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A Study of the Discrete-Time Switched LQR Problem

Wei Zhang, Jianghai Hu and Alessandro Abate

Abstract

This paper studies the discrete-time switched LQR (DSLQBHlem based on a dynamic programming approach.
One contribution of this paper is the analytical charaztdidon of both the value function and the optimal hybrid-
control strategy of the DSLQR problem. Their connectionth®Riccati equation and the Kalman gain of the classical
LQR problem are also discussed. Several interesting piepeof the value functions are derived. In particular,
we show that under some mild conditions, the family of firiteizon value functions of the DSLQR problem is
homogeneous (of degree 2), uniformly bounded over the walif &nd converges exponentially fast to the infinite-
horizon value function. Based on these properties, efficdgorithms are proposed to solve the finite-horizon and
infinite-horizon DSLQR problems. More importantly, we daish conditions under which the strategies generated by
the algorithms are stabilizing and suboptimal. These ¢ are derived explicitly in terms of subsystem matrices
and are thus very easy to verify. The proposed algorithmstlamanalysis provide a systematic way of solving the
DSLQR problem with guaranteed closed-loop stability anbloptimal performance. Simulation results indicate that
the proposed algorithms can efficiently solve not only spebut also randomly generated DSLQR problems, making
the NP-hard problems numerically tractable.

I. INTRODUCTION

Switched systems arise naturally in many engineering fieddsh as power electronics [1], [2], embedded
systems [3], [4], manufacturing [5], and communicationwagks [6], etc. Incorporating the switching behavior
in the model and controller structures offers much greatedom and more possibilities for capturing complex
system dynamics, achieving stabilization and improvireggdkerall performance of the feedback systems. In the last
decade or so, the stability and stabilizability of switctsgdtems have been extensively studied [7], [8], [9], [10].
Many theoretical and numerical tools have been developethfo stability analysis of various switched systems.
These stability results have also led to some controllethggis algorithms that ensure stability of some simple
switched systems [11], [12], [13], [14]. However, for manygeneering applications, ensuring the stability is only
the first step rather than the ultimate design goal. How tégdes control strategy that not only stabilizes a given
switched system, but also optimizes certain design caitisrian even more meaningful research problem.

The focus of this paper is on the optimal discrete-time ling@adratic regulation problem for switched linear

systems, hereby referred to as the DSLQR problem. The gtaldsvelop a computationally appealing algorithm to
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construct an optimal or suboptimal feedback strategy thatmizes a given quadratic cost function. The problem
is of fundamental importance both in theory and practice has challenged researchers for many years. The
bottleneck mostly lies in the determination of the optimaitshing strategy. Many methods have been proposed to
tackle this problem, most of which are in a divide-and-cargmanner. Algorithms for optimizing the switching
instants for a fixed mode sequence have been developed ferajeawitched systems in [15] and for switched
systems with autonomous dynamics in [16]. Although an atlgor for updating the switching sequence is discussed
in [16], finding the best switching sequence is still an NPdharoblem, even for switched linear systems.

This paper studies the DSLQR problem from the dynamic pragrang (DP) perspective. The last few years
have seen increasing interest in using DP to solve variotimapcontrol problems of switched systems. In [17],
Xu and Antsaklis used DP to study the continuous-time swiichQR problem and developed an algorithm to
find the suboptimal switching instants and continuous @rfor a fixed switching sequence. In [18], Rantzer
and Johansson derived lower and upper bounds for the vahotidn of the quadratic optimal control problem of
piecewise affine systems; these bounds were then used ttrumire suboptimal control strategy. A discrete-time
version of this problem was studied by Bemportdal. in [19], [20], where the value function and the optimal
control law were proved to be piecewise quadratic and piseelinear, respectively. Based on these structural
properties, an algorithm based on multi-parametric pnogning was developed to compute the optimal feedback
control law. More recently, Lincoln and Rantzer developedemeral relaxation procedure in [21] to tackle the
curse of dimensionality of dynamic programming. This phae was also employed to study the infinite-horizon
DSLQR problem in [21], [22] and the quadratic optimal cohpmmblem of continuous-time switched homogeneous
systems in [23].

One contribution of this paper is the analytical charaztgidon of both the value function and the optimal
control strategies for general DSLQR problems. In paréigulve show that the value function of the DSLQR
problem is the pointwise minimum of a finite number of quadréiinctions. These quadratic functions can be
exactly characterized by a finite set of positive semidefiffjt.s.d.) matrices, which can be obtained recursively
using the so-calle@witched Riccati Mappind=xplicit expressions are also derived for both the optigveitching
law and the optimal continuous control law. Both of them arehe state-feedback form and are homogeneous
on the state space. Furthermore, the optimal continuousatds shown to be piecewise linear with different
Kalman-type feedback gains within different conic regiofishe state space. Although other researchers have also
suggested a piecewise affine structure for the optimal fadbontrol ([19], [20], [24]), the analytical expression
of the optimal feedback gain and in particular its connectigth the Kalman gain and the Riccati equation of the
classical LQR problem have not been explicitly presented.

Another contribution of this paper is the derivation of was properties of the value functions of the DSLQR
problem. In particular, it is proved that under some mildditions, the family of the finite-horizon value functions
of the DSLQR problem is homogeneous (of degree 2), uniforbdynded over the unit ball, and converges
exponentially fast to the infinite-horizon value functidiore importantly, the exponential convergence rate of

the value iteration is characterized analytically in terofishe subsystem matrices. This provides an efficient way



of terminating the value iterations, especially for highidnsional state spaces. The above results, especially the
convergence-rate characterization, have not been addyumatestigated in the literature.

The last contribution of this paper is the design and anslg$ivarious efficient algorithms for solving the
optimal and suboptimal DSLQR problems. The key idea is toams®ex optimization to identify and remove the
matrices that are redundant in terms of characterizing fitienal and suboptimal strategies. This is in line with the
approaches of Neuro-dynamic programming ([25]) and agprate dynamic programming ([21]), both of which
try to simplify the computations by finding compact repredatinns of the value functions up to certain numerical
relaxations. Compared with the previous work, our distorcimostly lies on the analysis of these algorithms. We
establish conditions under which the strategies genetatelde proposed algorithms are stabilizing and suboptimal.
More importantly, these conditions are derived explicitiferms of subsystem matrices and are very easy to verify.
Therefore, the proposed algorithms, together with theyaigl provide a systematic way of solving the DSLQR
problem with guaranteed closed-loop stability and sulmogitiperformance. Simulation results indicate that the
proposed algorithms can efficiently solve not only specitit dlso randomly generated DSLQR problems, making
the NP-hard problems numerically tractable.

This paper is organized as follows. In Section I, the DSLQBbtem is formulated. The value function of the
DSLQR problem is derived in a simple analytical form in Sewtill. Various interesting properties of the value
functions are derived in Section IV. These properties aem thsed in Sections V and VI to develop optimal and

suboptimal algorithms for solving the DSLQR problems. Hin@ome concluding remarks are given in Section VII.

Il. PROBLEM FORMULATION

Consider the discrete-time switched linear system desdriiy:
x(t + 1) = Av(t)x(t) + Bv(t)u(t), teTyn £ {0, ...,N— 1}, (1)

wherez(t) € R" is the continuous state(t) € M = {1,..., M} is the discrete modey(t) € R? is the continuous
control andT'y is the control horizon with lengttv (possibly infinite). The integers, M andp are all finite and
the controlu is unconstrained. The sequence of pdifs(t), v(t))}.* " is called thehybrid control sequencd=or
eachi € M, A; and B, are constant matrices of appropriate dimensions and t€ paiB;) is called a subsystem.
This switched linear system is time invariant in the sense the set of available subsysterfi&;, B;)}, is
independent of time. We assume that there is no internal forced switching, the.,system can stay at or switch
to any mode at any time instant. At each time T, denote byt n = (pe,n, v n) : R® — RP x M the hybrid
control law of system (1), whergi; ;y : R® — RP is called thecontinuous control lawand v,y : R" — M

is called theswitching control law A sequence of hybrid control laws over the horiZbg constitutes anV-
horizon feedback policyry £ {&o.n, 1N, ---,En—1.n ). If system (1) is driven by a feedback polieyy, then

the closed-loop dynamics is governed by

z(t+1) = Ay, v (@) Z(t) + B,y (@) ie,N (2(1)), t € TN. 2



For a given initial stater(0) = z € R", the performance of the feedback poligy; can be measured by the

following cost functional:

N-1
JT"N(Z) + Z L :U'tN (t))vytN(x(t)))v (3)
t=0

wherey : R® — RT and L : R® x R? x M — R™ are called thegerminal cost functiorand therunning cost

function respectively. In this paper, the functioisand L are assumed to take the following quadratic forms:
V() =27 Qpx, L(z,u,v) =27 Quz+u’ Ryu, VreR" ucRPveM,

whereQ; = Q7 > 0 is the terminal-state weighting matrix, ag, = Q7 = 0 andR, = R} - 0 are the running
weighting matrices for the state and the control, respelgtifor subsystem € M. When the control horizov

is infinite, the terminal cost will never be incurred and thgeative function, which might be infinite, becomes:

ZL )t 0 (2(8)), 1,00 (2(1))): (@)

For a possibly infinite positive intege¥, denote bylly the set of all admissiblév-horizon policies, i.e., the set
of all sequences of functionsy = {o.n,...,&nv—1,n} With & v : R® — RP x M for ¢ € Tx. The goal of
this paper is to find the optimal policy;, that minimizes the quadratic cost function defined in (3) 4 This
problem is a natural extension of the classical LQR problerthe switched linear system case and is thus called
the Discrete-time Switched LQR probleimereby referred to as the DSLQR problem.

Problem 1 (DSLQR problem)For a given initial statez € R™ and a possibly infinite positive intege¥, find
the N-horizon policyry € IIy that minimizesJ,, (z) subject to the dynamic equation (2).

Remark 1:With the quadratic cost function (3), there always existsoltsn to the finite-horizon DSLQR
problem. We assume that the optimal solution also existhenirifinite-horizon case. However, for both finite and
infinite horizons, the optimal solution may not be unique.

To solve Problem 1, for each timec Ty, we define the value functiol; ; : R* — R as:

N-1
Viw(z)=,  nf )GM{z/J(x(N))—i-Z L(x(j), u(j), v(7)| sublect to eq. (1) withs(t) = z}.  (5)

t<j<N-—1
TheV; n(z) so defined is the minimum cost-to-go starting from stagé time¢. The minimum cost for the DSLQR
problem with an initial conditionz(0) = z¢ is simply Vp n(zo). Due to the time-invariant nature of the switched

system (1), its value function depends only on the humbeewpfaining time steps, i.e.,

Vt-,N(Z) = Vter.,Ner(Z)v

for all z € R™ and all integersn > —t. In the rest of this paper, when no ambiguity arises, we wdhate
by Vi(z) £ VN_k.n(z) and & £ Env—k,~ the value function and the hybrid control law, respectively time
t = N — k when there aré time steps left. With the new notations, th&horizon policywy can also be written
aswty = {&n,-...,&}. For any positive integek, the newly introduced; can be thought of as the first step of a

k-horizon policy.



By a standard result of Dynamic Programming [26], for anytdéinnteger N, the value functionl/yy can be

obtained recursively using the one-stagdue iteration
Viet1(2) = inf{L(z, u,v) + Vi (Ayz + Byu)},Vz € R",

with initial condition V5(z) = ¢(z), Vz € R™. Denote byV,,(-) the pointwise limit (if it exists) of the sequence
of functions {Vi(-)}72, generated by the value iterations. It is well known [26] teaen if V. (z) exists, it
may not always coincide with the infinite-horizon value ftion. To emphasize its substantial difference from

the finite-horizon value function, the infinite-horizon walfunction is specially denoted By*(z), i.e., V*(z) =

infr_emn, Jr (2).

1. ANALYTICAL CHARACTERIZATION OF THE FINITE-HORIZON VALUE FUNCTION

For any fixed switching sequence, the switched linear systembe viewed as a linear time-varying system.
Theoretically, the finite-horizon DSLQR problem can be sdlusing dynamic programming by enumerating all the
possible switching sequences. Clearly, this approachtipnaatically feasible as its complexity grows exponeiyial
fast asNV increases. Fortunately, for the DSLQR problem, such enatiogis can be avoided and the value functions
can be computed in a rather efficient way. The efficient coatprt relies on the particular analytical structure of
the value function, which will be derived in this section.

We first review some important results of the classical @igeztime LQR problem. Such a problem can be viewed
as a special case of the DSLQR problem with= 1. In this special case, denote py, B) the system matrices
and by@ and R the state and control weighting matrices, respectivelis Well known that whenV is finite, the

value functions of this LQR problem are of the following quetit form:
Vi(z) = 2" Pz, k=0,...,N, (6)
where{P;}1_, is a sequence of p.s.d. matrices satisfying the Differericea® Equation (DRE):
Poy1=Q+ ATP.A— ATP.B(R+ BT P,B) " 'BT P A, (7)

with initial condition P, = Q. Denote by.A the positive semidefinite cor(§7]), namely, the set of all symmetric
p.s.d. matrices. Some results of the classical LQR problersammarized in the following lemma.

Lemma 1 ([28], [29]): Let {P;}i_, be generated by the DRE (7), then

1) Foreachk=0,...,N —1,if P, € A, thenP,;, € A.

2) If (4, B) is stabilizable, theV,(z) — V*(z) for all z € R™ ask — oc.

3) LetQ = CTC. If (A, B) stabilizable andC, A) detectable, then the optimal trajectory of the LQR problem
is exponentially stable.

In general, when\/ > 2, the value functiorV;(z) is no longer of a simple quadratic form as in (6). Neverthgles

the notion of the DRE can be generalized to the Switched LQRIpms. The DRE (7) can be viewed as a mapping



from A to A depending on the matricds\, B, ), R). We call this mapping th®iccati Mappingand denote by
pi - A — A the Riccati Mapping of subsysteinc M, i.e.,

pi(P) =Qi + A] PA; — AT PBi(R; + B] PB;)~'B] PA,. (8)
Definition 1: Let 2 be the power set afl. The mappingoy : 24 — 24 defined by:
pm(H) = {p;(P) : for somei € M and P € H}

is called theSwitched Riccati MappinSRM) associated with Problem 1.

In words, the SRM maps set of p.s.d. matrices to anotheet of p.s.d. matrices and each matrix sg () is
obtained by taking the classical Riccati mapping of somerimat H through some subsysteime M.

Definition 2: The sequence of set§H,}Y_, generated iteratively bf{,1 = pm(Hy) with initial condition
Ho = {Qy} is called theSwitched Riccati Se{$SRSs) of Problem 1.

The SRSs always start from a singleton §€t;} and evolve according to the SRM. For any finitg the set
Hy consists ofM” p.s.d. matrices. An important fact about the DSLQR problerthat its value functions are
completely characterized by the SRSs.

Theorem 1:Fork = 0,..., N, the value function for the DSLQR problem at timé— k, i.e., with k time steps

left, is
— in ST
Vi(z) = in 2 Pz. 9)
Furthermore, for € R™ andk =1,..., N, if we define
(P} (2),ii(2) = argmin  2"pi(P)z, (10)

(PEH)_1,i€EM)
then the optimal hybrid control law at stateand timet = N — k is &(z) = (1(2),vi(2)), wherepuj(z) =

—K;: () (P (2))z and v (z) = ij(z). Here, K;(P) is the Kalman gain for subsysteimwith matrix P, i.e.,

Ki(P)2 (R, + BIPB;,)"'BI'PA,. (11)

Proof: The theorem can be proved by induction. It is obvious thatifer 0 the value function is/4(z) =
2TQ 2, satisfying (9). Now suppose equation (9) holds for some N — 1, i.e., Vi (z) = minpey, 27 Pz. We
shall show that it is also true fdr+ 1. By the principle of dynamic programming and noting th@{-) represents
the value function at timéV — k, the value function at timé&V — (k + 1) can be recursively computed as

: T T
Vir1(z) = iel\/ﬁfeRP [z Qiz+u' Riu+ Vi(Aiz + Blu)}

= inf [ZTQiz +ul Riu+ (A;z + Biu)"P(Ajz + Biu)}
i€EM, PEH),,u€RP

inf [ZT(QZ- + ATPA) 2 +uT (R; + BT PB)u + 2zTAZ-TPBiu} . (12)
i€eM,PeH ), ucRP



Since the quantity inside the bracket is quadratie,jnthe optimalu* can be easily found to be
u* = —(R; + B PB;,) ' Bl PA;z = —K;(P)z, (13)
where K;(P) is the matrix defined in (11). Substituting into (12), we obtain

Vi (2) = ieMi.I}Dfer [ZT (Qi + AiTPAi B AiTPBiKi(P))Z} - ieMmeéHk ZTpi(P)Z'

Observing that{p;(P) : i € M,P € Hi} = pu(Hi) = Hipt1, We haveViyi(z) = minpep,, 27 Pz. In
addition, let Pj(z) andi;(z) be defined by (10). Then it can easily be seen from the aboveatien that
(- Kl-zﬂ(z)(P,jH(z))z,izﬂ(z)) is the optimal decision at timé&' — (k + 1) that achieves the minimum cost
Viet1(2). [ ]

Remark 2:The piecewise quadratic structure of the value functionbe®n proved in [20] for piecewise affine
hybrid systems and has also been suggested in [21] for evimatizon DSLQR problems. However, the analytical
expression for the value function and in particular its agtion to the Kalman gain and the Riccati equation of
the classical LQR problem have not been explicitly presnkirthermore, from a computation point of view,
Theorem 1 indicates that under our formulation, the valugction over the entire state space can be exactly
characterized by a finite number of p.s.d. matrices, whictiueles the need of discretizing the state space as
in [24], [30], [31].

Mode 2 —
~—Mode 1
Mode 2
Kalman gain 1
Mode 2
Kalman gain 2
—
Mode 2
Kalman gain 1

Fig. 1. Typical optimal decision regions of a two-switchgatem, where mode 1 is optimal within the white region and endds optimal
within the gray region. The optimal mode region is furtheridid into smaller conic regions, each of which correspdnds different Kalman

gain.

Compared with the discrete-time LQR problem, the value fioncof the DSLQR problem is no longer a single
guadratic function; it becomes the pointwise minimum of atdimumber of quadratic functions. At each time
step, instead of having a single Kalman gain for the entiagesspace, the optimal state feedback gain becomes

state dependent. Furthermore, the minimigBf (z),i;(z)) of equation (10) is radially invariant, indicating that



at each time step all the points along the same radial dired¢tave the same optimal hybrid control law. These
interesting properties are illustrated in Fig. 1 using aanegle inR? with 2 subsystems. At each time step, the
state space is decomposed into two homogeneous regionahiteeregion and the gray region, which are called
the optimal switching regionswithin the white region, one mode, say mode 1, is optimathimithe gray region,
the other mode, mode 2, is optimal. Furthermore, the statdsnwthe same optimal switching region may have
different optimal feedback gains (Kalman gains). This lgstrated in Fig. 1 by the further division of the gray
region into smaller conic regions, each of which correspona different Kalman gain. It is worth mentioning that
in a higher dimensional state space, the decision regianstér cones; however, these cones may not be convex
and the manifolds defining the boundaries between adjacemscmay be complicated. A salient feature of the
DSLQR problem is that all these complex decision regionscarapletely encoded in a finite number of matrices
in the switched Riccati set§H; }Y_ .

Theorem 1 and the above discussion have made it clear thdtethéor solving the DSLQR problem is the
computation of the SRSEH,.}1_ . Although analytical formulas are available for evalugtthe matrices in these
SRSs, a direct computation is almost impossible becgdsegrows exponentially fast dsincreases. Nevertheless,
the particular structure of the value function derived iredrem 1 provides us a clear view of what information is
necessary for making the optimal decision and, in turn, kenab to avoid many redundant computations. It is the

basis of the efficient algorithms to be discussed in Sectiband VI.

IV. PROPERTIES OF THEVALUE FUNCTIONS

In this section, we will derive various important propestief the family of finite-horizon value functions
{Vn(2)} %0 and the infinite-horizon value functiori*(z). These properties are crucial in the design and analysis
of the efficient algorithms for solving the DSLQR problems.

We first introduce some notations to be used throughout theesiuent discussions. Denote hythe identity
matrix of dimensionn. Let || - || be the 2-norm of a given matrix or vector. L&t™ be the set of all nonnegative
integers. Denote by.,in(-) and A\n.x(-) the smallest and the largest eigenvalue of a p.s.d. ma#gsperctively.
Define Ag = min;em{ Amin (Q;)} and )\Jf = Amax(Qy). Denote by:v;N(t) for 0 < ¢t < N an optimal trajectory

originating fromz at time 0 and denote byu} y(t),v; y(t)) the corresponding optimal hybrid control sequence.

A. Homogeneity

An immediate consequence of Theorem 1 is the homogeneityeofitite-horizon value functioy.

Lemma 2 (Homogeneity fy(2)): Vn(\z) = A2Vy(z), foranyz e R*, A\e R andN € Z*.

Although the explicit expression dfy (z) is available for any finite horizodV, little is known about the infinite-
horizon value functior’*(z). Let (u,v) be the hybrid control sequence generated by an infinitezborpolicy

oo With initial condition z(0) = z. Then the cost/;.__(z) can be expressed in terms (@f, v) as:

JOO(Z,U,’U) = ZL(I(]),U(]),U(]))
=0



It follows easily from the linearity of the system and the dratic structure of the running cost that for any given

mode sequence, the functionJ(z, u, v) is quadratic jointly in the state and control, i.e.,
Joo (N2, M, v) = Moo (2,u,v), VA ER,N#D0, (14)

wherelu = {\u(0), u(1),...}. Equality (14) also holds when either side is infinite. Sif¢gz) can be written
asV*(z) = inf(,,.) Joo (2,4, v), it is also homogeneous.
Lemma 3 (Homogeneity &f*(2)): V*(\z) = A2V *(z), for any z € R and any nonzero real numbgr
Proof: Let z € R™ and A € R, A # 0 be arbitrary. Immediately from (14), we knoW*(\z) is infinite

wheneverl*(z) is infinite. The desired equality holds. When bdtfi(z) andV*(\z) are finite, we have
V*(A\2) = inf Joo (A2, u,v) = inf Joo (A2, Au, v) = inf A2 T (2, u,v) = N2V*(2).

[ |
The properties of the value functions presented in the fesi®section are based on the following stabilizability

condition of the switched system (1).

(A1) At least one subsystem is stabilizable

B. Boundedness

Proposition 1: Under assumption (A1), there must exist a finite constasuch thatVj(z) < gl/z||?, for all
k € Z* and z € R™. Furthermore, if the stabilizable subsysten(it;, B;) and F' is any feedback gain for which
A; £ A; — B;F is stable, then one possible choicefs given by:

B=(1Qsll + Qi + F'RFJ|) - (Z 1A7]1% | < oo (15)
j=0

Proof: Suppose subsystef;, B;) is stabilizable. Let{P,gi)};OZO be the sequence of matrices generated by
the Riccati mapping using only subsystén.e., P,i?l = pi(P,Si)) with Po(i) = @¢. Since the switched system (1)
can stay in subsystei;, B;) all the time, the value function of the DSLQR problem must begreater than the
value function of the LQR problem for the subsystény, B;), i.e., Vi(z) < zTP,Ei)z forall k € Z*T andz € R™.
Thus, it suffices to show that th& given in (15) is an upper bound of the 2-norm of all the maHittE{P,f)}zozo.
Let F be a feedback gain for whicH; = A4; — B, F is stable. Define{f’,ﬁ”}g‘;o iteratively by

B =Qi+ AT P A;+ FTRF, with P{” =Q;. (16)

In the above equation, if = Ki(P,Ei)) for eachk, where K;(-) is defined in (11), ther?,gi) would coincide with
P,ii). In other wordsP,gi) defines the quadratic energy cost of using the stabiliziegbback gainF' instead of the
time-dependent optimal Kalman gain of thehorizon LQR problem. By a standard result of the Riccatiatiun

theory (Theorem 2.1 in [28]), we ha\dé,gi) = ]3]51') for all £ > 0. Thus, it suffices to shovHP,gi)H < § for each



10

k > 0. By (16), we have

k k—1
PO R 4 Z @ B0 = B+ Y ATV (BY — BY)(Ay)
j=1 §=0
-1 k-1 .
—Q; +Z ATYHLQp(A;)7H1 +Z ATY(Qi— Qs + FTRiF)(A;)

SATV QAN + Y (AT Qi+ PR ALY

§=0
Thus,|P{"|| < | P < (1Qs|l + Qi + FTR; F||) (Z‘;’;O ||]1{H2). Note that the formula of the geometric series
does not directly apply here, as the 2-norm of a stable matey not be strictly less than 1 in general. However,
it is shown in Chapter 5 of [32] thdtmy_., || A¥||*/* = p(A;) < 1, wherep(-) denotes the spectral radius of a
given matrix, we know thaf A7|| < (1 — )7 for some smalk > 0 and all large;. Therefore 3% |A7)1? < o0

and the proposition is proved. ]

C. Exponential Stability of the Optimal Trajectory

In view of part 3) of Lemma 1, to ensure the stability of theiwyatl trajectory, it is natural to assume that each
subsystem is stabilizable and detectable. Unfortunatelyh a natural extension does not hold in the DSLQR case.

As an example, consider the following DSLQR problem:

0 2 0 05 100 0 0 0
Al = ) A2 = ) Ql = ) QQ = )
0 0 0.5 0 0 O 0 100

0
To = R Qj:O, andBi:Ri:O, 121,2
1

(17)

Let the horizonN be arbitrary (possibly infinite) and let*(-) be the optimal trajectory of this DSLQR problem
with initial condition 2*(0) = z¢. Notice that bothA; and A, are stable and each subsystem is stabilizable and
detectable. However, it can be easily verified thaft) = [0,1]7 if ¢ is even andr*(t) = [2,0]7 otherwise.

To ensure the stability of the optimal trajectory, we introd the following assumption.
(A2) @;>0,Vie M.

Theorem 2:Under assumptions (A1) and (A2), thé-horizon optimal trajectory originating fromat timet¢ = 0,

namely,z} y(-), satisfies the following inequalities:

. p . BE N
|22 N @7 < <=7'lIz]%, fort=1,....N =1, and|2% y(N)[* < ="z, (18)
AQ AQ
where 3 is defined in Proposition 1,
1
=——— <1 and = A; — B;K; . 19
7= gD ¢ = max| (@)l (19)

In other words, the optimal trajectory is exponentiallypitawith decay ratey.
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Proof: For simplicity, fort = 0,1,--- , N, definei(t) £ a7} y(t) and Viy_ £ Viy_s(a% y(t)). Denote by

(a(-),(-)) the optimal hybrid control sequence corresponding1q,(-). Fort =1,..., N, we have

Vn_—1) = Vv—e = L(@(t — 1), a(t — 1),8(t — 1)) > #(t — )" Qp(_1y@(t — 1)

s ~ Ay~
> Al - Dl* > ?QVNf(tfl) > FQVN—t-

t
Hence, we havé/y_; < —L—Vy_ ;) fort =1,---, N. Therefore Viy_; < (ﬁ) V. Obviously, for
Q

= Thag/B

t<N =1, Vvoe 2 ()T Qs E(t) > A5l E(t)||%. Thus,
t t
- 1 - 1 1 ~ B 1 2 B 2
1Z2(O))* < = V-t < = <7> VN <= <7> 121" = ~="ll=II". (20)

o Ao \1+2g/8 Ao \1+2g/8 Ao
Fort = N, by Theorem 1, we have that(N) = (A; — B;K;(Qy)) - (N — 1) for somei € M. Therefore,
|2(N)||? < ¢?||Z(N — 1)||?, where( is defined in (19), and then the desired result follows frof)(2 [

D. Exponential Convergence of Value Iteration

The main goal of this subsection is twofold: (i) to estabkstsy-to-check conditions under whitk (z) — V*(z)
exponentially fast a&v — oo; (ii) to derive the convergence rate in terms of the subsystatrices. Some classical
results on the convergence of value iterations of genenaduwhyc DP problems can be found in [26]. Most of these
results require either a discount factor with magnitudetsirless than 1 or that)(z) < V*(z) for all z € R™.
Neither is true for the general DSLQR problems with nonaéfiterminal costs. A more recent convergence result
is given by Rantzer in [22], where the abovementioned astongpare replaced with some other conditions on
V*(z). Since the infinite-horizon value functidn*(z) of the DSLQR problem is usually unknown, the conditions
in [22] are not easy to check. In view of these limitationsygher study of the convergence of the value iterations
in the DSLQR problems is necessary.

By part 2) of Lemma 1, for the classical LQR problem, if theteys is stabilizable, then the value iteration
converges to the infinite-horizon value function. For thel QR problem, however, Assumption (A1) alone is not
enough to ensure the convergence of the value functiongadn the value function may not converge even if all
the subsystems are stabilizable. For example, consideD$1€R problem with matrices defined by (17) except
that Q) s is the identity matrix of dimension 2. Although each subegsis stable, it can be easily seen that(x)
is 2 if N is an odd number and is otherwise. Thus, the limit oV (z¢) asN — oo does not exist. This example
indicates that a stronger condition than (Al) is needed trantee the convergence for the DSLQR problem.

In the following we shall show that the value iteration withroverge exponentially fast if both (A1) and (A2)
are satisfied. The following lemma provides a bound for thfedince between two value functions with different
horizons and is the key in proving the convergence result.

Lemma 4:Let N; and Ny be positive integers such thaf; > Ns. For anyz € R™, the difference between the

N;-horizon value function and th&,-horizon value function can be bounded as follows:

VN =, (22 3y (N2)) = (2% n, (N2)) < Vv (2) = Vv, (2) < Vv -, (22 v, (N2) — (2] v, (N2)). (21)
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<o)

v

~N_o_dr___

Fig. 2. lllustrating the proof of Lemma 4, where the dashdw represents the trajectof(-) and the solid line represents the trajectary).

Proof: Let zo = 27 y,(N2). Define a newV;-horizon trajectoryz(-) as

H(t) = 2% N, (1), t < N -
x227N1—N2(t_N2)7 N2 <t§N1

As shown in Fig. 2 (the dashdot line}(-) is obtained by first following theV,-horizon optimal trajectory and
then the(N; — N»)-horizon optimal trajectory. Leta(-), o(-)) be the hybrid controls correspondingio Then by

the definition of the value function, we have

Ni—1
Vi (2) < > L(E(t),a(t), 5(t)) + $(&(Ny))
t=0
No—1
= 37 L@y (), ey (1), 07, ()4
t=0
N;—No—1
D L, e (0, vy (0,07, vy -, (D) + 9 (2%, vy (N1 = N2))
t=0
=VN, (2) = (2% N, (NV2)) + Vv, =N, (22) = Vv, (2) — (a2 v, (N2)) + Vv, - N, (22 v, (N2)) (23)

Equation (23) describes exactly the second inequality 1. (Po prove the first one, define an-horizon trajectory
#(-) as the solid line in Fig. 2 by taking the fir8f; steps ofz} v, i.e., 2(t) =z y, (¢) for 0 < ¢ < Ny and let
(a(-),9(+)) be the corresponding hybrid control sequence. Then

Ny—1
Vive(2) < ) L(#(1),a(t), 8(t)) + (#(N2))
=0
2—1
Lz N, (1), uZ n, (1), 07w, (8) + (27 v, (N2))
0

Z o

t
= VN, (2) = Vv —no (23 N, (N2)) + (27 N, (N2)), (24)
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where the last step follows from the Bellman’s principle pfimality, namely, any segment of an optimal trajectory
must be the optimal trajectory joining the two end points loéd segment. The desired result follows from (23)
and (24). ]
With a nontrivial terminal cost, théV-horizon value functionl/y(z) may not be monotone ad increases.
Nevertheless, by Lemma 4, the difference between the valoetibnsVy, (z) and Vn,(z) can be bounded by
some quadratic functions off y (N2) andz} v, (N2). By Theorem 2, we know both quantities converge to zero
as N; and N, grow to infinity. This will guarantee that by choosidg, and Vs large enough, the upper and lower
bounds in (21) can be made arbitrarily small. The convergeariche value iteration can thus be established.
Theorem 3:Under assumptions (A1) and (AZ)y(z) converges exponentially fast for eacte R™ asN — oo.
Furthermore, the convergence is uniform over the unit balR? and for anyN; > N, the difference between

the Ni-horizon value function and th&,-horizon value function is bounded above by

Vi (2) = Vi (2)] < oy ™|, (25)

(BB
Ag

Proof: By Theorem 2, for any: € R™ we have |z y,(N2)|* < %7%”2:”2 and [z} y, (N2)]I* <

wherea = max{1, %—2} with 3, v and ¢ defined in (15) and (19).

LA™ 2|12, Hence,
Q

, . S
Vv, (2, (N2)) < Bl v, (N2)||* < )\TVMHZHZ),
Q7
* * ﬁ
(% , (N2)) ST, (V) | < =y 1P,
Q

. « 52
VN, - N, (25 N, (N2)) < B2} N, (No)|? < )\—,WMHZHQ’
Q
+

. . A B
V(@? v, (N2)) < Al x, (N2)|* < Af—,szHZIIQ-
Q

Thus, by Lemma 4 we have

(B+27)B

C2
[V, (2) = Vi, ()] < max{1,=>—}- = 72|22
v Q

Sincey < 1 and the upper bound in the above equation is independef{;ofthe value function converges
exponentially fast for each fixed In addition, the convergence is obviously uniform over timét ball. [ ]
Assumptions (Al) and (A2) together imply the exponentialhv@gence of the value iteration. In general, the
limiting function V. (z) may not coincide with the infinite-horizon value functidf(z). The following Theorem
shows that the two functions agree for the DSLQR problem.
Theorem 4:Under assumptions (Al) and (A2),.(z) = V*(z) for eachz € R™.

Proof: For a finite N, we know that

N-1

Vn(z) = ) Lzl n(t),u; n (1), 07 N () + (2 §(N)).
=0
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By the optimality of V*(z), we have

N—-1
Vi(z) < ) L(af N (), uf n (1), 07 (1) + V(2 N (V)
t=0
= Vn(2) = (a7 y(N) + V(27§ (N)).

By Theorem 3 and Theorem 2, 38— oo, Vv (2) — Vo (2), ¥(2} x(N)) — 0 andV*(z} (N)) — 0. Therefore,
V*(z) < Vao(z). We now prove the other direction. Notice that by (A2) we mhmsteV™(z) = inf,__cns_ Jr.. (2),
wherell?  denotes the set of all the infinite-horizon stabilizing pials. Letr., be an arbitrary policy il and let
Z(-) and (a(-),o(-)) be the corresponding trajectory and the hybrid control eage, respectively. Sincgt) — 0

ast — oo, for anye > 0, there always exists ai; such that)(z(t)) < e for all ¢ > N;. Hence, for allN > Ny,

N-1 N—-1
Vn(z) < D L(E(E), a(t), () + (@(N)) < Y L&), a(t), (1) + € < Jr (2) + .
t=0 t=0

Let N — oo, we haveV,, (z) < Jr_(2) + € Voo € II5,. Thus,V(2) < V*(z) + € and the theorem is proved as
e is arbitrary. [ ]
Remark 3:The convergence of value iterations has been extensivadljest and many results are available [21],
[26]. Compared with the previous work, our convergencelterived specially for the DSLQR problem has several
distinctions. It allows general terminal cost, which is @splly important for finite-horizon DSLQR problems. In
addition, the convergence conditions are expressed irstefitihe subsystem matrices rather than the infinite-horizon
value function, and thus become much easier to verify. Binlay Theorem 3, for a given tolerance on the optimal
cost, the required number of iterations can be computedrédf®e actual computation starts. This provides an

efficient means to stop the value iterations with guaransedmbptimal performance.

V. EFFICIENT EXACT SOLUTION IN FINITE HORIZON

As discussed at the end of Section Ill, the main challengsdbring the DSLQR problem lies in the exponential
growth of |H|. However, as indicated by (9), in terms of computing the ediunction, we only need to keep
the matrices i, that give rise to the minimum of (9) for at least onec R™. In other words, althougity, is
exponentially large, only a small portion of its matricesyniie useful for computing the value function. Therefore,
we can remove all the other “redundant” matrices to simpifg computation without causing any error. This is

the key idea of our efficient algorithm.

A. Algebraic Redundancy and Equivalent Subsets

To formalize the above idea, we introduce a few definitions.

Definition 3 (Algebraic Redundancy matrix P € H is called(algebraic) redundanif for any = € R™, there
exists a matrixP € H such thatP # P and 27 Pz < 2T Pz.

If P e H is redundant, thefi{ and \ {P} will define the same value function. In this sense, these ®ts s

are equivalent.
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Definition 4 (Equivalent Sets of p.s.d Matrices)et H and™ be two sets of p.s.d matrices. The $¢is called
equivalentto 7, denoted byH ~ 7, if minpey 27 Pz = minp g, 27 Pz, Vz € R™.

Therefore, two sets of p.s.d. matrices are equivalent if tlefine the same value function of the DSLQR problem.
To ease the computation, we are interested in finding an algmivsubset of{;, with as few elements as possible.

Definition 5 (Minimum Equivalent Subset (MES)et H and M be two sets of symmetric p.s.d matricés.is
called anequivalent subsedf H if # C H andH ~ H. Furthermore{ is called aminimum equivalent subset
(MES) of H if it is the equivalent subset of{ with the fewest elements. Note that the MES7$fmay not be
unique. Denote by'(H) one of the MESs of4.

The following lemma provides a test for the equivalent stbséHj,.

Lemma 5:H is an equivalent subset 6{ if and only if: (i) H C H; (i) VP € H andVz € R, there exists a
P e H such that:T Pz < T Pz.

Proof: Straightforward. ]

Remark 4:Lemma 5 can be used as an alternative definition of the equitvaubset. Although the original

definition is conceptually simpler, the conditions giventiis lemma provide a more explicit characterization of

the equivalent subset.

B. Computation of (Minimum) Equivalent Subsets

To simplify the computation at each stépwe shall prune out as many redundant matrices as possithletzain
an equivalent subset i, as close as possible 1o(7;). However, testing whether a matrix i, is redundant
or not is itself a challenging problem. Geometrically, ang.¢. matrix P defines uniquely an ellipsoid ifk":
{zr eR™: 2T Py < 1}. It can be easily verified tha® € H,, is redundant if and only if its corresponding ellipsoid
is completely contained in the union of all the ellipsoidsresponding to the matrices ’m\{f’}. Since the union
of ellipsoids is not convex in general, there is no efficiermywo verify this geometric condition or equivalently
the condition used in Definition 3. Nevertheless, a sufficeondition for a matrix to be redundant can be easily
obtained and is given in the following lemma.

Lemma 6: P is redundant iri{,, if there exist nonnegative constants, . . ., a3, |—1 such thatzg’f'_1 a; =1
and P = Y1171 o, pO) where{ P()}/"*I~1 is an enumeration of(;, \ {P}.

Proof: Straightforward. [ ]

For givenP and’Hy, the condition in Lemma 6 can be easily verified using variexisting convex optimization
algorithms [27]. Although Lemma 6 may not identify all thedumdant matrices, it can usually eliminate a large
portion of them. Based on this lemma, an efficient algoritidgd@rithm 1) is developed to compute an ES for any
given setH;. In words, the algorithm simply removes all the matrices #atisfy the condition of Lemma 6 and
return the set of the remaining matrices.

Algorithm 1 in general may not return a MES &{;. In fact, when the dimension of the state space is two,
there exists an alternative approach that can identifyhallredundant matrices and obtain the exact ME%{pf

By the homogeneity of the value function, it suffices,®3, to consider only the points on the unit circle for
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Algorithm 1

1) Denote byP( the i** matrix in H. SetH\" = {P(M)},
2) For eachi = 2,...,|Hy|, if P() satisfies the condition in Lemma 6 with respect}q, then H,(f) =
i—1), . i i—1 i
HU™Y; otherwiseH) = 1Y U {(PM}.
3) ReturnH\"*V

testing the redundancy of the matrices7if). Let z(6) £ [cos(6),sin(8)]7 for 6 € [0,27). Let {PW} be
an enumeration of{;. The computation of'(*;) can be achieved iteratively as follows. Initially, Iét,(cl) be

a set consisting of only one matriR™"). Clearly, #\") = I({P(1}). At step!l, suppose we have obtained a set
HO =T ({PD, ..., PO}), namely, the MES of the firstmatrices inHy. The matrices ir<\" will partition the
whole state space into a number of conic regions, within edakhich the minimizerargminPEHg) 2(0)T Pz(0)
does not depend ah Each of these regions can be represented by a connectedhlra®d. Let [0;_+, 6;] represent
Pen® 2(0)T Pz(0)

for all 6 € (6;_1,6,]. For eachi < [H\"|, we can compare(§)T PU+1z(9) with z(6)” P\ 2(6). If the former is

the i** conic region and IerPl(i) be the minimizer over this region, namell%(i) = argmin

bigger for all§ € (6;-1, 6;], Pl(i) is the still the minimizer of the*" region. If the latter is always bigger within
(0i—1,06], then PU+1) becomes the new minimizer over ti#& region. If none of these two is true, then we can
further divide the interva(6;_1, 6;] into some subintervals and record the minimizing matrix acte subinterval.
After comparingP{+1) with all the matrices irH,(Cl), we end up with a new set of intervals and the corresponding
minimizing matrices. These minimizing matrices will cahsge H,(f“), namely, the MES of the firdt4+ 1 matrices

in Hy. If PU+D is redundant with respect to the first- 1 matrices inHy, it cannot beat an)Pl(i) within the

,(Cl“) will be exactly the same aH,(f). On the other hand, if a matrix iH,(f) becomes

corresponding region ard

redundant after considering*1), then it will be replaced by(+1) within its minimizing interval and will not

be included ier,(f“). In this way, we can consider one more matrixHfj at each step and eventually obtain the

MES of the whole set;. The implementation details of the above procedure is suiaedhin Algorithm 2.
Remark 5:1t is rather difficult to extend the idea of Algorithm 2 to highdimensional state spaces because

there is no efficient way to characterize the boundaries é&twadjacent switching regions on the unit sphere.

Thus, whenn > 2, we usually still use Algorithm 1 to compute an equivalentsat of H; with not necessarily

minimum but sufficiently small number of matrices.

C. Overall Algorithm in Finite Horizon

We have developed two algorithms to prune out the redundamtticas in7{;. A natural question is whether
the matrices removed at earlier steps will affect the valertions later on. This question can be easily answered
using the Bellman’s optimality principle. Notice that thelwe iteration at step + 1 only depends oV (z) and
that removing the redundant matrices will only change thasentation o¥/;(z), not its actual value. These two

facts guarantee that the redundant matrices removed ak stépnot affect any value functions at later steps. The
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Algorithm 2

1) Leto® = {0,27} andH\" = (P},

2) Forl < [Hy| — 1, given a partition of(0, 27], ©) = {fy,...,0,,} with 0 =0y < 6; < --- < 0, = 2,
and an ordered set of matrlc@é,f) {P(l) ey l(’”)}, so that for each =1, ..., ny, z(G)TPl(i)z(G) <
2(6)" P™) 2(6) for all 6 € [0;_1,6;) and all1 < m < L.

3) Compute©*+1) and """ as follows:

for : =1 ton; do
m =1 and P,,;,(0) = argminPG{Pl(i)_’P(lH)} 2(0)T Pz(0)
if Ppin(0) =PU+D forall 0 € [6;_1,6;) then
P =P andm = m + 1
dseif P, (0) = P for all § € [6;_1,6;) then
Pl(m) P andm =m+1
else
Find d1 andd2 such thatd;,_; < dl < d2 < 6; and P,,;,,(8) is a constant matrix over intervgls

[91'_1, dl), [dl, d2) and [d?, 91)

if d1=d2 then
B = Prin(i-1), P = Prin(dl) andm = m + 2

else
P = Prin(0i-1), PLYY = P (d),
P = Poi(d2) andm = m + 3

end if

end if
end for

Ny =m—1

4) If | < |Hgl|, letl =1+ 1 and repeat steps 2 and 3, otherwise defiheas the set consisting of all the

distinct matrices inH,(c'H”) and returnty,.

following lemma uses this property to embed the ES algomtiimthe value iteration. Its basic idea is to remove
the redundant matrices after each value iteration and tpety ahe next value iteration based on the obtained

equivalent subset with fewer matrices.

Lemma 7 (ES lteration)Let the sequence of se{§%k},€N:0 be generated by
Ho = Ho, andHyy1 = Algo(pm(Hy)) for 0 <k < N —1, (26)

where Algo(H) denotes the equivalent subsetZgfreturned by Algorithm 1 or 2. The), ~ Algo(Hy).
Proof: As explained in the preceding paragraph. A more direct poaof be found in [33]. ]
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Algorithm 3 (Algo for Finite-horizon DSLQR Problems)

1) Initialization: SetH, = Q;.
2) Equivalent Subset Iteration: Compute{H;}Y_, using the iteration (26).
3) Value Function: The value function at timé = N — k is given by:V;(z) = minp_y, 2T Pz,

4) Optimal Strategy: The optimalN-horizon policyny, = {5 (2), ..., & ()} is given by:

6(2) =( — Ky (P (2)2, ik(2),

where (P,;‘(z),zZ(z)): argmin 27 p;(P)z.
Peﬁk,l,ieM

In summary, to solve the DSLQR problem, we start with the Isitom set, = {Q/}. Then the SRM is applied
to obtainH; = pm(Ho). Some matrices iftt; may be redundant. After removing them using Algorithm 1 ow2,
will have H, = Algo(H1). Next, we should apply the SRM tH,, and repeat the whole process until the end of
the horizon. This way, we can obtain a sequence of §afs}Y .. By Lemma 7,{H;}Y_, define the exact value
functions of the DSLQR problem. By Theorem 1, the optimaitstyies can also be computed basec{ﬁ@}{jzo.
This procedure of solving the finite-horizon DSLQR problesytsummarized in Algorithm 3. A distinctive feature
of this algorithm is that it computes the exact optimal cohstrategy without any approximation. Compared with
the strategy of enumerating all the possible switching sages, this algorithm is potentially much more efficient
because a large portion of the matricesHn may end up being removed during the iterations. Furtherpibtiee
state dimension i&?, all the redundant matrices will be pruned out. Therefarahis case, our algorithm achieves

the minimal complexity in computing the exact optimal st of a finite-horizon DSLQR problem.

D. Numerical Examples

1) : We first consider the following simple DSLQR problem for whian analytical solution is available for

verification purpose.

0 1 0 0
Ay , As =

0 0 1 0
10
Qf: ,BlzBQZO, R1:R2:1, and N:lO,
0 1
It can be easily seen that the optimal mode sequence for itie 'ﬂ;tatea:gl) =1[1,00Tis {2,1,2,1,...,2,1} and
the corresponding optimal cost 1s If the initial state is:v((f) = [0,1]7, then the optimal cost remains the same,

but the optimal mode sequence wouldfe2,1,2...,1,2}. Let

x1 = {r-[cos(),sin(0)]" € R?:r >0 andf € [—n/4,7/4) U [31/4,57/4)} and o = R? \ x;.
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Fig. 3. Complexity of Algorithm 3 for Example V-D.2

By the symmetry of the problem, it can be easily seen that fitenal feedback law is¢;(z) = (-, 1), if z € x2
and¢;(z) = (+,2) otherwise.

With the analytical solution in mind, we now demonstrate htmwvobtain the same result by carrying out
Algorithm 3. Initially, we haveH, = {Q} = L. Taking the SRM yields

Hy = PM(ﬂO) = {[1007 0;0, 1]7 [17 0;0, 100]}

Apparently, none of the two matrices are redundant. THds, = Algo(pm(ﬂo)) = H;. Proceeding one
more step, we havey(H:) = {[1,0;0,100],[100,0;0,1],[100,0; 0,100], [100,0;0,100]}. Obviously, the last
two matrices are redundant. Thul, = {[1,0;0,100],[100,0;0,1]}. Continuing this process, we havél, =
{[1,0;0,100],[100,0;0,1]}, for all k& < N. Then, using Step 4) of Algorithm 3, the same optimal polisy a
discussed in the last paragraph can be obtained.

This example shows that although the original SR&g,}1_, grow exponentially fast, their equivalent subsets
{ﬂk}}f:o can be made rather small and the optimal solution can beyefasihd using Algorithm 3. For more
complex problems, analytical solutions are usually imjidego obtain. However, in many cases, Algorithm 3 can
still eliminate many redundant computations and chareetéhe exact optimal strategy efficiently.

2) : We next consider a more general example with the followingrices:

2 1 2 1 3 1 3 1
A = , Ag = , Az = , Ay =
1 1 0 0.5 0 2 0 0.8
1
B, = , By = , Bz=DBi, By= B,
1

Q’L':Qf2127 Ri:17i217"'547 andN:20

This problem can not be solved analytically. However, it stih be efficiently solved using Algorithm 3. As shown

in Fig. 3, compared with the brute-force solution with cordiorial complexity of the ordet0!2, Algorithm 3
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requires at most 360 matrices to completely characterigeact optimal strategy.

VI. SUBOPTIMAL CONTROL OFDSLQR FROBLEMS

While Algorithm 3 can efficiently solve some DSLQR problernitsnay still fail in many other cases. In fact, many
DSLQR problems require a prohibitively large number of necas to characterize theéxactoptimal solutions.
Fortunately, suboptimal strategies are often acceptabedctice. In this section, we shall explore the opporjunit

to further simplify the computation by allowing some smatiog on the optimal cost.

A. Numerical Redundancy anrdEquivalent Subsets

We first generalize the redundancy and ES concepts to allove saror in representing the value functions.

Definition 6 (Numerical Redundancy)s matrix P € H,, is called(numerically)e-redundantwith respect toH;,

Inln z Tp < Ign%? 2T(P +el,)z, foranyz € R".
S
Definition 7 €-ES): The setH |s called ane-Equivalent-Subset(ES) of H;, if

Hj, C Hr and Pnel%lk 2Pz < rrelgtl TPz < Igrelgcl 2T(P +el,)z, for anyz € R™.

Removing thee-redundant matrices may mtroduce some error for the valuetion; but the error is no larger
thane for ||z|| < 1. To simplify the computation, for a given tolerangeve want to prune out as mamyredundant
matrices as possible. Similar to Lemma 6, the following leanprovides a sufficient condition for testing the
e-redundancy for a given matrix.

Lemma 8: P is e-redundant with respect té( if there exist nonnegative constants, . . ., @3, |—1 Such that
Z'H” Yo, =1andP +el, = ijf"l a; PW, Where{P(j)}JjZ’;'_1 is an enumeration of{(;, \ {P}.

Algorithms 1 and 2 can be easily modified to compute-&85 for a given set ;. Denote the modified algorithms
as Algo.(-), whereasAlgo(-) denotes the original ones. In other worddgo.(H},) is thee-ES of Hy, returned by
the modified algorithms. Similar to (26), we can embed thew@igm Algo.(-) in the value iteration by defining

the sets{H; }1_, iteratively as:
HG = Ho, andHj , = Algoc(pm(H},)), for0 < k< N —1. (27)

The above iteration computes a sequence of relaxed §R$$7_,. Using the formulas in Theorem 1, these
sets{Hg Y, also define a sequence of “approximate” value functions aedcorresponding feedback policies.
Specifically, definé/(z) = minpey: 2" Pz. Fork =1,..., N, let{g(-) be the feedback law generated By_,
namely,

§(2) = (ua(2), ve(2)) = argmin{L(z, u, v) + Vi_, (A2 + Byu)}. (28)

(u,v)

Following a similar argument as in the proof of Theorem 1, oar easily obtain:

6(2) =( = Ky (Pi(2)2, i5(2)),  where (P(2), () = argmin 2" pi(P)=. (29)
PeH;_,ieM
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Let 7§, = {€%, ..., &{} be theN-horizon policy generated by} ', Recall thatry, = {4, ..., &} denotes
the optimal policy generated by thexactvalue functions{Vk}iV:‘ol. Typically, 7, is much easier to compute
thann}, becausé<s, contains much fewer matrices than bt and Algo(Hy). However, the relaxatiorllgo.(-)
introduces an error and this error propagates throughehation (27). Therefore, to take advantage of the simplicit
of 7, it must be ensured that. (z), namely, the actual cost associated with, does not deviate too far from

the optimal cost/y (z).

B. Performance Analysis of5,

The goal of this subsection is to derive conditions undercihihe feedback policyrS, is stabilizing and
suboptimal. A generaN-horizon policyny is calledo-suboptimal over a sef if for any initial statex, € E, the
cost underry is within the §-neighborhood of the optimal cost, i.¢Jx (7o) — Vv (z0)| < 6. Letx} y(-) be the
optimal trajectory defined in Section IV. Similarly, dendig =< y () the N-horizon state trajectory driven by,
with initial condition z¢ , (0) = 2. Define V¢ (z) = minpey; z* Pz and

f/,fﬂ(z) = min{L(z,u,v) + Vi (A,z + Byu)}. (30)
Following easily from (29), we have
17,f+1(z) = min z'Pz.
Pepm(H;)
According to (27) and the definition of theES, we have

Vi1 (2) < Vi (2) < Vida (2) + el (31)

Two important inequalities that are frequently used thtaug this subsection are given in the following lemma.

Lemma 9:Under assumptions (Al) and (A2), for any integér> 0, we have

Viv(2) S Vi (2) < Viv(z) +enll=|®  and Vi (2) < Viv(z) +e(n — 1)|1z)1%, (32)
wheren = w.
Proof: See Appendix I. ]

As discussed in Section IV-C, under assumptions (A1) and,(% optimal trajectory:? , (-) is exponentially
stable. Intuitively speaking, this property should alsédhor =¢ v (-) whene is sufficiently small. We now derive
an upper bound of that guarantees the stability of (-). The following lemma is the key in deriving this upper
bound.

Lemma 10:Under assumptions (A1) and (A2), the trajectary (-) satisfies

) 2 N\ (Bren) e torf— N
25 NN < |7+ — — | llel?, fort =1, N — 1,

B Q
N1/ (33)
and a2 (VI < (74 ) (@) ER
Q

where(, ~, ¢ and Ag are the same constants as defined in the last section.



22

Proof: In this proof, we denoter; y(-) by 2(-) and assume the corresponding hybrid control sequence is
(a(-),0(-)). By (28), (30) and (31), for each=1,..., N, we have
Vi (@ = 1) = VR (@(1) = V_ oy (@(t = 1) = Vo (2(1))
\=
=L{a(t = 1), a(t = 1), 5t = 1)) 2 Agllat = DII* = —F Vi) (@t = 1)

)\ Ao Aq€E
222 (Vi (@t = 1)) = enllatt = DI?) = Z2 Vi (a0) - 42 it~ D

Therefore, fort =1,..., N,

Ap€ )
Vi 1)<az<t—1>>+QT"||f<t—1>|] (14D vt -0y

t t
< (w %) Vi) < (w%) B+ en)ll=]2

Here, the second inequality follows from the fact théft(z) > A ||z[|* for & > 0. Using this fact again yields

N e 8+ en 9 B B
Izl g( + 6) < % >||z|,fort—1,...,N 1.

Fort = N, following the same argument as in the proof of Theorem 2, exeeh
N-1 2
. e (B +en)
)P < (v + %) D) g2
B Ao

With Lemma 10, the following theorem follows immediately.

Vi -(2(1) <v

Theorem 5:Under (Al) and (A2), ife < % the policyr$; is stabilizing.
We now derive an upper bound for the actual cost associatédtia policy$,
Theorem 6:Under assumptions (A1) and (A2)y< (z) < Vi (2) + €(n — 1)||z||*>. for any z € R* and N > 0.
Proof: Let &(-) and (a(-),%(:)) be the same as in the proof of Lemma 10. By (28) and (30), we have
L(z(t), a(t), 0(t)) = Vg_,(2(t)) =V _+1)(@( +1)) for eacht =0,..., N — 1. Therefore,

N—-1
Jrs (2) = D L(#(t), 4(t), (1)) + ¢ (2(N))
t=0
N—-1 ~
= 2 V(@) = VN (40) (@(E + 1))] + P(2(N)
t=0

= Vi (2) + DO VR (@(0) = Vi (@())] + [(E(N) = V5 (@(N))).
=1

t
Since by definitiony(z) = Vi§(z) and Vs _,(2) < V§_,(2) foranyz € R® and¢t =1,...N — 1, we have

Tng,(2) < Vi (2) < Viv(2) + e(n = D).
n

Remark 6:Notice that the error function(n — 1)||z||> does not depend on the horizah. This property plays

a crucial role in deriving the suboptimal policies for thdinite-horizon DSLQR problems.
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Fig. 4. Complexity comparison between Algorithm 3 and Altjon 4 with § = 103,

Corollary 1: Under the same conditions as in Theoremrg, is §-suboptimal over the unit ball if < 1
n—

Based on our analysis in this subsection, Algorithm 3 cands#iyemodified to compute a-suboptimal policy

within the unit ball.

Algorithm 4 (Suboptimal Control in Finite Horizon)

1) Initialization: Specify an error tolerancé Let e = n%l and setH§ = Q¢

2) Approximate Subset Iteration: Perform iteration (27) over the whole horizdw.

3) Suboptimal Strategy: The suboptimalV-horizon policyn§, = {{5 (), ..., £{(x)} is given by:
G (@) =( = Kig o) (Pi(@))a, if(a) ).

where (P,j(x),zi(:v)): argmin 27 p;(P)zx.
PeH;_,,ieM

C. Example V-D.2 Reuvisited

For comparison, we test Algorithm 4 using the same examptieasribed in Section V-D.2. As shown in Fig. 4,
instead of characterizing the optimal solution exactlyngsi60 matrices, with the relaxatioh = 103, we can
obtain ad-suboptimal strategy using onlyt matrices. It is worth mentioning that for many other DSLQRkdems,

Algorithm 3 may still suffer from combinatorial complexityn these cases, relaxing the accuracy using Algorithm 4

becomes necessary.

D. Extension to Large or Infinite Horizon

The numerical redundancy has greatly simplified the contjputaf each step of the value iteration. However, the

overall computation may still grow out of hand when the honi2V is very large or even infinite. The convergence
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property of the value iterations derived in Section IV-D t@es crucial in dealing with these cases, because it
allows us to terminate the iterations at some early stepeadsof carrying out the iterations over the whole horizon.

It is natural to solve the infinite-horizon case in a dividetaconquer manner, namely, by applying Algorithm 4
to a reasonably large size of subhorizam, and then extending the obtained strategy periodically.ndie show
that, by choosing propen ande, such a periodic policy can indeed achieve an arbitrary gtimal performance.
Let e, = {éfn, . ,éf} be them-horizon policy returned by Algorithm 4 with) ; = 0. It follows from Theorem 6
that

T, (2) < Vi (2) + e(n = 1)]|2]|* < V*(2) + e(n = 1)|2]]%, (34)

where V% (z) denotes then-horizon value function withQ; = 0. Form > 2, let 5™ be the periodic extension

of the firstm — 1 terms of#¢, i.el,

T = {€ . €5, €5, 65, ) (35)

We first establish conditions under which the specially tomesed policy7S™ is stabilizing.

InAg —In(B+en)

Theorem 7:Under assumptions (Al) and (A2), < % andm > i

W + 1, then Fg’om iS

exponentially stabilizing.

Proof: Denote byz(-) the trajectory generated by the poligy/™ with initial condition Z(0) = z. Let

e = <7+ %) (5;;"> . (36)

It can be easily verified that under our assumptians,is strictly smaller thanl. By inequality (33), we have
|2(k(m —1)]|? < em||2((k — 1)(m — 1))||? for all k > 1. Thus,||Z(-)||*> must decrease by a factor of, < 1 in

everym — 1 steps. It follows that the policy<,™ is exponentially stabilizing. [ ]
We now derive a bound for the error between the actual gpst (2) and the optimal cost™(z).

Theorem 8:Under the same conditions as in Theorem 7, we have

V() < T (a) <V (a) + 2R D 37

wherec,, is defined in (36).

Proof: Obviously, V*(z) < J,m(2) asw™ is an infinite-horizon policy. Lef:(-) be the system trajectory
generated by the policy.,™ starting fromi:(0) = z. Definez; = &(i-(m—1)) fori = 0,1,.... Let® £ {£,,... &5}
be the firstm — 1 terms ofz¢,. Then by (34),

e (2 ZJ (20) <) Jae (2 <Z (n = Dllzl?)-
— i=0 1=0

By inequality (33),]z:||* < ¢,|/z]|*>, wherec,, < 1 is defined in (36). Therefore/ <= (z) < V*(z) +

cuften=1) | 2|12 for any initial statez. n

1As can be seen from Lemma 10, by using only the first- 1 terms of #¢, in constructingws.™, we can obtain a better bound for the

convergence of the closed-loop trajectory.
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With the above result, we can easily derive a lower boundridhat guarantees th&suboptimality ofr<™ for
an arbitrarys > 0.

Corollary 2: Suppose that the conditions in Theorem 7 hold. For @py0, if we further haves < n%l and

e o 0= e(n = DIAG —In(B+0)(5 +en)

m>may = +1, 38
In(By +eyn) —In B (38)

then the policyrs™ is §-suboptimal over the unit ball.
Proof: The proof follows immediately from Lemma 10 and Theorem 8. [ ]

For a given tolerancé on the optimal cost, we only need to performf;c steps of the approximate value
iterations (27). The obtained value functiofig¢(z)};- °55 characterize then%¢-horizon feedback policyte, whose
m%¢ — 1 steps can be used periodically to construct an infinitezooripolicy 7. By Corollary 2, such a
periodic policy is guaranteed to Wesuboptimal over the unit ball. This idea can also be usednwthe horizon
is large but finite. Denote b{rS,™|x the N-horizon truncation of the policy$™, i.e., [7S| N (t) = 7 (t) for
t=0,...,N — 1. Similar performance bound as in Theorem 8 can be derivefirfgr|n(t) .

Theorem 9:Under the same conditions as in Theorem 7, for ahy- m, we have

m -1
V(o) < sy (2) < Vi) | 22D et o, (39)
wherec,, is defined in (36) andv,, = | N/(m — 1)].

Proof: Denote byz(-) the closed-loop trajectory generated by the policy™]n. Let # and z; be the same

as in the proof of Theorem 8. Then by (34),

Nm+1 Nm+1 Nm+1

Ty (2) = 0(E(N) < Y Ja(z) € D Jae () < D [Vin(zi) + el = Dlzil?]

=0 =0 =0
Notice thatV,) (2) < Vn(z), V.2(z:) < V*(2z;) andV*(z;) < Bl|zi]]? < Bct,||z||?, by adding some small positive

terms, we have
Jimemiy (2) = Y(E(N)) < Vn(z +ZﬁchIZH2+Z — 1)ch,llz]1%. (40)

By our hypotheses, we have, < 1. Thus, Jiem), (2) — ¥(2(N)) < Vn(z) + MH |>. Considering
P((N)) < A7 IZ(N)[I> < Afemm||2]|?, the desired result is proved. [ ]

Corollary 3: Suppose the conditions in Theorem 7 hold. For any 0, if we further haves < % and

5 o [0 —e(n—DJAg —In(B+38+X[)(B+en)
Mamem s In(By +eyn) —In g b

then theN-horizon policy[r$™]x is d-suboptimal over the unit ball.

(41)

Remark 7:In deriving (41) from (39), we have replacef{ by its upper bound. As a result, the bound in (41)
does not depend oflV. Its main difference from (38) is thﬁ}f term which accounts for the final cost.

From the above analysis, for large or infinidé, a -suboptimal N-horizon policy can be obtained as follows.
First, find the largest that satisfies all the conditions in Corollary 2. Secondplet m%< or m = m‘;\f depending

on whetherN is infinite or not. Third, compute the:-horizon suboptimal policytt, using Algorithm 4 with
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v, (2(9)
V,(2(8)-—-V,(2(6))

k=0

(@) (b)

Fig. 5. Convergence results for Ex VI-E.1. (a) Convergenicthe Value function. (b) Difference between the last twaat®ns.

Q¢ = 0. Finally, user, to constructrS™ based on (35) and keep the fif§tsteps ofr™ to obtain anN-horizon
policy [75™]n2. By Corollary 2 or 3,[75™]n is guaranteed to bé-suboptimal over the unit ball. The above
procedure of constructing the suboptimal control policgusnmarized in Algorithm 5. Note that in this procedure,
we have assumed that > m. If this is not the case, we should still use Algorithm 4 torgasut the approximate

iterations (27) for the whole horizoN.

Algorithm 5 (Large or infinite Horizon Suboptimal Control)

1) Initialization: Specify an error tolerancé& Let e = max{n%l, ﬁ(i—;”}.

2) # of iterations steps: If N = oo, let m = m?S; otherwise, letn = mf\f. If N <m, stop and turn to
Algorithm 4.

3) m-horizon Policy: Calculate then-horizon suboptimal policyts, using Algorithm 4 with@; = 0.

4) Horizon Extension: ConstructrS™ from 7t using (35) and keep its firsV terms to obtair= 0]y .

Remark 8:The analytical boundsn®¢ and mf\f derived in (38) and (41) may be conservative for some
applications. An alternative approach is to start from alEnaalue form in Step 2) of Algorithm 5 and gradually
increase its value until the performance saturates. Odysiegjuarantees that this tentative procedure can evntua

reach any pre-specified suboptimal performance by gradiradteasingm.

E. More Examples

e,m €,m

2If N is infinite, the policy[75."] x would be the same asSy
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Fig. 6. Complexity distributions of the random examples.

1) : First consider a simple DSLQR problem with control horizgn= 1000 and two second-order subsystems:

A1:21 Blzl,A2:21,Bgzl
0 1 1 0 0.5 2

Suppose that the state and control weights@ye= Q2 = I, and R, = Ry = 1, respectively. Both subsystems are
unstable but controllable. Algorithm 5 is applied to solhestDSLQR problem. Withs = 10~3, the upper bound
of the required number of iterations mf\’f = 56, while as observed in the simulation, the value functioeaxdy
converges in 6 steps. Sindé& (z) is homogeneous and symmetric, in Fig. 5, we plot the evalutibthe value
functions on the upper half of the unit circle, i.e. the psiof the formz(#) = [cos(6),sin(#)]T with § € [0, ).
The number of matrices ifi(j, at each ste is listed in Table I. It can be seen that§| is indeed very small and

stays at the maximum valugas opposed to growing exponentially as k increases.

TABLE |

|H{,| FOREXAMPLE VI-E.1

k 1 2 3 4 5 6
IHE| 2 4 5 5 5 5

2) Random ExamplesTo further demonstrate its effectiveness, Algorithm 5 isted by two sets of randomly
generated DSLQR problems. The first set consists of 1000dimensional DSLQR problems with 10 subsystems.
The second set consists of 1000 four-dimensional DSLQRI@nob with 4 subsystems. For both sets, the control
horizon NV is infinite and§ = 1073. All of these problems are successfully solved by Algoritbmand the
distributions of the complexity, namely, the maximum numnslef matrices required for characterizing the suboptimal
policy, are plotted in Fig. 6. It can be seen from the figuret thid of the two-dimensional problems require
less than50 matrices and a majority of them only need less than 15 matridewever, a majority of the four-

dimensional problems need about 40 matrices and some ofriiemeed more than 100 matrices. The complexity
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of Algorithm 5 depends heavily on the state dimension. Inghéi dimensional state space, a larger relaxafion

is usually needed in order to retain a high computationatdpe

VII. CONCLUSION

We have proved that the value function of the DSLQR problemiésewise quadratic and can be characterized
by a finite number of p.s.d. matrices in the switched Riccets$ 8{,. These matrices can be obtained analytically
through the switched Riccati mapping. The main challengsobfing the DSLQR problem is on the exponential
growth of |Hy|. Three types of simplifications have been proposed to oweedthis difficulty. First, some matrices
in Hy, are algebraically redundant and can be directly removelonttaffecting the value function and the optimal
strategy at all. Second, many matrices?f) are numerically redundant in the sense that removing thelin wi
only incur a small error on the value function. Third, undemg& mild conditions, the value function converges
exponentially fast to the infinite-horizon value functidrhus, we can terminate the value iteration at some early
steps with satisfactory numerical performance. Efficidgbathms based on one or more of the above ideas are
developed to achieve various design goals. Analytical itiamé have been derived to guarantee the stability and
suboptimality of the obtained policy. The results of thigppacan be used to study many other problems of
the switched linear systems, such as the switched Kalmamiridf problem, the switched LQG problem, and the

switched receding horizon control problem, etc. All of thesll be our future research directions.

APPENDIX |

PROOF OFLEMMA 9

Lemma 11:With the same notations as in Section VI, we have

N-1
Vi(z) < V() +e Y ok v (42)
t=0
Proof: By definition, Vi (z) = V;(z). Thus, the desired inequality holds féf = 0. Now suppose it is true
for a generalV > 0, we shall show it is also the case fof + 1. Substituting (42) into (30) witlk = N, we have

N-1
Vi1 < min{L(z,u,0) + Va(doz + Bou) + 3 el g (]2 (43)
’ t=0

Let (4,0) = Exp1(2) = (W1 (2), v 1(2)), 1€, (4, 0) is the first step of th¢ N + 1)-horizon optimal policy at
statez. Thus, we havel;z + Byt = x} 4 (1). By Bellman’s principle of optimality, we know that th¥-horizon
optimal trajectory starting from? ., (1) coincides with the lasV steps of the/V + 1)-horizon optimal trajectory
originating fromz. Therefore, under thigi, v), we haver’, ., p ; n(t) = 2} y(t+1) foreacht =0,..., N—1.
In addition, by the definition ot} ,, we also havel(z,u,9) + Vn(Asz + Byt) = Vyy1(2). Notice that this

(u,0) is just one choice of all the possible hybrid controls in (48)nce,

N
Vg S Vvi(z) + EZ 2% nea (812
=1
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Then it follows from (31) that

N
Vi1(2) € Vi (2) + ez < Vivpa (2) + €3 |2k v (011
=0

Thus, the inequality also holds fay + 1.
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Proof: [Proof of Lemma 9] By Theorem 2 and some simple computatimmshaveZiV:O 2% na (O]? <

1+(B/A5—1)y . . -
———2——. The desired result then follows directly from Lemma 11 ameduality (31). m
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