf J21)May; (20)
Ma; < Mzq + ([LL]" Bf J1)My;

Mag < Mag + ([LL] B} Jp1)May;

M1t — ([UR]Blel)Ml,T,
Mz;[ — ([UR]Blel)sz[;

The above procedure, shown in (18)-(20), for modifying thatnm maps can be re-
cursively repeated for each of the combining stages beggnmwith the lowest level of
combining the individual sub-matrix inverses. On completthe maps can then be
used to generate the block tridiagonal entrie&ot.

Under this framework, matrix maps can be used to determittethe diagonal and
off-diagonal block entries foKk ~1. This subsequently allows for the computation of
the ratio sequences fé¢ 1, via the relationships shown in (9), in a purely distributed
fashion. This distribution of the compact representat®rat the foundation of an
efficient parallel method for solving systems of linear dipressKx = c.

The time complexity of the algorithm presente(D'(sNgTNy +NZlogp), with mem-

ory consumptionO (NXZTNV + Nf) The first term(NST'\‘y) in the computational com-
plexity arises from the embarrassingly parallel nature athbdetermining the ratio
sequences and applying the matrix maps to update the bidégonal portion of the
inverse. The second tertiNlogp) is dependent on the number of levels needed to
gather combining information fgo sub-matrix inverses. Similarly, the first term in the
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memory complexity is due to the ratio sequences and diadgnoeks, and the second
represents the memory required for the matrix maps of eagotpsoblem governed.

4 Parallel Solution of Block Tridiagonal Systems

The parallel inversion algorithm described above not orly Advantages in computa-
tional and memory efficiency but also facilitates the foratidn of a fast, and highly
scalable, parallel multiplication algorithm. This playsessential role during the sim-
ulation process due to the fact that transient simulatiopavfer mesh structures in-
volves the solution of a linear systelx; = ¢; at each time step which in this case
translates into performing the operatign= K~1c;. Due to the fact that for transient
simulation this multiplication operation is repeated m#inyes we would like to pre-
compute as much information as possible, i.e. reduce theiahod computation and
parallel communication required to perform each multigtion during simulation.

4.1 Parallel Matrix-Vector Multiply

Recall that our initial state for this procedure would assutat portions of the ratio
matrices (corresponding to the size and location of thesdivi from within the com-
plete problem that was assigned to the CPU) have been daldwdad stored. Subse-
quently, we can formulate the matrix-vector produckof! andc. In order to simplify
notation for the presentation of the parallel matrix-vectuiltiply, i.e. K—c, we will
use two subscripts for each of the sequences involved indlegilation. The first sub-
script will be used to denote the CPU and the second will nefer block within the
sequence, present on that particular CPU. We are interestalving Kx = ¢, where
two sequence$\ } and{T} must be defined in order to compute the solution for
the system of equations. Specificakyefers to a CPU withpi total blocks indexed by
I

Wk; 1 TkT 1
Wk.z Tk 2
T T

W = Wk,3 , Tk= Tk,3 s Wi, T € RMx 1,
T i
W, Tk,Pk
The elements from each sequence can be computed throughiltweirig recursions:
Wk p = Dk pic Gk, i
Wi =Dxjckt + RaWei+1, T=pc—1,...,1,
(21)

Ta1=§1Dk16k 1,
Tl =S, (Tki—1+Dickl), 1=2,...,pc—1,
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whereDy is diagonal block of the inverse for CPW, and the term&, andS;, are
the corresponding elements of the ratio sequences (8). ésudting vectox can then
be determined using andW and the product matrices:

(k+1) 1 )
3 M M Rmn it g>Kk,
— m=q N=pm
Rak | if q=k,
0 otherwise
(k=1) pm i
. M Snn if g<Kk,
— m=q n=1
Sk | if q=k,
0 otherwise
I [
Rk,l = ﬂ Rk,n, S&,I = rl S(.n~
n=pPk n=1

Here, the ratio terms that are present on a given CPU are el@rast local, and the
accumulations of the ratios from the remaining CPUs are tiehas skip. Thus, the
following expression for the vectorcan be constructed:

p .
Xkl = ZkRkJ Ry 1kWg,1
q:

K .
+ ZlSkJ Sy+1.kTg,pg +Whet + Tl -1, (22)
q:

vk=1,...,pandl =1,... p,

where:

T 0 if k=1,
RTIT Tewp if k>1,

Although this multiplication procedure seems to be of acifrirecursive nature (and
hence not readily parallel) it will be shown that the genéwahulation (22) can in fact
be computed efficiently in a distributed fashion.

1 Pm
Initially, each skip product term for the CPUs, i.e[] Rmnn and [ Sy within
n=1

N=Pm

the expressions fdi’q,k andSq.k respectively, are pre-computed after the inversion pro-
cess. In addition, during the setup time between the inemlgorithm and time step
calculations, the necessary skip product terms for the @lpogcedure are distributed
amongst the appropriate CPUs. The goal of this multiplicaprocedure is to evenly
distribute the computation across the CPUs while miningizioth the parallel com-
munication and the amount of redundant operations.

For example, if we examine a subset of the operations for &ése ofp = 4 divi-
sions, we can see how this general parallel computatioh&ise can be constructed.
The portion of the solution from (22) present on CRY 1 has the form:
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4
x =Y RuiRg-11Wg1
g=1

1
+ Z S11S+1,1 g pg +Wat + To -1,
=1

IN

=Y Ry Ry-1.1Wy 1 +Wa + Ty 1,
g=1

=Ry R 1Wo 1 + Ry Ro 1Wh 1
+ Ry RaaWa 1 +Wa +Tyq
= (W +Ty-1) +RyWar
+Ry (Rox (Wo1+RsWa1)).

We can see the sum being separated into two types of opesatibose that can be
computed independently for CRJnamely(W | + T —1), and the remainder of which
require information from other CPUs. In addition, it is intfamt to note that the infor-
mation coming from the other CPUs is essentially a singldoresuch as\y,; which
is cascaded through a sequence of ratio terms. The vect@ssfmally arrive at the
given CPU in order to be multiplied by its governed ratigg. Finally, we can clearly
see from the example above the advantages of having skipugréetms such aég,l
stored on each CPU. This allows for the effects of multipdyinrough all of the ratios
R from CPU 2 to be replaced by a single skip term. Also, this Isingatrix-vector
multiply can be performed by CPU 1, thus reducing the numbetages required for
the entire process to be completed.

The computation associated with calculating the sequeficasdW has com-
plexity O(pkN2), with that of the log p product stages each being of or@(pxN2?).
Therefore, if the problem is distributed evenly across phePUs (px = 5 vK), the

2
total complexity of the process (3(M + IOﬂNfNy). Finally, in the case of a single
CPU it should be noted thatis generated in its entirety from the recursion®find
T (21), wherep =1 andp; = N,.

5 Power Mesh Simulation

There are two main categories of algorithms for solving spdinear systems of equa-
tions: direct and iterative. In this section we will first denstrate the advantages
in scalability of direct methods for thaccuratetransient simulation of mesh struc-
tures. Here, the transient simulation time using both diaed iterative methods are
compared for varying levels of reluctive coupling. Finatlye ability to trade-off com-
puting resources for both increased mesh sizes and trarsameualation time using the
parallel inversion process will be highlighted. Given theed for objective compar-
isons against current and future algorithms, we invesitfa performance of standard
direct and iterative methods. Specifically, our parallekdi approach is compared
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with two commonly available sparse linear solvers and thgjugate gradient (CG)
method using the universally accepted incomplete LU (ILt&cpnditioner. These al-
gorithms all have well documented computational compiesjimemory requirements,
and speed of converge in the case of CG.

In order to perform meaningful simulations of the transibehavior seen on a
power mesh there are several factors that need to be coedidérst, the locations of
the power pads on the mesh will vary with the packaging thasid for the design.
Next, switching activity on realistic devices can be obsénacross the entire chip
area. Finally, based upon the circuit equation formulagomployed and the actual
numerical method of solution, the accuracy for the simatatnay be affected. The
simulations considered in this work are for square powerhregf dimensiom x
m. The sizes of the variabldd, andNy for the block tridiagonal representation of
the coefficient matrix will depend on the amount of inductdaipling considered,
as discussed in Section 2.1. For example, a windowing bastehigue would result
in a coefficient matrix withNy = m blocks of sizeNy = 3m— 2 (based upon the fact
that a distributed RLC model is used for the interconneaterrto Figure 1). For
all SPAI based analyses we constrain the additional indeictbupling considered to
be within a block sizeNy = 2(3m— 2) with Ny = Z. All inductance values used as
inputs for the windowing and SPAI approximation procedwrese generated with the
FastHenry extraction tool [20]. We considéyy pins to be placed a2 - (% —1))?
equally spaced positions throughout the grid, where thérmim mesh size analyzed
ism=16. A random subset from the remaining nodes are considenednt sinks
with a square waveform triggered by a rising clock edge. MAldations consisted of
1500 time steps, given a step size dffisand clock signal of 50s All interconnects
were assumed to be of uniform sizqirix 2umx 100um

5.1 Simulation Methods

For the transient simulation of power mesh structures weamsidering the solution of
the systenKx = ¢; at each time stepp where the coefficient matrix does not change
with time. Regardless of the method of solution it can be efjbenefit to consider
some amount of pre-processing on the makixn order to accelerate the solution
at each time step. In this work we limit the comparison of dgodthm to several
of the best known and most widely available software packagerder to provide
standard comparisons for future analysis of algorithmshia &rea. The conjugate
gradient method is an iterative search method which is knmyperform extremely
well, especially for matrices that are symmetric, posHilefinite, and sparse [10]. In
addition, the ILU factorization or ILU preconditioner isnabst universally accepted as
a pre-processing technique that can be used in conjuncitbnGG to improve solve
times for matrices of this type. A good choice of a precowodirM for a matrix A
would be determined by two factors:

¢ How closely does the matrid approximateA—1? We would likeAM ~ I.

e How easy is it to solve with the matriM? We would like to solvéy = zfast.
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Mesh Size 128x 128 | 192x 192 | 256x 256 | 384x 384 | 512x 512
Matrix Size || 4.89E+04 | 1.10E+05 | 1.96E+05 | 4.42E+05 | 7.85E+05

NNZ

Window 4.35E+05 | 9.81E+05 | 1.75E+06 | 3.93E+06 | 6.99E+06
1=0.95 1.43E+06 | 3.22E+06 | 5.73E+06 | 1.29E+07 | 2.29E+07
=097 3.54E+06 | 7.99E+06 | 1.42E+07 | 3.21E+07 | 5.70E+07

Table 2: Scaling trend for reluctance approximations wihpect to the number of
unknowns or “Matrix Size” and the number of non-zeros or “NINgiven a mesh of
sizemx m.

By specifying a drop tolerance the ILU method computes asgpht) approximation
that meets both of these criteria and can be used to effigiguitie the search process.
Note that all simulations performed using the CG method is tork have a fixed
stopping criterion tolerance of 18. It should be clear that as the drop tolerance de-
creases more terms will be included in the preconditiondrthe number of iterations
needed for the method to converge will potentially decreblevever, in this case the
ILU preconditioner will be less sparse and across all drderémces with the same
number of iterations needed for convergence, the longést me will correspond to
the smallest drop tolerance.

In addition to the CG method, we also provide analysis of #aggsmance of the
UMFPACK and the MATLAB Sparse LU direct linear solvers whesed for power
mesh simulation. UMFPACK [11] is a multi-frontal method thses minimum fill-in
orderings to efficiently perform an elimination procedufighe factorization involves
four matrices: a permutation matrix for stability, a reddd#i-in ordering matrix for
efficiency, and the LU factors. These terms can be stored @lpskguently only back
solves are needed to compute the solution at each time stsjmikar pre-processing
factorization and evaluation procedure can be employethisMATLAB Sparse LU
solver.

The parallel divide-and-conquer approach detailed iniGest3 and 4 fits the same
mold as the UMFPACK and sparse LU algorithms described alkideeever, instead
of a factorization being stored for future use, the distiolicompact representation for
the inverse of the coefficient matri ! is stored across several computers. In addition,
instead of performing a back solve for each time siegs is the case with the elimina-
tion style algorithms, our algorithm involves a paralleltmavector multiply K —1c;.
Our algorithm has been implemented, in C, and compared sigaia-compiled UMF-
PACK and MATLAB Sparse LU included as part of the MATLAB resea(R14SP3).
Itis important to note that both the ILU factorization ang&ack solve needed as part
of the preconditioning process for CG are pre-compiledsutines called from within
MATLAB as well. These computational issues are necessaensore no bias for our
algorithm over other methods. All simulations were perfedron a cluster of 32-bit
3Ghz Intel Xeon workstations with 2GB of memory for each node
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Data [[ Our Algorithm | LU | UMF |

16x16 1=0.99 2.01E-03 2.78E-03 | 2.61E-03
32x32 1=099 1.45E-02 2.25E-02 | 1.90E-02
48x48 1=0.99 4.43E-02 6.21E-02 | 6.03E-02
64x64 T1=0.99 8.73E-02 1.41E-01 | 1.48E-01
128x 128 1=0.97 || 7.29E-01 1.25E+00 | 7.71E-01
192x 192 1=0.90 || 1.50E+00 1.67E+00 | -
256x 256 window 2.25E+00 - -
384x 384 window || 6.57E+00 - -
512x 512 window || 1.08E+01 - -

Table 3: Performance of direct algorithms across mesh Siamsient step solve times
are shown in seconds; the lack of memory scalability fortexgsdirect approaches is
shown through an inability to perform the larger simulason

5.2 Simulation Time

In order to analyze the improvementin computational efficieachieved by the divide-
and-conquer method it is first necessary to understand #rektdown of total simula-

tion time. The total simulation time, given any level of irdance approximation, is
dominated by the fixed time cost of inversion or factorizatmus the variable time

cost to multiply or solve at each time step. When considetiagsient simulations
involving a large number of time steps, any speed-up seehdrvariable time cost
will dominate the fixed time cost. For example, the LU alduaritused to construct the
waveform in Figure 2 has factorization time: 20ms and sdlwet 154ms. Therefore,

after thirteen time steps the transient time would be latigen the factorization time.
In the scope of this analysis, we focus on transient simaratinvolving several time

steps and compare solve times for various examples of sttere

5.2.1 Comparison against direct solvers

In order to gain perspective for the computational limdas for each of the direct algo-
rithms considered in this work, several large-scale sitmiam= 128 192 256 384, and 512
were performed. Table 2 shows the size of coefficient matitk he number of non-
zero entries, considering different amounts of reluctacmépling. Table 3 shows the
transient step solve times of the direct algorithms for ¢hewesh sizes. It was de-
termined that the UMFPACK algorithm was only able to handbetol a mesh size

of m= 192 witht = 0.85. This case corresponded to a coefficient matrix with ap-
proximately 110K unknowns, but less than 412K non-zerdemntThe memory con-
sumption of the Sparse LU algorithm scaled slightly betteing able to perform the
simulation for a mesh size ofi = 192 witht = 0.90 which corresponds to ovex2the
number of non-zero entries as compared t6 0.85. The divide-and-conquer method
was clearly the most memory scalable of the direct algorithitrwas able to perform
the largest example in this workn = 512 with window based approximation (involv-
ing 785K unknowns and 7 million non-zero entries). The divahd-conquerapproach
was able to perform the largest simulatior= 512 with window based approximation
usingp = 32 computers and the remaining cases ugirgl6 or lower. For the case of
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16x 16 32x32 48x 48 64 % 64
Data p | Total Total Total p | Total

Time (s) Time (s) Time (s) Time (s)
window 1 | 1.86E+00| 1.56E+01| 5.60E+01|| 2 | 1.18E+02
window 2 | 1.80E+00| 1.10E+01| 3.75E+01 || 4 | 7.40E+01
window || 4 2.71E+01| 5.22E+01 || 8 | 5.22E+01
1=095 || 1 | 3.70E+00| 3.77E+01| 1.95E+02|| 2 | 3.47E+02
1=097 || 1 | 3.81E+00| 3.89E+01| 1.75E+02|| 2 | 3.56E+02
1=099 || 1 | 4.00E+00| 4.26E+01| 1.85E+02|| 2 | 3.75E+02
1=095 || 2 | 3.15E+00| 3.00E+01| 1.72E+02|| 4 | 2.13E+02
1=097 || 2 | 3.18E+00| 2.95E+01| 1.74E+02|| 4 | 1.81E+02
1=099 || 2 | 3.41E+00| 3.23E+01| 1.53E+02|| 4 | 2.40E+02
1=095 || 4 2.36E+01| 8.35E+01|| 8 | 1.34E+02
1=097 || 4 2.39E+01 | 1.04E+02 || 8 | 1.37E+02
1=099 || 4 2.50E+01| 7.79E+01|| 8 | 1.54E+02

Table 4: Simulation time for divide-and-conquer algorithmesh sizesm =
16,32,48,64.

m= 512 we are considering a compact representation for thesew the coefficient
matrix, shown in (8), that would account for nearly 30GB ofmaey. Next, in order to
give a practical measure for the improvement of the dividd-eonquer approach we
examine in more detail the effect of increasing the amoumn¢lofctance coupling.

Using several smaller mesh examphes- 16,32 48 and 64 we examine the sensi-
tivity of each algorithm to the inclusion of reluctance cting terms, i.e. larger values
of the parameter. It is important to note that the same analysis can be peddrm
for larger mesh sizes, however, as we are interested in thebegcaling rate we need
only perform a relevant subset of all possible cases. Talsleodvs the results for the
divide-and-conquer method and Table 5 for the Sparse LU aiBRACK algorithms.
From Table 5 first notice that although simulations using ih¢FPACK algorithm
with the windowing technique matched the accuracy seersaaib other algorithms,
the simulation time was often substantially larger than #gen using the more dense
SPAI based approximation. This can be attributed to thetfedttthe UMFPACK algo-
rithm was unable to properly decide on an efficient ordermgelimination given the
windowing coefficient matrix.

5.2.2 Comparison against iterative solvers

We now turn our attention to the performance of iterative hods for the transient
simulation of power mesh structures. Specifically, we armalhe lack of scalability

for the CG algorithm with respect to the addition of reluatarcoupling. Although the
CG method has the smallest memory consumption of any ahgogbnsidered in this
work, we observe that the iterative CG method using ILU st#te worst with respect
to the inclusion of reluctance coupling. A comparison ofsignt step solve times for
the examplen = 64 are shown in Figure 6. It is important to note that the tifoes

the divide-and-conquer method, shown as horizontal linethé Figure 6, represent
the average time across the different SPAI thresholds. iShisie to the fact that all
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16x 16 32x32 48x 48 64 % 64
Data Total Total Total Total
Time (s) Time (s) Time (s) Time (s)

LU
window 2.33E+00| 1.74E+01| 4.45E+01| 9.75E+01
1=0.95 || 3.58E+00| 2.57E+01| 8.35E+01| 1.92E+02
1=0097 || 4.23E+00| 3.32E+01| 1.03E+02 | 2.24E+02
1=099 || 4.28E+00| 3.54E+01| 1.01E+02| 2.34E+02

UMF
window 2.07E+00| 1.57E+01| 1.39E+02| 1.31E+03
1=095 || 297E+00| 1.77E+01| 5.05E+01| 1.02E+02
1=0097 || 3.52E+00| 2.49E+01| 6.98E+01| 1.54E+02
1=0.99 || 4.03E+00| 2.95E+01| 9.40E+01| 2.31E+02

Table 5: Simulation time for MATLAB Sparse LU and UMFPACK nhesizesm =
16,32 48,64.

terms involved in the parallel matrix-vector multiply (2a)e dense and the multiply
time subsequently will not change as the number of non-zetries in the coefficient

matrix increases. This property does not hold for any othgordhm considered in

this work.

Table 6 shows the sensitivity of the CG algorithm to the is@ua of additional
reluctance coupling terms, again using several smallehne@amples. On average
the time for CG was more than X1slower when comparing the SPAI approxima-
tion with T = 0.99 to the basic windowing approach. If we use this fact we gan a
rive at speed-up factors when comparing the dominant comtipungl task for tran-
sient simulation. Specifically, if we consider the maximuealgg of the divide-and-
conquer method for the cases= 256 384, and 512, we calculate speed-up factors
of 8.9x,7.2x, and 92x respectively, when considering transient solve times for a
T = 0.99 quantity of reluctance coupling. We have restricted thal\ssis of large-
scale simulations to the window based approach due to tressxe simulation time
requirements for the CG method, given increased valuesegbénametet.

In summary, the use of a distributed sparse approximatesewechnique, for the
inclusion of additional reluctance terms, has resultedmiproved accuracy for the
transient simulation of mesh structures. Given the contfmurtal burden associated
with accurate RLC modeling of interconnects, the divide-aonquer approach shows
superior computational performance when compared to thirétee best known algo-
rithms applicable to this simulation problem. Specificalhe commercially available
direct solvers showed advantages in computation time fallgpnoblems, but were
unable to perform large simulations due to memory restiitti Alternatively, the CG
method was able to perform larger simulations, but the caatfmnal performance suf-
fered heavily with the addition of branch coupling terms.eTdistributed computing
approach presented in this paper has been shown scdlablewhen considering the
size of the mesh structure, as we are able to perform sinoakitiith meshes over2
as large as other direct methods. In addition, the proposettiod isscalablewith
respect to the number of non-zero entries considered, ag# dot lead to an increase
in either time or memory requirements associated with tiragmy computational task
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Figure 6: Comparison of CG and divide-and-conquer approdebrage time is shown
for each transient step ofi= 64 power mesh using SPAI:= 0.94— 0.99.

16x 16 32x 32 48x 48 64 x 64 Avg
Data Total Total Total Total #
Time (s) Time (s) Time (s) Time (s) Iter

CG
window 5.94E+00| 2.84E+01| 7.49E+01| 1.41E+02 | 1.51
1=095 || 1.43E+01| 7.22E+01| 2.20E+02 | 3.76E+02 || 1.54
1=0.97 || 2.86E+01| 1.35E+02| 4.10E+02| 6.87E+02 || 1.50
1=0.99 || 6.19E+01| 3.88E+02| 7.88E+02 | 1.49E+03 || 1.50

Table 6: Simulation time for CG using ILU, 20 drop tolerandesn 10~ through
1029, for mesh sizesn = 16,32,48,64.

in transient simulation.

6 Conclusion

Currently employed techniques for the simulation of meslcstires attempt to address
the issue of increased problem sizes by trading off accui@cgimulation time via
iterative schemes. Our algorithm is a direct tool that ftadiés the simulation of large
mesh structures through a divide-and-conquer approach i®iine inherently parallel
nature of the algorithm computing resources can be flexibbgcated toward either
speeding up the simulation of a problem of a given size, aiisglproblems of larger
sizes in comparable time. In addition, the flexibility of tlgorithm is shown through
the use of a more sophisticated approximation techniguthéocapturing of inductive
coupling effects. The new technique offered a reductiorvef 2x to the RMSE error
when compared to a standard windowing technique. The stiblaif the divide-and-
conquer method is clearly demonstrated by the absence rdases to time for the
primary computational task for transient simulation, wheamsidering the inclusion
of these additional coupling terms. This attribute is nairsd by any of the other

29



methods analyzed in this work. In addition, the divide-aodiquer method was able
to show substantial computational improvement over thetmwagely used numerical

techniques applicable for these large-scale simulati@pecifically, the divide-and-

conquer approach allows for the the simulation of a 512 RLC mesh with a speed-
up factor over % when compared to the CG method with ILU. Therefore, we cahelu
that the divide-and-conquer algorithm presented hereo#dramework which can be
built upon for the large-scale accurate simulation of pomesh structures.
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