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A Study of the Discrete-Time Switched LQR Problem

Wei Zhang, Jianghai Hu and Alessandro Abate

Abstract

This paper studies the discrete-time switched LQR (DSLQR) problem based on a dynamic programming approach.

One contribution of this paper is the analytical characterization of both the value function and the optimal hybrid-

control strategy of the DSLQR problem. Their connections tothe Riccati equation and the Kalman gain of the classical

LQR problem are also discussed. Several interesting properties of the value functions are derived. In particular,

we show that under some mild conditions, the family of finite-horizon value functions of the DSLQR problem is

homogeneous (of degree 2), uniformly bounded over the unit ball, and converges exponentially fast to the infinite-

horizon value function. Based on these properties, efficient algorithms are proposed to solve the finite-horizon and

infinite-horizon DSLQR problems. More importantly, we establish conditions under which the strategies generated by

the algorithms are stabilizing and suboptimal. These conditions are derived explicitly in terms of subsystem matrices

and are thus very easy to verify. The proposed algorithms andthe analysis provide a systematic way of solving the

DSLQR problem with guaranteed closed-loop stability and suboptimal performance. Simulation results indicate that

the proposed algorithms can efficiently solve not only specific but also randomly generated DSLQR problems, making

the NP-hard problems numerically tractable.

I. I NTRODUCTION

Switched systems arise naturally in many engineering fields, such as power electronics [1], [2], embedded

systems [3], [4], manufacturing [5], and communication networks [6], etc. Incorporating the switching behavior

in the model and controller structures offers much greater freedom and more possibilities for capturing complex

system dynamics, achieving stabilization and improving the overall performance of the feedback systems. In the last

decade or so, the stability and stabilizability of switchedsystems have been extensively studied [7], [8], [9], [10].

Many theoretical and numerical tools have been developed for the stability analysis of various switched systems.

These stability results have also led to some controller synthesis algorithms that ensure stability of some simple

switched systems [11], [12], [13], [14]. However, for many engineering applications, ensuring the stability is only

the first step rather than the ultimate design goal. How to design a control strategy that not only stabilizes a given

switched system, but also optimizes certain design criteria is an even more meaningful research problem.

The focus of this paper is on the optimal discrete-time linear quadratic regulation problem for switched linear

systems, hereby referred to as the DSLQR problem. The goal isto develop a computationally appealing algorithm to
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construct an optimal or suboptimal feedback strategy that minimizes a given quadratic cost function. The problem

is of fundamental importance both in theory and practice andhas challenged researchers for many years. The

bottleneck mostly lies in the determination of the optimal switching strategy. Many methods have been proposed to

tackle this problem, most of which are in a divide-and-conquer manner. Algorithms for optimizing the switching

instants for a fixed mode sequence have been developed for general switched systems in [15] and for switched

systems with autonomous dynamics in [16]. Although an algorithm for updating the switching sequence is discussed

in [16], finding the best switching sequence is still an NP-hard problem, even for switched linear systems.

This paper studies the DSLQR problem from the dynamic programming (DP) perspective. The last few years

have seen increasing interest in using DP to solve various optimal control problems of switched systems. In [17],

Xu and Antsaklis used DP to study the continuous-time switched LQR problem and developed an algorithm to

find the suboptimal switching instants and continuous control for a fixed switching sequence. In [18], Rantzer

and Johansson derived lower and upper bounds for the value function of the quadratic optimal control problem of

piecewise affine systems; these bounds were then used to construct a suboptimal control strategy. A discrete-time

version of this problem was studied by Bemporadet al. in [19], [20], where the value function and the optimal

control law were proved to be piecewise quadratic and piecewise linear, respectively. Based on these structural

properties, an algorithm based on multi-parametric programming was developed to compute the optimal feedback

control law. More recently, Lincoln and Rantzer developed ageneral relaxation procedure in [21] to tackle the

curse of dimensionality of dynamic programming. This procedure was also employed to study the infinite-horizon

DSLQR problem in [21], [22] and the quadratic optimal control problem of continuous-time switched homogeneous

systems in [23].

One contribution of this paper is the analytical characterization of both the value function and the optimal

control strategies for general DSLQR problems. In particular, we show that the value function of the DSLQR

problem is the pointwise minimum of a finite number of quadratic functions. These quadratic functions can be

exactly characterized by a finite set of positive semidefinite (p.s.d.) matrices, which can be obtained recursively

using the so-calledSwitched Riccati Mapping. Explicit expressions are also derived for both the optimalswitching

law and the optimal continuous control law. Both of them are in the state-feedback form and are homogeneous

on the state space. Furthermore, the optimal continuous control is shown to be piecewise linear with different

Kalman-type feedback gains within different conic regionsof the state space. Although other researchers have also

suggested a piecewise affine structure for the optimal feedback control ([19], [20], [24]), the analytical expression

of the optimal feedback gain and in particular its connection with the Kalman gain and the Riccati equation of the

classical LQR problem have not been explicitly presented.

Another contribution of this paper is the derivation of various properties of the value functions of the DSLQR

problem. In particular, it is proved that under some mild conditions, the family of the finite-horizon value functions

of the DSLQR problem is homogeneous (of degree 2), uniformlybounded over the unit ball, and converges

exponentially fast to the infinite-horizon value function.More importantly, the exponential convergence rate of

the value iteration is characterized analytically in termsof the subsystem matrices. This provides an efficient way
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of terminating the value iterations, especially for high-dimensional state spaces. The above results, especially the

convergence-rate characterization, have not been adequately investigated in the literature.

The last contribution of this paper is the design and analysis of various efficient algorithms for solving the

optimal and suboptimal DSLQR problems. The key idea is to useconvex optimization to identify and remove the

matrices that are redundant in terms of characterizing the optimal and suboptimal strategies. This is in line with the

approaches of Neuro-dynamic programming ([25]) and approximate dynamic programming ([21]), both of which

try to simplify the computations by finding compact representations of the value functions up to certain numerical

relaxations. Compared with the previous work, our distinction mostly lies on the analysis of these algorithms. We

establish conditions under which the strategies generatedby the proposed algorithms are stabilizing and suboptimal.

More importantly, these conditions are derived explicitlyin terms of subsystem matrices and are very easy to verify.

Therefore, the proposed algorithms, together with the analysis, provide a systematic way of solving the DSLQR

problem with guaranteed closed-loop stability and suboptimal performance. Simulation results indicate that the

proposed algorithms can efficiently solve not only specific but also randomly generated DSLQR problems, making

the NP-hard problems numerically tractable.

This paper is organized as follows. In Section II, the DSLQR problem is formulated. The value function of the

DSLQR problem is derived in a simple analytical form in Section III. Various interesting properties of the value

functions are derived in Section IV. These properties are then used in Sections V and VI to develop optimal and

suboptimal algorithms for solving the DSLQR problems. Finally, some concluding remarks are given in Section VII.

II. PROBLEM FORMULATION

Consider the discrete-time switched linear system described by:

x(t+ 1) = Av(t)x(t) +Bv(t)u(t), t ∈ TN , {0, . . . , N − 1}, (1)

wherex(t) ∈ R
n is the continuous state,v(t) ∈ M , {1, . . . ,M} is the discrete mode,u(t) ∈ R

p is the continuous

control andTN is the control horizon with lengthN (possibly infinite). The integersn, M andp are all finite and

the controlu is unconstrained. The sequence of pairs{(u(t), v(t))}N−1
t=0 is called thehybrid control sequence. For

eachi ∈ M, Ai andBi are constant matrices of appropriate dimensions and the pair (Ai, Bi) is called a subsystem.

This switched linear system is time invariant in the sense that the set of available subsystems{(Ai, Bi)}
M
i=1 is

independent of timet. We assume that there is no internal forced switching, i.e.,the system can stay at or switch

to any mode at any time instant. At each timet ∈ TN , denote byξt,N , (µt,N , νt,N ) : R
n → R

p × M the hybrid

control law of system (1), whereµt,N : R
n → R

p is called thecontinuous control lawand νt,N : R
n → M

is called theswitching control law. A sequence of hybrid control laws over the horizonTN constitutes anN -

horizon feedback policy: πN , {ξ0,N , ξ1,N , . . . , ξN−1,N}. If system (1) is driven by a feedback policyπN , then

the closed-loop dynamics is governed by

x(t+ 1) = Aνt,N (x(t))x(t) +Bνt,N (x(t))µt,N (x(t)), t ∈ TN . (2)
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For a given initial statex(0) = z ∈ R
n, the performance of the feedback policyπN can be measured by the

following cost functional:

JπN
(z) = ψ(x(N)) +

N−1
∑

t=0

L(x(t), µt,N (x(t)), νt,N (x(t))), (3)

whereψ : R
n → R

+ andL : R
n × R

p × M → R
+ are called theterminal cost functionand therunning cost

function, respectively. In this paper, the functionsψ andL are assumed to take the following quadratic forms:

ψ(x) = xTQfx, L(x, u, v) = xTQvx+ uTRvu, ∀x ∈ R
n, u ∈ R

p, v ∈ M,

whereQf = QT
f � 0 is the terminal-state weighting matrix, andQv = QT

v � 0 andRv = RT
v ≻ 0 are the running

weighting matrices for the state and the control, respectively, for subsystemv ∈ M. When the control horizonN

is infinite, the terminal cost will never be incurred and the objective function, which might be infinite, becomes:

Jπ∞
(z) =

∞
∑

t=0

L(x(t), µt,∞(x(t)), νt,∞(x(t))). (4)

For a possibly infinite positive integerN , denote byΠN the set of all admissibleN -horizon policies, i.e., the set

of all sequences of functionsπN = {ξ0,N , . . . , ξN−1,N} with ξt,N : R
n → R

p × M for t ∈ TN . The goal of

this paper is to find the optimal policyπ∗
N that minimizes the quadratic cost function defined in (3) or (4). This

problem is a natural extension of the classical LQR problem to the switched linear system case and is thus called

the Discrete-time Switched LQR problem, hereby referred to as the DSLQR problem.

Problem 1 (DSLQR problem):For a given initial statez ∈ R
n and a possibly infinite positive integerN , find

theN -horizon policyπN ∈ ΠN that minimizesJπN
(z) subject to the dynamic equation (2).

Remark 1:With the quadratic cost function (3), there always exists a solution to the finite-horizon DSLQR

problem. We assume that the optimal solution also exists in the infinite-horizon case. However, for both finite and

infinite horizons, the optimal solution may not be unique.

To solve Problem 1, for each timet ∈ TN , we define the value functionVt,N : R
n → R as:

Vt,N (z)= inf
u(j)∈Rp,v(j)∈M

t≤j≤N−1

{

ψ(x(N))+

N−1
∑

j=t

L(x(j), u(j), v(j))
∣

∣

∣ subject to eq. (1) withx(t) = z
}

. (5)

TheVt,N (z) so defined is the minimum cost-to-go starting from statez at timet. The minimum cost for the DSLQR

problem with an initial conditionx(0) = x0 is simply V0,N (x0). Due to the time-invariant nature of the switched

system (1), its value function depends only on the number of remaining time steps, i.e.,

Vt,N (z) = Vt+m,N+m(z),

for all z ∈ R
n and all integersm ≥ −t. In the rest of this paper, when no ambiguity arises, we will denote

by Vk(z) , VN−k,N (z) and ξk , ξN−k,N the value function and the hybrid control law, respectively, at time

t = N − k when there arek time steps left. With the new notations, theN -horizon policyπN can also be written

asπN = {ξN , . . . , ξ1}. For any positive integerk, the newly introducedξk can be thought of as the first step of a

k-horizon policy.
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By a standard result of Dynamic Programming [26], for any finite integerN , the value functionVN can be

obtained recursively using the one-stagevalue iteration:

Vk+1(z) = inf
u,v

{L(z, u, v) + Vk(Avz + Bvu)}, ∀z ∈ R
n,

with initial condition V0(z) = ψ(z), ∀z ∈ R
n. Denote byV∞(·) the pointwise limit (if it exists) of the sequence

of functions {Vk(·)}∞k=0 generated by the value iterations. It is well known [26] thateven if V∞(z) exists, it

may not always coincide with the infinite-horizon value function. To emphasize its substantial difference from

the finite-horizon value function, the infinite-horizon value function is specially denoted byV ∗(z), i.e., V ∗(z) =

infπ∞∈Π∞
Jπ∞

(z).

III. A NALYTICAL CHARACTERIZATION OF THE FINITE-HORIZON VALUE FUNCTION

For any fixed switching sequence, the switched linear systemcan be viewed as a linear time-varying system.

Theoretically, the finite-horizon DSLQR problem can be solved using dynamic programming by enumerating all the

possible switching sequences. Clearly, this approach is not practically feasible as its complexity grows exponentially

fast asN increases. Fortunately, for the DSLQR problem, such enumerations can be avoided and the value functions

can be computed in a rather efficient way. The efficient computation relies on the particular analytical structure of

the value function, which will be derived in this section.

We first review some important results of the classical discrete-time LQR problem. Such a problem can be viewed

as a special case of the DSLQR problem withM = 1. In this special case, denote by(A,B) the system matrices

and byQ andR the state and control weighting matrices, respectively. Itis well known that whenN is finite, the

value functions of this LQR problem are of the following quadratic form:

Vk(z) = zTPkz, k = 0, . . . , N, (6)

where{Pk}
N
k=0 is a sequence of p.s.d. matrices satisfying the Difference Riccati Equation (DRE):

Pk+1 = Q+ATPkA−ATPkB(R+BTPkB)−1BTPkA, (7)

with initial conditionP0 = Qf . Denote byA thepositive semidefinite cone([27]), namely, the set of all symmetric

p.s.d. matrices. Some results of the classical LQR problem are summarized in the following lemma.

Lemma 1 ([28], [29]): Let {Pk}
N
k=0 be generated by the DRE (7), then

1) For eachk = 0, . . . , N − 1, if Pk ∈ A, thenPk+1 ∈ A.

2) If (A,B) is stabilizable, thenVk(z) → V ∗(z) for all z ∈ R
n ask → ∞.

3) LetQ = CTC. If (A,B) stabilizable and(C,A) detectable, then the optimal trajectory of the LQR problem

is exponentially stable.

In general, whenM ≥ 2, the value functionVk(z) is no longer of a simple quadratic form as in (6). Nevertheless,

the notion of the DRE can be generalized to the Switched LQR problems. The DRE (7) can be viewed as a mapping
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from A to A depending on the matrices(A,B,Q,R). We call this mapping theRiccati Mappingand denote by

ρi : A → A the Riccati Mapping of subsystemi ∈ M, i.e.,

ρi(P ) =Qi +AT
i PAi −AT

i PBi(Ri +BT
i PBi)

−1BT
i PAi. (8)

Definition 1: Let 2A be the power set ofA. The mappingρM : 2A → 2A defined by:

ρM(H) = {ρi(P ) : for somei ∈ M andP ∈ H}

is called theSwitched Riccati Mapping(SRM) associated with Problem 1.

In words, the SRM maps aset of p.s.d. matrices to anotherset of p.s.d. matrices and each matrix inρM(H) is

obtained by taking the classical Riccati mapping of some matrix in H through some subsystemi ∈ M.

Definition 2: The sequence of sets{Hk}
N
k=0 generated iteratively byHk+1 = ρM(Hk) with initial condition

H0 = {Qf} is called theSwitched Riccati Sets(SRSs) of Problem 1.

The SRSs always start from a singleton set{Qf} and evolve according to the SRM. For any finiteN , the set

HN consists ofMN p.s.d. matrices. An important fact about the DSLQR problem is that its value functions are

completely characterized by the SRSs.

Theorem 1:For k = 0, . . . , N , the value function for the DSLQR problem at timeN − k, i.e., withk time steps

left, is

Vk(z) = min
P∈Hk

zTPz. (9)

Furthermore, forz ∈ R
n andk = 1, . . . , N , if we define

(P ∗
k (z), i∗k(z)) = argmin

(P∈Hk−1,i∈M)

zTρi(P )z, (10)

then the optimal hybrid control law at statez and timet = N − k is ξ∗k(z) = (µ∗
k(z), ν∗k(z)), whereµ∗

k(z) =

−Ki∗
k
(z)(P

∗
k (z))z andν∗k(z) = i∗k(z). Here,Ki(P ) is the Kalman gain for subsystemi with matrix P , i.e.,

Ki(P ) , (Ri +BT
i PBi)

−1BT
i PAi. (11)

.

Proof: The theorem can be proved by induction. It is obvious that fork = 0 the value function isV0(z) =

zTQfz, satisfying (9). Now suppose equation (9) holds for somek ≤ N − 1, i.e., Vk(z) = minP∈Hk
zTPz. We

shall show that it is also true fork+ 1. By the principle of dynamic programming and noting thatVk(·) represents

the value function at timeN − k, the value function at timeN − (k + 1) can be recursively computed as

Vk+1(z) = inf
i∈M,u∈Rp

[

zTQiz + uTRiu+ Vk(Aiz +Biu)
]

= inf
i∈M,P∈Hk,u∈Rp

[

zTQiz + uTRiu+ (Aiz +Biu)TP (Aiz +Biu)
]

= inf
i∈M,P∈Hk,u∈Rp

[

zT (Qi +AT
i PAi)z + uT (Ri +BT

i PBi)u + 2zTAT
i PBiu

]

. (12)
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Since the quantity inside the bracket is quadratic inu, the optimalu∗ can be easily found to be

u∗ = −(Ri +BT
i PBi)

−1BT
i PAiz = −Ki(P )z, (13)

whereKi(P ) is the matrix defined in (11). Substitutingu∗ into (12), we obtain

Vk+1(z) = inf
i∈M,P∈Hk

[

zT
(

Qi + AT
i PAi −AT

i PBiKi(P )
)

z
]

= min
i∈M,P∈Hk

zTρi(P )z.

Observing that{ρi(P ) : i ∈ M, P ∈ Hk} = ρM(Hk) = Hk+1, we haveVk+1(z) = minP∈Hk+1
zTPz. In

addition, let P ∗
k (z) and i∗k(z) be defined by (10). Then it can easily be seen from the above derivation that

(

− Ki∗
k+1(z)(P

∗
k+1(z))z, i

∗
k+1(z)

)

is the optimal decision at timeN − (k + 1) that achieves the minimum cost

Vk+1(z).

Remark 2:The piecewise quadratic structure of the value function hasbeen proved in [20] for piecewise affine

hybrid systems and has also been suggested in [21] for infinite-horizon DSLQR problems. However, the analytical

expression for the value function and in particular its connection to the Kalman gain and the Riccati equation of

the classical LQR problem have not been explicitly presented. Furthermore, from a computation point of view,

Theorem 1 indicates that under our formulation, the value function over the entire state space can be exactly

characterized by a finite number of p.s.d. matrices, which excludes the need of discretizing the state space as

in [24], [30], [31].

Mode 1

Mode 2

Mode 2
Kalman gain 1

Mode 2
Kalman gain 2

Mode 2 
Kalman gain 1

Fig. 1. Typical optimal decision regions of a two-switched system, where mode 1 is optimal within the white region and mode 2 is optimal

within the gray region. The optimal mode region is further divided into smaller conic regions, each of which correspondsto a different Kalman

gain.

Compared with the discrete-time LQR problem, the value function of the DSLQR problem is no longer a single

quadratic function; it becomes the pointwise minimum of a finite number of quadratic functions. At each time

step, instead of having a single Kalman gain for the entire state space, the optimal state feedback gain becomes

state dependent. Furthermore, the minimizer(P ∗
k (z), i∗k(z)) of equation (10) is radially invariant, indicating that
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at each time step all the points along the same radial direction have the same optimal hybrid control law. These

interesting properties are illustrated in Fig. 1 using an example inR
2 with 2 subsystems. At each time step, the

state space is decomposed into two homogeneous regions: thewhite region and the gray region, which are called

the optimal switching regions. Within the white region, one mode, say mode 1, is optimal; within the gray region,

the other mode, mode 2, is optimal. Furthermore, the states within the same optimal switching region may have

different optimal feedback gains (Kalman gains). This is illustrated in Fig. 1 by the further division of the gray

region into smaller conic regions, each of which correspondto a different Kalman gain. It is worth mentioning that

in a higher dimensional state space, the decision regions are still cones; however, these cones may not be convex

and the manifolds defining the boundaries between adjacent cones may be complicated. A salient feature of the

DSLQR problem is that all these complex decision regions arecompletely encoded in a finite number of matrices

in the switched Riccati sets{Hk}
N
k=0.

Theorem 1 and the above discussion have made it clear that thekey for solving the DSLQR problem is the

computation of the SRSs{Hk}
N
k=0. Although analytical formulas are available for evaluating the matrices in these

SRSs, a direct computation is almost impossible because|Hk| grows exponentially fast ask increases. Nevertheless,

the particular structure of the value function derived in Theorem 1 provides us a clear view of what information is

necessary for making the optimal decision and, in turn, enable us to avoid many redundant computations. It is the

basis of the efficient algorithms to be discussed in SectionsV and VI.

IV. PROPERTIES OF THEVALUE FUNCTIONS

In this section, we will derive various important properties of the family of finite-horizon value functions

{VN (z)}∞N≥0 and the infinite-horizon value functionV ∗(z). These properties are crucial in the design and analysis

of the efficient algorithms for solving the DSLQR problems.

We first introduce some notations to be used throughout the subsequent discussions. Denote byIn the identity

matrix of dimensionn. Let ‖ · ‖ be the 2-norm of a given matrix or vector. LetZ
+ be the set of all nonnegative

integers. Denote byλmin(·) and λmax(·) the smallest and the largest eigenvalue of a p.s.d. matrix, respectively.

Defineλ−Q = mini∈M{λmin(Qi)} andλ+
f = λmax(Qf ). Denote byx∗z,N (t) for 0 ≤ t ≤ N an optimal trajectory

originating fromz at time0 and denote by(u∗z,N(t), v∗z,N (t)) the corresponding optimal hybrid control sequence.

A. Homogeneity

An immediate consequence of Theorem 1 is the homogeneity of the finite-horizon value functionVN .

Lemma 2 (Homogeneity ofVN (z)): VN (λz) = λ2VN (z), for any z ∈ R
n, λ ∈ R andN ∈ Z

+.

Although the explicit expression ofVN (z) is available for any finite horizonN , little is known about the infinite-

horizon value functionV ∗(z). Let (u, v) be the hybrid control sequence generated by an infinite-horizon policy

π∞ with initial conditionx(0) = z. Then the costJπ∞
(z) can be expressed in terms of(u, v) as:

J∞(z, u, v) =

∞
∑

j=0

L(x(j), u(j), v(j)).
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It follows easily from the linearity of the system and the quadratic structure of the running cost that for any given

mode sequencev, the functionJ∞(z, u, v) is quadratic jointly in the state and control, i.e.,

J∞(λz, λu, v) = λ2J∞(z, u, v), ∀λ ∈ R, λ 6= 0, (14)

whereλu , {λu(0), λu(1), . . .}. Equality (14) also holds when either side is infinite. SinceV ∗(z) can be written

asV ∗(z) = inf(u,v) J∞(z, u, v), it is also homogeneous.

Lemma 3 (Homogeneity ofV ∗(z)): V ∗(λz) = λ2V ∗(z), for any z ∈ R
n and any nonzero real numberλ.

Proof: Let z ∈ R
n and λ ∈ R, λ 6= 0 be arbitrary. Immediately from (14), we knowV ∗(λz) is infinite

wheneverV ∗(z) is infinite. The desired equality holds. When bothV ∗(z) andV ∗(λz) are finite, we have

V ∗(λz) = inf
u,v

J∞(λz, u, v) = inf
u,v

J∞(λz, λu, v) = inf
u,v

λ2J∞(z, u, v) = λ2V ∗(z).

The properties of the value functions presented in the rest of this section are based on the following stabilizability

condition of the switched system (1).

(A1) At least one subsystem is stabilizable.

B. Boundedness

Proposition 1: Under assumption (A1), there must exist a finite constantβ such thatVk(z) ≤ β‖z‖2, for all

k ∈ Z
+ andz ∈ R

n. Furthermore, if the stabilizable subsystem is(Ai, Bi) andF is any feedback gain for which

Āi , Ai −BiF is stable, then one possible choice ofβ is given by:

β =
(

‖Qf‖ + ‖Qi + FTRiF‖
)

·





∞
∑

j=0

‖Āj
i‖

2



 <∞. (15)

Proof: Suppose subsystem(Ai, Bi) is stabilizable. Let{P (i)
k }∞k=0 be the sequence of matrices generated by

the Riccati mapping using only subsystemi, i.e.,P (i)
k+1 = ρi(P

(i)
k ) with P

(i)
0 = Qf . Since the switched system (1)

can stay in subsystem(Ai, Bi) all the time, the value function of the DSLQR problem must be no greater than the

value function of the LQR problem for the subsystem(Ai, Bi), i.e.,Vk(z) ≤ zTP
(i)
k z for all k ∈ Z

+ andz ∈ R
n.

Thus, it suffices to show that theβ given in (15) is an upper bound of the 2-norm of all the matrices in {P
(i)
k }∞k=0.

Let F be a feedback gain for which̄Ai = Ai −BiF is stable. Define{P̃ (i)
k }∞k=0 iteratively by

P̃
(i)
k+1 =Qi+Ā

T
i P̃

(i)
k Āi+F

TRiF, with P̃
(i)
0 =Qf . (16)

In the above equation, ifF = Ki(P̃
(i)
k ) for eachk, whereKi(·) is defined in (11), theñP (i)

k would coincide with

P
(i)
k . In other words,P̃ (i)

k defines the quadratic energy cost of using the stabilizing feedback gainF instead of the

time-dependent optimal Kalman gain of thek-horizon LQR problem. By a standard result of the Riccati equation

theory (Theorem 2.1 in [28]), we haveP (i)
k � P̃

(i)
k for all k ≥ 0. Thus, it suffices to show‖P̃ (i)

k ‖ ≤ β for each
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k ≥ 0. By (16), we have

P̃
(i)
k =P̃

(i)
0 +

k
∑

j=1

(P̃
(i)
j − P̃

(i)
j−1) = P̃

(i)
0 +

k−1
∑

j=0

(ĀT
i )j(P̃

(i)
1 − P̃

(i)
0 )(Āi)

j

=Qf +

k−1
∑

j=0

(ĀT
i )j+1Qf (Āi)

j+1 +

k−1
∑

j=0

(ĀT
i )j(Qi −Qf + FTRiF )(Āi)

j

�(ĀT
i )kQf (Āi)

k +

∞
∑

j=0

(ĀT
i )j(Qi + FTRiF )(Āi)

j

Thus,‖P (i)
k ‖ ≤ ‖P̃

(i)
k ‖ ≤

(

‖Qf‖ + ‖Qi + FTRiF‖
)

(

∑∞
j=0 ‖Ā

j
i‖

2
)

. Note that the formula of the geometric series

does not directly apply here, as the 2-norm of a stable matrixmay not be strictly less than 1 in general. However,

it is shown in Chapter 5 of [32] thatlimk→∞ ‖Āk
i ‖

1/k = ρ(Āi) < 1, whereρ(·) denotes the spectral radius of a

given matrix, we know that‖Āj
i‖ < (1 − ǫ)j for some smallǫ > 0 and all largej. Therefore,

∑∞
j=0 ‖Ā

j
i‖

2 < ∞

and the proposition is proved.

C. Exponential Stability of the Optimal Trajectory

In view of part 3) of Lemma 1, to ensure the stability of the optimal trajectory, it is natural to assume that each

subsystem is stabilizable and detectable. Unfortunately,such a natural extension does not hold in the DSLQR case.

As an example, consider the following DSLQR problem:

A1 =





0 2

0 0



 , A2 =





0 0.5

0.5 0



 , Q1 =





100 0

0 0



 , Q2 =





0 0

0 100



 ,

x0 =





0

1



 , Qf = 0, andBi = Ri = 0, i = 1, 2.

(17)

Let the horizonN be arbitrary (possibly infinite) and letx∗(·) be the optimal trajectory of this DSLQR problem

with initial condition x∗(0) = x0. Notice that bothA1 andA2 are stable and each subsystem is stabilizable and

detectable. However, it can be easily verified thatx∗(t) = [0, 1]T if t is even andx∗(t) = [2, 0]T otherwise.

To ensure the stability of the optimal trajectory, we introduce the following assumption.

(A2) Qi ≻ 0, ∀i ∈ M.

Theorem 2:Under assumptions (A1) and (A2), theN -horizon optimal trajectory originating fromz at timet = 0,

namely,x∗z,N (·), satisfies the following inequalities:

‖x∗z,N (t)‖2 ≤
β

λ−Q
γt‖z‖2, for t = 1, . . . , N − 1, and‖x∗z,N (N)‖2 ≤

βζ2

λ−Q
γN−1‖z‖2, (18)

whereβ is defined in Proposition 1,

γ =
1

1 + λ−Q/β
< 1 and ζ = max

i∈M

‖Ai −BiKi(Qf )‖. (19)

In other words, the optimal trajectory is exponentially stable with decay rateγ.



11

Proof: For simplicity, for t = 0, 1, · · · , N , definex̃(t) , x∗z,N (t) and ṼN−t , VN−t(x
∗
z,N (t)). Denote by

(ũ(·), ṽ(·)) the optimal hybrid control sequence corresponding tox∗z,N (·). For t = 1, . . . , N , we have

ṼN−(t−1) − ṼN−t = L(x̃(t− 1), ũ(t− 1), ṽ(t− 1)) ≥ x̃(t− 1)TQṽ(t−1)x̃(t− 1)

≥λ−Q‖x̃(t− 1)‖2 ≥
λ−Q
β
ṼN−(t−1) ≥

λ−Q
β
ṼN−t.

Hence, we havẽVN−t ≤
1

1+λ−
Q/β

ṼN−(t−1) for t = 1, · · · , N . Therefore,ṼN−t ≤

(

1
1+λ−

Q/β

)t

ṼN . Obviously, for

t ≤ N − 1, ṼN−t ≥ x̃(t)TQṽ(t)x̃(t) ≥ λ−Q‖x̃(t)‖2. Thus,

‖x̃(t)‖2 ≤
1

λ−Q
ṼN−t ≤

1

λ−Q

(

1

1 + λ−Q/β

)t

ṼN ≤
β

λ−Q

(

1

1 + λ−Q/β

)t

‖z‖2 =
β

λ−Q
γt‖z‖2. (20)

For t = N , by Theorem 1, we have that̃x(N) = (Ai − BiKi(Qf )) · x̃(N − 1) for some i ∈ M. Therefore,

‖x̃(N)‖2 ≤ ζ2‖x̃(N − 1)‖2, whereζ is defined in (19), and then the desired result follows from (20).

D. Exponential Convergence of Value Iteration

The main goal of this subsection is twofold: (i) to establisheasy-to-check conditions under whichVN (z) → V ∗(z)

exponentially fast asN → ∞; (ii) to derive the convergence rate in terms of the subsystem matrices. Some classical

results on the convergence of value iterations of general dynamic DP problems can be found in [26]. Most of these

results require either a discount factor with magnitude strictly less than 1 or thatψ(z) ≤ V ∗(z) for all z ∈ R
n.

Neither is true for the general DSLQR problems with nontrivial terminal costs. A more recent convergence result

is given by Rantzer in [22], where the abovementioned assumptions are replaced with some other conditions on

V ∗(z). Since the infinite-horizon value functionV ∗(z) of the DSLQR problem is usually unknown, the conditions

in [22] are not easy to check. In view of these limitations, a further study of the convergence of the value iterations

in the DSLQR problems is necessary.

By part 2) of Lemma 1, for the classical LQR problem, if the system is stabilizable, then the value iteration

converges to the infinite-horizon value function. For the DSLQR problem, however, Assumption (A1) alone is not

enough to ensure the convergence of the value functions. In fact, the value function may not converge even if all

the subsystems are stabilizable. For example, consider theDSLQR problem with matrices defined by (17) except

thatQf is the identity matrix of dimension 2. Although each subsystem is stable, it can be easily seen thatVN (x0)

is 2 if N is an odd number and is1 otherwise. Thus, the limit ofVN (x0) asN → ∞ does not exist. This example

indicates that a stronger condition than (A1) is needed to guarantee the convergence for the DSLQR problem.

In the following we shall show that the value iteration will converge exponentially fast if both (A1) and (A2)

are satisfied. The following lemma provides a bound for the difference between two value functions with different

horizons and is the key in proving the convergence result.

Lemma 4:Let N1 andN2 be positive integers such thatN1 > N2. For anyz ∈ R
n, the difference between the

N1-horizon value function and theN2-horizon value function can be bounded as follows:

VN1−N2(x
∗
z,N1

(N2)) − ψ(x∗z,N1
(N2)) ≤ VN1(z) − VN2(z) ≤ VN1−N2(x

∗
z,N2

(N2)) − ψ(x∗z,N2
(N2)). (21)
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Fig. 2. Illustrating the proof of Lemma 4, where the dashdot line represents the trajectorỹx(·) and the solid line represents the trajectoryx̂(·).

Proof: Let z2 = x∗z,N2
(N2). Define a newN1-horizon trajectorỹx(·) as

x̃(t) =







x∗z,N2
(t), t ≤ N2

x∗z2,N1−N2
(t−N2), N2 < t ≤ N1

(22)

As shown in Fig. 2 (the dashdot line),̃x(·) is obtained by first following theN2-horizon optimal trajectory and

then the(N1 −N2)-horizon optimal trajectory. Let(ũ(·), ṽ(·)) be the hybrid controls corresponding tox̃. Then by

the definition of the value function, we have

VN1(z) ≤

N1−1
∑

t=0

L(x̃(t), ũ(t), ṽ(t)) + ψ(x̃(N1))

=

N2−1
∑

t=0

L(x∗z,N2
(t), u∗z,N2

(t), v∗z,N2
(t))+

N1−N2−1
∑

t=0

L(x∗z2,N1−N2
(t), u∗z2,N1−N2

(t), v∗z2,N1−N2
(t)) + ψ(x∗z2,N1−N2

(N1 −N2))

=VN2(z) − ψ(x∗z,N2
(N2)) + VN1−N2(z2) = VN2(z) − ψ(x∗z,N2

(N2)) + VN1−N2(x
∗
z,N2

(N2)) (23)

Equation (23) describes exactly the second inequality in (21). To prove the first one, define anN2-horizon trajectory

x̂(·) as the solid line in Fig. 2 by taking the firstN2 steps ofx∗z,N1
, i.e., x̂(t) = x∗z,N1

(t) for 0 ≤ t ≤ N2 and let

(û(·), v̂(·)) be the corresponding hybrid control sequence. Then

VN2(z) ≤

N2−1
∑

t=0

L(x̂(t), û(t), v̂(t)) + ψ(x̂(N2))

=

N2−1
∑

t=0

L(x∗z,N1
(t), u∗z,N1

(t), v∗z,N1
(t)) + ψ(x∗z,N1

(N2))

= VN1(z) − VN1−N2(x
∗
z,N1

(N2)) + ψ(x∗z,N1
(N2)), (24)
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where the last step follows from the Bellman’s principle of optimality, namely, any segment of an optimal trajectory

must be the optimal trajectory joining the two end points of the segment. The desired result follows from (23)

and (24).

With a nontrivial terminal cost, theN -horizon value functionVN (z) may not be monotone asN increases.

Nevertheless, by Lemma 4, the difference between the value functionsVN1(z) and VN2(z) can be bounded by

some quadratic functions ofx∗z,N1
(N2) andx∗z,N2

(N2). By Theorem 2, we know both quantities converge to zero

asN1 andN2 grow to infinity. This will guarantee that by choosingN1 andN2 large enough, the upper and lower

bounds in (21) can be made arbitrarily small. The convergence of the value iteration can thus be established.

Theorem 3:Under assumptions (A1) and (A2),VN (z) converges exponentially fast for eachz ∈ R
n asN → ∞.

Furthermore, the convergence is uniform over the unit ball in R
n and for anyN1 > N2, the difference between

theN1-horizon value function and theN2-horizon value function is bounded above by

|VN1(z) − VN2(z)| ≤ αγN2‖z‖2, (25)

whereα = max{1, ζ2

γ } ·
(β+λ+

f
)β

λ−
Q

, with β, γ andζ defined in (15) and (19).

Proof: By Theorem 2, for anyz ∈ R
n we have‖x∗z,N2

(N2)‖
2 ≤ ζ2β

λ−
Q

γ
γN2‖z‖2 and ‖x∗z,N1

(N2)‖
2 ≤

β

λ−
Q

γN2‖z‖2. Hence,

VN1−N2(x
∗
z,N2

(N2)) ≤ β‖x∗z,N2
(N2)‖

2 ≤
ζ2β2

λ−Qγ
γN2‖z‖2,

ψ(x∗z,N2
(N2))≤λ

+
f ‖x

∗
z,N2

(N2)‖
2≤

λ+
f ζ

2β

λ−Qγ
γN2‖z‖2,

VN1−N2(x
∗
z,N1

(N2)) ≤ β‖x∗z,N1
(N2)‖

2 ≤
β2

λ−Q
γN2‖z‖2,

ψ(x∗z,N1
(N2)) ≤ λ+

f ‖x
∗
z,N1

(N2)‖
2 ≤

λ+
f β

λ−Q
γN2‖z‖2.

Thus, by Lemma 4 we have

|VN1(z) − VN2(z)| ≤ max{1,
ζ2

γ
} ·

(β + λ+
f )β

λ−Q
γN2‖z‖2.

Since γ < 1 and the upper bound in the above equation is independent ofN1, the value function converges

exponentially fast for each fixedz. In addition, the convergence is obviously uniform over theunit ball.

Assumptions (A1) and (A2) together imply the exponential convergence of the value iteration. In general, the

limiting function V∞(z) may not coincide with the infinite-horizon value functionV ∗(z). The following Theorem

shows that the two functions agree for the DSLQR problem.

Theorem 4:Under assumptions (A1) and (A2),V∞(z) = V ∗(z) for eachz ∈ R
n.

Proof: For a finiteN , we know that

VN (z) =

N−1
∑

t=0

L(x∗z,N (t), u∗z,N (t), v∗z,N (t)) + ψ(x∗z,N (N)).



14

By the optimality ofV ∗(z), we have

V ∗(z) ≤

N−1
∑

t=0

L(x∗z,N (t), u∗z,N (t), v∗z,N (t)) + V ∗(x∗z,N (N))

= VN (z) − ψ(x∗z,N (N)) + V ∗(x∗z,N (N)).

By Theorem 3 and Theorem 2, asN → ∞, VN (z) → V∞(z), ψ(x∗z,N (N)) → 0 andV ∗(x∗z,N (N)) → 0. Therefore,

V ∗(z) ≤ V∞(z). We now prove the other direction. Notice that by (A2) we musthaveV ∗(z) = infπ∞∈Πs
∞
Jπ∞

(z),

whereΠs
∞ denotes the set of all the infinite-horizon stabilizing policies. Letπ∞ be an arbitrary policy inΠs

∞ and let

x̂(·) and (û(·), v̂(·)) be the corresponding trajectory and the hybrid control sequence, respectively. Sincêx(t) → 0

as t→ ∞, for any ǫ > 0, there always exists anN1 such thatψ(x̂(t)) ≤ ǫ for all t ≥ N1. Hence, for allN ≥ N1,

VN (z) ≤

N−1
∑

t=0

L(x̂(t), û(t), v̂(t)) + ψ(x̂(N)) ≤

N−1
∑

t=0

L(x̂(t), û(t), v̂(t)) + ǫ ≤ Jπ∞
(z) + ǫ.

Let N → ∞, we haveV∞(z) ≤ Jπ∞
(z) + ǫ, ∀π∞ ∈ Πs

∞. Thus,V∞(z) ≤ V ∗(z) + ǫ and the theorem is proved as

ǫ is arbitrary.

Remark 3:The convergence of value iterations has been extensively studied and many results are available [21],

[26]. Compared with the previous work, our convergence result derived specially for the DSLQR problem has several

distinctions. It allows general terminal cost, which is especially important for finite-horizon DSLQR problems. In

addition, the convergence conditions are expressed in terms of the subsystem matrices rather than the infinite-horizon

value function, and thus become much easier to verify. Finally, by Theorem 3, for a given tolerance on the optimal

cost, the required number of iterations can be computed before the actual computation starts. This provides an

efficient means to stop the value iterations with guaranteedsuboptimal performance.

V. EFFICIENT EXACT SOLUTION IN FINITE HORIZON

As discussed at the end of Section III, the main challenge forsolving the DSLQR problem lies in the exponential

growth of |Hk|. However, as indicated by (9), in terms of computing the value function, we only need to keep

the matrices inHk that give rise to the minimum of (9) for at least onez ∈ R
n. In other words, althoughHk is

exponentially large, only a small portion of its matrices may be useful for computing the value function. Therefore,

we can remove all the other “redundant” matrices to simplifythe computation without causing any error. This is

the key idea of our efficient algorithm.

A. Algebraic Redundancy and Equivalent Subsets

To formalize the above idea, we introduce a few definitions.

Definition 3 (Algebraic Redundancy):A matrix P̂ ∈ H is called(algebraic) redundantif for any z ∈ R
n, there

exists a matrixP ∈ H such thatP 6= P̂ andzTPz ≤ zT P̂ z.

If P̂ ∈ H is redundant, thenH andH \ {P̂} will define the same value function. In this sense, these two sets

are equivalent.
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Definition 4 (Equivalent Sets of p.s.d Matrices):Let H andĤ be two sets of p.s.d matrices. The setH is called

equivalentto Ĥ, denoted byH ∼ Ĥ, if minP∈H zTPz = minP̂∈Ĥ z
T P̂ z, ∀z ∈ R

n.

Therefore, two sets of p.s.d. matrices are equivalent if they define the same value function of the DSLQR problem.

To ease the computation, we are interested in finding an equivalent subset ofHk with as few elements as possible.

Definition 5 (Minimum Equivalent Subset (MES)):Let H and Ĥ be two sets of symmetric p.s.d matrices.Ĥ is

called anequivalent subsetof H if Ĥ ⊆ H and Ĥ ∼ H. Furthermore,Ĥ is called aminimum equivalent subset

(MES) of H if it is the equivalent subset ofH with the fewest elements. Note that the MES ofH may not be

unique. Denote byΓ(H) one of the MESs ofH.

The following lemma provides a test for the equivalent subsets of Hk.

Lemma 5:Ĥ is an equivalent subset ofH if and only if: (i) Ĥ ⊆ H; (ii) ∀P ∈ H and∀z ∈ R
n, there exists a

P̂ ∈ Ĥ such thatzT P̂ z ≤ zTPz.

Proof: Straightforward.

Remark 4:Lemma 5 can be used as an alternative definition of the equivalent subset. Although the original

definition is conceptually simpler, the conditions given inthis lemma provide a more explicit characterization of

the equivalent subset.

B. Computation of (Minimum) Equivalent Subsets

To simplify the computation at each stepk, we shall prune out as many redundant matrices as possible and obtain

an equivalent subset ofHk as close as possible toΓ(Hk). However, testing whether a matrix inHk is redundant

or not is itself a challenging problem. Geometrically, any p.s.d. matrixP̂ defines uniquely an ellipsoid inRn:

{x ∈ R
n : xT P̂x ≤ 1}. It can be easily verified that̂P ∈ Hk is redundant if and only if its corresponding ellipsoid

is completely contained in the union of all the ellipsoids corresponding to the matrices inHk \{P̂}. Since the union

of ellipsoids is not convex in general, there is no efficient way to verify this geometric condition or equivalently

the condition used in Definition 3. Nevertheless, a sufficient condition for a matrix to be redundant can be easily

obtained and is given in the following lemma.

Lemma 6: P̂ is redundant inHk if there exist nonnegative constantsα1, . . . , α|Hk|−1 such that
∑|Hk|−1

i=1 αi = 1

and P̂ �
∑|Hk|−1

i=1 αiP
(i), where{P (i)}

|Hk|−1
i=1 is an enumeration ofHk \ {P̂}.

Proof: Straightforward.

For givenP̂ andHk, the condition in Lemma 6 can be easily verified using variousexisting convex optimization

algorithms [27]. Although Lemma 6 may not identify all the redundant matrices, it can usually eliminate a large

portion of them. Based on this lemma, an efficient algorithm (Algorithm 1) is developed to compute an ES for any

given setHk. In words, the algorithm simply removes all the matrices that satisfy the condition of Lemma 6 and

return the set of the remaining matrices.

Algorithm 1 in general may not return a MES ofHk. In fact, when the dimension of the state space is two,

there exists an alternative approach that can identify all the redundant matrices and obtain the exact MES ofHk.

By the homogeneity of the value function, it suffices, inR
2, to consider only the points on the unit circle for
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Algorithm 1

1) Denote byP (i) the ith matrix in Hk. SetH(1)
k = {P (1)}.

2) For eachi = 2, . . . , |Hk|, if P (i) satisfies the condition in Lemma 6 with respect toHk, thenH
(i)
k =

H
(i−1)
k ; otherwiseH(i)

k = H
(i−1)
k ∪ {P (i)}.

3) ReturnH(|Hk|)
k .

testing the redundancy of the matrices inHk. Let z(θ) , [cos(θ), sin(θ)]T for θ ∈ [0, 2π). Let {P (l)}
|Hk|
l=1 be

an enumeration ofHk. The computation ofΓ(Hk) can be achieved iteratively as follows. Initially, letH(1)
k be

a set consisting of only one matrixP (1). Clearly,H(1)
k = Γ({P (1)}). At step l, suppose we have obtained a set

H
(l)
k = Γ({P (1), . . . , P (l)}), namely, the MES of the firstl matrices inHk. The matrices inH(l)

k will partition the

whole state space into a number of conic regions, within eachof which the minimizerargmin
P∈H

(l)
k

z(θ)TPz(θ)

does not depend onθ. Each of these regions can be represented by a connected interval of θ. Let [θi−1, θi] represent

the ith conic region and letP (i)
l be the minimizer over this region, namely,P (i)

l = argmin
P∈H

(l)
k

z(θ)TPz(θ)

for all θ ∈ (θi−1, θi]. For eachi ≤ |H
(l)
k |, we can comparez(θ)TP (l+1)z(θ) with z(θ)TP

(i)
l z(θ). If the former is

bigger for all θ ∈ (θi−1, θi], P
(i)
l is the still the minimizer of theith region. If the latter is always bigger within

(θi−1, θi], thenP (l+1) becomes the new minimizer over theith region. If none of these two is true, then we can

further divide the interval(θi−1, θi] into some subintervals and record the minimizing matrix in each subinterval.

After comparingP (l+1) with all the matrices inH(l)
k , we end up with a new set of intervals and the corresponding

minimizing matrices. These minimizing matrices will constituteH
(l+1)
k , namely, the MES of the firstl+1 matrices

in Hk. If P (l+1) is redundant with respect to the firstl + 1 matrices inHk, it cannot beat anyP (i)
l within the

corresponding region andH(l+1)
k will be exactly the same asH(l)

k . On the other hand, if a matrix inH(l)
k becomes

redundant after consideringP (l+1), then it will be replaced byP (l+1) within its minimizing interval and will not

be included inH(l+1)
k . In this way, we can consider one more matrix inHk at each step and eventually obtain the

MES of the whole setHk. The implementation details of the above procedure is summarized in Algorithm 2.

Remark 5: It is rather difficult to extend the idea of Algorithm 2 to higher dimensional state spaces because

there is no efficient way to characterize the boundaries between adjacent switching regions on the unit sphere.

Thus, whenn > 2, we usually still use Algorithm 1 to compute an equivalent subset ofHk with not necessarily

minimum but sufficiently small number of matrices.

C. Overall Algorithm in Finite Horizon

We have developed two algorithms to prune out the redundant matrices inHk. A natural question is whether

the matrices removed at earlier steps will affect the value iterations later on. This question can be easily answered

using the Bellman’s optimality principle. Notice that the value iteration at stepk + 1 only depends onVk(z) and

that removing the redundant matrices will only change the representation ofVk(z), not its actual value. These two

facts guarantee that the redundant matrices removed at stepk will not affect any value functions at later steps. The
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Algorithm 2

1) Let Θ(1) = {0, 2π} andH(1)
k = {P (1)}.

2) For l ≤ |Hk| − 1, given a partition of[0, 2π], Θ(l) = {θ0, . . . , θnl
} with 0 = θ0 ≤ θ1 ≤ · · · ≤ θnl

= 2π,

and an ordered set of matricesH(l)
k = {P

(1)
l , . . . , P

(nl)
l }, so that for eachi = 1, . . . , nl, z(θ)

TP
(i)
l z(θ) ≤

z(θ)
T
P (m)z(θ) for all θ ∈ [θi−1, θi) and all1 ≤ m ≤ l.

3) ComputeΘ(l+1) andH(l+1)
k as follows:

for i = 1 to nl do

m = 1 andPmin(θ) = argmin
P∈{P

(i)
l

,P (l+1)}
z(θ)TPz(θ)

if Pmin(θ) = P (l+1) for all θ ∈ [θi−1, θi) then

P
(m)
l+1 = P (l+1) andm = m+ 1

else if Pmin(θ) = P
(i)
l for all θ ∈ [θi−1, θi) then

P
(m)
l+1 = P

(i)
l andm = m+ 1

else

Find d1 and d2 such thatθi−1 < d1 ≤ d2 < θi andPmin(θ) is a constant matrix over intervals

[θi−1, d1), [d1, d2) and [d2, θi).

if d1=d2 then

P
(m)
l+1 = Pmin(θi−1), P

(m+1)
l+1 = Pmin(d1) andm = m+ 2

else

P
(m)
l+1 = Pmin(θi−1), P

(m+1)
l+1 = Pmin(d1),

P
(m+2)
l+1 = Pmin(d2) andm = m+ 3

end if

end if

end for

nl+1 = m− 1

4) If l < |Hk|, let l = l + 1 and repeat steps 2 and 3, otherwise defineĤk as the set consisting of all the

distinct matrices inH(|Hk|)
k and returnĤk.

following lemma uses this property to embed the ES algorithms in the value iteration. Its basic idea is to remove

the redundant matrices after each value iteration and then apply the next value iteration based on the obtained

equivalent subset with fewer matrices.

Lemma 7 (ES Iteration):Let the sequence of sets{Ĥk}
N
k=0 be generated by

Ĥ0 = H0, andĤk+1 = Algo(ρM(Ĥk)) for 0 ≤ k ≤ N − 1, (26)

whereAlgo(H) denotes the equivalent subset ofH returned by Algorithm 1 or 2. Then̂Hk ∼ Algo(Hk).

Proof: As explained in the preceding paragraph. A more direct proofcan be found in [33].
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Algorithm 3 (Algo for Finite-horizon DSLQR Problems)

1) Initialization: Set Ĥ0 = Qf .

2) Equivalent Subset Iteration: Compute{Ĥk}
N
k=0 using the iteration (26).

3) Value Function: The value function at timet = N − k is given by:Vk(z) = minP∈Ĥk
zTPz.

4) Optimal Strategy: The optimalN -horizon policyπ∗
N = {ξ∗N (z), . . . , ξ∗1 (z)} is given by:

ξ∗k(z) =
(

−Ki∗
k
(z)(P

∗
k (z))z , i∗k(z)

)

,

where
(

P ∗
k (z), i∗k(z)

)

= arg min
P∈Ĥk−1,i∈M

zTρi(P )z.

In summary, to solve the DSLQR problem, we start with the singleton setH0 = {Qf}. Then the SRM is applied

to obtainH1 = ρM(H0). Some matrices inH1 may be redundant. After removing them using Algorithm 1 or 2,we

will have Ĥ1 = Algo(H1). Next, we should apply the SRM tôH1, and repeat the whole process until the end of

the horizon. This way, we can obtain a sequence of sets{Ĥk}
N
k=0. By Lemma 7,{Ĥk}

N
k=0 define the exact value

functions of the DSLQR problem. By Theorem 1, the optimal strategies can also be computed based on{Ĥk}
N
k=0.

This procedure of solving the finite-horizon DSLQR problem is summarized in Algorithm 3. A distinctive feature

of this algorithm is that it computes the exact optimal control strategy without any approximation. Compared with

the strategy of enumerating all the possible switching sequences, this algorithm is potentially much more efficient

because a large portion of the matrices inHk may end up being removed during the iterations. Furthermore, if the

state dimension isR2, all the redundant matrices will be pruned out. Therefore, in this case, our algorithm achieves

the minimal complexity in computing the exact optimal strategy of a finite-horizon DSLQR problem.

D. Numerical Examples

1) : We first consider the following simple DSLQR problem for which an analytical solution is available for

verification purpose.

A1 =





0 1

0 0



 , A2 =





0 0

1 0



 , Q1 =





100 0

0 0



 , Q2 =





0 0

0 100



 ,

Qf =





1 0

0 1



 , B1 = B2 = 0, R1 = R2 = 1, and N = 10;

It can be easily seen that the optimal mode sequence for the initial statex(1)
0 = [1, 0]T is {2, 1, 2, 1, . . . , 2, 1} and

the corresponding optimal cost is1. If the initial state isx(2)
0 = [0, 1]T , then the optimal cost remains the same,

but the optimal mode sequence would be{1, 2, 1, 2 . . . , 1, 2}. Let

χ1 = {r · [cos(θ), sin(θ)]T ∈ R
2 : r ≥ 0 andθ ∈ [−π/4, π/4) ∪ [3π/4, 5π/4)} andχ2 = R

2 \ χ1.
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Fig. 3. Complexity of Algorithm 3 for Example V-D.2

By the symmetry of the problem, it can be easily seen that the optimal feedback law is:ξ∗k(x) = (·, 1), if x ∈ χ2

andξ∗k(x) = (·, 2) otherwise.

With the analytical solution in mind, we now demonstrate howto obtain the same result by carrying out

Algorithm 3. Initially, we haveĤ0 = {Qf} = I2. Taking the SRM yields

H1 = ρM(Ĥ0) = {[100, 0; 0, 1], [1, 0; 0, 100]}.

Apparently, none of the two matrices are redundant. Thus,Ĥ1 = Algo(ρM(Ĥ0)) = H1. Proceeding one

more step, we haveρM(Ĥ1) = {[1, 0; 0, 100], [100, 0; 0, 1], [100, 0; 0, 100], [100, 0; 0, 100]}. Obviously, the last

two matrices are redundant. Thus,̂H2 = {[1, 0; 0, 100], [100, 0; 0, 1]}. Continuing this process, we have,̂Hk =

{[1, 0; 0, 100], [100, 0; 0, 1]}, for all k ≤ N . Then, using Step 4) of Algorithm 3, the same optimal policy as

discussed in the last paragraph can be obtained.

This example shows that although the original SRSs{Hk}
N
k=0 grow exponentially fast, their equivalent subsets

{Ĥk}
N
k=0 can be made rather small and the optimal solution can be easily found using Algorithm 3. For more

complex problems, analytical solutions are usually impossible to obtain. However, in many cases, Algorithm 3 can

still eliminate many redundant computations and characterize the exact optimal strategy efficiently.

2) : We next consider a more general example with the following matrices:

A1 =





2 1

1 1



 , A2 =





2 1

0 0.5



 , A3 =





3 1

0 2



 , A4 =





3 1

0 0.8



 ,

B1 =





1

1



 , B2 =





1

2



 , B3 = B1, B4 = B2,

Qi = Qf = I2, Ri = 1, i = 1, . . . , 4, andN = 20.

This problem can not be solved analytically. However, it canstill be efficiently solved using Algorithm 3. As shown

in Fig. 3, compared with the brute-force solution with combinatorial complexity of the order1012, Algorithm 3
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requires at most 360 matrices to completely characterize the exact optimal strategy.

VI. SUBOPTIMAL CONTROL OFDSLQR PROBLEMS

While Algorithm 3 can efficiently solve some DSLQR problems,it may still fail in many other cases. In fact, many

DSLQR problems require a prohibitively large number of matrices to characterize theirexactoptimal solutions.

Fortunately, suboptimal strategies are often acceptable in practice. In this section, we shall explore the opportunity

to further simplify the computation by allowing some small error on the optimal cost.

A. Numerical Redundancy andǫ-Equivalent Subsets

We first generalize the redundancy and ES concepts to allow some error in representing the value functions.

Definition 6 (Numerical Redundancy):A matrix P̂ ∈ Hk is called(numerically)ǫ-redundantwith respect toHk

if

min
P∈Hk\P̂

zTPz ≤ min
P∈Hk

zT (P + ǫIn)z, for any z ∈ R
n.

Definition 7 (ǫ-ES): The setHǫ
k is called anǫ-Equivalent-Subset (ǫ-ES) ofHk if

Hǫ
k ⊂ Hk and min

P∈Hk

zTPz ≤ min
P∈Hǫ

k

zTPz ≤ min
P∈Hk

zT (P + ǫIn)z, for any z ∈ R
n.

Removing theǫ-redundant matrices may introduce some error for the value function; but the error is no larger

thanǫ for ‖z‖ ≤ 1. To simplify the computation, for a given toleranceǫ, we want to prune out as manyǫ-redundant

matrices as possible. Similar to Lemma 6, the following lemma provides a sufficient condition for testing the

ǫ-redundancy for a given matrix.

Lemma 8: P̂ is ǫ-redundant with respect toHk if there exist nonnegative constantsα1, . . . , α|Hk|−1 such that
∑|Hk|−1

i=1 αi = 1 and P̂ + ǫIn �
∑|Hk|−1

i=1 αiP
(i), where{P (j)}

|Hk|−1
j=1 is an enumeration ofHk \ {P̂}.

Algorithms 1 and 2 can be easily modified to compute anǫ-ES for a given setHk. Denote the modified algorithms

asAlgoǫ(·), whereasAlgo(·) denotes the original ones. In other words,Algoǫ(Hk) is theǫ-ES ofHk returned by

the modified algorithms. Similar to (26), we can embed the algorithm Algoǫ(·) in the value iteration by defining

the sets{Hǫ
k}

N
k=0 iteratively as:

Hǫ
0 = H0, andHǫ

k+1 = Algoǫ(ρM(Hǫ
k)), for 0 ≤ k ≤ N − 1. (27)

The above iteration computes a sequence of relaxed SRSs{Hǫ
k}

N
k=0. Using the formulas in Theorem 1, these

sets{Hǫ
k}

N
k=0 also define a sequence of “approximate” value functions and the corresponding feedback policies.

Specifically, defineV ǫ
k (z) = minP∈Hǫ

k
zTPz. For k = 1, . . . , N , let ξǫ

k(·) be the feedback law generated byV ǫ
k−1,

namely,

ξǫ
k(z) = (µk(z), νk(z)) = arg min

(u,v)

{L(z, u, v) + V ǫ
k−1(Avz +Bvu)}. (28)

Following a similar argument as in the proof of Theorem 1, onecan easily obtain:

ξǫ
k(z) =

(

−Kiǫ
k
(z)(P

ǫ
k(z))z , iǫk(z)

)

, where
(

P ǫ
k(z), iǫk(z)

)

= argmin
P∈Hǫ

k−1,i∈M

zTρi(P )z. (29)
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Let πǫ
N = {ξǫ

N , . . . , ξ
ǫ
1} be theN -horizon policy generated by{V ǫ

k }
N−1
k=0 . Recall thatπ∗

N = {ξ∗N , . . . , ξ
∗
1} denotes

the optimal policy generated by theexact value functions{Vk}
N−1
k=0 . Typically, πǫ

N is much easier to compute

thanπ∗
N becauseHǫ

k contains much fewer matrices than bothHk andAlgo(Hk). However, the relaxationAlgoǫ(·)

introduces an error and this error propagates through the iteration (27). Therefore, to take advantage of the simplicity

of πǫ
N , it must be ensured thatJπǫ

N
(z), namely, the actual cost associated withπǫ

N , does not deviate too far from

the optimal costVN (z).

B. Performance Analysis ofπǫ
N

The goal of this subsection is to derive conditions under which the feedback policyπǫ
N is stabilizing and

suboptimal. A generalN -horizon policyπN is calledδ-suboptimal over a setE if for any initial statex0 ∈ E, the

cost underπN is within theδ-neighborhood of the optimal cost, i.e.,|JπN
(x0)− VN (x0)| ≤ δ. Let x∗z,N (·) be the

optimal trajectory defined in Section IV. Similarly, denoteby xǫ
z,N (·) theN -horizon state trajectory driven byπǫ

N

with initial conditionxǫ
z,k(0) = z. DefineV ǫ

k (z) = minP∈Hǫ
k
zTPz and

Ṽ ǫ
k+1(z) = min

u,v
{L(z, u, v) + V ǫ

k (Avz +Bvu)}. (30)

Following easily from (29), we have

Ṽ ǫ
k+1(z) = min

P∈ρM(Hǫ
k
)
zTPz.

According to (27) and the definition of theǫ-ES, we have

Ṽ ǫ
k+1(z) ≤ V ǫ

k+1(z) ≤ Ṽ ǫ
k+1(z) + ǫ‖z‖2. (31)

Two important inequalities that are frequently used throughout this subsection are given in the following lemma.

Lemma 9:Under assumptions (A1) and (A2), for any integerN ≥ 0, we have

VN (z) ≤ V ǫ
N (z) ≤ VN (z) + ǫη‖z‖2 and Ṽ ǫ

N (z) ≤ VN (z) + ǫ(η − 1)‖z‖2, (32)

whereη =
1+(β/λ−

Q
−1)γ

1−γ .

Proof: See Appendix I.

As discussed in Section IV-C, under assumptions (A1) and (A2), the optimal trajectoryx∗z,N (·) is exponentially

stable. Intuitively speaking, this property should also hold for xǫ
z,N (·) whenǫ is sufficiently small. We now derive

an upper bound ofǫ that guarantees the stability ofxǫ
z,N (·). The following lemma is the key in deriving this upper

bound.

Lemma 10:Under assumptions (A1) and (A2), the trajectoryxǫ
z,N (·) satisfies

‖xǫ
z,N (t)‖2 ≤

(

γ +
ǫγη

β

)t
(

β + ǫη

λ−Q

)

‖z‖2, for t = 1, . . . , N − 1,

and ‖xǫ
z,N (N)‖2 ≤

(

γ +
ǫγη

β

)N−1
(

ζ2(β + ǫη)

λ−Q

)

‖z‖2.

(33)

whereβ, γ, ζ andλ−Q are the same constants as defined in the last section.
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Proof: In this proof, we denotexǫ
z,N (·) by x̂(·) and assume the corresponding hybrid control sequence is

(û(·), v̂(·)). By (28), (30) and (31), for eacht = 1, . . . , N , we have

V ǫ
N−(t−1)(x̂(t− 1)) − V ǫ

N−t(x̂(t)) ≥ Ṽ ǫ
N−(t−1)(x̂(t− 1)) − V ǫ

N−t(x̂(t))

=L(x̂(t− 1), û(t− 1), v̂(t− 1))) ≥ λ−Q‖x̂(t− 1)‖2 ≥
λ−Q
β
VN−(t−1)(x̂(t− 1))

≥
λ−Q
β

(

V ǫ
N−(t−1)(x̂(t− 1)) − ǫη‖x̂(t− 1)‖2

)

≥
λ−Q
β
V ǫ

N−t(x̂(t)) −
λ−Qǫη

β
‖x̂(t− 1)‖2.

Therefore, fort = 1, . . . , N ,

V ǫ
N−t(x̂(t)) ≤γ

[

V ǫ
N−(t−1)(x̂(t− 1)) +

λ−Qǫη

β
‖x̂(t− 1)‖2

]

≤

[

γ

(

1 +
ǫη

β

)]

V ǫ
N−(t−1)(x̂(t− 1))

≤

(

γ +
ǫγη

β

)t

V ǫ
N (z) ≤

(

γ +
ǫγη

β

)t

(β + ǫη)‖z‖2.

Here, the second inequality follows from the fact thatV ǫ
k (z) ≥ λ−Q‖z‖2 for k ≥ 0. Using this fact again yields

‖x̂(t)‖2 ≤

(

γ +
ǫγη

β

)t
(

β + ǫη

λ−Q

)

‖z‖2, for t = 1, . . . , N − 1.

For t = N , following the same argument as in the proof of Theorem 2, we have

‖x̂(N)‖2 ≤

(

γ +
ǫγη

β

)N−1
(

ζ2(β + ǫη)

λ−Q

)

‖z‖2

With Lemma 10, the following theorem follows immediately.

Theorem 5:Under (A1) and (A2), ifǫ < (1−γ)β
γη , the policyπǫ

N is stabilizing.

We now derive an upper bound for the actual cost associated with the policyπǫ
N

Theorem 6:Under assumptions (A1) and (A2),Jπǫ
N

(z) ≤ VN (z) + ǫ(η − 1)‖z‖2. for any z ∈ R
n andN ≥ 0.

Proof: Let x̂(·) and (û(·), v̂(·)) be the same as in the proof of Lemma 10. By (28) and (30), we have

L(x̂(t), û(t), v̂(t)) = Ṽ ǫ
N−t(x̂(t)) − V ǫ

N−(t+1)(x̂(t+ 1)) for eacht = 0, . . . , N − 1. Therefore,

Jπǫ
N

(z) =
N−1
∑

t=0

L(x̂(t), û(t), v̂(t)) + ψ(x̂(N))

=

N−1
∑

t=0

[Ṽ ǫ
N−t(x̂(t)) − V ǫ

N−(t+1)(x̂(t+ 1))] + ψ(x̂(N))

= Ṽ ǫ
N (z) +

N−1
∑

t=1

[Ṽ ǫ
N−t(x̂(t)) − V ǫ

N−t(x̂(t))] + [ψ(x̂(N)) − V ǫ
0 (x̂(N))].

Since by definitionψ(z) = V ǫ
0 (z) and Ṽ ǫ

N−t(z) ≤ V ǫ
N−t(z) for any z ∈ R

n and t = 1, . . .N − 1, we have

Jπǫ
N

(z) ≤ Ṽ ǫ
N (z) ≤ VN (z) + ǫ(η − 1)‖z‖2.

Remark 6:Notice that the error functionǫ(η − 1)‖z‖2 does not depend on the horizonN . This property plays

a crucial role in deriving the suboptimal policies for the infinite-horizon DSLQR problems.
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Fig. 4. Complexity comparison between Algorithm 3 and Algorithm 4 with δ = 10−3.

Corollary 1: Under the same conditions as in Theorem 6,πǫ
N is δ-suboptimal over the unit ball ifǫ ≤

δ

η − 1
.

Based on our analysis in this subsection, Algorithm 3 can be easily modified to compute aδ-suboptimal policy

within the unit ball.

Algorithm 4 (Suboptimal Control in Finite Horizon)

1) Initialization: Specify an error toleranceδ. Let ǫ = δ
η−1 and setHǫ

0 = Qf

2) Approximate Subset Iteration: Perform iteration (27) over the whole horizonN .

3) Suboptimal Strategy: The suboptimalN -horizon policyπǫ
N = {ξǫ

N (x), . . . , ξǫ
1(x)} is given by:

ξǫ
k(x) =

(

−Kiǫ
k
(x)(P

ǫ
k(x))x , iǫk(x)

)

,

where
(

P ǫ
k(x), iǫk(x)

)

= argmin
P∈Hǫ

k−1,i∈M

xT ρi(P )x.

C. Example V-D.2 Revisited

For comparison, we test Algorithm 4 using the same example asdescribed in Section V-D.2. As shown in Fig. 4,

instead of characterizing the optimal solution exactly using 360 matrices, with the relaxationδ = 10−3, we can

obtain aδ-suboptimal strategy using only14 matrices. It is worth mentioning that for many other DSLQR problems,

Algorithm 3 may still suffer from combinatorial complexity. In these cases, relaxing the accuracy using Algorithm 4

becomes necessary.

D. Extension to Large or Infinite Horizon

The numerical redundancy has greatly simplified the computation of each step of the value iteration. However, the

overall computation may still grow out of hand when the horizonN is very large or even infinite. The convergence
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property of the value iterations derived in Section IV-D becomes crucial in dealing with these cases, because it

allows us to terminate the iterations at some early steps instead of carrying out the iterations over the whole horizon.

It is natural to solve the infinite-horizon case in a divide-and-conquer manner, namely, by applying Algorithm 4

to a reasonably large size of subhorizon,m, and then extending the obtained strategy periodically. Wenow show

that, by choosing properm andǫ, such a periodic policy can indeed achieve an arbitrary suboptimal performance.

Let π̂ǫ
m = {ξ̂ǫ

m, . . . , ξ̂
ǫ
1} be them-horizon policy returned by Algorithm 4 withQf = 0. It follows from Theorem 6

that

Jπ̂ǫ
m

(z) ≤ V 0
m(z) + ǫ(η − 1)‖z‖2 ≤ V ∗(z) + ǫ(η − 1)‖z‖2, (34)

whereV 0
m(z) denotes them-horizon value function withQf = 0. Form ≥ 2, let πǫ,m

∞ be the periodic extension

of the firstm− 1 terms ofπ̂ǫ
m, i.e.1,

πǫ,m
∞ = {ξ̂ǫ

m, . . . , ξ̂
ǫ
2, ξ̂

ǫ
m, . . . , ξ̂

ǫ
2, . . .}. (35)

We first establish conditions under which the specially constructed policyπǫ,m
∞ is stabilizing.

Theorem 7:Under assumptions (A1) and (A2), ifǫ < (1−γ)β
γη and m >

lnλ−
Q
−ln(β+ǫη)

ln(βγ+ǫγη)−lnβ + 1, then πǫ,m
∞ is

exponentially stabilizing.

Proof: Denote byx̂(·) the trajectory generated by the policyπǫ,m
∞ with initial condition x̂(0) = z. Let

cm =

(

γ +
ǫγη

β

)m−1
(

β + ǫη

λ−Q

)

. (36)

It can be easily verified that under our assumptions,cm is strictly smaller than1. By inequality (33), we have

‖x̂(k(m− 1))‖2 ≤ cm‖x̂((k − 1)(m− 1))‖2 for all k ≥ 1. Thus,‖x̂(·)‖2 must decrease by a factor ofcm < 1 in

everym− 1 steps. It follows that the policyπǫ,m
∞ is exponentially stabilizing.

We now derive a bound for the error between the actual costJπǫ,m
∞

(z) and the optimal costV ∗(z).

Theorem 8:Under the same conditions as in Theorem 7, we have

V ∗(z) ≤ Jπǫ,m
∞

(z) ≤ V ∗(z) +
cmβ + ǫ(η − 1)

1 − cm
‖z‖2, (37)

wherecm is defined in (36).

Proof: Obviously,V ∗(z) ≤ Jπǫ,m
∞

(z) asπǫ,m
∞ is an infinite-horizon policy. Let̂x(·) be the system trajectory

generated by the policyπǫ,m
∞ starting fromx̂(0) = z. Definezi = x̂(i·(m−1)) for i = 0, 1, . . .. Let π̃ , {ξ̂ǫ

m, . . . , ξ̂
ǫ
2}

be the firstm− 1 terms ofπ̂ǫ
m. Then by (34),

Jπǫ,m
∞

(z) =

∞
∑

i=0

Jπ̃(zi) ≤

∞
∑

i=0

Jπ̂ǫ
m

(zi) ≤

∞
∑

i=0

[V ∗(zi) + ǫ(η − 1)‖zi‖
2].

By inequality (33), ‖zi‖
2 ≤ cim‖z‖2, where cm < 1 is defined in (36). Therefore,Jπǫ,m

∞
(z) ≤ V ∗(z) +

cmβ+ǫ(η−1)
1−cm

‖z‖2 for any initial statez.

1As can be seen from Lemma 10, by using only the firstm − 1 terms of π̂ǫ
m in constructingπ

ǫ,m
∞ , we can obtain a better bound for the

convergence of the closed-loop trajectory.
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With the above result, we can easily derive a lower bound form that guarantees theδ-suboptimality ofπǫ,m
∞ for

an arbitraryδ > 0.

Corollary 2: Suppose that the conditions in Theorem 7 hold. For anyδ > 0, if we further haveǫ < δ
η−1 and

m > mδ,ǫ
∞ ,

ln[δ − ǫ(η − 1)]λ−Q − ln(β + δ)(β + ǫη)

ln(βγ + ǫγη) − lnβ
+ 1, (38)

then the policyπǫ,m
∞ is δ-suboptimal over the unit ball.

Proof: The proof follows immediately from Lemma 10 and Theorem 8.

For a given toleranceδ on the optimal cost, we only need to performmδ,ǫ
∞ steps of the approximate value

iterations (27). The obtained value functions{V ǫ
k (z)}

mδ,ǫ
∞

k=0 characterize themδ,ǫ
∞ -horizon feedback policŷπǫ

m whose

mδ,ǫ
∞ − 1 steps can be used periodically to construct an infinite-horizon policy πǫ,m

∞ . By Corollary 2, such a

periodic policy is guaranteed to beδ-suboptimal over the unit ball. This idea can also be used when the horizon

is large but finite. Denote by[πǫ,m
∞ ]N theN -horizon truncation of the policyπǫ,m

∞ , i.e., [πǫ,m
∞ ]N (t) = πǫ,m

∞ (t) for

t = 0, . . . , N − 1. Similar performance bound as in Theorem 8 can be derived for[πǫ,m
∞ ]N (t) .

Theorem 9:Under the same conditions as in Theorem 7, for anyN ≥ m, we have

VN (z) ≤ J[πǫ,m
∞ ]N (z) ≤ VN (z) +

[

cmβ + ǫ(η − 1)

1 − cm
+ λ+

f c
Nm
m

]

‖z‖2, (39)

wherecm is defined in (36) andNm = ⌊N/(m− 1)⌋.

Proof: Denote byx̂(·) the closed-loop trajectory generated by the policy[πǫ,m
∞ ]N . Let π̃ andzi be the same

as in the proof of Theorem 8. Then by (34),

J[πǫ,m
∞ ]N (z) − ψ(x̂(N)) ≤

Nm+1
∑

i=0

Jπ̃(zi) ≤

Nm+1
∑

i=0

Jπ̂ǫ
m

(zi) ≤

Nm+1
∑

i=0

[

V 0
m(zi) + ǫ(η − 1)‖zi‖

2
]

Notice thatV 0
m(z) ≤ VN (z), V 0

m(zi) ≤ V ∗(zi) andV ∗(zi) ≤ β‖zi‖
2 ≤ βcim‖z‖2, by adding some small positive

terms, we have

J[πǫ,m
∞ ]N (z) − ψ(x̂(N)) ≤ VN (z) +

∞
∑

i=1

βcim‖z‖2 +

∞
∑

i=0

ǫ(η − 1)cim‖z‖2. (40)

By our hypotheses, we havecm < 1. Thus,J[πǫ,m
∞ ]N (z) − ψ(x̂(N)) ≤ VN (z) + cmβ+ǫ(η−1)

1−cm
‖z‖2. Considering

ψ(x̂(N)) ≤ λ+
f ‖x̂(N)‖2 ≤ λ+

f c
Nm
m ‖z‖2, the desired result is proved.

Corollary 3: Suppose the conditions in Theorem 7 hold. For anyδ > 0, if we further haveǫ < δ
η−1 and

N ≥ m > mδ,ǫ
N ,

ln[δ − ǫ(η − 1)]λ−Q − ln(β + δ + λ+
f )(β + ǫη)

ln(βγ + ǫγη) − lnβ
+ 1, (41)

then theN -horizon policy[πǫ,m
∞ ]N is δ-suboptimal over the unit ball.

Remark 7: In deriving (41) from (39), we have replacedcNm
m by its upper bound1. As a result, the bound in (41)

does not depend onN . Its main difference from (38) is theλ+
f term which accounts for the final cost.

From the above analysis, for large or infiniteN , a δ-suboptimalN -horizon policy can be obtained as follows.

First, find the largestǫ that satisfies all the conditions in Corollary 2. Second, letm = mδ,ǫ
∞ or m = mδ,ǫ

N depending

on whetherN is infinite or not. Third, compute them-horizon suboptimal policŷπǫ
m using Algorithm 4 with
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Fig. 5. Convergence results for Ex VI-E.1. (a) Convergence of the Value function. (b) Difference between the last two iterations.

Qf = 0. Finally, useπ̂ǫ
m to constructπǫ,m

∞ based on (35) and keep the firstN steps ofπǫ,m
∞ to obtain anN -horizon

policy [πǫ,m
∞ ]N

2. By Corollary 2 or 3,[πǫ,m
∞ ]N is guaranteed to beδ-suboptimal over the unit ball. The above

procedure of constructing the suboptimal control policy issummarized in Algorithm 5. Note that in this procedure,

we have assumed thatN > m. If this is not the case, we should still use Algorithm 4 to carry out the approximate

iterations (27) for the whole horizonN .

Algorithm 5 (Large or infinite Horizon Suboptimal Control)

1) Initialization: Specify an error toleranceδ. Let ǫ = max{ δ
η−1 ,

β(1−γ)
γη }.

2) # of iterations steps: If N = ∞, let m = mδ,ǫ
∞ ; otherwise, letm = mδ,ǫ

N . If N ≤ m, stop and turn to

Algorithm 4.

3) m-horizon Policy: Calculate them-horizon suboptimal policŷπǫ
m using Algorithm 4 withQf = 0.

4) Horizon Extension: Constructπǫ,m
∞ from π̂ǫ

m using (35) and keep its firstN terms to obtain[π∞
m ]N .

Remark 8:The analytical boundsmδ,ǫ
∞ and mδ,ǫ

N derived in (38) and (41) may be conservative for some

applications. An alternative approach is to start from a smaller value form in Step 2) of Algorithm 5 and gradually

increase its value until the performance saturates. Our analysis guarantees that this tentative procedure can eventually

reach any pre-specified suboptimal performance by gradually increasingm.

E. More Examples

2If N is infinite, the policy[πǫ,m
∞ ]N would be the same asπǫ,m

∞
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Fig. 6. Complexity distributions of the random examples.

1) : First consider a simple DSLQR problem with control horizonN = 1000 and two second-order subsystems:

A1 =





2 1

0 1



 , B1 =





1

1



 , A2 =





2 1

0 0.5



 , B2 =





1

2



 .

Suppose that the state and control weights areQ1 = Q2 = I2 andR1 = R2 = 1, respectively. Both subsystems are

unstable but controllable. Algorithm 5 is applied to solve this DSLQR problem. Withδ = 10−3, the upper bound

of the required number of iterations ismδ,ǫ
N = 56, while as observed in the simulation, the value function already

converges in 6 steps. SinceVk(z) is homogeneous and symmetric, in Fig. 5, we plot the evolution of the value

functions on the upper half of the unit circle, i.e. the points of the formz(θ) = [cos(θ), sin(θ)]T with θ ∈ [0, π].

The number of matrices inHǫ
k at each stepk is listed in Table I. It can be seen that|Hǫ

k| is indeed very small and

stays at the maximum value5 as opposed to growing exponentially as k increases.

TABLE I

|Hǫ
k
| FOR EXAMPLE VI-E.1

k 1 2 3 4 5 6

|Hǫ
k
| 2 4 5 5 5 5

2) Random Examples:To further demonstrate its effectiveness, Algorithm 5 is tested by two sets of randomly

generated DSLQR problems. The first set consists of 1000 two-dimensional DSLQR problems with 10 subsystems.

The second set consists of 1000 four-dimensional DSLQR problems with 4 subsystems. For both sets, the control

horizon N is infinite and δ = 10−3. All of these problems are successfully solved by Algorithm5 and the

distributions of the complexity, namely, the maximum numbers of matrices required for characterizing the suboptimal

policy, are plotted in Fig. 6. It can be seen from the figure that all of the two-dimensional problems require

less than50 matrices and a majority of them only need less than 15 matrices. However, a majority of the four-

dimensional problems need about 40 matrices and some of themmay need more than 100 matrices. The complexity
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of Algorithm 5 depends heavily on the state dimension. In a higher dimensional state space, a larger relaxationδ

is usually needed in order to retain a high computational speed.

VII. C ONCLUSION

We have proved that the value function of the DSLQR problem ispiecewise quadratic and can be characterized

by a finite number of p.s.d. matrices in the switched Riccati setsHk. These matrices can be obtained analytically

through the switched Riccati mapping. The main challenge ofsolving the DSLQR problem is on the exponential

growth of |Hk|. Three types of simplifications have been proposed to overcome this difficulty. First, some matrices

in Hk are algebraically redundant and can be directly removed without affecting the value function and the optimal

strategy at all. Second, many matrices inHk are numerically redundant in the sense that removing them will

only incur a small error on the value function. Third, under some mild conditions, the value function converges

exponentially fast to the infinite-horizon value function.Thus, we can terminate the value iteration at some early

steps with satisfactory numerical performance. Efficient algorithms based on one or more of the above ideas are

developed to achieve various design goals. Analytical conditions have been derived to guarantee the stability and

suboptimality of the obtained policy. The results of this paper can be used to study many other problems of

the switched linear systems, such as the switched Kalman filtering problem, the switched LQG problem, and the

switched receding horizon control problem, etc. All of these will be our future research directions.

APPENDIX I

PROOF OFLEMMA 9

Lemma 11:With the same notations as in Section VI, we have

V ǫ
N (z) ≤ VN (z) + ǫ

N−1
∑

t=0

‖x∗z,N (t)‖2. (42)

Proof: By definition,V ǫ
0 (z) = V0(z). Thus, the desired inequality holds forN = 0. Now suppose it is true

for a generalN ≥ 0, we shall show it is also the case forN + 1. Substituting (42) into (30) withk = N , we have

Ṽ ǫ
N+1 ≤ min

u,v
{L(z, u, v) + VN (Avz +Bvu) +

N−1
∑

t=0

ǫ‖x∗Avz+Bvu,N (t)‖2} (43)

Let (û, v̂) = ξ∗N+1(z) = (µ∗
N+1(z), ν

∗
N+1(z)), i.e., (û, v̂) is the first step of the(N + 1)-horizon optimal policy at

statez. Thus, we haveAv̂z+Bv̂û = x∗z,N+1(1). By Bellman’s principle of optimality, we know that theN -horizon

optimal trajectory starting fromx∗z,N+1(1) coincides with the lastN steps of the(N+1)-horizon optimal trajectory

originating fromz. Therefore, under this(û, v̂), we havex∗Av̂z+Bv̂û,N(t) = x∗z,N+1(t+1) for eacht = 0, . . . , N−1.

In addition, by the definition ofξ∗N+1, we also haveL(z, û, v̂) + VN (Av̂z + Bv̂û) = VN+1(z). Notice that this

(û, v̂) is just one choice of all the possible hybrid controls in (43), hence,

Ṽ ǫ
N+1 ≤ VN+1(z) + ǫ

N
∑

t=1

‖x∗z,N+1(t)‖
2.
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Then it follows from (31) that

V ǫ
N+1(z) ≤ Ṽ ǫ

N+1(z) + ǫ‖z‖2 ≤ VN+1(z) + ǫ

N
∑

t=0

‖x∗z,N+1(t)‖
2.

Thus, the inequality also holds forN + 1.

Proof: [Proof of Lemma 9] By Theorem 2 and some simple computations,we have
∑N

t=0 ‖x
∗
z,N+1(t)‖

2 ≤

η‖z‖2 with η =
1+(β/λ−

Q−1)γ

1−γ . The desired result then follows directly from Lemma 11 and inequality (31).
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