
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

8-16-2007

Secure Neighbor Discovery in Wireless Sensor
Networks
Saurabh Bagchi
Purdue University, sbagchi@purdue.edu

Srikanth Hariharan
Purdue University, srikanth@purdue.edu

Ness Shroff
Purdue University, shroff@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Bagchi, Saurabh; Hariharan, Srikanth; and Shroff, Ness, "Secure Neighbor Discovery in Wireless Sensor Networks" (2007). ECE
Technical Reports. Paper 360.
http://docs.lib.purdue.edu/ecetr/360

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F360&utm_medium=PDF&utm_campaign=PDFCoverPages

Secure Neighbor Discovery in Wireless Sensor

Networks

Srikanth Hariharan, Ness B. Shroff and Saurabh Bagchi

School of Electrical and Computer Engineering, Purdue University

Email: {srikanth, shroff, sbagchi}@purdue.edu

Abstract. Wireless Sensor Networks are increasingly being used for data monitoring in

commercial, industrial, and military applications. Security is of great concern from many

different viewpoints: ensuring that sensitive data does not fall into wrong hands; ensuring

that the received data has not been doctored; and ensuring that the network is resilient to

denial of service attacks. We study the fundamental problem of Secure Neighbor Discovery

problem, which is critical to protecting the network against a number of different forms

of attacks. Sensor networks, deployed in hazardous environment, are exposed to a variety

of attacks like eavesdropping, message tampering, selective forwarding, wormhole and sybil

attacks. Attacks against the data traffic can be addressed using cryptographic techniques.

We first present an efficient and scalable key-distribution protocol which is completely secure

in the absence of colluding malicious nodes. Secure neighbor discovery can help to defend

against a majority of the attacks against control traffic. We consider a static network and

propose a secure one-hop neighbor discovery protocol. We show by analysis that this protocol

effectively prevents two non-neighboring nodes from becoming neighbors even when both the

nodes have been compromised by the adversary. We then extend this protocol so that it works

even when nodes are incrementally deployed in the network. We also briefly study how this

protocol could be modified for mobile sensor networks. Finally, we compare our protocol with

existing neighbor discovery protocols and analyze the advantages and disadvantages of using

these protocols.

1

1 Introduction

1.1 Wireless Sensor Networks

A wireless sensor network is a wireless network made of numerous small sensor nodes. The

sensor nodes are self-contained units consisting of a battery, radio and sensors and a processor

with minimal computation power. Thus, they are resource starved devices with a minimal

amount of memory, energy and computation power. These nodes perform a variety of func-

tions including sensing, communication and computation. They may be static nodes which

stay in a fixed position throughout their lifetime or mobile nodes which may move to various

locations depending on the function that they need to perform. Wireless sensor networks are

a particular class of wireless ad-hoc networks which do not need any fixed routing units or

base stations in order to communicate. Each sensor node can communicate with nodes that

are within its communication range. We call nodes that are within the communication range

of a sensor node as its one-hop neighbors, or just neighbors. Intermediate nodes perform the

routing operation when a sensor node wants to communicate with a node that is not within

its communication range and the communication is usually by wireless RF links that have a

low bandwidth.

1.1.1 Deployment

Sensor networks are used in commercial and industrial applications to monitor data that

would be difficult or expensive to monitor otherwise. They could be deployed in wilderness

areas, where they would remain for many years without the need to recharge or replace their

power supplies. Since the environment that they monitor is generally hostile, it is usually not

possible to deploy each node in a known location. Sensor nodes might therefore be scattered

from a plane onto the region that they would be monitoring. Consequently, a sensor node,

upon deployment, does not have knowledge of the nodes that are its neighbors.

1.1.2 Communication

Like wireless ad-hoc networks, sensor networks have two modes of communication.

1. Local Broadcast (One to Many)

2

2. Node to Node (One to One)

When a sensor node sends a packet by local broadcast, all its neighbors receive the packet.

In the other case, the sensor node can send the packet to a specific node alone.

1.2 Security Attacks on Wireless Sensor Networks

Due to the open nature of communication and the hostile environments in which sensor

nodes are deployed, security becomes a critical concern in sensor networks. An adversary

can eavesdrop on packets, tamper messages, spoof identity and can also unleash a variety of

routing (blackhole, wormhole) and physical layer attacks. Nodes can be compromised and

compromised nodes might collude.

To protect against eavesdropping, message tampering and identity spoofing, a variety of

cryptographic protocols for sensor networks have been proposed that address the encryption

and authentication issues. Routing and physical layer attacks are still a major concern and

[12], [29], [10], [11], [13], [14], [15] suggest measures to protect against these attacks.

1.3 Problem Statement

We focus on the problem of secure neighbor discovery in wireless sensor networks. Recent

work [13], [15], [14], [16], [35], among others, have assumed that the time taken to compromise

a sensor node is greater than the time required for neighbor discovery. Since the time taken

to compromise a sensor node and the time required for neighbor discovery are both expected

to be of the order of seconds, there is a chance that a very small fraction of the nodes are

compromised before they perform neighbor discovery.

Neighbor discovery, if not correctly performed, can lead to the launch of serious security

attacks against the network. For instance, an adversary who wants to unleash a wormhole or

a sinkhole attack [12] will want to make his neighbors believe that he lies on the best routing

path. Once he succeeds in this operation, he gains control over the routing path and can

selectively forward or drop packets, tunnel them to another adversary, etc.

We propose a secure neighbor discovery protocol for WSNs. One of the fundamental

requirements in any security protocol is an efficient way of key distribution and management.

Therefore, we first present an implementation of an existing key pre-distribution scheme [2]

3

which is memory efficient, scalable, does not incur any communication overhead and is secure

as long as there are no colluding malicious nodes in the network. We use this scheme for

initial secure authentication between any pair of nodes. This scheme is very efficient as long

as there are no colluding malicious nodes in the WSN.

We, then, propose a secure one-hop neighbor discovery protocol for static sensor networks

when all the nodes are deployed initially. Neighbor discovery protocols are vulnerable to a

variety of attacks that could either prevent two neighboring nodes from becoming neighbors

or could make two non-neighboring nodes to believe that they are neighbors. Our protocol

focusses on the latter issue. We show how the adversary can use a specific form of the

wormhole attack and make two nodes that are not within the communication range of each

other to believe that they are neighbors and show how our protocol effectively counters such

an attack. We do not protect against brute force denial of service attacks, such as physical

destruction of nodes or physical layer jamming.

We then consider the case in which sensor nodes are incrementally added to the network.

Sensor nodes are prone to natural failure. Also, there might be a need to deploy more nodes

when the sensing operation needs more redundancy for better accuracy. Incremental addition

might also be necessary when a compromised node has been detected and removed from the

network. So we study how to perform neighbor discovery in such a scenario. We show how our

protocol could be easily extended so that it could be used even when nodes are incrementally

deployed in the WSN.

We further study briefly about the problem of neighbor discovery in mobile networks and

how our protocol could be modified to handle mobility.

Finally, we compare our protocol with existing neighbor discovery protocols. We analyze

the advantages and disadvantages of using these protocols. This provides us an insight into

designing better protocols to solve this problem.

1.4 Contributions

• Modified an existing key pre-distribution scheme and presented a scalable, secure key

management scheme that incurs significantly lesser communication overhead compared

to other existing protocols.

4

• Proposed a secure neighbor discovery protocol for static sensor networks which effec-

tively prevents two non-neighboring nodes from convincing themselves as well as their

other actual neighbors that they are neighbors.

• Extended this protocol for incremental node deployment and studied briefly about using

this protocol for mobile networks.

• Compared between various neighbor discovery protocols and suggested factors that

should be taken into consideration in order to design better protocols.

1.5 Outline

The rest of this paper is organized as follows. Section 2 talks about the key establishment

protocol. Section 3 describes the secure neighbor discovery protocol for static sensor networks.

Section 4 explains the extension of this protocol for incremental node deployment and for

handling mobility. Further, Section 4 compares between existing neighbor discovery protocols

and analyzes the advantages and disadvantages of using such protocols. Section 5 presents

the related work in this field. Finally, Section 6 concludes the paper and provides directions

for future research.

2 Key Distribution

2.1 Key Pre-distribution - An Introduction

Key establishment in sensor networks is a challenging problem because of the resource con-

strained nature of these networks. Assymetric key cryptosystems have been generally agreed

in the literature [5], [7], [4], [28] to be computation intensive and therefore unsuitable for sen-

sor networks. A lot of symmetric key cryptographic protocols have therefore been analyzed.

The primary goals that an ideal symmetric key cryptosystem for sensor networks must achieve

have been summarized below:

• Secure communication between any two nodes.

• Memory-scalable: By memory scalability, we mean that when the number of nodes in

5

the networks increase by an order of magnitude, the number of keys that each node

needs to store should increase gradually.

• Low communication and bandwidth overhead.

• Energy-aware: Since communication consumes the maximum energy in sensor nodes,

the sensor nodes are expected to sleep during a majority of the time.

• A graceful degradation in performance when nodes get compromised.

A simple and naive solution that ensures secure communication between any pair of nodes

would be to have a pair-wise key between any two nodes. But such an approach is obviously

not scalable. At the other extreme, we might have a symmetric key management protocol

that relies on a common shared secret key between all the nodes in the network leading to a

highly insecure deployment. The additional requirement to minimize communication overhead

makes most of the proposed purely symmetric algorithms impractical for WSNs.

In [2], Blom proposes a key pre-distribution scheme that allows any pair of nodes to find a

pair-wise key between them. Compared to the (N − 1) pair-wise key pre-distribution scheme,

Blom’s scheme uses only δ + 1 memory spaces with δ much smaller than N . The tradeoff is

that, unlike the (N −1) pair-wise key scheme, Blom’s schmee is not perfectly resilient against

node capture. If δ + 1 nodes are compromised and they collude, all pair-wise keys of the

entire network are compromised. But, as δ increases, the computational and storage overhead

increase. [3], [6], [20] extend Blom’s work to provide higher scalability and a larger number of

nodes to be compromised in order to expose the entire network.

A different flavor of protocols [16], [28] enable secure communication between any pair

of nodes irrespective of the number of nodes compromised but they require each node to

communicate with the base station initially, thus incurring a large communication overhead.

Since the focus of our problem is secure neighbor discovery, our key pre-distribution proto-

col uses an implementation of Blom’s scheme for initial authentication and neighbor discovery.

In the absence of colluding nodes, the protocol guarantees that the communication between

any two non-compromised nodes is secure irrespective of the number of nodes compromised

in the network.

6

Since this protocol becomes increasingly ineffective in the presence of colluding nodes, the

keys cannot be used for communication when malicious nodes begin to collude. Therefore,

these keys can only be treated as temporary keys and should be deleted after initial usage.

New keys could be established with the help of the base station. The sections that follow talk

about the system model and the details of our key distribution protocol.

2.2 System Model and Assumptions

The WSN is deployed within a huge field which has been pre-determined.

2.2.1 Assumptions

Links between sensor nodes are assumed to be bi-directional. By bi-directional links, we

mean that two nodes are defined to have a link between them iff they can hear each other’s

transmission.

2.3 Attack Model

An attacker can be either an external node that does not know the cryptographic keys, or

an insider node, that possesses the keys. An insider node may be created by compromising

a legitimate node. All these malicious nodes can collude among themselves. Any malicious

node can eavesdrop on the traffic, tamper with messages, indulge in identity spoofing attacks,

or tunnel network traffic from one location of the network to a colluding node in another

location (wormhole attack). They can also buffer messages sent by a legitimate node and

read its messages when aone of its links is compromised.

2.4 The Key Pre-Distribution Protocol

2.4.1 Group key establishment

Let the number of sensor nodes that are going to be deployed initially be N. We arrange these

nodes in a virtual square grid (
√
N ×

√
N). For simplicity, lets assume that N is a perfect

square. The elements in the grid are referred by ij, 1≤i≤
√
N and 1≤j≤

√
N , where i denotes

the row and j denotes the column. We call ij as the Node ID of the sensor node in row i and

7

column j. Each sensor node has a pseudo-random function F that takes three keys as input

and returns a unique random key as its output.

An example of a 7× 7 virtual grid is shown below.

Figure 1: Example of a 7× 7 virtual grid.

We now divide the sensor nodes into three types of groups.

1. The Row Group : Sensor nodes in each row of the virtual grid share a common key

with other nodes in its row and a unique pair-wise key with sensor nodes in every other

row. For example, consider row i in the virtual grid. Each node i1, i2, ..., i
√
N share a

common key which we shall denote by Rii. Each node in row i also shares a common

key with each node in row j . We shall call the key that nodes in row i share with nodes

in row j as Rij .

2. The Column Group : This is similar to the row groups. Sensor nodes in each column

of the virtual grid share a common key with other nodes in its column and a unique

pair-wise key with sensor nodes in every other column. For example, in column i, the

common key shared between 1i, 2i, ...,
√
Ni is denoted by Cii and the key shared between

column i and column j shall be denoted by Cij .

3. The Diagonal Group : Apart from the row and column groups, sensor nodes in each

diagonal of the virtual grid share a common key with other nodes which lie on the same

diagonal and a unique pair-wise key with nodes in every other diagonal. We now explain

the numbering scheme for the diagonal. A node ij lies on the diagonal numbered by

(j− i). The common key shared between nodes that lie on the same diagonal is denoted

8

by D(j−i)(j−i). Consider nodes i1j1 and i2j2 lying on different diagonals. The key shared

between them is denoted by D(j1−i1)(j2−i2).

Since all the keys are symmetric, Rij = Rji, Cij = Cji and Dij = Dji.

2.4.2 Deriving pair-wise keys

Using the setup above, each node can derive the unique key that it shares with any other

node by knowing each other’s Node ID. Let us consider two nodes i1j1 and i2j2 wanting to

derive the key that they share. If the derived key is denoted by K, then

K = F (Ri1i2 , Cj1j2 , D(j1−i1)(j2−i2)) (1)

Let us study a simple example. Consider a network with 25 nodes, arranged in a 5 ∗ 5

virtual grid.

We will now see how keys can be established between different pairs of nodes.

1. Consider two nodes in the same row, say 21 and 23. The key shared between these two

nodes is given by F (R22, C13, D−11).

2. Consider two nodes in the same column, for instance, 12 and 22. The key shared between

them is given by F (R12, C22, D10).

3. Next consider two nodes in the same diagonal, say 21 and 32. The key shared between

them is given by F (R23, C12, D−1−1).

4. Finally consider two arbitrary nodes, say 11 and 23. The key shared between them is

given by F (R12, C13, D01).

2.4.3 Storage overhead

We now perform an analysis on the number of keys that need to be stored by each node and

by the network, on the whole. We show that this scheme requires only O(
√
N) keys to be

stored at each node and O(N) keys to be stored by the entire network, thus improving the

scalability over existing key distribution protocols.

9

Figure 2: Example of key establishment in a 5× 5 virtual grid.

Memory requirement at each node Since the virtual grid contains
√
N rows,

√
N

columns and 2
√
N − 1 diagonals, each node has to store

√
N Row Group keys,

√
N Col-

umn Group keys and 2
√
N−1 Diagonal Group keys. Thus, each node needs to store 4

√
N−1

keys. Thus, this scheme requires O(
√
N) keys to be stored at each node.

Memory requirement for the whole network Let TRGK , TCGK and TDGK represent the

total number of Row Group keys, Column Group keys and Diagonal Group keys respectively,

stored by the network. We then have,

TRGK = 1 + 2 + ...+
√
N (2)

TCGK = 1 + 2 + ...+
√
N (3)

TDGK = 1 + 2 + ...+ 2
√
N − 1 (4)

Thus if TN denotes the total number of keys stored by the network, we have

TN = TRGK + TCGK + TDGK

=
√
N(
√
N + 1) +

√
N(2
√
N − 1)

10

= 3N (5)

Thus, the network needs to store O(N) keys. This is a significant improvement compared to

the O(N2) keys that would be required by a protocol that stores a distinct key between any

pair of nodes in the network.

2.5 Security Analysis

It has been proved that in such a pre-distribution scheme, the presence of t compromised

colluding malicious nodes can expose the entire network ([3], [8]).

Proposition:

The communication between any two nodes, N1 and N2, is secure irrespective of the number

of nodes compromised as long as all the following conditions hold:

1. Neither of the two nodes, N1 and N2, is compromised.

2. There are no colluding malicious nodes in the network.

Proof:

If either of N1 or N2 is compromised, the communication between N1 and N2 is exposed.

Therefore, condition 1 is necessary.

Let P be the set of compromised nodes in the network. N1 6∈ P and N2 6∈ P . Let R12,

C12 and D12 denote the row, column and diagonal group keys, respectively, that N1 shares

with N2. To prove that condition 2 must also hold along with condition 1:

None of the compromised nodes collude.

For any M ∈ P ,

1. If M is in the same row as N1 or N2, M knows R12;

2. If M is in the same column as N1 or N2, M knows C12;

3. If M is in the same diagonal as N1 or N2, M knows D12;

4. Otherwise M does not know any of the keys that N1 and N2 share.

Since no nodes collude, M can obtain access to at the most two keys out of R12, C12 and

D12. Therefore, M cannot obtain the shared key between N1 and N2.

11

This completes the proof.

We now present a simple example to show that in the presence of three colluding malicious

nodes, communication between a lot of nodes is exposed.

Consider a network with 16 nodes arranged in a 4∗4 virtual grid as shown in Figure 3. We

will denote the nodes by Nij , where 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4, for convenience. Suppose N13,

N21 and N34 are compromised and they also collude with each other. Then, apart from the

communication between any node and any of these compromised nodes, the communication

between the following pairs of nodes is also exposed: N11 and N12; N11 and N23; N11 and

N24; N11 and N32; N11 and N43; N12 and N14; N12 and N23; N12 and N24; N12 and N31; N12

and N33; N12 and N41; N12 and N43; N12 and N44; N14 and N23; N14 and N24; N14 and N32;

N14 and N43; N22 and N23; N22 and N24; N22 and N32; N22 and N43; N23 and N24; N23 and

N31; N23 and N32; N23 and N33; N23 and N41; N23 and N42; N23 and N43; N23 and N44; N24

and N31; N24 and N32; N24 and N33; N24 and N41; N24 and N42; N24 and N43; N24 and N44;

N31 and N32; N31 and N43; N32 and N33; N32 and N41; N32 and N43; N32 and N44; N33 and

N43.

Figure 3: Security analysis in a 4×4 virtual grid. The boxed nodes are the malicious colluding
nodes.

Thus, a huge fraction of communication can become exposed in the presence of three

colluding malicious nodes.

12

2.6 Incremental Deployment

In this section, we briefly describe how this matrix based key pre-distribution scheme could

be made to handle incremental node deployment. We assume that the maximum number of

nodes that would be deployed in the WSN is known and analyze the number of additional keys

that need to be pre-distributed to each node so that it can securely establish communication

with incrementally deployed nodes.

2.6.1 The technique

We assume that each node that has been already deployed knows the ID of the last node

that was deployed in the WSN. Nodes are deployed in the WSN in the following order: (i, i),

(i− 1, i), (i, i− 1), (i− 2, i), (i, i− 2), ... , (1, i), (i, 1), (i+ 1, i+ 1), ... and so on.

Let the maximum number of nodes that would be deployed in the network be NMAX and

the number of nodes initially deployed be N . Each node then stores 4
√
NMAX − 1 keys while

it uses only 4
√
N − 1 keys. Therefore, for NMAX −N additional nodes to be deployed, each

sensor node has to store 4(
√
NMAX −

√
N) additional keys.

3 Secure Neighbor Discovery in Static Sensor Networks

This section suggests a protocol for secure one-hop neighbor discovery in WSNs in which the

sensor nodes are static. One of the important characteristics of WSNs is that they are self-

configuring, i.e., a large number of wireless nodes organize themselves to efficiently perform

the tasks required by the application after they have been deployed. One-hop neighbors of

a node are those which are within the radio communication range of the node. By secure

neighbor discovery, we mean that for any node in the WSN, no node that is not within its

one-hop communication range can become its neighbor. Malicious nodes that are within the

communication range might not respond to Hello packets sent by certain nodes. If a node does

not respond, it is only isolating itself and therefore cannot launch security attacks that are

more devastating than when it responds to Hello packets. Discovery of one-hop neighbors is

essential for a variety of applications which we will study in the next section. We then describe

our neighbor discovery protocol and analyze it for static sensor networks. We compare our

13

protocol with a protocol that uses directional antenna for neighbor discovery (proposed by Hu

and Evans), [9], and show that our protocol performs significantly better in a lot of aspects.

3.1 Importance of Secure Neighbor Discovery

Knowledge of one-hop neighbors is essential for almost every routing protocol, MAC proto-

cols and several other topology-control algorithms such as construction of minimum-energy

spanning trees. Neighbor disovery is, therefore, a crucial first step in the process of self-

organization of WSNs. Recently, neighbor discovery has also played a role in the securiy of

wireless sensor networks, especially for mitigating control and data traffic attacks. Simple

neighbor discovery has been found to significantly mitigate the wormhole attack in static

sensor networks, [9].

Since neighbor discovery is the first step performed by a sensor node upon deployment

and since neighbor discovery requires a very small amount of time, it might be difficult for an

adversary to compromise a lot of nodes before neighbor discovery is performed by the entire

network. But the compromise of even a single node during neighbor discovery can prove

significantly advantageous to the adversary to attack a variety of existing routing protocols.

Also, even external malicious nodes (nodes that do not possess the cryptographic keys) can

significantly affect neighbor discovery protocols. They just need to relay packets between

two non-neighboring nodes and make them believe that they are neighbors. False neighbor

discovery will also make protocols that trust on accurate neighbor discovery, like protocols that

fight against wormhole attacks, [13], [14], [15], [16] and certain routing protocols completely

useless. To understand this, let us consider the following examples.

Let there be two legitimate sensor nodes, A and B, which are not within communication

range of each other and an adversary M which is within communication range of both A and

B, as shown in Figure 4. During neighbor discovery phase, M can fool A and B to believe

that they are neighbors by relaying packets between them. After neighbor discovery, since A

and B believe that they are neighbors, all communication between them gets controlled by

the adversary M . If M colludes with another malicious node, the situation becomes worse.

Colluding malicious nodes can make even legitimate nodes that are very far from each other

to believe that they are neighbors. This is illustrated in Figure 5. Once a malicious node or a

14

set of colluding malicious nodes make two non-neighbor legitimate nodes to believe that they

are neighbors, they can easily create a wormhole and launch a variety of attacks against the

data traffic flowing on the wormhole, such as selectively dropping the packets.

Figure 4: A malicious node M , fooling two legitimate non-neighbor nodes A and B to become
neighbors. The communication range of A and B have been abstracted using circles of equal
radii.

Figure 5: Two malicious nodes, X and Y , fooling two nodes A and B, which are far away, to
become neighbors. The communication range of A and B have been abstracted using circles
of equal radii.

Therefore, secure neighbor discovery is of immense importance in WSNs. Research on

this topic can be broadly classified into three kinds of approaches to this problem. The first

approach assumes that there exists no malicious nodes during the neighbor discovery phase due

to which neighbor discovery is always secure and using this assumption, it proposes protocols

to prevent other attacks ([13], [14], [15], [16]). The second approach performs secure neighbor

15

discovery in the absence of wormhole attacks (for example - [26], [33]). Such an approach is

obviously not secure since even a single external malicious node can prevent neighbor discovery

from being accurate. The final kind of approach takes the wormhole attack into consideration

while performing neighbor discovery but it either requires specialized hardware in the form

of directional antenna arrays or tight synchronization which might not be feasible for sensor

networks ([11], [9]). More importantly, the directional antenna approach does not solve the

problem completely. We will discuss more about these approaches in section 4. The next

section talks about the system model and assumptions.

3.2 System Model and Assumptions

System Model: We assume that the links are bi-directional and the antennas on sensor nodes

are omnidirectional. Our protocol does not require the sensor nodes to have any specialized

hardware such as GPS or directional antennas. Additionally, the protocol does not require a

trusted base station. So, it can be used for neighbor discovery even in applications that func-

tion without a base station. However, the protocol does require a pair-wise key management

protocol (for example, key pre-distribution techniques as presented in [5], [6], [20]). If the en-

vironment is secure enough so that it is not possible to compromise two sensor nodes and make

them collude before the neighbor discovery phase gets completed, the key-predistribution pro-

tocol proposed in section 2 would be ideal. We assume that all sensor nodes are static and

we do not discuss about incremental node deployment at this stage. We also assume that

the sensor nodes are randomly distributed in the sensor field. Malicious nodes may be either

external nodes (that do not possess the cryptographic keys) or insider nodes (that have been

compromised by the adversary). We assume that malicious nodes (both external and inter-

nal) do not possess any specialized hardware, such as out-of-band channels or high powered

transmission till our protocol completes. Since, as we shall see later, our protocol takes a very

short time for neighbor discovery, it is reasonable to assume that an adversary cannot deploy

powerful nodes with such specialized hardware before neighbor discovery is finished.

Attack Model: The adversary can eavesdrop on the communication, tamper messages and

can relay neighbor discovery information between two non-neighbor nodes and make them

16

believe that they are neighbors (a form of wormhole attack). The malicious node compromised

by the adversary can collude with other malicious nodes and can even make nodes that are

far away to believe that they are one-hop neighbors. Essentially, the main intention of a

compromised malicious node would be to expand its neighbor list and also the neighbor lists

of other nodes and make as many non-neighbor nodes as possible to become neighbors so that

it could launch devastating attacks against the network in the future. We also do not protect

against Sybil attacks.

3.3 The Neighbor Discovery Protocol

3.3.1 The overhearing technique

The advantage of using omnidirectional antennas is that, when a node sends a packet, all its

neighbors can hear the node sending the packet. The identity of the node can be verified using

existing cryptographic techniques. Such a technique can be used to verify whether or not a

link exists between two nodes. In order for a node to verify whether a link exists between two

nodes, it must be within the communication range of both the nodes. We call such nodes as

verifiers. In order to perform link verification, each node requires two pieces of information.

• Each node needs to find the nodes that claim to be its neighbors.

• Each node needs to know the neighbors of each of its neighbors.

Neighbor verification can then be performed to determine whether the nodes that claimed

to be neighbors of a particular node are actually its neighbors.

But for the purpose of monitoring a link, for example, in a protocol like LiteWorp [13],

each node also needs to determine the actual neighbors of each of its neighbors. In order for

a node, X, to verify whether its neighboring node, Y , is actually transmitting to one of the

neighbors of Y (say Z), X also needs to know the neighbor list of Z. Then, X will know the

verifiers of the link from Y to Z and can hence use their response to determine whether the

link from Y to Z actually exists.

The neighbor discovery protocol is divided into two phases.

1. The Neighbor Discovery Phase

17

2. The Neighbor Verification Phase

We now describe the Neighbor Discovery Phase.

3.3.2 The neighbor discovery phase

Determination of the expected 1-hop neighbors In this phase, each node finds the

nodes that claim to be its neighbors. Upon deployment, each node broadcasts a Hello packet

and its node ID. Every node that hears this Hello packet sends back its ID and a reply

containing a nonce which is authenticated using the key that is shared between the nodes.

This key is derived using the two node IDs. The initiating node accepts all replies that arrive

within a timeout and then authenticates itself to each of its neighbors one by one by sending

a hash value of the nonce that they received and adds them to its neighbor list. We call

this neighbor list as the expected neighbor list. This list might consist of nodes that are not

actually within the one-hop communication range of the initiating node. This is because a

malicious node which is a neighbor of both the initiator and a non-neighboring node could

have fooled both to become neighbors. But, by building this list, every legitimate node within

the one-hop communication range of the initiating node gets added in this list. Therefore,

the actual list of neighbors is a subset of this expected neighbor list.

Determination of the expected 2-hop neighbors Once each node has found its ex-

pected list of neighbors, they need to know the neighbors of each of the nodes in this list

to determine the verifiers. The verifiers will be used in the Neighbor Verification phase to

decide whether two nodes are actually neighbors. We propose the following simple protocol

in order to determine the verifiers.

Each node generates a random key, K, and encrypts its expected neighbor list using K.

Each node then does an one-hop authenticated broadcast of its encrypted expected neighbor

list. One-hop authenticated broadcast can be easily done using protocols like µ− tesla, [28],

or as suggested in [15], [22]. After broadcasting, each node waits to receive the corresponding

expected neighbor list of each of its expected neighbors. Once it receives the expected neighbor

list of each of its expected neighbors, it does an one-hop authenticated broadcast of the key

K. If it does not receive the list within a timeout, it discards the node from its expected

18

neighbor list, and does an one-hop authenticated broadcast of the key K and the discarded

nodes.

This protocol can be easily extended so that a node can also know the verifiers of the

link between its neighbor (say X) and the neighbor of X. By doing this, the node can verify

whether the nodes that X claims to be its neighbors, are actually the neighbors of X. We

now explain how the protocol is extended for this purpose.

After having received the expected neighbor list of each of its expected neighbors, each

node, instead of revealing the key K and the dropped neighbors, generate a new key K ′.

The expected neighbor list of each expected neighbor is encrypted with K ′. A single hop

authenticated broadcast of this list is sent by each node. After doing this, the nodes, once

again, wait to receive the expected neighbor list of each of its expected neighbors. If a node

does not send this list within a timeout, it will be dropped from the expected neighbor list of

its expected neighbors. After receiving these two lists, each node reveals the keys K, K ′, the

dropped neighbors and the keys revealed by each of its expected neighbors.

The Neighbor Discovery Phase can be summarized as follows:

Table 1: The Neighbor Discovery Phase
Determining the one hop expected neighbors
1. S → One hop broadcast: HELLO, IDS .
2. X → S: IDX , KX,S(HELLO reply, nonce N).
3. S → X: KX,S(Ack, h(N)).
4. S: Adds the ID of X to its expected neighbor list, NL(S).
5. S: Repeats steps 2, 3 and 4 for every HELLO reply received.
Determining the expected two hop neighbors
1. S: Generate key KS,Bcast.
2. S → One hop broadcast: KS,Bcast(NL(S)).
3. S: Wait for min(Tout, NL(T) ∀ T ∈ NL(S)).
4. S: Drop nodes that do not send their expected neighbor list within Tout.
5. S: Generate key K ′S,Bcast.
6. S → One hop broadcast: K ′S,Bcast(KT,Bcast(NL(T)) ∀ T ∈ NL(S)).
7. S: Wait for min(T ′out, NL(NL(T)) ∀ T ∈ NL(S)).
8. S: Drop nodes that do not send their neighbors’ neighbor list within T ′out.
9. S → One hop broadcast: KS,Bcast.
10. S: Wait to receive KT,Bcast ∀ T ∈ NL(S).
11. S → One hop broadcast: K ′S,Bcast, KT,Bcast ∀ T ∈ NL(S) and dropped

neighbors.

At the end of this phase, each node S knows NL(S) and ∀T ∈ NL(S), S knows NL(T)

19

and NL(NL(T)).

3.3.3 The neighbor verification phase

Once each node has completed the neighbor discovery phase, it can determine the verifiers

for each of its links. Furthermore, it can also determine the links for which it is a verifier of

and who the other verifiers of the link are.

In this phase, we need each node to explicitly announce the destination to which it sends

the verification packet. We now describe the neighbor verification phase.

Each node checks whether each of its links has atleast k verifiers. If there doesn’t exist

atleast k verifiers for a link, the link is dropped. Every verifier of a link also performs this

operation. Let N1 and N2 be two expected neighboring nodes with atleast k verifiers. N1

initiates the link verification process by sending an authenticated packet to N2 and explicitly

announcing the address of N2. Upon receiving the packet, N2 sends back an authenticated

reply to N1 verifying the link. N2 also performs a similar operation.

The verifiers that hear the transmission from N1 hear whether the node that they believe

to be N2 relays the packet to some other node or replies back to N1. Similarly the verifiers

that hear the transmission from N2 hear whether the node that they believe to be N1 relays

the packet to some other node. Since the neighbor list that was built during the neighbor

discovery phase is not necessarily accurate, the verifier list that was built need not be ac-

curate. Therefore, there might exist some verifiers which actually might not hear either the

transmission from N1 or the transmission from N2 or both. These verifiers mark themselves

as Dropped verifier for that particular link. If a verifier hears both transmissions and does

not detect any packet relaying, then it marks Link Correct for that link. If a verifier detects

packet relaying, then it marks Packet Relayed for that link. Since each node itself is a verifier

of the link between itself and its neighbor, if it detects that its packet is being relayed to

some other node, it immediately drops the link irrespective of what the other verifiers mark

for that link.

The Neighbor Verification phase can therefore be summarized as follows:

We now describe the response algorithm which is finally used by each node to determine

its actual neighbors.

20

Table 2: The Neighbor Verification Phase
1. S: Determine verifiers, VS↔T , ∀ T ∈ NL(S).
2. S: ∀ T , U ∈ NL(S), if T ∈ NL(U) and U ∈ NL(T), S ∈ VT↔U .
3. S → T : KS,T (Nonce N) ∀ T ∈ NL(S).
4. VS↔T : Hear whether the packet is relayed to T .

If yes, mark Packet Relayed.
If the packet sent by S is not heard, mark Dropped Verifier.
Else, don’t mark anything at this point.

5. T → S: KS,T (h(N)).
6. VS↔T : Hear whether the packet is relayed to S.

If yes, mark Packet Relayed.
If the packet sent by T is not heard, mark Dropped Verifier.
Else, don’t mark anything at this point.

7. VS↔T : If Dropped Verifier has been marked in either of Step 4 or Step 6,
mark Dropped Verifier.
Else, if Packet Relayed has been marked in atleast one of Step 4 or Step 6,
mark Packet Relayed.
Else, mark Link Correct.

3.4 The Response Algorithm

After the Neighbor Verification phase, each node would have either marked Dropped Verifier

or Link Correct or Packet Relayed for every link for which it is a verifier. Each node also knows

its expected neighbors as well as the expected neighbors of each of its expected neighbors.

A verifier, V , that has marked Link Correct or Packet Relayed for a link A − B during

the Neighbor Verification phase, first determines whether it has marked Link Correct for the

links V − A and V − B. If it has marked anything else for these two links, it changes its

response to Dropped Verifier.

After doing this, for each link A−B, A, B and the verifiers of the link A−B, communicate

their response for that link to each of the expected neighbors of A and B. Now each expected

neighbor of A and B can determine whether the link A−B exists.

Each node then determines its actual neighbors and the neighbors of its actual neighbors

using the following algorithm:

Two nodes will finally be allowed to become neighbors only if all of the following conditions

hold:

1. Both nodes claim that their packet was not relayed.

21

2. After removing verifiers that have marked themselves as Dropped Verifier, there still

exists atleast k verifiers for that link.

3. Out of the k verifiers, there exists less than γ verifiers that have marked Packet Relayed

for that link.

3.5 Analysis

3.5.1 Security analysis

We start by defining certain terms that will be useful in proving our results.

Malicious Path: A malicious path between two nodes is a path that consists solely of

malicious nodes, except possibly the two end-points.

False Verifier: A false verifier of a link between two nodes claiming to be neighbors, is

a node that is present in the expected neighbor list of both the nodes but is not an actual

neighbor of atleast one of the nodes.

True Verifier: A true verifier of a link between two nodes claiming to be neighbors, is a

node that is an actual neighbor of both the nodes.

Lemma 3.5.1:

The Neighbor Discovery protocol prevents two non-neighboring legitimate nodes from being

fooled to become neighbors by the adversary, in the absence of collisions.

Proof:

Let L1 and L2 be two non-neighboring legitimate nodes. We consider the following two

cases.

Case 1: There exists no malicious path from L1 to L2.

In this case, during the Neighbor Discovery phase, L2 cannot receive the Hello packet

broadcasted by L1 and vice-versa. This is because, a legitimate node would never forward

the Hello packet broadcasted by another node.

Therefore, the expected neighbor list of L1 will not contain L2 and vice-versa.

22

Therefore, L1 and L2 won’t become neighbors.

Case 2: There exists a malicious path from L1 to L2.

In this case, the packets could be relayed between L1 and L2 through the malicious path

during the Neighbor Discovery phase, due to which L1 and L2 could be present in the expected

neighbor lists of L2 and L1 respectively.

Let the path be L1 −M1 ∼M2 − L2.

Then, during the Neighbor Verification phase, after L1 sends its verification packet, it will

hear M1 relaying this packet. Similarly, when L2 sends a reply acknowledging the verification

packet sent by L1, it will hear the reply being relayed by M2. Obviously, if M1 and M2

can communicate using out-of-band channels or directional antennas, the relaying attack will

not be overheard by L1 or L2. L1 (or L2) also might not detect the relaying attack if they

experienced a collision when M1 (or M2) was relaying the packet.

Similarly, L2 will hear M2 relaying its verification packet to L1 and L1 will hear M1

relaying its reply.

Since both L1 and L2 are legitimate and they detect the relay, they would mark Packet

Relayed for the link between them. Therefore, the link would be dropped.

Lemma 3.5.2:

The Neighbor Discovery protocol prevents two non-neighboring nodes, one of which is

legitimate and the other malicious, from becoming neighbors, in the absence of collisions.

Proof:

The proof is similar to that of Lemma 3.1, except that only the legitimate node will now

mark that the link between itself and the malicious node does not exist. The malicious node

might or might not mark that the link does not exist.

But since we assume that the links are bi-directional, it is enough for one node to claim

that the link does not exist, in order to drop the link.

Thus, the Neighbor Discovery protocol prevents two non-neighboring nodes from becoming

neighbors even when one of them is malicious.

23

Lemma 3.5.3:

The Neighbor Discovery protocol, in the absence of collisions, prevents two malicious non-

neighboring nodes, M1 and M2, from convincing its legitimate neighbors that they are neigh-

bors under the following conditions:

1. There must be at most k − 1 compromised nodes that collude with M1 and M2 and

2. If there exists v (> k) verifiers for the claimed link, t (< k) of which are malicious, u of

which are legitimate false verifiers and the rest (v − t− u) are legitimate true verifiers,

then atleast γ out of the v − t− u legitimate true verifiers must have accepted that the

link between them and M1 and M2 exists and they must also hear atleast one node in

each of the malicious paths between M1 and M2 relaying packets between M1 and M2.

Proof:

Let the two malicious nodes be represented by M1 and M2.

We prove that the first condition is necessary, by contradiction. Lets assume that there

exists atleast k compromised nodes that collude with M1 and M2. Since M1 and M2 cannot

convince their neighbors that they are actual neighbors, atleast one of M1 or M2 should have

marked that they are not neighbors or there must have been atleast γ verifiers that have

marked Packet Relayed for the link M1 −M2. The former case need not occur since both

M1 and M2 are malicious, while in the latter situation, M1 and M2 will make only malicious

nodes to be the verifiers of their claimed link. Since there exists atleast k compromised nodes

that collude with M1 and M2 in the WSN, by making only malicious nodes as the verifiers,

M1 and M2 can convince their actual neighbors that the link between them exists, which is

a contradiction. Therefore, there must be less than k compromised nodes that collude with

M1 and M2 in the WSN.

For M1 and M2 to become neighbors, there must be atleast k verifiers which might com-

prise of legitimate true verifiers, malicious true verifiers and malicious false verifiers, out of

which, less than γ verifiers should report Packet Relayed. Legitimate false verifiers will not

become neighbors of atleast one of M1 or M2 during the response algorithm and hence won’t

become verifiers for the link between M1 and M2.

24

Now lets consider the following cases.

Case 1: M1 and M2 are more than two hops away from each other.

If M2 cannot be reached from M1 in a minimum of two hops, then there is no node that

is a neighbor of both M1 and M2, because, if there were a node, X, that was a neighbor of

both M1 and M2, then M2 can be reached from M1 in the two hop path, M1 − X −M2.

Therefore, the number of true verifiers for the link M1 −M2 would be zero. Consequently,

the only verifiers for the link M1−M2 would be malicious and legitimate false verifiers. Since

the legitimate false verifiers will mark themselves as a Dropped Verifier due to the response

algorithm, the only verifiers, whose response will be considered by the other neighbors of M1

and M2 to determine if the link M1−M2 exists, are the malicious false verifiers. But since the

number of malicious verifiers is less than k, M1 and M2 cannot convince their other neighbors

that a link exists between them.

Case 2: M1 and M2 are two hops away.

This means that there exists atleast one node (legitimate or malicious) that is within the

communication range of both M1 and M2.

Let there exist a malicious path between M1 and M2. Note that this malicious path need

not necessarily be a two-hop path. Let there exist v−t−u legitimate true verifiers for the link

M1 −M2. For M1 and M2 to not be able to convince their neighbors that the link M1 −M2

exists, atleast γ out of v − t− u legitimate true verifiers must mark Packet Relayed for that

link. But for these verifiers to not change their response from Packet Relayed to Dropped

Verifier when they execute the response algorithm, they should accept that the link between

them and each of M1 and M2 exists. Also, if these legitimate true verifiers are to mark Packet

Relayed for M1 −M2, then they should hear the packet sent by M1 (or M2) being relayed to

M2 (or M1) by a malicious node in the malicious path between M1 and M2.

If there exists more than one malicious path between M1 and M2, then atleast γ legitimate

true verifiers must be able to hear atleast one other node in each of these malicious paths

between M1 and M2. This is because, if there exists a malicious path between M1 and M2 in

which none of the nodes can be heard by atleast γ legitimate true verifiers, M1 and M2 will

then use this path to relay packets between them and convince their neighbors that the link

M1 −M2 exists. Consequently, the second condition is also necessary.

25

This proves the lemma.

Theorem 3.5.1:

The proposed Neighbor Discovery protocol prevents two non-neighboring nodes from con-

vincing their other neighbors that a link exists between them (in the absence of collisions), if

atleast one of the following conditions hold:

1. Atleast one of the nodes is legitimate.

2. If both the nodes (say M1 and M2) are malicious, there must exist at most k − 1

compromised nodes that collude with these two malicious nodes and if there exists v

(> k) verifiers for the claimed link, t (< k) of which are malicious, u of which are

legitimate false verifiers and the rest (v− t−u) are legitimate true verifiers, then atleast

γ out of the v− t−u legitimate true verifiers must have accepted that the link between

them and M1 and M2 exists and they must also hear atleast one node in each of the

malicious paths between M1 and M2 relaying packets between M1 and M2.

Proof:

The proof is a direct consequence of lemmas 3.5.1, 3.5.2 and 3.5.3.

Corollary:

Each node, upon completion of the Neighbor Discovery protocol, will have knowledge of

the following information, in the absence of collisions.

1. The neighbors of a legitimate node, S, will only be those nodes that are within the one-

hop communication range of S. The legitimate nodes that are neighbors of a malicious

node, X, will only be those nodes that are within the one-hop communication range of

X.

2. For a legitimate node, S, let T ∈ NL(S) and V ∈ NL(T). If either of T or V are

legitimate, S will accept the link T − V to exist, only if V is within the one-hop com-

munication range of T . If both T and V are malicious, S will take the same decision on

the link T − V as taken by T , V and the verifiers of the link T − V .

26

Security attacks against the protocol:

We will now describe the security attacks that this protocol is vulnerable to.

1. Attacks that prevent overhearing:

Since our protocol relies on overhearing packet relays, any attack in which a node is not

able to hear another node within its communication range is harmful. Two such attacks

are described below.

(a) Out of band channel attacks:

If the adversary replaces the compromised node with a powerful node possessing

the capability of transmitting using an out of band channel, then the verifiers will

not be able to overhear the packet being relayed by the malicious node. For this

attack to be launched, atleast two malicious nodes (internal or external) need to

have this capability.

(b) Attacks with directional antennas:

If the adversary uses nodes that possess directional antennas, only a fraction of the

verifiers will be able to overhear the packet being relayed by the malicious node.

Therefore, the performance of the protocol will be significantly affected. Even one

malicious node is enough to launch this attack. For example, in Figure 6, the

malicious node X possesses directional antennas. So, when X relays the packet

sent by A to B, only the fraction of nodes present in the shaded portion would be

able to overhear this relaying.

2. Sybil attacks:

Let there be two compromised colluding nodes, M1 and M2. Let L be a neighbor of M1

and not a neighbor of M2. Since M1 and M2 collude, they can share their authentication

keys between themselves. Then, M1 can make L believe that M2 is its neighbor, by

claiming the identity of M2. This is a typical case of a Sybil attack. But, basically,

L has only become a neighbor of a node that is within its communication range, but

claiming multiple identities. Our neighbor discovery protocol cannot protect against

such attacks, primarily because, there is no way of distinguighing between M1 and M2.

27

Figure 6: A malicious node X possessing directional antennas

But such attacks can be prevented from damaging the network later on, using protocols

that defend against Sybil attacks, for example, [24].

3. Denial of service attacks:

Our protocol does not protect against brute force denial of service attacks like physical

layer jamming or physically destroying nodes. It also does not protect against attacks in

which the adversary tries to prevent two neighboring nodes from becoming neighbors.

We will describe more about this attack in section 4 when we compare our protocol with

the directional antenna protocol [9].

3.5.2 Coverage analysis

We now analyze how the protocol performs in the absence of relaying attacks, in terms of

the number of legitimate links dropped because of the non-existence of k verifiers, so that we

can empirically find a good value of k that will provide good coverage. We still assume that

malicious nodes exist in the WSN, but that they only indulge in passive attacks.

We abstract the communication range of each sensor node in the WSN by a circle of

radius, r. Let us have two neighboring nodes, A and B, separated by a distance d. Then, the

verifiers of the link between A and B are those nodes that are present in the shaded region

in Figure 7. The area of this shaded region is given by

28

Aromni = 2r2cos−1(
d

2r
)− d

2

√
4r2 − d2 (6)

Suppose there are a total of N sensor nodes uniformly and randomly distributed in a

sensor field of area, Ar. For the link between A and B to exist, we need atleast k verifiers in

the shaded region in Figure 7.

Figure 7: Atleast k nodes need to be neighbors of both A and B

The probability that atleast k verifiers are present in the shaded area in Figure 7 is given

by

P ({Atleast k verifiers in Aromni}) =
N∑
i=k

(
N

i

)
(Aromni

Ar)i(1− Aromni
Ar)N−i (7)

Aromni is minimum when B is on the edge of the communication range of A, so that,

d = r. This area is given by

Aromni = r2 (2π
3 −

√
3

2) (8)

Assuming 100 nodes in the WSN with an average of 10 neighbors for each node and with

a communication range of 30 m, Figure 8 shows the probability of having atleast k verifiers

in this minimum area, for varying k.

Thus, with probability > 0.8, there exists atleast 3 verifiers for a link and with probability

29

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of verifiers
P

ro
ba

bi
lit

y
of

 a
tle

as
t k

 v
er

ifi
er

s
be

in
g

pr
es

en
t f

or
 a

 li
nk

Figure 8: Probability that there exist atleast k verifiers for a link

> 0.9, there exists atleast 2 verifiers for a link. Since the areas that we have taken into

consideration occur when the two nodes are at the edge of each other’s communication range,

this probability is actually a lower bound.

We have analyzed the protocol and provided results in the absence of collisions. The

analysis, in the presence of collisions, will be similar to that provided in [13] and will, therefore,

not be discussed here.

3.6 Simulations

The simulation is performed using MATLAB [23]. Sensor nodes are uniformly and randomly

deployed in a 100 × 100 square field. The number of nodes in the field vary from 10 to 100.

Table 3.3 lists the simulation parameters.

Table 3: Simulation Parameters
Communication range 30m

Number of nodes 10− 100
Sensor field size 100× 100m2

Since our protocol requires each legitimate link to have k verifiers for the link to exist, the

fraction of legitimate links that get dropped due to the non-existence of k verifiers for certain

links, is simulated for different k. This simulation is done in the absence of malicious nodes.

The simulation is run a 1000 times and the results are averaged. Since, in our protocol, each

node, itself, is a verifier of the link that it is a part of, no links get dropped when k = 1. This

can be seen in Figure 9. For k > 1, the fraction of links dropped decreases as the density of

30

the sensor nodes in the WSN increases, which is obvious, since the probability that k verifiers

exist for a link increases as the node density increases.

Figure 9: Fraction of links dropped due to the necessity of the existence of k verifiers for every
link

Next, the amount of storage in each sensor node after the end of the neighbor discovery

phase is simulated. This storage includes the neighbors of the node, the neighbors of the

first hop neighbors and the neighbors of the second hop neighbors of the node. Here, the

number of malicious nodes in the network is varied. This simulation is performed for 40

nodes (corresponding to an average of approximately 11 neighbors a node) distributed in the

100 × 100 sensor field. It is assumed that the malicious nodes relay the Hello packets that

they hear, to all their neighbors. The simulation is again run a 1000 times and the results are

averaged. Figure 10 shows the storage (in KB) in each of the 40 nodes, assuming that each

node ID requires 4 bytes.

Figure 11 shows the size of the expected neighbor list at each node when the number of

malicious nodes in the network varies.

We see that the average number of neighbors present in the expected neighbor list of a

31

0 5 10 15 20 25 30 35 40
3

4

5

6

7

8

9

Node

S
to

ra
ge

 s
iz

e
(in

 K
B

)

No malicious nodes

1 malicious node

2 malicious nodes

3 malicious nodes

Figure 10: Total storage (in KB) of neighbor lists at each node

node increases very little as the number of malicious nodes in the WSN increases. On the

average, for a network with 40 nodes in a 100 × 100 field (corresponding to an average of

11 neighbors a node), the maximum number of neighbors that any node possesses is around

14, in the absence of malicious node. For one, two and three malicious nodes, the maximum

number of nodes in the expected neighbor list increases to 16, 18 and 19 respectively.

Therefore, the protocol does not require much storage and is suitable for a WSN.

4 Extensions and Comparisons

A secure neighbor discovery protocol for static sensor networks in which all the sensor nodes

are deployed initially, has been proposed and analyzed in the previous section. In a static

sensor network, incrementally deploying nodes provides a lot of flexibility in deployment. It is

also advantageous in the sense that, malfunctioning nodes or nodes that have died out could

be removed and new nodes could be deployed in their place. The first part of this section

therefore suggests possible extensions to the neighbor discovery protocol so that it would

handle incremental deployment of nodes as well.

The second part of this section suggests modifications to the protocol in order for it to

32

0 5 10 15 20 25 30 35 40
8

8.5

9

9.5

10

10.5

11

Node

A
ve

ra
ge

 n
um

be
r

of
 n

ei
gh

bo
rs

 in
 th

e
ex

pe
ct

ed
 n

ei
gh

bo
r

lis
t

No malicious nodes
1 malicious node
2 malicious nodes
3 malicious nodes

Figure 11: Average number of neighbors in the expected neighbor lists of nodes in the presence
of malicious nodes

work when the sensor nodes are mobile. Since sensor nodes are deployed randomly, mobile

sensor nodes could move around, connecting disconnected regions and thus improving the

coverage. Therefore, mobility is an important constituent in WSNs.

Finally, this section compares our protocol with three related protocols and analyzes the

advantages and disadvantages of using these protocols.

4.1 Incremental Deployment

4.1.1 Assumptions

Our attack model is the same as that described in section 3. For the system model, we make

the additional assumption that any node in the WSN can distinguish between an incrementally

deployed node and a node that was already present before incremental deployment. ID based

authentication protocols, for instance, [8], [4] can easily achieve this. The idea suggested in

section 2 could also be used.

33

4.1.2 The protocol

With the additional assumption that we have made, the same neighbor discovery and neighbor

verification protocol could be directly used for incrementally deployed nodes as well.

When nodes are incrementally deployed, some nodes in the neighborhood of the newly

deployed nodes would have been deployed much before and would have already built their

neighbor lists while others would have been deployed along with the newly deployed nodes.

Those nodes that have already built their neighbor lists only need to send these lists and

verify that the link between them and the newly deployed nodes exist. Newly deployed nodes

would build expected neighbor lists and would verify each and every link in order to build

their first and second hop neighbor lists. To summarize, the protocol consists of the following

steps.

1. A newly deployed node will perform neighbor discovery and neighbor verification as

described in section 3.

2. An already existing node that is present in the expected neighbor list of the newly

deployed node will broadcast the expected neighbor list of the newly deployed node

to its neighbors and will send the neighbor lists of each of its neighbors to the newly

deployed node.

3. An already existing node that is two hops away from the newly deployed node will send

its neighbor list to the newly deployed node.

4.2 Mobility

4.2.1 Suggestions

The need to differentiate between a newly deployed node and an already existing node becomes

extremely important in the presence of mobility. For example, in the MobiWorp protocol [14],

a node, in order to move from one location to another, needs a certificate from a central

authority that it can use to integrate itself in the new location. But a malicious node that had

been locally isolated, could move from one location to another and claim in the new location

that it is a new node that has been deployed in the network. ID based authentication protocols

34

would prevent such claims from fooling legitimate nodes in the WSN. As a simple example,

we will assume that all nodes in the network know the ID of the last deployed node and that

the nodes are deployed in a known order of IDs. Then, a node would be able to distinguish

between an already existing node and a newly deployed node using ID based authentication.

Protocols, as suggested in [14], can then be used for secure movement of nodes from one

location to another. Once nodes have securely moved from one location to another, they can

perform neighbor discovery in the same way as incremental nodes perform neighbor discovery.

Though the neighbor discovery procedure is the same for both incremental nodes and nodes

that have moved from one location to another, the sensor nodes in the network can differentiate

between the newly deployed nodes and the nodes that have moved from another location. A

trusted central authority would also be required in order to facilitate secure movement of

nodes [14] and to differentiate between newly deployed nodes and nodes that already exist.

4.3 Comparison Between Protocols

4.3.1 The directional antenna protocol

Hu and Evans [9] proposed a protocol that uses directional antennas in order to perform secure

neighbor discovery in the presence of wormhole attacks. Their protocol is briefly described

here.

A sensor node possesses an antenna with N zones. Each zone has a conical radiation

pattern, spanning an angle of 2π
N radians. The zones are fixed with non-overlapping beam

directions, so that the N zones may collectively cover the entire plane as shown in Figure 12.

The basic idea of the protocol is that when a node A sends a packet directly to a neighboring

node B, if node B receives the packet in zone β, then node A should receive the reply sent

by B in the radially opposite zone, denoted by β̂. From now on, zone(A, B) will denote the

zone in which A hears B.

Since a malicious node could still fool two nodes that are not actually neighbors to become

neighbors if they are in opposite zones (Figure 13(a)), a strict neighbor discovery protocol is

proposed in order to overcome this problem (Figure 13(b)). This protocol requires atleast one

valid verifier to exist for each link. A verifier of a link A↔ B is essentially a node that both

35

Figure 12: A directional antenna with six zones and with a transmission range of r. This
figure has been taken from [9].

A and B believe to be their neighbor. For a node V to be a valid verifier for the link A↔ B,

V must satisfy the following conditions:

1. zone(B,A) 6= zone(B,V).

2. zone(B,A) 6= zone(V ,A).

3. zone(B,V) cannot be both adjacent to zone(B,A) and adjacent to zone(V ,A).

(a) Without verifiers, X and Y can still fool A and
C to become neighbors.

(b) The strict neighbor discovery protocol.

Figure 13: The functioning of the directional antenna protocol with and without verifiers [9].

From Figure 13(b), it is clear that a valid legitimate verifer cannot exist within the com-

munication range of both B and A if the three conditions hold.

It is claimed that the strict neighbor discovery protocol prevents wormhole attacks when

each wormhole has atmost two endpoints. But the following counterexample shows that this

36

claim is actually not true. The adversary can place two malicious nodes in such a way that

two legitimate nodes that are not actually neighbors are fooled to become neighbors.

Figure 14: The problem with the directional antenna protocol

In Figure 14, A and B are two legitimate nodes that are not within the communication

range of each other. Let the zones be numbered as shown in Figure 12. X and Y are two

colluding malicious nodes. V is a legitimate node which will be used by X and Y to fool A and

B that a valid verifier exists for the link A↔ B. Packets from A will be relayed to B through

X and since A and B hear each other in opposite zones, they will now look for a verifier to

confirm that they are neighbors. Now, V is a node such that zone(B,V) = 3 is opposite to

zone(V ,A) = 6. Also zone(B,A) = 1. Thus, V satisfies the conditions for a valid verifier. But

for V to convince A, they should hear each other in opposite directions. The malicious node

Y facilitates this. The transmission from A to V takes the path A− Y −X − V . Thus, the

two malicious nodes fool A and B to believe that they are neighbors.

Also, the directional antenna protocol only tries to prevent two legitimate non-neighboring

nodes from becoming neighbors. Malicious nodes that are far away could easily become

neighbors with both legitimate as well as malicious non-neighbors. The directional antenna

protocol also does not consider framing attacks in the sense that the verifier itself could be

malicious.

Moreover, the necessity for the existence of a verifier in such a small region (Figure 13(b))

in order for a legitimate link to exist, nullifies the advantages of having an increased communi-

37

cation range. In fact, the directional antenna protocol, with the directional antenna having a

communication range that is 1.8 times larger than the omni-directional communication range,

drops more links than our protocl that uses omni-directional antennas. This can be seen from

Figure 9 and from the results presented in [9].

For a typical neighborhood density of 10 neighbors a node with an omni-directional an-

tenna (corresponding to approximately 33 nodes with a directional antenna), the strict neigh-

bor discovery protocol, with one verifier, drops 40% of the legitimate links [9] while our

protocol only drops 25% of the legitimate links, with two verifiers. Since, in our protocol,

each node itself is a verifier of the link that it is a part of, our protocol does not drop any links

when we need use only one verifier. Thus, our protocol effectively outperforms the directional

antenna protocol in this regard.

The directional antenna protocol can however prevent out of band channel attacks to a

certain extent while our protocol has absolutely no resistance to these attacks. Our protocol

can however prevent wormhole attacks with multiple endpoints while the directional antenna

protocol can only prevent wormhole attacks with one malicious node. Table 4.1 summarizes

the comparison between these two protocols.

Table 4: Comparison between our protocol and the directional antenna protocol
Property Our Protocol The Directional Antenna

Protocol
Special hardware None Directional antennas

Out of band Vulnerable Slight resistance
channel attacks

Directional antenna Vulnerable Slight resistance
attacks

Other wormhole attacks Resistant to wormholes Resistant to wormholes
with multiple endpoints with only one endpoint

DoS attacks Vulnerable Vulnerable
Fraction of links 25% with two 40% with one

dropped verifiers verifier
Framing attacks Resistant Vulnerable
Miscellaneous Prevents malicious Does not prevent

non-neighboring nodes malicious non-neighboring
from becoming neighbors nodes from becoming

to other nodes neighbors to other nodes

38

4.3.2 A timing based protocol

Hu, Perrig and Johnson [11] had proposed a secure Neighbor Detection protocol that allows

both the initiator and the responder to check that the other is within a maximum commu-

nication range. A node sends a Neighbor Solicitation packet to a neighbor and gets back a

Neighbor Reply packet. The measured delay between sending the first message and receiving

the second message is used by the protocol to provide an upper bound on the distance of the

neighbor.

Obviously, such an approach, requires very tight timing and since messages travel at the

speed of light and due to congestions and collisions in the network, this method would be

highly inaccurate and practically infeasible.

4.3.3 Sensor finger-printing

One of the fundamental problems that sensor nodes face is that they cannot differentiate

between a node that has relayed a packet and the node from which the packet has originated

from. Rasmussen and Capkun, in [30], present a technique called sensor fingerprinting in

which each sensor node can identify the node from which it has received a packet using the

nature of the signal that it has received. For example, if node B transmits a signal of type

b, node A transmits a signal of type a and node X transmits a signal of type x, then node

B can differentiate between a signal that it receives directly from A and a signal that has

been relayed to it by X. A key idea is that nodes cannot control the type of signal that

they transmit. While this may be true for legitimate nodes, its not correct to make such an

assumption for malicious nodes as well.

This technique requires advanced physical layer features in each sensor node and is along

the lines of using tamper-proof hardware which is very expensive. It also remains to be seen

whether malicious nodes can copy the signal sent by nodes, in which case, this technique

would be as bad as the others.

39

4.4 Denial of Service Attacks

In the process of solving the neighbor discovery problem, only one part of the problem has

been given adequate importance, i.e., preventing two non-neighboring nodes from becoming

neighbors. The problem of ensuring that two neighboring nodes become neighbors is actually

a challenging problem in itself. The adversary could launch denial of service attacks against

the neighbor discovery protocol to prevent two neighboring nodes from becoming neighbors.

Such an attack which would affect our neighbor discovery protocol, is presented in this section.

Lets have two neighboring nodes A and B as shown in Figure 15(a). Let X be a malicious

node that is a neighbor of A but not a neighbor of B. When A sends the verification packet,

p, to B during the Neighbor Verification Phase, X can generally replay this packet since it can

hear A. Since our protocol relies on overhearing techniques, A would think that its packet is

being relayed to B and would therefore drop the legitimate link A↔ B. But it is important

to note that this attack would be successful only if X replays the packet before B sends back

its reply. Therefore, strict timing requirements are essential for this attack to succeed.

(a) The denial of service attack in our protocol; X
replays the verification packet p to confuse A.

(b) The denial of service attack in the directional
antenna protocol

Figure 15: Denial of service attacks in secure neighbor discovery protocols.

This problem also exists in the directional antenna protocol. A malicious node X which

is in zone 1 of a legitimate node A could forward the Hello packet sent by A in zone 1 to a

legitimate node B present in zone 6 of A (Figure 15(b)). But since B hears from X in zone

40

2 and A hears from B in zone 1 through X, X effectively prevents A and B from becoming

neighbors.

Protocols that have been proposed to prevent two non-neighboring nodes from becoming

neighbors have not considered these kind of attacks in the past and therefore this is worth

mentioning.

5 Related Work

5.1 Key Pre-Distribution

It has been generally agreed in the literature that asymmetric key cryptosystems are not

suitable for sensor networks ([25], [31], among others) because of the requirement of high

computational power. Symmetric key cryptosystems have, therefore, been vastly studied for

key distribution and management in sensor networks. Examples of these protocols are the

group-based pre-deployed keying, probabilistic key distribution protocols and key distribution

protocols that involve significant radio communication.

Eschenauer and Gligor [7] present a probabilistic key pre-deployment scheme for sensor

networks. From a large key pool, they select m keys at random and these keys are loaded

into each sensor node before deployment. If a common key does not exist between two nodes,

then intermediate nodes are used for secure key exchange. Compromising a single node

reveals m keys to the adversary. Also, a malicious intermediate node could eavesdrop on all

the communication between two nodes that had used it for exchanging keys between them.

Chan et al. [5] provide an extension to this scheme but their scheme requires significant radio

communication.

Blom’s scheme [2] has been described in detail in section 2. Grid-based key distribution

was first presented in [8]. The sensors are distributed in a logical grid with each sensor having

an identity (i, j) where i represents the row and j represents the column in the grid. Keys

are shared between every pair of rows and every pair of columns. If a node with identity (i, j)

wants to establish a key with node (p, q), then the keys shared between row i and row p and

the keys shared between column j and column q are used to derive a unique key between the

two nodes. The problem with this approach is that this key will also be known by nodes (i, q)

41

and (p, j) since they also know the corresponding row and column keys. Also, compromising

two nodes would expose a huge fraction of the communication. Chan and Perrig [4] present

a different approach of key establishment using a logical grid. Each node, in their scheme,

shares a pair-wise key with every other node in its row and in its column. If a node wants

to communicate with a node that is present in some other row or column, it has to use an

intermediate node in order to securely exchange keys. This involves significant communication

overhead and is more secure than the original matrix based scheme [8]. Liu et al. [21] modify

these approaches by using location-based grids instead of logical grids.

Other approaches in key distribution and management include [33], [28], [35], [16].

While we have concentrated on secure one-to-one communication, broadcast authenti-

cation is a different challenging problem. There has been an extensive study on securing

broadcast in sensor networks and for further reading, the reader can refer to [27] and [19].

5.2 Neighbor Discovery

As we have seen in section 3, secure neighbor discovery is a critical issue in sensor networks.

Neighbor discovery protocols are extremely vulnerable to the wormhole attack. The reader

can refer to [12], [29], [10], [11], [13], [14], [30] for research on wormhole attacks and their

countermeasures.

Few protocols consider the issue of securing neighbor discovery in the presence of wormhole

attacks. The protocol by Hu and Evans [9] uses directional antennas for dynamic neighbor

discovery and verification. The scheme by Perrig [11] relies on time of flight and assumes very

accurate time measurement in order to verify whether a node is within the communication

range of another node. A new approach called sensor fingerprinting [30] has been recently

proposed for addressing this issue but it requires advanced physical layer features. A detailed

comparison of these protocols with our protocol has been provided in section 4.

The protocols suggested in [13], [14], [15], [16], [18], [1], [32], [36], among others, assume

that malicious nodes are not present in the network during the neighbor discovery stage.

While it might be difficult for an adversary to compromise a node before neighbor discovery

gets completed, even an external malicious node could easily affect the neighbor discovery

protocol. Also, this assumption prevents us from incrementally deploying nodes. The scheme

42

by Lee and Choi [17] assumes that one-hop neighbor discovery is secure and presents an

approach, using overhearing, for securely discovering the second hop neighbors.

The schemes proposed in [26] and [33] do not take the wormhole attack into consideration

while performing neighbor discovery. A location-based technique has also been proposed for

securing neighbor discovery in WSNs [34]. But the location estimation protocol is itself vul-

nerable to security attacks. Moreover, location-based techniques abstract the communication

range of nodes as a circle of radius r. The actual communication pattern of an omni-directional

antenna is generally skewed. Therefore, protocols that rely on such an abstraction would not

be practically feasible.

6 Conclusions and Future Work

6.1 Conclusions

We have discussed in detail about the neighbor discovery problem from the point of view

of security in WSNs. It has explained the importance of secure neighbor discovery and has

proposed a secure neighbor discovery protocol. It has also analyzed a whole lot of issues that

the current neighbor discovery protocols face.

A simple key pre-distribution has been proposed in section 2. This technique is scalable,

memory efficient, distributed and is ideal for sensor networks in the absence of colluding

malicious nodes.

The secure neighbor discovery and verification protocol for static sensor networks has

been proposed in section 3. The protocol has been analyzed in detail and has been proven,

by simulations, to outperform current neighbor discovery schemes.

We have briefly studied about the extension of this protocol to incremental deployment and

have also provided suggestions to modify this protocol for mobile sensor networks, in section

4. Further, we have compared between various neighbor discovery approaches in detail and

analyzed a whole lot of open issues that the neighbor discovery problem poses.

43

6.2 Directions for Future Research

There still remains a lot of open issues in the secure neighbor discovery problem. Denial

of service attacks and attacks using nodes with powerful hardware capabilities significantly

affect the neighbor discovery protocol and are issues to ponder about. Another interesting

problem to look at is whether a neighbor discovery protocol could be made secure against

Sybil attacks. A malicious node could simply create copies of itself in different parts of the

network and become neighbors to a large number of nodes and then launch wormhole attacks.

Yet another issue to be addressed is designing a secure neighbor discovery protocol in

mobile sensor networks. A typical approach would be to break this problem into two parts.

The first part would solve the problem of secure node relocation and the second part would

solve the neighbor discovery problem. If the former problem is solved, our protocol could be

easily extended to solve the neighbor discovery problem.

Current secure node relocation approaches involve the presence of a central trusted au-

thority which might not be feasible in all sensor networks. A distributed and secure node

relocation approach would solve the neighbor discovery problem for mobile sensor networks

and would therefore be a good direction for future research.

44

References

[1] R. Anderson, H. Chan, and A. Perrig. Key infection: smart trust for smart dust. In

IEEE International Conference on Network Protocols (ICNP 2004), 2004.

[2] R. Blom. An optimal class of symmetric key generation systems. In Proceedings of

the EUROCRYPT 84 workshop on Advances in cryptology: theory and application of

cryptographic techniques, pages 335–338, 1985.

[3] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro, and M. Yung. Perfectly-

secure key distribution for dynamic conferences. In Advances in Cryptology (CRYPTO

92), pages 471–486, 1993.

[4] Haowen Chan and A. Perrig. Pike: Peer intermediaries for key establishment in sensor

networks. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer

and Communications Societies (INFOCOM 2005), volume 1, pages 524–535, 2005.

[5] Haowen Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor

networks. In Proceedings of the Symposium on Security and Privacy, pages 197–213,

2003.

[6] W. Du, J. Deng, Y. Han, and P. Varshney. A pair-wise key pre-distribution scheme for

wireless sensor networks. In Proceedings of the 10th ACM conference on Computer and

communication security (CCS’03), 2003.

[7] Laurent Eschenauer and Virgil D. Gligor. A key-management scheme for distributed

sensor networks. In Proceedings of the 9th ACM conference on Computer and communi-

cations security, pages 41–47, 2002.

[8] L. Gong and D. J. Wheeler. A matrix key-distribution scheme. Journal of Cryptology,

2:51–59, 1990.

[9] L. Hu and D. Evans. Using directional antennas to prevent wormhole attacks. In Network

and Distributed System Security Symposium, 2004.

45

[10] Y. C. Hu, A. Perrig, and D. B. Johnson. Packet leashes: a defense against wormhole

attacks in wireless networks. In Proceedings of the 22nd INFOCOM, pages 1976–1986,

2003.

[11] Y. C. Hu, A. Perrig, and D. B. Johnson. Rushing attacks and defense in wireless ad hoc

network routing protocols. In ACM WiSe Workshop, 2003.

[12] Chris Karlof and David Wagner. Secure routing in wireless sensor networks: Attacks and

countermeasures. Elsevier’s AdHoc Networks Journal, 1:293–315, September 2003.

[13] I. Khalil, S. Bagchi, and N. B. Shroff. Liteworp: A lightweight countermeasure for the

wormhole attack in multihop wireless networks. In Proceedings of the 2005 International

Conference on Dependable Systems and Networks (DSN’05), pages 612–621, 2005.

[14] I. Khalil, S. Bagchi, and N. B. Shroff. Mobiworp: Mitigation of the wormhole attack in

multihop wireless networks. In Proceedings of the International Conference on Security

and Privacy in Communication Networks, 2006.

[15] Issa Khalil, Saurabh Bagchi, and Cristina Nina-Rotaru. Dicas: Detection, diagnosis and

isolation of control attacks in sensor networks. In Proceedings of the First International

Conference on Security and Privacy for Emerging Areas in Communication Networks

(SECURECOMM’05), pages 89–100, 2005.

[16] Issa Khalil, Saurabh Bagchi, and Ness B. Shroff. Analysis and evaluation of secos, a

protocol for energy efficient and secure communication in sensor networks. Elsevier Ad-

hoc Networks Journal, 5:360–391, april 2007.

[17] Suk-Bok Lee and Yoon-Hwa Choi. A resilient packet-forwarding scheme against mali-

ciously packet dropping nodes in sensor networks. In ACM CCS Workshop on Security

of Ad Hoc and Sensor Networks (SASN’06), October 2006.

[18] Suk-Bok Lee and Yoon-Hwa Choi. A secure alternate path routing in sensor networks.

Computer Communications, 30:153–165, December 2006.

46

[19] D. Liu and P. Ning. Efficient distribution of key chain commitments for broadcast au-

thentication in distributed sensor networsk. In Proceedings of the 10th Annual Network

and Distributed System Security Symposium, pages 263–276, February 2003.

[20] D. Liu and P. Ning. Establishing pair-wise keys in distributed sensor networks. In Pro-

ceedings of the 10th ACM conference on Computer and communication security (CCS’03),

2003.

[21] D. Liu, P. Ning, and W. Du. Group-based key pre-distribution in wireless sensor networks.

In Proceedings of 2005 ACM Workshop on Wireless Security (WiSe 2005), pages 11–20,

September 2005.

[22] D. Liu, P. Ning, S. Zhu, and S. Jajodia. Practical broadcast authentication in sensor

networks. In The Second Annual International Conference on Mobile and Ubiquitous

Systems: Networking and Services (MobiQuitous), pages 118–129, July 2005.

[23] MATLAB. The MathWorks Inc.

[24] James Newsome, Elaine Shi, Dawn Song, and Adrian Perrig. The sybil attack in sensor

networks: analysis and defenses. In Proceedings of the third international symposium on

Information Processing in sensor networks, pages 259–268, 2004.

[25] C. Park, K. Kurosawa, T. Okamoto, and S. Tsujii. On key distribution and authentication

in mobile radio networks. Advances in Cryptology - EuroCrypt ’93, 765:461–465, 1993.

[26] B. Parno, M. Luk, E. Gaustad, and A. Perrig. Secure sensor network routing: A

clean-slate approach. In Proceedings of Conference on Future Networking Technologies

(CoNEXT), December 2006.

[27] A. Perrig, R. Canetti, J. Tygar, and D. Song. Efficient authentication and signing of

multicast streams over lossy channels. In IEEE Symposium on Security and Privacy,

2000.

[28] A. Perrig, R. Szewczyk, J. D. Tygar, Victor Wen, and David E. Culler. Spins: security

protocols for sensor networks. Wireless Networks, 8:521–534, 2002.

47

[29] Radha Poovendran and Loukas Lazos. A graph theoretic framework for preventing the

wormhole attack in wireless ad hoc networks. Wireless Networks, 13:27–59, January 2007.

[30] Kasper Bonne Rasmussen and Srdjan Capkun. Implications of radio fingerprinting on

the security of sensor networks. In Proceedings of IEEE SecureComm, 2007.

[31] M. Tatebayashi, N. Matsuzaki, and D. B. J. Newman. Key distribution protocol for digital

mobile communication systems. Advances in Cryptology - CRYPTO ’89, 435:324–334,

1989.

[32] H. Yang, F. Ye, Y. Yuan, S. Lu, and W. Arbough. Toward resilient security in wireless

sensor networks. In ACM MobiHoc’05, pages 34–35, 2005.

[33] Y. Zhang, W. Liu, W. Lou, and Y. Fang. Securing sensor networks with location-based

keys. In Wireless Communications and Networking Conference, volume 4, pages 1909–

1914, March 2005.

[34] Y. Zhang, W. Liu, W. Lou, and Y. Fang. Location-based compromise-tolerant security

mechanisms for wireless sensor networks. IEEE Journal on Selected Areas in Commu-

nications (Special Issue on Security in Wireless Ad Hoc Networks, 24:247–260, February

2006.

[35] Li Zhou, Jinfeng Ni, and C. V. Ravishankar. Short paper: Gke: Efficient group-based

key establishment for large sensor networks. In Proceedings of the First International

Conference on Security and Privacy for Emerging Areas in Communication Networks

(SECURECOMM’05), pages 397–399, 2005.

[36] S. Zhu, S. Setia, and S. Jajodia. Leap: efficient security mechanisms for large-scale

distributed sensor networks. In ACM Conference on Computer and Communications

Security (CCS’03), October 2003.

48

	Purdue University
	Purdue e-Pubs
	8-16-2007

	Secure Neighbor Discovery in Wireless Sensor Networks
	Saurabh Bagchi
	Srikanth Hariharan
	Ness Shroff

