1983

A Linear Time Algorithm for the Minimum Area Rectangle Enclosing a Convex Polygon

Dennis S. Arnon

John P. Gieselmann

Report Number:
83-463

http://docs.lib.purdue.edu/cstech/382

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
ABSTRACT

We give an \( O(n) \) algorithm for constructing the rectangle of minimum area enclosing an \( n \)-vertex convex polygon.

Keywords: computational geometry, geometric approximation, minimum area rectangle, enclosing rectangle, convex polygons, space planning.
1. Introduction. The problem of finding a rectangle of minimal area that encloses a given polygon arises, for example, in algorithms for the cutting stock problem and the template layout problem (see e.g. [4] and [1]). In a previous paper, Freeman and Shapira [2] show that the minimum area enclosing rectangle for an arbitrary (simple) polygon \( P \) is the minimum area enclosing rectangle \( R_P \) of its convex hull. They give an algorithm which first constructs the convex hull of the input polygon \( P \), then constructs \( R_P \) in time \( O(n^2) \), where \( n \) is the number of vertices of the hull.

In this paper we give an \( O(n) \) algorithm for constructing the rectangle of minimum area enclosing an \( n \)-vertex convex polygon. If our algorithm is combined with an \( O(s) \) algorithm for finding the convex hull of an \( s \)-vertex simple polygon (e.g. [5] or [3]), one has an \( O(s) \) algorithm for finding the minimum area enclosing rectangle of an \( s \)-vertex simple polygon. We remark that our algorithm resembles, and in fact was inspired by, an algorithm in [6], p. 79, for finding the antipodal pairs of vertices of a convex polygon.

Section 2 has background material, Section 3 gives the algorithm and proves the bound on its computing time, and the Appendix has implementation notes.

2. Background. A line of support of a simple polygon \( P \) [6] is a line \( L \) meeting the boundary of \( P \), such that \( P \) lies entirely on one side of \( L \). It is well known (e.g. [7], p. 8) that a convex polygon possesses exactly two lines of support having a given slope.

By an enclosing rectangle of a polygon we mean a rectangle whose interior contains the interior of the polygon. An encasing rectangle is an enclosing rectangle \( R \) of minimal area among enclosing rectangles having sides with the same slopes as the sides of \( R \) (Figure 1).

Given any pair of parallel lines, and a second pair of parallel lines perpendicular to the first, the four lines have exactly four intersections, which are the vertices of a rectangle. Clearly an encasing rectangle of a convex polygon is the rectangle formed by two
perpendicular pairs \((L_1, L_2), (L_3, L_4)\) of parallel lines of support of the polygon (Figure 2).

*Figure 1 - Enclosing rectangle (left) and encasing rectangle (right)*

*Figure 2 - Lines of support forming encasing rectangle*
For each edge of a convex polygon, there is a unique encasing rectangle collinear with that edge, namely the rectangle formed by the line of support \( L_1 \) collinear with the edge, the unique line of support \( L_2 \) parallel to \( L_1 \), and the unique pair \((L_3, L_4)\) of lines of support perpendicular to \( L_1 \) (Figure 3).

Our algorithm relies on:

**Theorem 2.1.** ([2]) A rectangle of minimum area enclosing a convex polygon has a side collinear with some edge of the polygon.

We summarize the algorithm. We will say that a rectangle having a side collinear with an edge of a polygon is "anchored" on that edge. From Theorem 2.1, it follows that we can find the minimum area enclosing rectangle for a convex polygon by finding the minimum of the areas of the encasing rectangles anchored on the edges of the polygon. For each edge, we determine the distance between the two lines of support of the polygon parallel to that edge (one of these lines is collinear with the edge), and the

![Figure 3 - Encasing rectangle collinear with edge of convex polygon](image-url)
distance between the two lines of support perpendicular to the first pair. The area of the
casning rectangle anchored on this edge is the product of these distances. If we know
one vertex on each line of support, and the slope of the edge, then the distances between
the two pairs of lines of support can be computed in constant time. We determine a ver-
tex on each line of support by keeping track of the angle of rotation, from the current
edge, that we must go through to reach other edges, and observing that the four lines of
support are respectively rotated through angles of 0, \( \frac{\pi}{2} \), \( \pi \), and \( \frac{3\pi}{2} \) radians from the
current edge.

3. The Algorithm.

ALGORITHM MINIMUM_AREA_RECTANGLE

Input: a convex polygon \( P \).
Output: The area \( A \) of a rectangle of minimum area enclosing \( P \), and
an edge of \( P \) at which such a rectangle can be anchored.

{ Beginning of comments.

We assume that \( P \) is given in standard form ([6]): (the \( x \) and \( y \) coordinates of) its ver-
tices \( \{v_i\} \) \( (1 \leq i \leq n) \) are listed in counterclockwise order, all vertices are distinct, no
three consecutive vertices are collinear, and the vertex with smallest \( y \)-coordinate is listed
first (if there is a tie, choose the one with least \( x \)-coordinate).

indices \( i, j, k, m \) below are mod \( n \). \( \alpha, \beta, \gamma, \) and \( \delta \) are variables; \( \pi \) is the constant
3.14159... 

We use the following (constant-time) functions:

PERPDIST\( (x_1, y_1, x_2, y_2, s) \)
\( \{ \) returns the perpendicular distance from the line through \((x_1,y_1)\)
with slope \( s \) to the line through \((x_2,y_2)\) with slope \( s \).\( \} \)

ANGLE\( (i) \)
\( \{ \) returns the counterclockwise angle of rotation (in radians) between the
edge \((v_i-1,v_i)\) and the edge \((v_i,v_{i+1})\).

End of comments.\}

{Initialization}
\( \alpha := 0.0; \quad j := 2; \quad \beta := \text{ANGLE}(2); \)
\( k := 2; \quad \gamma := \beta; \quad m := 2; \quad \delta := \beta; \)
{Find area of encasing rectangle anchored on each edge.}
for $i := 1$ to $n$ do begin

{Find angle of rotation of next edge of polygon}
if $i > 1$ then $\alpha := \alpha + \text{ANGLE}(i)$;

{Find a vertex on first perpendicular line of support}
while $\beta < \alpha + \frac{\pi}{2}$ do begin
    $j := j + 1$; $\beta := \beta + \text{ANGLE}(j)$;
end;

{Find a vertex on parallel line of support.}
while $\gamma < \alpha + \pi$ do begin
    $k := k + 1$; $\gamma := \gamma + \text{ANGLE}(k)$;
end;

{Find a vertex on second perpendicular line of support.}
while $\delta < \alpha + \frac{3\pi}{2}$ do begin
    $m := m + 1$; $\delta := \delta + \text{ANGLE}(m)$;
end;

{Find distances between parallel and perpendicular lines of support}
if $x_{i+1} = x_i$ then begin
    $d_1 := |x_k - x_j|$;
    $d_2 := |y_m - y_j|$;
end
else if $y_{i+1} = y_i$ then begin
    $d_1 := |y_k - y_j|$;
    $d_2 := |x_m - x_j|$;
end
else begin
    $\text{slope} := \frac{(y_{i+1} - y_i)}{(x_{i+1} - x_i)}$;
    $d_1 := \text{PERPDIST}(x_i, y_i, x_k, y_k, \text{slope})$;
    $d_2 := \text{PERPDIST}(x_j, y_j, x_m, y_m, \frac{1}{\text{slope}})$;
end;

{Compute area of encasing rectangle anchored on current edge.}
$A_i := d_1 \cdot d_2$;
if $i = 1$ or $A_i < A$ then begin
    $A := A_i$; $\text{edge} := i$;
end;
end.

THEOREM 3.1. Algorithm MINIMUM AREA RECTANGLE finds the area of a minimum area enclosing rectangle of an n-vertex convex polygon, and an edge at which such a rectangle can be anchored, in time $O(n)$.

Proof. As $i$ increases from 1 to $n$, $\alpha$ increases from 0 to a value less than $2\pi$. It follows that the values of $\beta$, $\gamma$, and $\delta$ never exceed $4\pi$. Hence the value of any of these three variables is altered at most $2n$ times. Hence the total time for all $n$ executions of the loop is $O(2n) = O(n)$. □

Acknowledgement.

We thank Jon Bentley for pointing us to Shamos' work.

References

4. **Appendix.** For implementation of the algorithm, we have developed improvements which appear to decrease actual running time. Since a sine or cosine calculation takes a significantly greater time than an addition or multiplication, we replace the ANGLE function by vector dot and cross products. The DOT and CROSS functions below essentially return arccos and arcsin (respectively) of the angle between their vector arguments.

\( j \) can be computed by noting that \( \arccos(0) < 0.0 \) for \( \frac{\pi}{2} < 0 < \frac{3\pi}{2} \) radians. \( k \) can be computed by using \( \arcsin(0) < 0.0 \) for \( \pi < 0 < 2\pi \) radians, and \( m \) can be computed by using \( \arccos(0) > 0.0 \) for \( 0 > \frac{3\pi}{2} \) radians.

The revised algorithm follows.

**ALGORITHM MINIMUM_AREA_RECTANGLE**

**Input:** a convex polygon \( P \).

**Outputs:** The area \( A \) of a rectangle of minimum area enclosing \( P \), and an edge of \( P \) at which such a rectangle can be anchored.

{ Beginning of comments.

We assume that \( P \) is given in standard form ([6]): (the \( x \) and \( y \) coordinates of) its vertices \( \{v_i\} (1 \leq i \leq n) \) are listed in counterclockwise order, all vertices are distinct, no three consecutive vertices are collinear, and the vertex with smallest \( y \)-coordinate is listed first (if there is a tie, choose the one with least \( x \)-coordinate).

indices \( i, j, k, m \) below are mod \( n \).

We use the following (constant-time) functions:

**PERPDIST\((x_1,y_1,x_2,y_2,s)\)**

{returns the perpendicular distance from the line through \((x_1,y_1)\) with slope \( s \) to the line through \((x_2,y_2)\) with slope \( s \).}

**DOTPR\((cur,nxt)\)**

{returns the dot product of the vectors from vertices \( cur \) to \( cur + 1 \) and \( nxt \) to \( nxt + 1 \).}

**CROSSPR\((cur,nxt)\)**

{returns the cross product of the vectors from vertices \( cur \) to \( cur + 1 \) and \( nxt \) to \( nxt + 1 \).}

end of comments. }
\{Initialization\}
\[ j := 1; \]

\{Find area of encasing rectangle anchored on each edge.\}
\textbf{for} \(i := 1\) \textbf{to} \(n\) \textbf{do begin}

\hspace{1em}\{ Find a vertex on first perpendicular line of support \}
\textbf{while} \( \text{DOTPR}(i, j) > 0.0 \) \textbf{do begin}
\hspace{2em} \( j := j + 1; \)
\textbf{end;}

\hspace{1em}\{ Find a vertex on parallel line of support \}
\textbf{if} \(i = 1\) \textbf{then} \( k := j; \)
\textbf{while} \( \text{CROSSPR}(i, k) > 0.0 \) \textbf{do begin}
\hspace{2em} \( k := k + 1; \)
\textbf{end;}

\hspace{1em}\{ Find a vertex on second perpendicular line of support \}
\textbf{if} \(i = 1\) \textbf{then} \( m := k; \)
\textbf{while} \( \text{DOTPR}(i, m) < 0.0 \) \textbf{do begin}
\hspace{2em} \( m := m + 1; \)
\textbf{end;}

\{Find distances between parallel and perpendicular lines of support\}
\textbf{if} \(x_{i+1} = x_i\) \textbf{then begin}
\hspace{2em} \( d_1 := |x_k - x_i| \)
\hspace{2em} \( d_2 := |y_m - y_j| \)
\textbf{end}
\textbf{else if} \(y_{i+1} = y_i\) \textbf{then begin}
\hspace{2em} \( d_1 := |y_k - y_i| \)
\hspace{2em} \( d_2 := |x_m - x_j| \)
\textbf{end}
\textbf{else begin}
\hspace{2em} \( \text{slope} := \frac{(y_{i+1} - y_i)}{(x_{i+1} - x_i)} \); \( d_1 := \text{PERPDIST}(x_i, y_i, x_k, y_k, \text{slope}); \)
\hspace{2em} \( d_2 := \text{PERPDIST}(x_j, y_j, x_m, y_m, \frac{1}{\text{slope}}); \)
\textbf{end;}

\{Compute area of encasing rectangle anchored on current edge.\}
\( A_i := d_1 \cdot d_2; \)
\textbf{if} \(i = 1\) \textbf{or} \(A_i < A\) \textbf{then begin}
\hspace{2em} \( A := A_i; \text{edge} := i; \)
\textbf{end;}
end.