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Abstract

We present an algorithm for the fast and accurate simulationof power/ground
mesh structures. Our method is a direct (non-iterative) approach for simulation
based upon a parallel matrix inversion algorithm. Through the use of additional
computational resources, this distributed computing technique facilitates the sim-
ulation of large-scale power/ground networks. In addition, the new dimension
of flexibility provided by our algorithm allows for a more accurate analysis of
power/ground mesh structures using RLC interconnect models. Specifically, we
offer a method that employs a sparse approximate inverse technique to consider
more reluctance coupling terms for increased accuracy of simulation. The inclu-
sion of additional coupling terms, however, does not lead toan increase in either
time or memory requirements associated with the primary computational task in
transient simulation, thus making the simulation procedure scalable. The parallel
matrix inversion algorithm shows substantial computational improvement over the
best known direct and iterative numerical techniques that are applicable to these
large-scale simulation problems.
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1 Introduction

The accurate and efficient modeling and simulation of power/ground networks has be-
come a difficult problem for modern design. Increases to integration density have ne-
cessitated the use of large-scale power mesh structures, and with the scaling of voltages
the need for accurate simulation of these structures is crucial. Previously employed
direct methods for simulation of this problem have become impractical due to both ex-
traordinary memory requirements and prohibitive simulation times. This has prompted
several variations of iterative schemes [1–6] that attemptto meet these rising compu-
tational challenges. In [1], the authors employed a Random-Walk technique where a
stochastic analysis of the supply network allowed for a trade off between accuracy and
simulation time (the Random-Walk based approach of [1] has been adapted to provide
a preconditioner to be used with an iterative linear solver for quadratic placement [7];
this approach can be directly applied toward the transient simulation of RC mesh struc-
tures). There has also been research into applying standarddomain decomposition
techniques known as “alternating” procedures, which are iterative schemes used to re-
lax the stringent memory requirements associated with power mesh simulation [2]. A
similar domain decomposition based method which used the random walk procedure
to specifically perform computation along the boundary nodes for the domains, within
a global iterative scheme, was shown in [3]. Alternatively,a method with the same
goal of facilitating large-scale mesh simulation only through a hierarchical framework
was presented in [4]. In [5], a different iterative scheme, based upon the classical SOR
approach, was used to iterate between either rows of the power supply grid or across
groups of nodes. In addition, techniques such as the multigrid-like [6] method aim
to improve simulation time by extrapolating information from reduced order systems
in order to simulate the global system efficiently. The convergence for each of these
methods, and therefore the simulation time, is problem dependent (i.e. both switching
activity within the network and branch coupling will affectthe simulation time).

Although most of these methods have been shown to be quite successful for large-
scale simulations (millions of nodes) of RC mesh structures, none have clearly demon-
strated an efficient and scalable approach to deal with inductive coupling effects. This
can be largely attributed to the fact that with the inclusionof inductive coupling, much
of the locality for the problem is lost. Specifically, an iterative method that uses small
independent or slightly overlapped subsets of the network in order to infer informa-
tion about the global system dynamics will not converge quickly if there is significant
coupling across different regions of the network. In addition, as was alluded to by the
authors of [4], the conditioning of the underlying system matrices would degrade if the
interconnects, which constitute the mesh structure, are modeled as RLC. By employing
a parallel direct technique for simulation, we offer a stable alternative that allows for
the efficient simulation of networks with a large amount of branch coupling.

In this work, we present a direct method for parallel matrix inversion that uses ad-
ditional computing resources in order to stably relax both computational and memory
requirements typically associated with direct techniquesfor simulation. Specifically,
the parallel method for solving block tridiagonal systems presented in this workscales
well with the inclusion of additional reluctive coupling effects, within an assumed block
tridiagonal structure. In addition, a computationally efficient method based upon sparse
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Figure 1: 4x4 RLC mesh structure.

approximate inverses will be demonstrated in order to flexibly construct the coefficient
matrices for simulation. The effects on the accuracy for simulation, given these ad-
ditional reluctive coupling terms, as well as the overall impact for simulation time
are analyzed. Finally, we conclude that the parallel directtechnique for simulation
demonstrates computational advantages over existing direct and iterative methods. Our
method extends the computational efficiency afforded by direct methods to consider
large simulation problems. These simulation problems havetypically only been ana-
lyzed through the use of iterative methods, which in generalsuffer from poor scalability
as the amount of branch coupling being considered increases. The method presented in
this work is specifically designed to avoid a computational dependence on the amount
of branch coupling considered, making it ideally suited foraccurate large-scale tran-
sient simulation.

1.1 Simulation of RLC Mesh Structures

When RLC interconnect models are used for the simulation of mesh structures (see
Figure 1) the typical Modified Nodal Analysis (MNA) representation yields equations
of the form:

Gx+C ẋ= B , (1)

where

G =

(
G AT

l
−Al 0

)

, C =

(
C 0
0 L

)

, x =

(
vn

i l

)

,

B =

(
AT

i Is
0

)

, G = AT
g R−1Ag, and C = AT

c ĈAc.
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Here,R, Ĉ, andL are the resistance, capacitance, and inductance matrices respectively.
The matricesAg andAc transform the conductances and capacitances into node based
relationships. The matricesAl andAi link the node voltages and branch currents de-
scribed by the state variablex. In addition,Is is the current vector that dictates, through
the matrixAi , the relationship of the current sinks onto the nodes of the mesh.

A classical algorithm for the numerical integration of ordinary differential equa-
tions such as (1) is the trapezoidal method [8]. Consider a uniform discretization of the
time axis with resolutionh. Then, using the notationvk

n = vn(kh) to denote the voltage
at thenth node we may then solve forvk+1 in terms ofvk through the Nodal Analysis
(NA) equations [9]:

(

G+
2
h

C+
h
2

S

)

︸ ︷︷ ︸

K

vk+1
n =

(

−G+
2
h

C−
h
2

S

)

︸ ︷︷ ︸

H

vk
n

+AT
i

(

Ik+1
s + Ik

s

)

−2AT
l ikl , (2)

2AT
l ik+1

l = 2AT
l ikl +hS

(

vk+1
n +vk

n

)

,

whereS= AT
l L−1Al . It is important to note that with the inclusion of inductance, for

the modeling of the interconnects, we must now account for the effect of this additional
susceptance termS.

For the transient simulation of RC mesh structures, the coefficient matrix K de-
fined in (2) was symmetric, positive-definite, and sparse, which allowed for the use of
fast and numerical stable direct techniques for simulation, e.g. the Cholesky factor-
ization [10], multi-frontal methods [11], and other general sparse LU decompositions.
In addition, the diagonally dominance property of the matrix K, along with the small
number of non-zero entries, made the problem ideally suitedfor iterative schemes such
as [1–6], including the conjugate gradient method [10] and the generalized minimal
residual method [12]. As the problem size of interest has grown, the memory require-
ments of the direct approaches has restricted their use. Typically they are only utilized
in conjunction with decomposition based iterative schemessuch as [2,4], or as part of
a hybrid iterative and direct scheme [3].

When considering RLC mesh structures, the simulation methods described above
are restricted by the use of iterative methods, which in general suffer from poor scal-
ability as the amount of branch coupling being considered increases. For example,
the presence of the susceptance term in (2) precludes the useof the original random
walk [1] and the new hybrid random walk [7] directly for the matrix K. These al-
gorithms rely on the formulation of a stochastic game which at its foundation places
a requirement that the coefficient matrixK have positive diagonal entries and non-
positive off-diagonal entries. As was shown in [1] the random walk based methods
could only be used if inductive coupling effects were captured through the inclusion of
an additional self-consistent iterative scheme.

The scalable algorithm presented in this work avoids the need for any iteration
during transient simulation. In addition, this technique allows for the dominant com-
putational task associated with (2) to be performed efficiently and exactly by exploiting

3



a distributed computing environment. Specifically, we offer a parallel matrix inversion
algorithm for the transient simulation of RLC mesh structures. Our algorithm fully ex-
ploits the structure of the coefficient matrixK, during each solution of linear equations
Kxi = ci , across the time stepsi. This inherently parallel algorithm facilitates a fast
and distributed matrix-vector multiplication to evaluatexi = K−1ci , for each time step
of the simulation. This matrix-vector multiplication, andtherefore the largest portion
of the transient simulation time, is not affected by increases in simulation accuracy
through the inclusion of additional reluctance terms.

2 Coefficient Matrices for Simulation

We begin first with the construction of the coefficient matrixK from (2), given a regular
power mesh topology. The 4×4 mesh shown in Figure 1 has a total of 40 nodes. Each
direction of the mesh has three groups of four parallel wiresand if all mutual inductive
couplings are considered both the reluctance matrixL−1 and coefficient matrixK will
be dense. Thus, in this work we investigate efficiency and accuracy for the simulation
of power mesh structures when considering approximations to the reluctance matrix
that will finally result in a block tridiagonal susceptance matrix. A matrixY is block
tridiagonal if it has the form

Y =










A1 −B1

−BT
1 A2 −B2

. . .
. . .

. . .
−BT

Ny−2 ANy−1 −BNy−1

−BT
Ny−1 ANy










, (3)

where eachAi ,Bi ∈ R
Nx×Nx. ThusY ∈ R

NyNx×NyNx, with Ny diagonal blocks of size
Nx each. The notationY = tri(A1:Ny,B1:Ny−1) can be used to compactly represent such
a block tridiagonal matrix. We now offer a new flexible methodby which reluctance
values can be approximated to produce a sparse block tridiagonal susceptance matrix,
allowing for efficient and accurate simulation of power meshstructures.

2.1 Inductance Approximation Methods and the Formulation of
the Susceptance Matrix

In [9, 13] the accuracy for simulation with interconnects was explored usingwindow
based techniques. In those works reluctive coupling was considered only to exist be-
tween neighbors in a given layer of parallel wires. Considerthe 4×4 mesh shown in
Figure 1, the inductor with terminal nodes(13,14) could be assumed to interact only
with the inductors between nodes(2,3) and (24,25) in the reluctance matrix. The
capacitance matrix in this case is considered to be a diagonal matrix with non-zero en-
tries only in the 16 node positions from which the capacitorsbranch. Therefore, for a
m×m= 4×4 mesh structure, we can form a block tridiagonal matrix withNy = m= 4
blocks of sizeNx = 3m−2= 10. Thus, the block sizeNx is the result of an even distri-
bution of the nodes in the RLC mesh structure intomgroups. This block decomposition
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Figure 2: Accuracy for transient ofm= 16 power mesh using windowing.

is illustrated in Figure 1, where all nodes enclosed together are considered to be part
of the same block. The fact that the nearest neighbor windowing technique results in
a block tridiagonal coefficient matrix can be justified by noticing that no coupling (i.e.
resistive, capacitive, and reluctive) can bridge more thanone block separation.

In order to first motivate the necessity of a more accurate method for inductance
modeling over the traditional windowing based technique, we consider a slightly larger
example. Figure 2 shows a comparison of the transient behavior for a 16×16 power
mesh. The solid line corresponds to all mutual inductance terms being included in the
analysis and the dotted line to the window based technique. In this case an exaggerated
undershoot can be seen when the switching activity subsidesand the voltage begins to
return toVdd. In addition, the window based approximation assumes that the voltage
will return more quickly to that of the supply than is evidentfrom the exact case.

In this work we consider the use of a sparse approximate inverse technique (SPAI) [14].
Although this technique was originally developed as a method to form a preconditioner
for iterative linear solvers, the metric used by the authorsin order to construct the pre-
conditioner directly translates into improved accuracy inthe case of power mesh sim-
ulation. Specifically, given an inductance matrixL the SPAI method can be used to
form another matrixM that is constructed in an attempt to match the inverse of the
inductance matrix under the Frobenius norm:

‖LM− I‖2F = ∑n
i=1‖(LM− I)ei‖

2
2, (4)

wheren in the number of columns ofL andei is theith euclidean basis vector. There-
fore, we can solven independent least squares problems:

min‖Lmi−ei‖
2
2, i = 1,2, . . . ,n (5)

in order to construct the columnsmi of the approximate inverse matrixM. Ref. [14]
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16×16 32×32 48×48 64×64
Matrix Size: 736 Matrix Size: 3008 Matrix Size: 6816 Matrix Size: 12160

Data NNZ S % RMSE NNZ S % RMSE NNZ S % RMSE NNZ S %

window 6256 98.9 6.75E-04 26320 99.7 1.30E-03 60208 99.9 2.29E-03 107920 99.9
τ = 0.94 14040 97.4 3.48E-04 60280 99.3 5.83E-04 138776 99.7 1.14E-03 249528 99.8
τ = 0.95 19612 96.4 3.31E-04 84956 99.1 4.47E-04 196124 99.6 1.10E-03 353116 99.8
τ = 0.96 30032 94.5 2.76E-04 132736 98.5 3.92E-04 308400 99.3 5.26E-04 557024 99.6
τ = 0.97 45564 91.6 2.42E-04 206156 97.7 3.76E-04 482460 99.0 1.74E-04 874476 99.4
τ = 0.98 73114 86.5 2.01E-04 346558 96.2 1.36E-04 817778 98.2 2.29E-04 1499314 99.0
τ = 0.99 119188 78.0 1.82E-04 649208 92.8 1.24E-04 1598196 96.6 1.84E-04 1758736 98.8

Table 1: Accuracy comparison for reluctance approximationmethods against full in-
ductance, mesh sizesm= 16,32,48,64, with associated number of unkowns given as
“Matrix Size”.

offers several heuristics in an attempt to satisfy (5) by iteratively filling dominant en-
tries of the inverse matrixM. In this work the threshold based approach is employed to
create a matrix whose entries must be significant with respect to the absolute maximum
in a column:

|Mi, j |> (1− τ)maxj |Mi, j |, (6)

where the diagonal entriesMi,i are always included. Ifτ is close to zero, this criterion
would prevent fill-in and result in a matrix that is very sparse. The valueτ = 1 would
correspond to a matrixM where the entire pattern ofL−1 will be considered.

Finally, we are interested in having the structure of the matrix K, defined in (2),
be block tridiagonal in order to allow for efficient simulation through the use of our
divide-and-conquer approach. This in turn would imply thatthe structure of the sus-
ceptance matrix:S= AT

l L−1Al be block tridiagonal as well (note that the window
based technique referred to above will produce a sparse block diagonal approximation
to the reluctance matrix, which also corresponds to a block tridiagonal structure for the
matrix K). Therefore, we construct a framework where the sparsity ofthe reluctance
matrix L−1 is governed via the matrixAl to produce the final desired form for the sus-
ceptance matrix. Through the use of the SPAI procedure described above, assuming a
fixed threshold value ofτ, we can form an approximation for the reluctance matrixM
which aims to satisfy (5). Next, a symmetric truncated version of this matrix is formed
so that the susceptance matrixSwill be block tridiagonal, given some assumed block
sizeNx.

Given this framework for approximation we can examine the accuracy of simula-
tion considering increases to the drop tolerance parameterτ. Figure 3(a) demonstrates
that using a tolerance:τ = 0.94 for the SPAI approximation method we can already see
the waveform more closely track the return to supply voltagewith a less exaggerated
undershoot. This level of approximation results in approximately a factor of 2.25×
increase to the number of non-zero entries (refer to Table 1)of the coefficient matrix,
where all inductive couplings considered where determinedbased upon the metric de-
scribed in (5). The column labeled “NNZ” is the number of non-zero entries in the
coefficient matrix and the column labeled “S %” is the percentage of the matrix whose
entries are zero.
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Figure 3: Accuracy for transient behavior ofm= 16 power mesh using SPAI.
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Figure 3(b) shows the same comparison for the tolerance:τ = 0.99. It can be
seen that for this power mesh simulation we are able to track every inflection of the
waveform using strictly a block tridiagonal representation for the coefficient matrix.
Finally, the root mean-squared error (RMSE) for the caseτ = 0.99, when compared to
the waveform corresponding to the full inductance matrix being considered, was less
than 27% of that using the window based technique. From Table1 we can observe that
for a larger 48×48 mesh the SPAI based inductance approximation procedure resulted
in a reduction of more than 12× the RMSE achieved using the nearest neighbor win-
dowing technique. The casem= 64 provided in the summary tables does not include
an accuracy comparison due to memory limitations as a resultof the greater than four
thousand inductors associated with each direction of the mesh topology.

2.2 Inverses of Block Tridiagonal Matrices

Given the flexibility afforded by the SPAI based approach forconstructing the sus-
ceptance matrix, we can now formulate the coefficient matrices needed for accurate
RLC mesh simulation. The problem then turns to addressing the numerical challenges
associated with using a direct (non-iterative) approach for the simulation of these struc-
tures. The inverse of a symmetric block tridiagonal matrix can be computed explicitly,
as demonstrated in [15–17]. However, the mathematical representations presented in
these works suffer numerical instability issues and are notdirectly applicable for large
scale problems such as power mesh simulation. A numericallystable mathematical
representation for producing the inverse of a symmetric block tridiagonal matrix has
been demonstrated in [18]. Specifically, there exists two sequences of “ratio” matrices
{Ri},{Si} so that the inverse of a block tridiagonal matrixK can be written as:

K−1 =















D1 D1S1 · · · D1

Ny−1

∏
k=1

Sk

R1D1 D2 · · · D2

Ny−1

∏
k=2

Sk

...
...

. . .
...

(
1
∏

k=Ny−1
Rk)D1 (

2
∏

k=Ny−1
Rk)D2 · · · DNy















. (7)

Here, the diagonal blocks of the inverse,Di , and the ratio sequences satisfy the follow-
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ing relationships:

R1 = A−1
1 B1,

Ri =
(
Ai−BT

i−1Ri−1
)−1

Bi , i = 2, . . . ,Ny−1,

SNy−1 = BNy−1A−1
Ny

,

Si = Bi
(
Ai+1−Si+1BT

i+1

)−1
, i = Ny−2, . . . ,1,

D1 =
(
A1−S1BT

1

)−1
,

Di+1 =
(
Ai+1−Si+1BT

i+1

)−1(
I +BT

i DiSi
)
, i = 1, ...,Ny−2,

DNy = A−1
Ny

(

I +BT
Ny−1DNy−1SNy−1

)

.

(8)

The time complexity associated with determining the parametrization of K−1 by the
above approach isO(N3

x Ny), with a memory requirement ofO(N2
x Ny).

2.2.1 Alternative Approach for Determining the Compact Representation

It is important to note that if the block tridiagonal portionof K−1 is known, the ratio
sequencesR andS can be extracted directly, i.e. without the use of entries from K
through the ratio expressions (8). Examining closely the block tridiagonal portion of
K−1:

tri(K−1) =










D1 D1S1

R1D1 D2
. . .

. . .
DNy−1 DNy−1SNy−1

RNy−1DNy−1 DNy










,

we find the following relations:

DiSi = Zi =⇒ Si = D−1
i Zi , i = 1, . . . ,Ny−1,

RiDi = ZT
i =⇒ Ri = ZT

i D−1
i , i = 1, . . . ,Ny−1,

(9)

whereZi denotes the(i, i +1) block entry ofK−1. Therefore, by being able to produce
the block tridiagonal portion ofK−1 we have all the information that is necessary to
compute the compact representation.

As was alluded to in Section 1, direct techniques for simulation of realistic power
mesh topologies often require prohibitive memory and computational requirements due
to the large number of distributed RLC segments involved. Toaddress these issues we
offer a parallel divide-and-conquer approach in order to construct the compact repre-
sentation forK−1, i.e. the framework allows for the parallel inversion of thecoefficient
matrix for simulation. Specifically, we introduce an efficient method for computing the
block tridiagonal portion ofK−1 in order to exploit the process demonstrated above.
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3 Parallel Inversion of Block Tridiagonal Matrices

The compact representation ofK−1 can be computed in a distributed fashion by first
creating several smaller sub-matricesφi . That is, the total number of blocks for the
matrix K are divided as evenly as possible amongst the sub-matrices.After each in-
dividual sub-matrix inverse has been computed they can be combined in a Radix-2
fashion using the matrix inversion lemma from linear algebra. Figure 4 shows both
the decomposition and the two combining levels needed to form the block tridiagonal
portion ofK−1, assumingK has been divided into four sub-matrices. In general, ifK is
separated intop sub-matrices there will be logp combining levels with a total ofp−1
combining operations or “steps”. The notationφ−1

i∼ j is introduced to represent the result
of any combining step, through the use of the matrix inversion lemma. For example,
φ−1

1∼2 is the inverse of a matrix comprised of the blocks assigned tobothφ1 andφ2. It is
important to note that using the matrix inversion lemma repeatedly to join sub-matrix
inverses will result in a prohibitive amount of memory and computation for large simu-
lation problems. This is due to the fact that at each combining step all entries would be
computed and stored. Thus, the question remains on the most efficient way to produce
the block tridiagonal portion ofK−1, given this general decomposition scheme for the
matrixK.

In this work, we introduce a mapping scheme to transform compact representations
of smaller matrix inverses into the compact representationof K−1. The algorithm is
organized as follows:

• Decompose the block tridiagonal matrixK into p smaller block tridiagonal ma-
trices.

• Assign each sub-matrix to an individual CPU.

• Independently determine the compact representations associated with each sub-
matrix.

• Gather all information that is needed to map the sub-matrix compact representa-
tions into the compact representation forK−1.

• Independently apply the mappings to produce a portion of thecompact represen-
tation forK−1 on each CPU.

The procedure described above results in a “distributed compact representation” allow-
ing for reduced memory and computational requirements. Specifically, each CPU will
eventually be responsible for the elements from both the ratio sequences and diago-
nal blocks that correspond to the initial decomposition (e.g. if φ1 is responsible for
blocks 1,2, and 3 from the matrixK, the mappings will allow for the computation of
S1...3, R1...3, andD1...3).

In order to derive the mapping relationships needed to produce a distributed com-
pact representation, it is first necessary to analyze how sub-matrix inverses can be
combined to form the complete inverse. Consider the decomposition of the block
tridiagonal matrixK into two block tridiagonal sub-matrices and a correction term,
demonstrated below:
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K
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Figure 4: Decomposition of block tridiagonal matrixK into four sub-matrices, where
the shaded blocks correspond to the bridge matrices. The twocombining levels follow
the individual sub-matrix inversions, whereφ−1

i∼ j represents the inverse of divisionsφi

throughφ j from the matrixK. Matrix mappings will be used to capture the combining
effects and allow for the direct computation of the block tridiagonal portion ofK−1.

K =

(
φ1

φ2

)

︸ ︷︷ ︸

K̃

+ XY,

φ1 = tri(A1:k,B1:k−1), φ2 = tri(Ak+1:Ny,Bk+1:Ny−1), and

X =

(
0 · · · −BT

k 0 · · · 0
0 · · · 0 −Bk · · · 0

)T

,

Y =

(
0 · · · 0 I · · · 0
0 · · · I 0 · · · 0

)

.

Thus, the original block tridiagonal matrix can be decomposed into the sum of a block
diagonal matrix (with its two diagonal blocks themselves being block tridiagonal) and
a correction term parameterized by theNx×Nx matrixBk, which we will refer to as the
“bridge matrix”. Using the matrix inversion lemma, we have

K−1 = (K̃ +XY)−1 = K̃−1− (K̃−1X)
(
I +YK̃−1X

)−1
(YK̃−1),

where

K̃−1X =

(
−φ−1

1 (:,k)Bi 0
0 −φ−1

2 (:,1)BT
i

)

, (10)

(
I +YK̃−1X

)−1
=

(
I −φ−1

2 (1,1)BT
i

−φ−1
1 (k,k)Bi I

)−1

,

YK̃−1 =

(
0 φ−1

2 (:,1)T

φ−1
1 (:,k)T 0

)

,
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andφ−1
1 (:,k) andφ−1

2 (:,1) denote respectively the last and first block columns ofφ−1
1

andφ−1
2 .

This shows that the entries of̃K−1 are modified through the entries from the first
rows and last columns ofφ−1

1 andφ−1
2 , as well as the bridge matrixB3. Specifically,

sinceφ1 is before or “above” the bridge point we only need the last column of its inverse
to reconstructK−1. Similarly, sinceφ2 is after or “below” the bridge point we only need
the first column of its inverse. These observations were noted in [19], where the authors
demonstrated a parallel divide-and-conquer approach to determine the diagonal entries
for the inverse of block tridiagonal matrices. In this work we build upon these ideas to
create a scalable distributed framework for the transient simulation of mesh structures.
We begin by generalizing the method from [19] in order to compute all information
necessary to determine the distributed compact representation of K−1 (8). That is, we
would like to create a combining methodology for sub-matrixinverses with two major
goals in mind. First, it must allow for the calculation of allinformation that would
be required to repeatedly join sub-matrix inverses, in order to mimic the combining
process shown in Figure 4. Second, at the final stage of the combining process it must
facilitate the computation of the block tridiagonal portion for the combined inverses.

It is important to note that the method in [19] has been developed specifically to
determine the diagonal entries for a matrix with structure similar to that ofK−1. We
can observe from Figure 4 that the diagonal entries ofK−1 are restricted to the larger
diagonal blocks (corresponding the size of each division).The method from [19] does
not illustrate the process for reconstructing any information outside of these ranges. In
addition, as the final goal for the application in [19] is the calculation of a small subset
of the entries fromK−1, there is no discussion of the process for efficiently reconstruct-
ing a distributed compact representation and its use in the solution of block tridiagonal
systems of linear equations. In this work we offer the following contributions:

• Considering a block tridiagonal coefficient matrix for simulation K, we offer a
parallel matrix inversion algorithm. Specifically, we firstshow that a distributed
mapping scheme can be used to determine the block tridiagonal entries from
K−1. Subsequently, these entries can be used to form a distributed compact
representation ofK−1 using the procedure demonstrated in (9).

• A computationally efficient parallel matrix-vector multiplication approach using
the distributed compact representation ofK−1.

Our algorithm is a scalable alternative for the repeated solution of block tridiagonal
systems of linear equations, with respect to the presence ofadditional reluctance cou-
pling terms.

3.1 Matrix Maps

Matrix mappings are constructed in order to eventually produce the block tridiagonal
portion of K−1 while avoiding any unnecessary computation during the combining
process. Specifically, we will show that both the boundary block entries (first block
row and last block column) and the block tridiagonal entriesfrom any combined inverse
φ−1

i∼ j must be attainable (not necessarily computed) for all combining steps. We begin

12



by illustrating the initial stage of the combining process given four divisions, where
for simplicity each will be assumed to haveNy blocks of sizeNx. First, the two sub-
matricesφ1 and φ2 are connected through the bridge matrixBNy and together they
form the larger block tridiagonal matrixφ1∼2. By examining Figure 4 it can be seen
that eventuallyφ−1

1∼2 andφ−1
3∼4 will be combined and we must therefore produce the

boundaries for each combined inverse. From (10) the first block row and last block
column ofφ−1

1∼2 can be calculated through the use of an “adjustment” matrix:

J =

(

I −φ−1
2 (1,1)BT

Ny

−φ−1
1 (Ny,Ny)BNy I

)−1

,

as follows:

φ−1
1∼2(1, :) =

(
φ−1

1 (1, :) 0
)
−

([
−φ−1

1 (1,Ny)BNyJ12φ−1
1 (:,Ny)

T
]T

[
−φ−1

1 (1,Ny)BNyJ11φ−1
2 (1, :)

]T

)T

,

(11)

φ−1
1∼2(:,2Ny) =

(
0 φ−1

2 (Ny, :)
)T
−





[

−φ−1
2 (Ny,1)BT

Ny
J22φ−1

1 (:,Ny)
T
]T

[

−φ−1
2 (Ny,1)BT

Ny
J21φ−1

2 (1, :)
]T



 .

In addition, ther th diagonal block ofφ−1
1∼2 can be calculated using the following rela-

tionships forr ≤ Ny :

φ−1
1∼2(r, r) = φ−1

1 (r, r)−
(
−φ−1

1 (r,Ny)BNyJ12φ−1
1 (r,Ny)

T
)
,

(12)

φ−1
1∼2(r +Ny, r +Ny) = φ−1

2 (r, r)−
(

−φ−1
2 (r,1)BT

Ny
J21φ−1

2 (1, r))
)T

,

where ther th off-diagonal block ofφ−1
1∼2 can be calculated using the following relation-

ships:
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φ−1
1∼2(r, r +1) = φ−1

1 (r, r +1)−
(
−φ−1

1 (r,Ny)BNyJ12φ−1
1 (r +1,Ny)

T
)
,

(13)

φ−1
1∼2(r +Ny, r +1+Ny) = φ−1

2 (r, r +1)−
(

−φ−1
2 (r +1,1)BT

Ny
J21φ−1

2 (1, r))
)T

,

r < Ny,

φ−1
1∼2(r, r +1) = 0−

(
−φ−1

1 (r,Ny)BNyJ11φ−1
2 (1,1)

)
,

r = Ny.

The combination ofφ3 andφ4 through the bridge matrixB3Ny results in similar rela-
tionships to those seen above. Thus, in order be able to produce both the boundary and
block tridiagonal portions of each combined inverse we assign a total of twelveNx×Nx

matrix maps for each sub-matrixk. Mk;1−4 describe effects for thekth portion of the
boundary,Mk;5−8 describe the effects for a majority of the tridiagonal blocks, while
Ck;1−4, which we will refer to as “cross” maps, can be used to producethe remainder
of the tridiagonal blocks.

Initially, for each sub-matrixi the mappingsMk;i = I , k = 1,4, with all remaining
mapping terms set to zero. This ensures that initially the boundary ofφ−1

i∼i matches
the actual entries from the sub-matrix inverse, and the modifications to the tridiagonal
portion due to combining are all set to zero. By examining thefirst block row, last
block column, and the tridiagonal portion of the combined inverseφ−1

1∼2 we can see
how the maps can be used to explicitly represent all of the needed information. The

14



−1φ1~2

−1φ1

−1φ2

M1;2 M 2;2

M 3;1 M 4,1

M 2;1M 1;1

M 3;2 M 4;2

Figure 5: Mapping dependencies when combiningφ−1
1 andφ−1

2 to form φ−1
1∼2.

governing responsibilities of the individual matrix maps are detailed below:

φ−1
1∼2(1, :) =






[
M1;1φ−1

1 (1, :)+M2;1φ−1
1 (:,Ny)

T
]T

[
M1;2φ−1

2 (1, :)+M2;2φ−1
2 (:,Ny)

T
]T






T

,

φ−1
1∼2(:,2Ny) =






[
M3;1φ−1

1 (1, :)+M4;1φ−1
1 (:,Ny)

T
]T

[
M3;2φ−1

2 (1, :)+M4;2φ−1
2 (:,Ny)

T
]T




 ,

φ−1
1∼2(r,s) = φ−1

1 (r,s)− [φ−1
1 (r,1)M5;1φ−1

1 (1,s)+

φ−1
1 (r,1)M6;1φ−1

1 (s,Ny)
T + φ−1

1 (r,Ny)M7;1φ−1
1 (1,s)+ (14)

φ−1
1 (r,Ny)M8;1φ−1

1 (s,Ny)
T ],

φ−1
1∼2(r,s+Ny) =−[φ−1

1 (r,1)C1;1φ−1
2 (1,s)+

φ−1
1 (r,1)C2;1φ−1

2 (s,Ny)
T + φ−1

1 (r,Ny)C3;1φ−1
2 (1,s)+

φ−1
1 (r,Ny)C4;1φ−1

2 (s,Ny)
T ],

φ−1
1∼2(r +Ny,s+Ny) = φ−1

2 (r,s)− [φ−1
2 (r,1)M5;2φ−1

2 (1,s)+

φ−1
2 (r,1)M6;2φ−1

2 (s,Ny)
T + φ−1

2 (r,Ny)M7;2φ−1
2 (1,s)+

φ−1
2 (r,Ny)M8;2φ−1

2 (s,Ny)
T ],

r,s≤ Ny,

It is important to note that all of the expressions (11)-(13)can be written into the matrix
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map framework of (14). Figure 5 shows the mapping dependencies for the first block
row and last block row (or column sinceK is symmetric). From (11) we see that
both of the block rows are distributed based upon the location of each sub-matrix with
respect to the bridge point, i.e. the mapping terms associated withφ−1

1 can be used to
produce the first portion of the rows while those associated with φ−1

2 can be used for
the remainder. In fact, this implicit division for the mapping dependencies holds for
the block tridiagonal portion of the combined inverses as well, enabling an efficient
parallel implementation. Thus, from this point we can deduce that the matrix maps for
the first block row (14) must be updated in the following manner:

M1;1←M1;1+(φ−1
1 (1,Ny)BNyJ12)M3;1;

M2;1←M2;1+(φ−1
1 (1,Ny)BNyJ12)M4;1;

M3;1← (φ−1
1 (1,Ny)BNyJ11)M1;2;

M4;1← (φ−1
1 (1,Ny)BNyJ11)M2;2;

In order to understand these relationships it is important to first recall that the up-
dates to the maps associated with sub-matrixφ1 are dependent on the last block column
φ−1

1 (:,Ny). Thus, we see a dependence on the previous state for the last block column
φ−1

1 (:,Ny), i.e. the new state of the mapping termsM1;1 andM2;1 are dependent on the
previous state of the mapping termsM3;1 andM4;1 respectively. Similarly, a depen-
dence onφ−1

2 (1, :) results in the new state of the mapping termsM1;2 andM2;2 being
functions of the previous state of the mapping termsM1;2 andM1;2 respectively. Fi-
nally, although some of the mapping terms remain zero after this initial combining step
(M2;2 for example), the expressions described in (14) need to be general enough for
the methodology. That is, the mapping expressions must be able to capture combining
effects for multiple combing stages, regardless of the position of the sub-matrix with
respect to a bridge point. For example, if we consider sub-matrix φ2 for the case seen
in Figure 4, during the initial combining step it would be considered a lower problem
and for the final combining step it would be considered a upperproblem. Alternatively,
sub-matrixφ3 would be associated with exactly the opposite modifications. It is impor-
tant to note that every possible modification process, for the individual mapping terms,
is encompassed within this general matrix map framework.

3.2 Recursive Combining Process

In order to formalize the notion of a recursive update schemewe will continue the ex-
ample from Section 3.1. By examining the final combing stage for the case of four
divisions, we notice that the approach described in (11)-(13) can again be used to com-
bine sub-matrix inversesφ−1

1∼2 andφ−1
3∼4, through the bridge matrixB2Ny. The first block
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row and last block column ofφ−1
1∼4 can be calculated as follows:

φ−1
1∼4(1, :) =

(
φ−1

1∼2(1, :) 0
)
−

([
−φ−1

1∼2(1,2Ny)B2NyJ12φ−1
1∼2(:,2Ny)

T
]T

[
−φ−1

1∼2(1,2Ny)B2NyJ11φ−1
3∼4(1, :)

]T

)T

,

(15)

φ−1
1∼4(:,4Ny) =

(
0 φ−1

3∼4(2Ny, :)
)T
−





[

−φ−1
3∼4(2Ny,1)BT

2Ny
J22φ−1

1∼2(:,2Ny)
T
]T

[

−φ−1
3∼4(2Ny,1)BT

2Ny
J21φ−1

3∼4(1, :)
]T



 ,

given the adjustment matrix:

J =

(

I −φ−1
3∼4(1,1)BT

2Ny

−φ−1
1∼2(2Ny,2Ny)B2Ny I

)−1

.

In addition, ther th diagonal block ofφ−1
1∼4 can be calculated using the following

relationships:

φ−1
1∼4(r, r) = φ−1

1∼2(r, r)−
(
−φ−1

1∼2(r,2Ny)B2NyJ12φ−1
1∼2(r,2Ny)

T
)
,

(16)

φ−1
1∼4(r +2Ny, r +2Ny) = φ−1

3∼4(r, r)−
(

−φ−1
3∼4(r,1)BT

2Ny
J21φ−1

3∼4(1, r))
)T

,

r ≤ 2Ny,

where ther th off-diagonal block ofφ−1
1∼4 can be calculated using the following relation-

ships:

φ−1
1∼4(r, r +1) = φ−1

1∼2(r, r +1)−
(
−φ−1

1∼2(r,2Ny)B2NyJ12φ−1
1∼2(r +1,2Ny)

T
)
,

(17)

φ−1
1∼4(r +2Ny, r +1+2Ny) = φ−1

3∼4(r, r +1)−
(

−φ−1
3∼4(r +1,1)BT

2Ny
J21φ−1

3∼4(1, r))
)T

,

r < 2Ny,

φ−1
1∼4(r, r +1) = 0−
(
−φ−1

1∼2(r,2Ny)B2NyJ11φ−1
3∼4(1,1)

)
,

r = 2Ny.
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Again, it is important to note that each of the expressions (15)-(17) are implicitly di-
vided based upon topology. For example, the first 2Ny diagonal blocks ofφ−1

1∼4 = K−1

can be separated into two groups based upon the size of the sub-matricesφ1 andφ2.
That is,

φ−1
1∼4(r, r) = φ−1

1∼2(r, r)−
(
−φ−1

1∼2(r,2Ny)B2NyJ12φ−1
1∼2(r,2Ny)

T
)
,

r ≤ 2Ny,

can be separated forr ≤ Ny as:

φ−1
1∼4(r, r) = φ−1

1 (r, r)−
([

φ−1
2 (Ny,1)BT

Ny
J22φ−1

1 (r,Ny)
T
]T)

·B2NyJ12·
([

φ−1
2 (Ny,1)BT

Ny
J22φ−1

1 (r,Ny)
T
])

,

φ−1
1∼4(r +Ny, r +Ny) = φ−1

2 (r, r)−
([

φ−1
2 (Ny, r)+ φ−1

2 (Ny,1)BT
Ny

J21φ−1
2 (1, r)

]T)

·B2NyJ12·
([

φ−1
2 (Ny, r)+ φ−1

2 (Ny,1)BT
Ny

J21φ−1
2 (1, r)

])

.

Thus, the modifications to the diagonal entries can be written as just a function of the
first block row and last block column from the individual sub-matrices, using the matrix
map framework introduced in (14) forr ≤ Ny :

φ−1
1∼4(r, r) = φ−1

1 (r, r)−
(
[
M1;1φ−1

1 (1, r)+M2;1φ−1
1 (r,Ny)

T
]T
)

·B2NyJ12·
([

M1;1φ−1
1 (1, r)+M2;1φ−1

1 (r,Ny)
T
])

,

φ−1
1∼4(r +Ny, r +Ny) = φ−1

2 (r, r)−
(
[
M1;2φ−1

2 (1, r)+M2;2φ−1
2 (r,Ny)

]T
)

·B2NyJ12·
([

M1;2φ−1
2 (1, r)+M2;2φ−1

2 (r,Ny)
])

.

Here, the matrix maps are assumed to have been updated based upon the formation of
the combined inversesφ−1

1∼2 andφ−1
3∼4. Therefore, we can begin to formulate the recur-

sive framework for updating the matrix maps to represent theeffect of each combining
step.

3.3 Update Scheme for Parallel Inversion and the Distributed Com-
pact Representation

The procedure begins with each division of the problem beingassigned to one ofp
available CPUs. In addition, all of thep− 1 bridge matrices are made available to
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each of the CPUs. After the compact representation for each inverse has been found
independently, the combining process begins. Three reference positions are defined
for the formation of a combined inverseφ−1

i∼ j : the “start” position[st] = i, the “stop”

position[sp] = j, and the bridge position[bp] = ⌈ j−i
2 ⌉. Due to the fact that a CPUt

will only be involved in the formulation of a combined inverse when[st] ≤ t ≤ [sp]
all combining stages on the same level (see Figure 4) can be performed concurrently.
When forming a combined inverseφ−1

i∼ j , each CPU[st]≤ t≤ [sp] will first need to form
the adjustment matrix for the combining step. Assuming a bridge matrixBk, we begin
by constructing four “corner blocks”. If the upper combinedinverse is assumed to have
Nu blocks and the lower to haveNl , the two matrices need from the upper combined
inverse are:[UR] = φ−1

[st]∼[bp]
(1,Nu) and[LR] = φ−1

[st]∼[bp]
(Nu,Nu), with the two matrices

from the lower being:[UL] = φ−1
[bp+1]∼[sp](1,1) and [LL] = φ−1

[bp+1]∼[sp](Nl ,1). These
matrices can be generated by the appropriate CPU through their respective matrix maps
(recall the example shown in Figure 5). Specifically, the CPUs corresponding to the
[st], [bp], [bp+1] and[sp] divisions govern the required information. The adjustment
matrix for the combining step can then be formed:

J =

(
I −[UL]BT

k
−[LR]Bk I

)−1

.

After the adjustment matrix has been calculated the processof updating the matrix
maps can begin. For any combining step, the cross maps each CPU t must be updated
first:

if (t < [bp]) then

C1←C1−MT
3;t(BkJ12)M3;t+1;

C2←C2−MT
3;t(BkJ12)M4;t+1;

C3←C3−MT
4;t(BkJ12)M3;t+1;

C4←C4−MT
4;t(BkJ12)M4;t+1;

elseif (t == [bp]) then (18)

C1←C1−MT
3;t(BkJ11)M1;t+1;

C2←C2−MT
3;t(BkJ11)M2;t+1;

C3←C3−MT
4;t(BkJ11)M1;t+1;

C4←C4−MT
4;t(BkJ11)M2;t+1;

elseif (t < [sp]) then

C1←C1−MT
1;t(B

T
k J21)M1;t+1;

C2←C2−MT
1;t(B

T
k J21)M2;t+1;

C3←C3−MT
2;t(B

T
k J21)M1;t+1;

C4←C4−MT
2;t(B

T
k J21)M2;t+1;
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Notice that the cross maps for CPUt are dependent on information from its neighbor-
ing CPU t + 1. This information must be transmitted and made available before the
cross updates can be performed. Next, updates to the remaining eight matrix maps
can be separated into two categories. The updates to the matrix maps for the upper
sub-matrices(t ≤ [bp]), are summarized below:

M5;t ←M5;t −MT
3;t(BkJ12)M3;t ;

M6;t ←M6;t −MT
3;t(BkJ12)M4;t ;

M7;t ←M7;t −MT
4;t(BkJ12)M3;t ;

M8;t ←M8;t −MT
4;t(BkJ12)M4;t ; (19)

M1;t ←M1;t +([UR]BkJ12)M3;t ;

M2;t ←M2;t +([UR]BkJ12)M4;t ;

M3;t ← ([LL]TBT
k J22)M3;t ;

M4;t ← ([LL]TBT
k J22)M4;t ;

The updates to the matrix maps for the lower sub-matrices(t > [bp]), will be:

M5;t ←M5;t −MT
1;t(B

T
k J21)M1;t ;

M6;t ←M6;t −MT
1;t(B

T
k J21)M2;t ;

M7;t ←M7;t −MT
2;t(B

T
k J21)M1;t ;

M8;t ←M8;t −MT
2;t(B

T
k J21)M2;t ; (20)

M3;t ←M3;t +([LL]TBT
k J21)M1;t ;

M4;t ←M4;t +([LL]TBT
k J21)M2;t ;

M1;t ← ([UR]BkJ11)M1;t ;

M2;t ← ([UR]BkJ11)M2;t ;

The above procedure, shown in (18)-(20), for modifying the matrix maps can be re-
cursively repeated for each of the combining stages beginning with the lowest level of
combining the individual sub-matrix inverses. On completion the maps can then be
used to generate the block tridiagonal entries ofK−1.

Under this framework, matrix maps can be used to determine both the diagonal and
off-diagonal block entries forK−1. This subsequently allows for the computation of
the ratio sequences forK−1, via the relationships shown in (9), in a purely distributed
fashion. This distribution of the compact representation is at the foundation of an
efficient parallel method for solving systems of linear equationsKx = c.

The time complexity of the algorithm presented isO(
N3

x Ny
p +N3

x logp), with mem-

ory consumptionO
(

N2
x Ny
p +N2

x

)

. The first term(
N3

x Ny
p ) in the computational com-

plexity arises from the embarrassingly parallel nature of both determining the ratio
sequences and applying the matrix maps to update the block tridiagonal portion of the
inverse. The second term(N3

x logp) is dependent on the number of levels needed to
gather combining information forp sub-matrix inverses. Similarly, the first term in the
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memory complexity is due to the ratio sequences and diagonalblocks, and the second
represents the memory required for the matrix maps of each sub-problem governed.

4 Parallel Solution of Block Tridiagonal Systems

The parallel inversion algorithm described above not only has advantages in computa-
tional and memory efficiency but also facilitates the formulation of a fast, and highly
scalable, parallel multiplication algorithm. This plays an essential role during the sim-
ulation process due to the fact that transient simulation ofpower mesh structures in-
volves the solution of a linear systemKxi = ci at each time stepi, which in this case
translates into performing the operationxi = K−1ci . Due to the fact that for transient
simulation this multiplication operation is repeated manytimes we would like to pre-
compute as much information as possible, i.e. reduce the amount of computation and
parallel communication required to perform each multiplication during simulation.

4.1 Parallel Matrix-Vector Multiply

Recall that our initial state for this procedure would assume that portions of the ratio
matrices (corresponding to the size and location of the division from within the com-
plete problem that was assigned to the CPU) have been calculated and stored. Subse-
quently, we can formulate the matrix-vector product ofK−1 andc. In order to simplify
notation for the presentation of the parallel matrix-vector multiply, i.e. K−1c, we will
use two subscripts for each of the sequences involved in the calculation. The first sub-
script will be used to denote the CPU and the second will referto a block within the
sequence, present on that particular CPU. We are interestedin solvingKx = c, where
two sequences{Wk,l} and{Tk,l} must be defined in order to compute the solution for
the system of equations. Specifically,k refers to a CPU withpk total blocks indexed by
l :

Wk =










WT
k,1

WT
k,2

WT
k,3
...

WT
k,pk










, Tk =










TT
k,1

TT
k,2

TT
k,3
...

TT
k,pk










, Wk,l , Tk,l ∈R
Nx× 1.

The elements from each sequence can be computed through the following recursions:

Wk,pk = Dk,pkck,pk,

Wk,l = Dk,l ck,l +Rk,lWk,l+1, l = pk−1, . . . ,1,

Tk,1 = ST
k,1Dk,1ck,1,

Tk,l = ST
k,l (Tk,l−1 +Dk,l ck,l ) , l = 2, . . . , pk−1,

(21)
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whereDk,l is diagonal blockl of the inverse for CPUk, and the termsRk,l andSk,l are
the corresponding elements of the ratio sequences (8). The resulting vectorx can then
be determined usingT andW and the product matrices:

R̃q,k =







(k+1)

∏
m=q

1
∏

n=pm

Rm,n if q > k,

I if q = k,
0 otherwise

S̃q,k =







(k−1)

∏
m=q

pm

∏
n=1

Sm,n if q < k,

I if q = k,
0 otherwise

Rk,l =
l

∏
n=pk

Rk,n, Sk,l =
l

∏
n=1

Sk,n.

Here, the ratio terms that are present on a given CPU are denoted as local, and the
accumulations of the ratios from the remaining CPUs are denoted as skip. Thus, the
following expression for the vectorx can be constructed:

xk,l =
p
∑

q=k
Rk,l R̃q−1,kWq,1

+
k
∑

q=1
Sk,l S̃q+1,kTq,pq +Wk,l +Tk,l−1,

∀k = 1, . . . , p and l = 1, . . . , pk,

(22)

where:

Tk,−1 =

{
0 if k = 1,

Tk−1,pk−1 if k > 1,

Although this multiplication procedure seems to be of a strictly recursive nature (and
hence not readily parallel) it will be shown that the generalformulation (22) can in fact
be computed efficiently in a distributed fashion.

Initially, each skip product term for the CPUs, i.e.
1
∏

n=pm

Rm,n and
pm

∏
n=1

Sm,n within

the expressions for̃Rq,k andS̃q,k respectively, are pre-computed after the inversion pro-
cess. In addition, during the setup time between the inversion algorithm and time step
calculations, the necessary skip product terms for the above procedure are distributed
amongst the appropriate CPUs. The goal of this multiplication procedure is to evenly
distribute the computation across the CPUs while minimizing both the parallel com-
munication and the amount of redundant operations.

For example, if we examine a subset of the operations for the case ofp = 4 divi-
sions, we can see how this general parallel computational scheme can be constructed.
The portion of the solution from (22) present on CPUk = 1 has the form:
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x1,l =
4

∑
q=1

R1,l R̃q−1,1Wq,1

+
1

∑
q=1

S1,l S̃q+1,1Tq,pq +W1,l +T1,l−1,

=
4

∑
q=1

R1,l R̃q−1,1Wq,1 +W1,l +T1,l−1,

= R1,l R̃1,1W2,1 +R1,l R̃2,1W3,1

+R1,l R̃3,1W4,1 +W1,l +T1,l−1

= (W1,l +T1,l−1)+R1,lW2,1

+R1,l
(
R̃2,1

(
W2,1 + R̃3,2W4,1

))
.

We can see the sum being separated into two types of operations: those that can be
computed independently for CPUk, namely(Wk,l +Tk,l−1), and the remainder of which
require information from other CPUs. In addition, it is important to note that the infor-
mation coming from the other CPUs is essentially a single vector such asWq,1 which
is cascaded through a sequence of ratio terms. The vectors must finally arrive at the
given CPU in order to be multiplied by its governed ratiosRk,l . Finally, we can clearly
see from the example above the advantages of having skip product terms such as̃R2,1

stored on each CPU. This allows for the effects of multiplying through all of the ratios
R from CPU 2 to be replaced by a single skip term. Also, this single matrix-vector
multiply can be performed by CPU 1, thus reducing the number of stages required for
the entire process to be completed.

The computation associated with calculating the sequencesTk andWk has com-
plexity O(pkN2

x ), with that of the log2 p product stages each being of orderO(pkN2
x ).

Therefore, if the problem is distributed evenly across thep CPUs (pk =
Ny
p , ∀k), the

total complexity of the process isO(
N2

x Ny
p + logp

p N2
x Ny). Finally, in the case of a single

CPU it should be noted thatx is generated in its entirety from the recursions ofW and
T (21), wherep = 1 andp1 = Ny.

5 Power Mesh Simulation

There are two main categories of algorithms for solving sparse linear systems of equa-
tions: direct and iterative. In this section we will first demonstrate the advantages
in scalability of direct methods for theaccuratetransient simulation of mesh struc-
tures. Here, the transient simulation time using both direct and iterative methods are
compared for varying levels of reluctive coupling. Finally, the ability to trade-off com-
puting resources for both increased mesh sizes and transient simulation time using the
parallel inversion process will be highlighted. Given the need for objective compar-
isons against current and future algorithms, we investigate the performance of standard
direct and iterative methods. Specifically, our parallel direct approach is compared
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with two commonly available sparse linear solvers and the conjugate gradient (CG)
method using the universally accepted incomplete LU (ILU) preconditioner. These al-
gorithms all have well documented computational complexities, memory requirements,
and speed of converge in the case of CG.

In order to perform meaningful simulations of the transientbehavior seen on a
power mesh there are several factors that need to be considered. First, the locations of
the power pads on the mesh will vary with the packaging that isused for the design.
Next, switching activity on realistic devices can be observed across the entire chip
area. Finally, based upon the circuit equation formulationemployed and the actual
numerical method of solution, the accuracy for the simulation may be affected. The
simulations considered in this work are for square power meshes of dimensionm×
m. The sizes of the variablesNx andNY for the block tridiagonal representation of
the coefficient matrix will depend on the amount of inductivecoupling considered,
as discussed in Section 2.1. For example, a windowing based technique would result
in a coefficient matrix withNy = m blocks of sizeNx = 3m− 2 (based upon the fact
that a distributed RLC model is used for the interconnects, refer to Figure 1). For
all SPAI based analyses we constrain the additional inductive coupling considered to
be within a block sizeNx = 2(3m− 2) with Ny = m

2 . All inductance values used as
inputs for the windowing and SPAI approximation procedureswere generated with the
FastHenry extraction tool [20]. We considerVdd pins to be placed at(2 · (Ny

2 − 1))2

equally spaced positions throughout the grid, where the minimum mesh size analyzed
is m = 16. A random subset from the remaining nodes are considered current sinks
with a square waveform triggered by a rising clock edge. All simulations consisted of
1500 time steps, given a step size of 0.1psand clock signal of 50ps. All interconnects
were assumed to be of uniform size: 1µm×2µm×100µm.

5.1 Simulation Methods

For the transient simulation of power mesh structures we areconsidering the solution of
the systemKxi = ci at each time stepi, where the coefficient matrixK does not change
with time. Regardless of the method of solution it can be of great benefit to consider
some amount of pre-processing on the matrixK in order to accelerate the solution
at each time step. In this work we limit the comparison of our algorithm to several
of the best known and most widely available software packages in order to provide
standard comparisons for future analysis of algorithms in this area. The conjugate
gradient method is an iterative search method which is knownto perform extremely
well, especially for matrices that are symmetric, positive-definite, and sparse [10]. In
addition, the ILU factorization or ILU preconditioner is almost universally accepted as
a pre-processing technique that can be used in conjunction with CG to improve solve
times for matrices of this type. A good choice of a preconditionerM for a matrixA
would be determined by two factors:

• How closely does the matrixM approximateA−1? We would likeAM≈ I .

• How easy is it to solve with the matrixM? We would like to solveMy = z fast.
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Mesh Size 128×128 192×192 256×256 384×384 512×512
Matrix Size 4.89E+04 1.10E+05 1.96E+05 4.42E+05 7.85E+05

NNZ
Window 4.35E+05 9.81E+05 1.75E+06 3.93E+06 6.99E+06
τ = 0.95 1.43E+06 3.22E+06 5.73E+06 1.29E+07 2.29E+07
τ = 0.97 3.54E+06 7.99E+06 1.42E+07 3.21E+07 5.70E+07

Table 2: Scaling trend for reluctance approximations with respect to the number of
unknowns or “Matrix Size” and the number of non-zeros or “NNZ”, given a mesh of
sizem×m.

By specifying a drop tolerance the ILU method computes a sparse LU approximation
that meets both of these criteria and can be used to efficiently guide the search process.
Note that all simulations performed using the CG method in this work have a fixed
stopping criterion tolerance of 10−6. It should be clear that as the drop tolerance de-
creases more terms will be included in the preconditioner and the number of iterations
needed for the method to converge will potentially decrease. However, in this case the
ILU preconditioner will be less sparse and across all drop tolerances with the same
number of iterations needed for convergence, the longest solve time will correspond to
the smallest drop tolerance.

In addition to the CG method, we also provide analysis of the performance of the
UMFPACK and the MATLAB Sparse LU direct linear solvers when used for power
mesh simulation. UMFPACK [11] is a multi-frontal method that uses minimum fill-in
orderings to efficiently perform an elimination procedure.The factorization involves
four matrices: a permutation matrix for stability, a reduced fill-in ordering matrix for
efficiency, and the LU factors. These terms can be stored and subsequently only back
solves are needed to compute the solution at each time step. Asimilar pre-processing
factorization and evaluation procedure can be employed forthe MATLAB Sparse LU
solver.

The parallel divide-and-conquerapproach detailed in Sections 3 and 4 fits the same
mold as the UMFPACK and sparse LU algorithms described above. However, instead
of a factorization being stored for future use, the distributed compact representation for
the inverse of the coefficient matrixK−1 is stored across several computers. In addition,
instead of performing a back solve for each time stepi, as is the case with the elimina-
tion style algorithms, our algorithm involves a parallel matrix-vector multiply K−1ci .
Our algorithm has been implemented, in C, and compared against pre-compiled UMF-
PACK and MATLAB Sparse LU included as part of the MATLAB release (R14SP3).
It is important to note that both the ILU factorization and any back solve needed as part
of the preconditioning process for CG are pre-compiled subroutines called from within
MATLAB as well. These computational issues are necessary toensure no bias for our
algorithm over other methods. All simulations were performed on a cluster of 32-bit
3Ghz Intel Xeon workstations with 2GB of memory for each node.
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Data Our Algorithm LU UMF

16×16 τ = 0.99 2.01E-03 2.78E-03 2.61E-03
32×32 τ = 0.99 1.45E-02 2.25E-02 1.90E-02
48×48 τ = 0.99 4.43E-02 6.21E-02 6.03E-02
64×64 τ = 0.99 8.73E-02 1.41E-01 1.48E-01
128×128 τ = 0.97 7.29E-01 1.25E+00 7.71E-01
192×192 τ = 0.90 1.50E+00 1.67E+00 -
256×256 window 2.25E+00 - -
384×384 window 6.57E+00 - -
512×512 window 1.08E+01 - -

Table 3: Performance of direct algorithms across mesh size.Transient step solve times
are shown in seconds; the lack of memory scalability for existing direct approaches is
shown through an inability to perform the larger simulations.

5.2 Simulation Time

In order to analyze the improvement in computational efficiency achieved by the divide-
and-conquer method it is first necessary to understand the breakdown of total simula-
tion time. The total simulation time, given any level of inductance approximation, is
dominated by the fixed time cost of inversion or factorization plus the variable time
cost to multiply or solve at each time step. When consideringtransient simulations
involving a large number of time steps, any speed-up seen in the variable time cost
will dominate the fixed time cost. For example, the LU algorithm used to construct the
waveform in Figure 2 has factorization time: 20ms and solve time: 1.54ms. Therefore,
after thirteen time steps the transient time would be largerthan the factorization time.
In the scope of this analysis, we focus on transient simulations involving several time
steps and compare solve times for various examples of interest.

5.2.1 Comparison against direct solvers

In order to gain perspective for the computational limitations for each of the direct algo-
rithms considered in this work, several large-scale simulationsm= 128,192,256,384,and512
were performed. Table 2 shows the size of coefficient matrix and the number of non-
zero entries, considering different amounts of reluctancecoupling. Table 3 shows the
transient step solve times of the direct algorithms for these mesh sizes. It was de-
termined that the UMFPACK algorithm was only able to handle up to a mesh size
of m = 192 with τ = 0.85. This case corresponded to a coefficient matrix with ap-
proximately 110K unknowns, but less than 412K non-zero entries. The memory con-
sumption of the Sparse LU algorithm scaled slightly better,being able to perform the
simulation for a mesh size ofm= 192 withτ = 0.90 which corresponds to over 2× the
number of non-zero entries as compared toτ = 0.85. The divide-and-conquer method
was clearly the most memory scalable of the direct algorithms, it was able to perform
the largest example in this work:m= 512 with window based approximation (involv-
ing 785K unknowns and 7 million non-zero entries). The divide-and-conquerapproach
was able to perform the largest simulationm= 512 with window based approximation
usingp = 32 computers and the remaining cases usingp= 16 or lower. For the case of
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Data p
16×16
Total
Time (s)

32×32
Total
Time (s)

48×48
Total
Time (s)

p
64×64
Total
Time (s)

window 1 1.86E+00 1.56E+01 5.60E+01 2 1.18E+02
window 2 1.80E+00 1.10E+01 3.75E+01 4 7.40E+01
window 4 2.71E+01 5.22E+01 8 5.22E+01
τ = 0.95 1 3.70E+00 3.77E+01 1.95E+02 2 3.47E+02
τ = 0.97 1 3.81E+00 3.89E+01 1.75E+02 2 3.56E+02
τ = 0.99 1 4.00E+00 4.26E+01 1.85E+02 2 3.75E+02
τ = 0.95 2 3.15E+00 3.00E+01 1.72E+02 4 2.13E+02
τ = 0.97 2 3.18E+00 2.95E+01 1.74E+02 4 1.81E+02
τ = 0.99 2 3.41E+00 3.23E+01 1.53E+02 4 2.40E+02
τ = 0.95 4 2.36E+01 8.35E+01 8 1.34E+02
τ = 0.97 4 2.39E+01 1.04E+02 8 1.37E+02
τ = 0.99 4 2.50E+01 7.79E+01 8 1.54E+02

Table 4: Simulation time for divide-and-conquer algorithmmesh sizesm =
16,32,48,64.

m= 512 we are considering a compact representation for the inverse of the coefficient
matrix, shown in (8), that would account for nearly 30GB of memory. Next, in order to
give a practical measure for the improvement of the divide-and-conquer approach we
examine in more detail the effect of increasing the amount ofreluctance coupling.

Using several smaller mesh examplesm= 16,32,48,and 64 we examine the sensi-
tivity of each algorithm to the inclusion of reluctance coupling terms, i.e. larger values
of the parameterτ. It is important to note that the same analysis can be performed
for larger mesh sizes, however, as we are interested in the overall scaling rate we need
only perform a relevant subset of all possible cases. Table 4shows the results for the
divide-and-conquer method and Table 5 for the Sparse LU and UMFPACK algorithms.
From Table 5 first notice that although simulations using theUMFPACK algorithm
with the windowing technique matched the accuracy seen across all other algorithms,
the simulation time was often substantially larger than that seen using the more dense
SPAI based approximation. This can be attributed to the factthat the UMFPACK algo-
rithm was unable to properly decide on an efficient ordering for elimination given the
windowing coefficient matrix.

5.2.2 Comparison against iterative solvers

We now turn our attention to the performance of iterative methods for the transient
simulation of power mesh structures. Specifically, we analyze the lack of scalability
for the CG algorithm with respect to the addition of reluctance coupling. Although the
CG method has the smallest memory consumption of any algorithm considered in this
work, we observe that the iterative CG method using ILU scaled the worst with respect
to the inclusion of reluctance coupling. A comparison of transient step solve times for
the examplem = 64 are shown in Figure 6. It is important to note that the timesfor
the divide-and-conquer method, shown as horizontal lines in the Figure 6, represent
the average time across the different SPAI thresholds. Thisis due to the fact that all
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Data
16×16
Total
Time (s)

32×32
Total
Time (s)

48×48
Total
Time (s)

64×64
Total
Time (s)

LU
window 2.33E+00 1.74E+01 4.45E+01 9.75E+01
τ = 0.95 3.58E+00 2.57E+01 8.35E+01 1.92E+02
τ = 0.97 4.23E+00 3.32E+01 1.03E+02 2.24E+02
τ = 0.99 4.28E+00 3.54E+01 1.01E+02 2.34E+02

UMF
window 2.07E+00 1.57E+01 1.39E+02 1.31E+03
τ = 0.95 2.97E+00 1.77E+01 5.05E+01 1.02E+02
τ = 0.97 3.52E+00 2.49E+01 6.98E+01 1.54E+02
τ = 0.99 4.03E+00 2.95E+01 9.40E+01 2.31E+02

Table 5: Simulation time for MATLAB Sparse LU and UMFPACK mesh sizesm =
16,32,48,64.

terms involved in the parallel matrix-vector multiply (21)are dense and the multiply
time subsequently will not change as the number of non-zero entries in the coefficient
matrix increases. This property does not hold for any other algorithm considered in
this work.

Table 6 shows the sensitivity of the CG algorithm to the inclusion of additional
reluctance coupling terms, again using several smaller mesh examples. On average
the time for CG was more than 11× slower when comparing the SPAI approxima-
tion with τ = 0.99 to the basic windowing approach. If we use this fact we can ar-
rive at speed-up factors when comparing the dominant computational task for tran-
sient simulation. Specifically, if we consider the maximum scaling of the divide-and-
conquer method for the casesm = 256,384, and 512, we calculate speed-up factors
of 8.9×,7.2×, and 9.2× respectively, when considering transient solve times for a
τ = 0.99 quantity of reluctance coupling. We have restricted the analysis of large-
scale simulations to the window based approach due to the excessive simulation time
requirements for the CG method, given increased values of the parameterτ.

In summary, the use of a distributed sparse approximate inverse technique, for the
inclusion of additional reluctance terms, has resulted in improved accuracy for the
transient simulation of mesh structures. Given the computational burden associated
with accurate RLC modeling of interconnects, the divide-and-conquer approach shows
superior computational performance when compared to threeof the best known algo-
rithms applicable to this simulation problem. Specifically, the commercially available
direct solvers showed advantages in computation time for small problems, but were
unable to perform large simulations due to memory restrictions. Alternatively, the CG
method was able to perform larger simulations, but the computational performance suf-
fered heavily with the addition of branch coupling terms. The distributed computing
approach presented in this paper has been shown to bescalablewhen considering the
size of the mesh structure, as we are able to perform simulations with meshes over 2×
as large as other direct methods. In addition, the proposed method isscalablewith
respect to the number of non-zero entries considered, as it does not lead to an increase
in either time or memory requirements associated with the primary computational task
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Figure 6: Comparison of CG and divide-and-conquerapproach. Average time is shown
for each transient step ofm= 64 power mesh using SPAI:τ = 0.94−0.99.

Data
16×16
Total
Time (s)

32×32
Total
Time (s)

48×48
Total
Time (s)

64×64
Total
Time (s)

Avg
#
Iter

CG
window 5.94E+00 2.84E+01 7.49E+01 1.41E+02 1.51
τ = 0.95 1.43E+01 7.22E+01 2.20E+02 3.76E+02 1.54
τ = 0.97 2.86E+01 1.35E+02 4.10E+02 6.87E+02 1.50
τ = 0.99 6.19E+01 3.88E+02 7.88E+02 1.49E+03 1.50

Table 6: Simulation time for CG using ILU, 20 drop tolerancesfrom 10−1 through
10−20, for mesh sizesm= 16,32,48,64.

in transient simulation.

6 Conclusion

Currently employed techniques for the simulation of mesh structures attempt to address
the issue of increased problem sizes by trading off accuracyfor simulation time via
iterative schemes. Our algorithm is a direct tool that facilitates the simulation of large
mesh structures through a divide-and-conquer approach. Due to the inherently parallel
nature of the algorithm computing resources can be flexibly allocated toward either
speeding up the simulation of a problem of a given size, or solving problems of larger
sizes in comparable time. In addition, the flexibility of thealgorithm is shown through
the use of a more sophisticated approximation technique forthe capturing of inductive
coupling effects. The new technique offered a reduction of over 12× to the RMSE error
when compared to a standard windowing technique. The scalability of the divide-and-
conquer method is clearly demonstrated by the absence of increases to time for the
primary computational task for transient simulation, whenconsidering the inclusion
of these additional coupling terms. This attribute is not shared by any of the other
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methods analyzed in this work. In addition, the divide-and-conquer method was able
to show substantial computational improvement over the most widely used numerical
techniques applicable for these large-scale simulations.Specifically, the divide-and-
conquer approach allows for the the simulation of a 512×512 RLC mesh with a speed-
up factor over 9×when compared to the CG method with ILU. Therefore, we conclude
that the divide-and-conquer algorithm presented here offers a framework which can be
built upon for the large-scale accurate simulation of powermesh structures.
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