Soil Modification Mix Design

An Overview of Sample Acquisition and Laboratory Testing

By: David Harness, P.E.
Alt & Witzig Engineering
Soil Modification Mix Design

- Typical questions:
 - Who does this work?
 - What about sampling?
 - What laboratory tests will be conducted?
 - What will the design tell me?

- How long will it take?
Most often the specialty contractor would include the mix design portion of the project in their costs. Most times they will contact the consultant.

<table>
<thead>
<tr>
<th>Soil Modification Mix Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who does the mix design?</td>
</tr>
<tr>
<td>- An INDOT approved Geotechnical Laboratory</td>
</tr>
<tr>
<td>- Ask INDOT Geotechnical or visit their website</td>
</tr>
<tr>
<td>- Ask the specialty contractor</td>
</tr>
</tbody>
</table>
Typically 2-3 samples are collected. Larger jobs may have many samples over the length of the project. Collect 50-75 pounds per sample. Label with contract number, station & offset. Close or cover sample so that “as received” moisture content can be determined.
Typically 2-3 samples are collected. Larger jobs may have many samples over the length of the project. Collect 50-75 pounds per sample. Label with contract number, station & offset. Close or cover sample so that “as received” moisture content can be determined.
Typically 2-3 samples are collected. Larger jobs may have many samples over the length of the project. Collect 50-75 pounds per sample. Label with contract number, station & offset. Close or cover sample so that “as received” moisture content can be determined.
Typically 2-3 samples are collected. Larger jobs may have many samples over the length of the project. Collect 50-75 pounds per sample. Label with contract number, station & offset. Close or cover sample so that “as received” moisture content can be determined.
Typically 2-3 samples are collected. Larger jobs may have many samples over the length of the project. Collect 50-75 pounds per sample. Label with contract number, station & offset. Close or cover sample so that “as received” moisture content can be determined.
Typically 2-3 samples are collected. Larger jobs may have many samples over the length of the project. Collect 50-75 pounds per sample. Label with contract number, station & offset. Close or cover sample so that “as received” moisture content can be determined.
Soil Modification Mix Design

- What laboratory tests will be conducted?
 - Grain size Analysis
 - Hydrometers and Sieves
 - Atterberg Limits
 - pH, Soluble Sulfates, Moisture Content
 - Moisture-Density Relationship (Proctor)
 - In some cases: LOI, Marl, Eades & Grim
<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Total Qualification</th>
<th>HI</th>
<th>PI</th>
<th>PI1</th>
<th>LU</th>
<th>I</th>
<th>U</th>
<th>O1</th>
<th>O2</th>
<th>Occasional Joints</th>
<th>Anomalous Joints</th>
<th>%</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1300</td>
<td>A+ (O) SILT LOAM</td>
<td>88.6</td>
<td>82.4</td>
<td>59.2</td>
<td>11.2</td>
<td>36.6</td>
<td>86.0</td>
<td>2.3</td>
<td>5.8</td>
<td>23</td>
<td>22</td>
<td>1</td>
<td>2.7</td>
</tr>
<tr>
<td>1310</td>
<td>A+ (O) SILT LOAM</td>
<td>100.0</td>
<td>98.0</td>
<td>72.0</td>
<td>0.0</td>
<td>24.8</td>
<td>72.4</td>
<td>2.9</td>
<td>9.9</td>
<td>26</td>
<td>20</td>
<td>6</td>
<td>2.4</td>
</tr>
<tr>
<td>134 Lime C</td>
<td>A+ (O) SILT LOAM</td>
<td>95.0</td>
<td>92.0</td>
<td>88.7</td>
<td>0.0</td>
<td>2.0</td>
<td>75.0</td>
<td>10.2</td>
<td>5.4</td>
<td>30</td>
<td>21</td>
<td>9</td>
<td>4.75</td>
</tr>
<tr>
<td>135 Lime C</td>
<td>A+ (O) SILT LOAM</td>
<td>94.0</td>
<td>92.0</td>
<td>78.9</td>
<td>0.2</td>
<td>15.0</td>
<td>71.6</td>
<td>3.3</td>
<td>4.6</td>
<td>27</td>
<td>20</td>
<td>7</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Chemical Modification Summary

- Project Name: I-90
- Location: Indiana - Greene County
- NOTE: NT = Not Tested

DES #: INDOT Contract # I-90-32720

All S. Willig Engineering, Inc.

4105 West 60th St.
Carmel, IN 46032
Telephone: 317-875-7000
Fax: 317-876-3700
Soil Modification Mix Design

- Soil Classification Completed
 - Time to add the chemicals!
 - Lime product, Cement, or both?
 - Chemical selection depends on soil type
 - Moderately to Highly Plastic (A-7-6) (A-6)
 - Lime By-Product (LKD) or Quicklime (rare)
 - Low to Moderate Plasticity (A-6) (A-4)
 - Lime and/or Cement
 - Granular (A-4) (A-2-4) (A-1-a)
 - Cement
Comment on the shift in MDD and OMC
Soil Modification Mix Design

- Soil-Chemical MDD and OMC determined
 - Create strength specimens or “pills”
 - Compact mixture at ~95% MDD of T-99 effort
 - Mixture at OMC to +2%
 - Cure the specimens in plastic baggies in cure room at 100% humidity and ~73°F for 48 hrs
 - After cure, test in unconfined compression
 - Compare the average strength of two soil-chemical pills to an untreated soil pill to determine the “gain”

Mention that we also test “natural” pills
Soil Modification Mix Design

<table>
<thead>
<tr>
<th>Specimen ID</th>
<th>PLID</th>
<th>Specimen Description</th>
<th>Strength Specimen Data</th>
<th>Minimum M.C. @ time of Composition (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LL</td>
<td>PL</td>
</tr>
<tr>
<td>S1061</td>
<td>1</td>
<td>Cement</td>
<td>104.0</td>
<td>17.6</td>
</tr>
<tr>
<td>S1064</td>
<td>1</td>
<td>Lime 1</td>
<td>98.2</td>
<td>17.6</td>
</tr>
<tr>
<td>S1064</td>
<td>1</td>
<td>Lime 2</td>
<td>98.6</td>
<td>17.7</td>
</tr>
<tr>
<td>S1064</td>
<td>1</td>
<td>Natural</td>
<td>98.0</td>
<td>17.9</td>
</tr>
<tr>
<td>S1120</td>
<td>1</td>
<td>Cement</td>
<td>102.4</td>
<td>17.4</td>
</tr>
<tr>
<td>S1120</td>
<td>1</td>
<td>Lime 1</td>
<td>97.7</td>
<td>17.8</td>
</tr>
<tr>
<td>S1120</td>
<td>1</td>
<td>Lime 2</td>
<td>98.6</td>
<td>17.9</td>
</tr>
<tr>
<td>S1120</td>
<td>1</td>
<td>Natural</td>
<td>104.8</td>
<td>17.4</td>
</tr>
</tbody>
</table>
Soil Modification Mix Design

- Current Strength Gain Requirements
 - Lime based chemicals
 - 50 psi
 - Cement
 - 100 psi
Soil Modification Mix Design

- **Report Recommendations**
 - If only one chemical meets the strength gain requirement, then that chemical is recommended.
 - If both chemicals are found to meet the requirements...
 - We generally lean toward lime (cost)
 - However, other non-laboratory parameters may dictate cement
 - If neither pass then it is likely that...
 - High plasticity, sugar sand, organics, waste materials
 - More testing would be required
Soil Modification Mix Design

- From the project we have been referencing:

 - "Recommendations
 -
 - We recommend 4% Portland Cement by dry weight be used for the soils at these locations. Chemically treated soils must be at or above the OMC as determined by the soil-chemical mixture. The soils-cement mixture should be at a minimum optimum moisture content of 17%."
Soil Modification Mix Design

- **Moisture-Water-H₂O**
 - Minimum moisture content prior to compaction
 - OMC to +2%
 - We must not leave the soil-chemical mixture thirsty!
 - Compacting soil-chemical mixture below OMC
 - Higher air voids
 - Incomplete chemical reaction
 - Potential for catastrophic subgrade failures
Soil Modification Mix Design

- Other Considerations
 - The laboratory testing is limited to the laboratory!
 - Consider all aspects of the project
 - Foundation Soils - are they stable?
 - Largest majority of subgrade modification "failures" are due to weak foundation soils
 - Must be treated before attempting subgrade modification
 - When will the work take place?
 - What worked on the previous section?
Soil Modification Mix Design

- **How long will it take?**
 - Typical projects can be completed in 2-3 weeks
 - Larger projects with more samples or troublesome soils will take longer
 - Our lab completes over 100 studies a year
 - Get the samples as early as possible!
 - Technically, the results need to be in the hands of the INDOT Engineer 5 days prior to field operations
Soil Modification Mix Design

- In Summary
 - Steps to initiate the mix design
 - Sampling locations & number
 - Laboratory testing requirements
 - Recommendations of the report
 - Time frame for the study

- Thank you, hold the questions please!