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Optimal Dynamic Buffer Management Using Optimal Control
of Hybrid Systems

Wei Zhang and Jianghai Hu
School of Electrical and Computer Engineering
Purdue University, West Lafayette, IN 47907, USA.
{zhang70, jiangha@purdue.edu

Abstract

This paper studies a dynamic buffer management problem evith buffer inserted between two
interacting components. The component to be controlleds@imed to have multiple power modes
corresponding to different data processing rates. Theathsyrstem is modeled as a hybrid system and the
buffer management problem is formulated as an optimal obptoblem. Different from many previous
studies, the objective function of the proposed problemeddp on the switching cost and the size of
the continuous state space, making its solutions much muakeaging. By exploiting some particular
features of the problem, the best mode sequence and theabmimitching instants are characterized
analytically using some variational approach. Simulatiesult based on real data shows that the proposed
method can significantly reduce the energy consumptionspaosd with another heuristic scheme in

several typical situations.

. INTRODUCTION

Dynamic buffer management (DBM) is an effective power management technique that can redhace t
power consumptions of electronic devices by insertingdysfimong interacting components. The buffer
insertion makes it possible to turn off underutilized comgut at appropriate times without affecting
the service for the other components, thus reducing theesypbwer consumption. The optimal buffer
size resulting in the largest power reduction is derivedlij [2], [3] for some simple DBM problems.
A major limitation of these studies is that they all assumeat tihhe components to be controlled have
only two power modes, “on” and “off”. However, in practiceany components can work in more than
two power modes, such as the variable speed processorsafjd]jhe multi-speed disks ([5]). For such
a component, instead of completely turning it off, one campprly design a switching strategy, namely

the scheduling of different power modes of the componentiitiher reduce its power consumption.



This paper studies a more general DBM problem, where the oompt to be controlled has multiple
power modes. Since different power modes correspond terdiff data accumulation/depletion rates
in the buffer, the overall system is perfectly modeled asex@iise-constant hybrid system, or more
accurately, a multi-rate automata ([6]). The DBM problemthsis formulated as an optimal control
problem of the underlying hybrid system.

Optimal control of hybrid systems is a challenging resedoglic that has attracted many researchers.
In [7], a unified framework is formulated for optimal controf hybrid systems; some conceptual
algorithms based on the Bellman equation are also propasezbfmputing the optimal control policies.
A similar idea is employed in [8], where a more detailed alfpon based on the discretization of the
continuous state space is developed to solve the Bellmaudigy. In [9], [10], a two-stage optimization
method is proposed for switched systems, where in the fageshe optimal continuous input is computed
for a fixed switching strategy and then in the second stagelyhamic programming algorithm is used
to compute the best switching strategy. In parallel withsthdynamic-programming-based approaches,
variational methods have also been extensively studidd1fp[12], the maximum principle is generalized
to solve a time optimal control and a linear quadratic cdrjgroblem for switched systems with linear
subsystems. Some more general versions of the maximumiglerior hybrid systems are proved in [13]
and [14]. Variational approaches are also used in [15], {d@lerive necessary conditions for the optimal
switching instants and/or the optimal continuous contnplit for switched systems with a fixed switching
sequence. Although an algorithm for updating the switctieguence is discussed in [16], finding the
best switching sequence is still an NP-hard problem. Mocenty, [17] propose a way of embedding
a switched system into a larger family of systems, whosetisols, obtained by the traditional optimal
control methods, can be used to construct the optimal claritthe switched systems without enumerating
the switching sequences. Besides these theoretical wapgdications of the optimal control theory of
hybrid systems in various practical contexts have also esihstudied. The problems in this category
as in [18], [19], [20], [21], usually deal with particular mel structures and cost functions that often
enable one to find better analytical and numerical solutidihg optimal control problem considered in
this paper falls into this category.

Despite the richness of the literature in this field, the peobstudied in this paper can not be directly
solved using the existing methods as it has the followingrdisfeatures: (i) transitions among discrete
modes depend on the evolution of the continuous state; whemeany previous studies ignore such
dependency; (ii) the switching (mode) sequence is a detigoiable that cannot be assumed fixed; (iii)

the switching cost ignored in most previous papers is an rtapb part of our cost function; (iv) the
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Fig. 1. System Configuration

buffer size that determines the range of the continuoussiatvariable, indicating that both the optimal
control and the optimal size of the continuous state spaedabe designed at the same time. Few
existing results have addressed all of these issues.

The main contributions of this paper are the following: (iybtid system framework is successfully
applied to model the DBM problem, which is an important pewblin the low power design of embedded
systems. (i) Two practically important DBM problems arenfulated as optimal control problems of
a piecewise-constant hybrid system and solved analyitlatbugh a variational approach. (iii) Several
issues of implementing the proposed optimal strategy ictjma systems are addressed. The results are
also verified through some simulations based on real data.

The rest of this paper is organized as follows. In Sectiotwh DBM problems are introduced and
formulated as optimal control problems of a piecewise amtshybrid system. In Section 1ll, several
operations on hybrid trajectories are introduced. Thesgatjpns are then used in Sections IV and V to
derive the optimal solutions. Two simulation examples avergin Section VI to illustrate the effectiveness

of the optimal strategies. Concluding remarks and futuseaech directions are discussed in Section VII.

[I. PROBLEM FORMULATION

A. System Description

Consider two interacting components X and Y as shown in FigvHere X produces data for Y to
consume. Suppose that Y is always “on” and consumes data@tsdant speed,. On the other hand,
assume that X hag/ different operation modes where in motleé = 1,2,..., N, it produces data at a
constant speed and consumes powgy. Without loss of generality, assume < ro < - -+ < ry. Usually,
a lower data rate corresponds to a lower power consumptios;we require; < p» < --- < py. Denote

by I andJ the sets of indices whose corresponding data rates areegegat smaller than,, respectively,



I={i|ri>ryi=1,...,N},

and J={j|rj<ry,j=1,...,N}.

Assume that botll and J are nonempty, i.esny > r, > 1. Note that we ignore the degenerate case
wherer, can be perfectly matched by one of the power modes of X, sinchis case no buffer is
needed and the DBM problem becomes trivial. A medes called anascending mode if o € I and a
descending mode otherwise. To ensure smooth operation, a buffer B with ciapdg is inserted between
X and Y. See Fig. 1 for the configuration of the overall system.

Many real-world applications can be described by the abgstem. One simple example is the data-
copying process, where a device Y copies data from a hard &rivhe hard drive has two power modes
“on” and “off”. If the data rate of the hard drive is faster ththat of Y, then X can be turned off during
some time intervals to save energy. In this case, the systemaony, which serves as the buffer B in our
model, is needed to temporarily store the data from X for ld&divery. As another example, consider the
video playing process. Let X be the Intel Xscale proces=ft]j[that can operate on multiple voltages
corresponding to different speedss and powerg;’s; let Y be a video card that demands data from
X at a constant speed, say 30frame/sec. To ensure smootatiopeithe system memory is needed as
a buffer to store the data that has been decoded by X but yet @igplayed by Y. Thus, the abstract
system as shown in Fig. 1 represents a class of practicamgsMinimizing the power consumption of

such a system has important practical implications.

B. Hybrid System Model

The above problem can be modeled as a hybrid system H. Theedisstate space of H consists of
N modes:S = {1,2,..., N}, corresponding to the operation modes of X. The continutate g(t) is
defined as the amount of data stored in the buffer B, and is réqusired to take values in the interval
[0,Q]. The evolution ofg(t) is determined by the speed difference between the two coemsni.e.,
q(t) = r; —r, for modei. As a physical constraint, there can be no buffer underflowverflow. Thus,
we require that wheneve(t) hits the boundary of its domain, namefyt) = 0 or @, the system must
transit to another mode that can brigg) back to the inside of0, Q]. Except for this, there are no other
transition rules and guard conditions. The reset map of ysgem is trivial, i.e., there is no jump in(t)

at the transition instant.
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Fig. 2. Hybrid trajectories

Given a time period0,t¢], the behavior of the above system can be uniquely determtiyethe
switching strategy : [0,¢;] — S, which determines the active mode of the system dVets|. The
overall trajectoryz(t) = (q(t),o(t)) of the hybrid system consists of the trajectories of the inoous
stateq(t) and the discrete statgt). For a given initial valuey(0), the system is governed by the following

differential equation:

dq(t

% =To) — Ty, Vit € [O,tf]. (1)
In this paper, we study the power consumption of the wholegss of transferring a certain amount of
data from X to Y. It is thus required that the system must staitt an empty buffer at = 0 and end
up with an empty buffer at = ¢; when Y have received all the data produced by X. This yields tw
boundary conditions for the continuous state, namgl§) = 0 andg(ty) = 0. The hybrid trajectories

that satisfy these two conditions are calfedsible trajectories (See Fig. 2-(b)).

Assume that there is a partition ¢,t¢], to =0 < t; < ... < t, = ty, for somen > 0, so that

o(t) = o; € S is constant in each subintenja)_1,¢;),7 = 1,...,n. The sequencér,...,o0,) is called



the switching sequence and (to, ... ,t,_1) is called theswitching instants’.

A hybrid trajectoryz(t) = (¢(t),o(t)) over[0,c0) is calledperiodic with periodT" if ¢(t+71') = ¢(t)
ando(t+T) = o(t) for all t € [0,00). For such a trajectory, denote I the number of switchings in
each period. For example, = 5 for the trajectory in Fig 2-(c).

A feasible trajectory is called A-trajectory if it consists of one ascending modand one descending
mode; with exactly two switchings as shown in Fig 2-(d). The paimeddes{i, j} in a A-trajectory is
called aA-pair.

A feasible trajectoryz(t) = (¢(t),o(t)) with switching instantdt,...,t,—1) is called aboundary-
switching trajectory (BST) if ¢(¢t;) = @ or 0 for anyi = 0,...,n — 1. In other words, a BST only
switches at the boundary of the rangeqdf). Denote byf) the class of all BST’s. Every BST can be
decomposed into a series Aftrajectories with the same buffer size. Denoteryythe number oflistinct
A-pairs in a BST. For example,, = 3 for the BST in Fig 2-(e). A BST is callegureif n, =1 and is
called mixed otherwise. In other words, a pure trajectory must be a BSTisundbtained by repeating a
A-trajectory for a certain number of times (See Fig. 2-(f)).

The power consumption of a given hybrid trajectarit) = (¢(t),o(t)) consists of three parts: the
running power, namely the power consumed by compon&Rt the switching power and thebuffer power.
Note thatp, ) is the instantaneous power of X at timeThus the average running power oyeyt |
is % fotf Po(t)dt. Assume that switchings among different modes consumesatre amount of energy
k3. Then the average switching power overt;] is nks/t;, wheren is the number of switchings in
the trajectoryz. The buffer power includes the static buffer power and theatlyic buffer power. The
static buffer power is proportional to the buffer size whitee dynamic buffer power only depends on
the actual amount of data in the buffer. Since the dynamitebyfower is much smaller than the static
one, in this paper, we only consider the static buffer powet denote it byp,Q, wherep, is a positive
constant and) is the buffer size. Thus the total average power of the systarimg [0, ;] can be written

as

_ 1 [t nks
P(z;Q,tf) = — [ powdt + — + pQ, 2)
ty Jo ty

1The system is turned on at= 0. Hence, we assume that there is always a switching=a) and ignore the switching, if
any, att =ty for all trajectories.

2The power ofY is ignored in this paper since it is a constant independemhefwitching strategy.

3There may exist other switching penalties, such as the inijcdelay penalty. To simplify discussion, we assume that a

the switching penalties are transformed to an equivaleatggncost and incorporated infg.



and the total energy associated witft) during [0,t¢] is

ty
Es(2;Q,t5) =/ Do) dt + nks + pp@Q - ty.
0

The three terms on the right hand side of the above equatpregent theunning energy, the switching

energy, and thebuffer energy, respectively.

C. Problem Statements

The goal of this paper is to find a feasible trajectory that fi@ish a given task with the least energy
consumption. For some applications, the amount of data toalpsferred to Y is knows priori. In this
case/y is a given constant which equals to the amount of data to Insfeered divided by the data rate
of Y. The energy minimization problem can be formulated asftillowing optimal control problem of
the hybrid system H.

Problem 1: min, ¢ P(z;Q,ts) subject to the constraints: ((t) = (¢(¢),o(t)) satisfies equation (1);
(i) ¢(t) € [0,Q], Vt € [0,t7] andq(0) = q(ts) = 0; (iii) o(t) € S, Vt € [0,t¢].

Problem 1 requires the exact knowledget pf However, in some applications, the time horizgnis
not knowna priori. For example, consider that a network card (component X)nitmeds a live video
broadcast from the internet and at the same time sends tee/eédcdata to a video card (component
Y). The ¢; in this example may not be known until X receives the last fradm this case, we are
usually interested in periodic strategies that are easynfgeément and whose power can be computed
even without the knowledge of. Therefore, another meaningful problem is to find the opitipsgiodic
trajectory with the least average power consumption.

Let z(t) be a periodic trajectory witl{oy,...,0,,) and (t,...,t,,—1) as the switching sequence
and switching instants during the first perid 7], respectively. Note that the periodic trajectory has an
infinite length, i.e.,t; = oo. The average power of is the same as its average power during the first

period, i.e.,

_ _ 1[I~

P(zQ,00)=P(%Q,T)=7 (;paﬂﬂrncrks)wb@,
wherer; = t; — t;_1. Since every feasible solution must start with zero bufefollows that ¢(7") =
q(0) = 0. Different from Problem 1, to find the best periodic solutione not only needs to optimize the
switching sequence and switching instants, but also neeflad the best period’. This is formulated

as the following problem.



Problem 2: min, o 1 P(2;Q,T) subject to the constraints: ()(t) = (q(t),o(t)) is periodic with
period T and satisfies equation (1); (i)t) € [0,Q], ¥t € [0,T] and¢(0) = ¢(T") = 0; (iii) o(t) € S,
vt € [0,T7.

Remark 1: The two problems in this section are independent of each atietserve different purposes.
Problem 1 is suitable for the case where the valug & known exactly before the system starts operating.
On the other hand, for unknown, Problem 2 prepares for the worst case by assurtying oo and only
focuses on infinite-length periodic strategies. Howewar,réal applications the time horizan must be
finite. Thus, when the solution of Problem 2 is applied to d sgatem, only part of the strategy will be
used. See Section IV-C for implementation details of péciatrategies.

For any optimal solutions to Problem 1 and 2, to avoid the wassary power consumption by the
unused buffer spacé&) should be chosen as small as possible so that the bufferliatflbast once
during [0, t¢]. In addition, sincey(t) > 0 and¢(0) = 0, the following lemma follows immediately.

Lemma 1: If z(t) = (¢(t),0(t)) is an optimal solution to Problem 1, then

min ¢(t) =0, and max ¢(t) = Q.
te(0,ts] t€[0,ty]

This condition also holds for Problem 2 with replaced byT".

According to Lemma 1, the optimal buffer size is completettedmined by a given trajectory(¢).
From now on, we will callQ a valid buffer size of z if maxq(t) < @ and theoptimal buffer size of z
if equality holds.

The rest of this paper is devoted to deriving analytical sohs to the two problems formulated in this
section. Specifically, we will prove that: (i) the optimallgiions to both problems must be boundary-
switching trajectories (BST’s); (ii) the optimal pure pmtic trajectory (OPPT) with, = 1 is an optimal
solution to Problem 2 for an arbitrary,; (iii) the optimal pure trajectory (OPT) with length andn, = 1
is an optimal solution to Problem 1 for an arbitrazy; (iv) the OPT is different from the OPPT in general
and will converge to the OPPT ds goes to infinity. Although we consider all feasible traje®e as
candidate solutions, the above results enable us to onlysfoa pure (periodic) trajectories in finding
the optimal solutions. Since a pure trajectory involvesyame (distinct)A-pair and only switches when
q(t) is 0 or @, the OPT and OPPT, which are optimal solutions to ProblemsidL 23 can be easily

characterized analytically.

[1l. OPERATIONS ONHYBRID TRAJECTORIES

In this section, we introduce some important operations ¢aa transform an existing trajectory to

a new one while preserving certain properties. These dpaesaplay an important role in deriving the



optimal solutions to Problems 1 and 2.

A. Cropping

Cropping, denoted by, ,[-|, is an operation that obtains a new trajectory by trimming tbe
uninteresting parts of the original trajectory. For exaenphe cropped trajectony, ;[z] will only keep

the part ofz(t) wheret € [a,b], i.e.,

Capl2](t) = z(t +a), forte[0,b—al.

B. Joining

Joining, denoted by7[,---,:], is an operation that obtains a new trajectory by puttingessv
finite-length trajectories together. For examplgjz(!), 2(?)] corresponds to a new trajectory obtained
by appending:(? to the end of:(1). More precisely,

(¢ ctelo,tW
JW, 2](¢) = F v 1 | 1f ]1 2
22—ty et + )

9

Wheretg}) and t}z) are the lengths of() andz(?, respectively. To prevent introducing discontinuities,

it is required thatz(!) and 2(? have consistent boundary conditions, i.g:(.{)(t;l)) = ¢?(0), where
¢V and¢® are the continuous states oft) and z(?), respectively. Denote by,,[z] a special joining
operation that repeats the trajectangatisfyingz(0) = z(ty) for m times, i.e.,

Inlz) =Tz, ..., 2]

mz’s
C. Periodic Extension

Periodic extension, denoted I5[], is an operation that obtains a periodic trajectory by répgea
given trajectoryz for infinitely many times. Mathematically?[-] can be defined in terms of the joining
operation asP(z] = J.[2]. For a trajectoryz(t) of lengthts, P[z|(t +1-ty) = z(t) for all t € [0, ]

and any nonnegative integér.

D. Scaling

For an arbitrary hybrid trajectory(t) = (¢(t),o(t)), the scaling operation with parameter- 0 is

defined as

Sel2](t) = (cq(t/c),o(t/c)).
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Fig. 3. Folding withm =3

If 2(t) = (¢q(t),o(t)) is a hybrid trajectory irf0, ¢ ;] with buffer size@, switching sequencer,...,o0,)

and switching instant$to, ..., t,—1), thenS.[z] is a hybrid trajectory inf0, ct;] with buffer sizecQ,
switching sequencéoy,...,o0,) and switching instantgct, . .., ct,—1). In other words,S,[z] follows
exactly the same switching sequencezabut the time it spends in each mode before switching to a new
one is scaled by a factor ef An important property of the scaling operation is that iedamot change
the running power of a trajectory. It can be easily verifiedt tthe total average power &.[z] is

_ (1—c)nks

P(S.[z];cQ, cty)=P(z;Q,ts)+ =7 +pp(c—1)Q. (3)

E. Folding

Folding operation, denoted l3%,,[-], is only defined for the\-trajectories. It obtains a pure trajectory
with 2m switchings from aA-trajectory with2 switchings. Fig. 3 illustrates a 3-fold folding for /&-
trajectory z(¢). The operation consists of the following three steps. Fitst range of:z(¢) is divided
evenly into 3 sections. Each section corresponds to two setgmof the trajectory; one is ascending and
the other one is descending. Then by appending each desgesetjment to the end of the corresponding
ascending one, a new-trajectory is obtained in each section. Finally, all thesthA-trajectories are
joined together to obtain the final trajectory as shown in Bigc).

If @ is the optimal buffer size of(t¢), thenF,,[z] contains2m switchings and has an optimal buffer
size@/m. In fact, any finite-length pure trajectory (e.g. Fig 3-(c@n be thought of as obtained from a
A-trajectory (e.g. Fig 3-(a)) through the folding operatioith certain parametem.

F. Switching Instant Perturbation (S P)

Switching instant perturbation is defined only for two-slihg trajectories, namely the trajectories

(may not be feasible in general) with exactly two switchinigst z(t) = (¢(t),o(t)) be a two-switching
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Fig. 4. Switching instant perturbatiol, [z] with h < t;

trajectory with switching sequende, o2), switching instantg0,t;) and buffer size). Suppose that
q(0) = q1, q(ty) = q2. Denote byHy[z] = (4(t),5(t)) the SIP ofz. Roughly speaking, the SIP is
an operation that perturbs the switching instantto a neighboring valug: while at the same time
changes the time; accordingly to a certain vaIu@v to maintain the same trajectory boundary values,
i.e., (0) = ¢ andqg(t;) = 2. Fig. 4 illustrates an example of obtainiftg,[z] from z(t). It can be seen
that the new trajectory;[z] switches from moder; to modeos at time h instead oft; and ends at

time ¢; when its continuous state hits. Mathematically, the perturbed trajectory,[z] = (G(t),5(t))

o1 ,t<h
o(t) = ;

09 ,h<t§£f

can be defined as

dq(t . (4)
% =Ts@t) — Ty fort e [O,tf],
and f;=h+ Mry = 1) +a2 = a1
Toy — T‘y
Under the above notations, a SH,[z] is calledvalid if
0<h<t; and §(t)€[0,Q] ¥t €[0,t;]. (5)

In other words,H,,|z] is valid if it spends nonnegative time in each mode and it dugscause any
buffer overflow or underflow. The set df for which H,,[z] is valid is called thedomain of h and is
denoted byD,,. Thus for anyh € Dy, Z = Hp[z] defined in (4) satisfies the following properties:

1) Z follows the same switching sequenge, 02) asz and spends nonnegative time in each mode.

2) 4(0) = q(0) = q1 andq(ty) = q(ts) = qo.

3) ¢(t) € 0,Q] for all t € [0,%¢].

Note thatD;, is a bounded connected interval. For example, considerréjectory z; as shown in

Fig. 5-(a). Let(4(t),5(t)) = Hn[z1](t). If h < a, thent; as defined in (4) will be less thaln, which
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Fig. 5. Range of SIP in two typical cases

violates the first condition in (5). On the other handjif> b, theng(t) < 0 for ¢ € (b, k], which violates
the second condition in (5). Henc®,, = [a,b] for z;. As another example, consider the trajectesy
as shown in Fig. 5-(b) for whicly(¢;) is on the boundary of0, Q]. By a similar argument as in the
first example, the range df for 29 is Dy = [c,t1]. It is observed from these two examples that if
q(t;) € (0,Q), thent; is an interior point ofD;. On the other hand, if(¢;) = 0 or @, thent; is on the
boundary ofD,,. This property actually holds for the SIP of arbitrary tweighing trajectories.

The SIP is a specific yet useful operation. Since it can pertiue switching instant without affecting
the boundary values;(0) andq(ts)) and the buffer siz€), it can be used, together with other operations
such as cropping and joining, to study the effect of perhghdnly one switching instant of a general

trajectory.

IV. OPTIMAL PERIODIC SOLUTION

In this section, we derive the optimal solutions of Problend@noted by OS2 for simplicity). The
following lemma can greatly simplify the problem and is dalidor later proofs.

Lemma 2: If z is an OS2, then: € Q. In other words, optimal solutions to Problem 2 must be
boundary-switching trajectories.

Proof: The key idea of the proof is to use the operations defined itid@ell to construct a better
trajectory with less power consumption for any given trageg that has switchings at some interior
points of[0, Q]. Let (z(t),Q,T) be a solution to Problem 2. Denote by, ...,0,,) and(t1,...,t.,)
the switching sequence and switching instants in the finsodef z(¢). Suppose that(¢) has a switching

at some interior point of0, Q], i.e.,0 < ¢(t;) < @ for somei. Divide the first period ok(t) into three
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parts through the cropping operation as shown in Fig. 6-(a):

20(t) = Cor [2](1),  2P(0) = Cr i [2)(D),
and (1) = Cr,,, 7[2)(1). (6)
Assume that® (t) = (¢ (t), 0@ (1)), ¢?(0) = ¢ andq® (t;11 —t;_1) = qo. Perform the SIP on(?

)
to obtain a new trajectory,(L) =(q }L (t),0p @) (t)) 2 Hp[2?)]. According to (4), the length o,i( Vis

h(ry - rcri) +q —q
T0i+1 — Ty

2 = h+

(7)

By definition, the SIP does not change the boundary values?fi.e., ¢\ (0) = ¢ andq\> (£1?) = g,.

Thus we can rejoin(?), 2\* andz(® as shown in Fig. 6-(b) to obtain
2, 2 JzW z,(?),z( ). (8)
It is obvious that the length ofy, is
Th =t 1+ tf) + (T — tita). 9)

Now we show that; consumes less power thanfor someh. Recall thatDy, is the set ofh that z,(f)

remains valid. According to (5)9 is a valid buffer size for;, if h € D;,. ThusVh € D;, the power of
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(b) Switch at the boundary

Fig. 7. Two Extreme Cases of Variations on

zp, With buffer size@ is
1

[E1 + E3 + nyks + po, - h
Th

P(zp;Q,Ty) =
+ Doy (0 — )] + 2@, (10)

where E; and E5 are the running energy of() and z(®), respectively. Taking the derivative of
Py (zn; Q, Ty,) with respect toh, we have

dp(Zh; Qv Th) o 1 Ty — T,
dh - (Th)2 pUi, +p0’i+1 Toi+1 _ Ty

92 —q1 Ty —To;
: <T_(ti+1 - ti—1)+7> - <1—|-y7>
Toiy — Ty

Toi, — Ty

o1 — Ty

Note that theh-related terms in the numerator have been cancelled oupdSephatD;, = [a,b]. Since
q(t;) € (0,Q) by assumptiont; € (a,b) as discussed in Section Ill-F. From (11) it is clear that the
sign of % does not depend oh, which indicates that’(z;,; Q,T},) is monotone with respect

to h in [a,b]. Thus eitherz, (Fig. 7-(a)) orz, (Fig. 7-(b)) consumes less power thanWithout loss of
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generality, assume, consumes less power than Then the periodic extension ef,, P|[z,], is a better

periodic solution to Problem 2 than Thus it follows thatg(¢;) =0 or @ foralli = 1,...,np, i.e., the

OS2 must be a BST. ]
Lemma 2 enables one to focus on the BSTH (n deriving the optimal solutions to Problem 2. Recall

that the variable:, is used to describe the purity of a BST. In the rest of thisisactve will first solve

a simple case of Problem 2 where only the pure periodic ti@jes withn, = 1 are considered as

candidate solutions. Then we will prove that the solutiorthis simple case is actually an OS2 for an

arbitrary n,,.

A. Optimal Pure Periodic Trajectory (OPPT)

The Optimal pure periodic trajectory (OPPT) is defined as the optimal periodic solution to Problem 2
under an additional constraint, = 1, i.e., the candidate trajectories must be pure boundaitgiswg
trajectories. Letz be a periodic trajectory satisfying this condition. Thermvperiod ofz consists of
the sameA-pair. Thus the main task of this subsection is to find the Bephir and the best period
of z.

For a givenA-pair {i, j}, the periodT;; can be expressed in terms of the corresponding buffer size
Qi as

T = + .
T’Z‘—T‘y ry—rj

= aijQij- (12)

Denote byg;; the running power ot over a period, i.e.,

= Qijpi | Qijps }:_{ pi P | (13)
ij T — Ty Ty — Tj Ot,'j r; Ty Ty — Tj

Note that botho;; and 3;; are constants depending only on the giveipair. With these notations, the

average power of over one period is given by
_ 2ks
PE(Qij) = Bij + —=— + pQij- (14)
@ij Qij
Taking the derivative of (14) with respect {g;; and setting it to zero, we obtain the optimal buffer size
for the A-pair {7, j} as:

2k
Q5 Py '

Qi = (15)

Thus the minimum achievable power for thepair {3, j} is F’g( 7;)- The optimalA-pair {of,07} can
be obtained by minimizing’; (Q;;) with respect to{i, j}, i.e.,

{0} ,07} = argmin P} (Q;;). (16)
{iel,jeJ}
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q(t)s

Fig. 8. A boundary-switching trajectory withy > 2

Since solving (16) entails comparison of at m@&tN — 1)/2 quantities, the computational cost for
obtaining the besi\-pair is fairly low. Note that the minimizers in (16) may no¢ binique. Denote by
Y. the set of all the minimizers in (16) and Y| the number of elements iB. Two or more elements
in 3 are calledequivalent A-pairs if they correspond to the same optimal buffer size as defindd5).

In other words, the equivaleni-pairs are theA-pairs that minimize (16) with the same optimal buffer
size. The following theorem summaries the above resultsgaras a rigorous definition of the OPPTs.

Theorem 1: Let z(¢) be a pure periodic trajectory witfi, j) and (0, %) as the switching sequence
and switching instants in its first period, respectively{if;j} € ¥ and@ = Q;; as defined in (15), then
z is an OPPT with period;;.

B. General Optimal Solutions

In this section, we will prove that the OPPT derived in the ection for the case, = 1 is actually
an OS2 for an arbitrary,. Furthermore, i contains equivalent-pairs, then the OPPT can be used as
a building block to construct more complicated OS2s thatremepure. The main result of this section
is the following theorem.

Theorem 2: The OPPT defined in Theorem 1 is an OS2.

Proof: Let z*(t) be an OPPT as defined in Theorem 1 aidbe its average power. Let(t) =
(q(t),o(t)) be an arbitrary periodic trajectory with average povierWe need to show thaP* < P.
According to Lemma 2, we can assume Q. If z is pure, then by the definition af‘, we automatically
have P* < P. Hence, we assume thatis mixed withn, > 1 and its first period is as shown in Fig 8.
LetT;, i =0,...,m, be the successive time instants such t{@) = 0. Denote byP;, i = 1,...,m, the

average power afr, , (2], which is the part of(t) within the interval[T;_,, T;). It is obvious thatP =
P1T1+"'+15m(Tm—Tm71)

m

is a convex combination ofy, ..., P,,. Thus P > P,., wherei* = arg min; P;.
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Furthermore, we also have. > P*, as otherwise the periodic extensiondf. | r..[z] is also pure but
consumes less power that, which contradicts the optimality of*. Hence,P* < P;. < P. |
When |X| > 1, the OPPT is not unique and neither is the OS2 according t@réne 2. Furthermore,
if ¥ contains equivaleni-pairs, we can use them to even construct an OS2 that is net porsee
this, letz; andzs be two different OPPTs consisting of equivalevipairs with optimal buffer size§);
and Q,, optimal periodZ; andT, and average powel; and P, respectively. By the definition of the
equivalentA-pairs, we must havé®’, = P, and Q; = Q. Define 2, = Cor,[21], 22 = Con,[22] and
z = P[J[%1, 22]]. In other words is a periodic trajectory with each period defined by conmectine
period ofz; and ze together. It is obvious that consumes the same average poweeaand z;. Thus
z is an OS2 with two differenf\-pairs, i.e.,n, = 2. In a similar way, more complicated OS2s can be
constructed if contains more than two equivaleftpairs.

Although mixed OS2s may exist, the OPPT is the simplest OSihwtan be easily computed and

implemented. Thus we will focus on the OPPT in the rest of plajger for optimal solutions of Problem 2.

C. ts-adapted OPPT

The OPPT is an infinite-length periodic trajectory that fieggian infinite amount of incoming data.
However, for real applications, the amount of data to besfiemned is finite. Therefore, when the OPPT
is used in a real application, another guard condition shbel added to the system: switch component
X to the lowest power mode (mode 1) whenever there is no marenimg data. Suppose that for an
application, X needs to produagr, amount of data for Y and this amount is not known during the
design process. In this case, we can solve Problem 2 to catel@PPTzy = (¢(t),o(t)) with period
T. To evaluate how welkr performs for this application, define the-adapted trajectory, denoted by
Ay, [27], as

A, lor] = (§(0),6(2)),

R o(t) ,t<t,
where o(t) = ,
1 ty<t<ty (17)
dA t Ts - 9 t S 4
and 240 _ ] e =Ty ° 7
dt —r, L te <t <ty

wheret, # t; is the unique solution of equatiof{t,) = (t; — ts)ry,. In other words,A;, [z7] follows
exactly the original trajectorys until the timet, when X finishes producing ther, amount of data.

During the interval[t,, ¢ ], component X is switched to the lowest power mode consumiogrestant
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powerp:, while component Y is reading the remaining data in the lbuliete that regardless of whether
r1 is 0 or not, X is not producing any new data duririg, t¢] as all thetyr, amount of data has been
sent to the buffer before,. The Ay, [27] reflects what actually happens to the system when the syrateg
zr is applied to a real application with unknown but finite digatt,;. Although it is obtained based on
the optimal periodic trajectoryr, it may not be optimal for this particular application urdes is an

integer multiple ofT.

V. OPTIMAL SOLUTIONS FORFIXED AND GIVEN t

For unknownt, the OPPT is a good switching policy since it is the best mhcistrategy that can
be easily implemented by computers (resulting ity@dapted trajectory). In this section, we study the
case where the exact valuegfis known and derive optimal solutions to Problem 1 (OS1). Ail@an
be used to construct a periodic trajectory with perigdthrough the periodic extension. In this sense,
Problem 1 can be thought of as a version of Problem 2 with a fpextbd 7" = ¢ ;. With the constraint
for the period, Problem 1 becomes more difficult than Prokter®n the other hand, with the additional
knowledge oft;, we expect to obtain a solution that performs even bettar that ;-adapted OPPT for
this particulart .

Not surprisingly, the optimal solution to Problem 1 mustale a boundary-switching trajectory.

Lemma 3: If z is an OS1, then € (.

Remark 2: The perturbed trajectory,, defined in (8) plays an important role in the proof of Lemma 2.
However, sincez, has a different length from, it can not be directly applied to prove Lemma 3 where
the time horizont is given and fixed. The key idea of the proof of Lemma 3 is tohfertperturbz;,
using scaling operation with a proper parametsp thatS,.[z;] has the same length asand then show
that the average power &.[z,] is less than that of for certainh if z has interior switchings. Refer to
Appendix for a complete proof.

Lemma 3 enables one to consider only the BST’s in finding th&'©Similar to the periodic case,
in the rest of this section, we will first find a solution in a gi@ case where, = 1 and then prove that

this solution is also an OS1 for an arbitramy.

A. Optimal Pure Trajectory (OPT)

The optimal pure trajectory (OPT) is defined as the optimal solution to Problem 1 under an anfditi
constraintn, = 1, i.e., only pure trajectories are considered as candidaltéiens. As discussed in

Section llI-E, any finite-length pure trajectory can be thlouof as obtained from A-trajectory through
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Fig. 9. Obtainingz,, from z; through folding

a folding operation. Thus the main task is to determine thet bgoair and the corresponding best folding
parameter.
Let z(t) be aA-trajectory with lengtht s and A-pair {7, j}. Sincet; is fixed, its optimal buffer size

is given by:

t
Qij = _f (18)
Qg

whereq; is the constant defined in (12). Defiag = F,,,[21]. Thenz,, is a pure trajectory as shown in
Fig. 9 with 2m switchings and the samg-pair asz;. As discussed in Section llI-E;,, has an optimal
buffer size@;;/m and its average power is

_ 2mk t
Plf (m) = iy + =2 4 2L

; (19)
tf mao;

where 3;; is the constant defined in (13). Taking the derivativeftéff with respect tom and setting it
to zero, we obtain the optimal value of as

Py
2k‘saij ’

mj =ty (20)

Note that the folding parameter must be an integer, and the functié@ (m) is convex inm. Therefore,
if 7n;; is not an integer, the optimal feasible valuesf;, m;;, is whichever of the two neighboring

integers ofr;; that results in a smaller value (ﬁfjf (m) as defined in (19). Hence,

ml = argmin P (m). (21)

‘ me{ [, ], [, 1} Y

.. . . . .oy - =t % . _
The minimal achievable power with the-pair {i,j} is F;/(m;;). Then the best\-pair {a;;,atf} can

be obtained as

{0}, 0, } = argmin ]527 (my;)- (22)
! ! {iel,jeJ}
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Fig. 10. An example ofp,, ,m, ()

Denote by, the set of all minimizers of (22) and ¥ ¢| the number of elements ;. The following
theorem summarizes the above results.
Theorem 3: Let z,,(t) be a pure trajectory as shown in the right side of Fig. 9 With switchings

and A-pair {4, j}. If {i,j} € ¥y andm = m;] ;, thenz,, is an OPT with optimal buffer siz€;;/m;;.

B. General Optimal Solution

In last subsection, we derive analytically the optimal pmagectories withn, = 1. A natural question
is that whether the power can be further reduced if we relexctnstraint om,,. To answer this question,
we start with a simple case where the candidate trajectariesllowed to contain at most two distinct
A-pairs? i.e., n, < 2. Let z,, ., be a BST consisting of; copies ofA-pair (i1, j;) andmy copies of
A-pair (i2, j2). Without loss of generality, assume that all the same pagggeouped together as shown

in Fig 10. In other words, the switching sequencezgf ,,, is assumed to be

(017' .. 702(m1+m2)) = (i17j17 o 7i17j1 Z‘27]-27' .- 72‘27,7.9'

m, pairs mo pairs

ty
Qiq g M1+ iy jo M2

The optimal buffer size of,,, ,,, is uniquely determined by = , Whereq; ; is the

constant defined in (12). Let; ; be the running power of tha-pair {4, j} as defined in (13). Then the

“Two different A-pairs may consist of three or four different modes. For gXam{c:, 02} and{o1, 03} are also called two

different A-pairs although they have one mode in common.
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total energy consumed by, ,,,, is computed as

E(ml,mg) = 2(7711 + mg)k5+

2
poty + Biy gy @y gimaty + By g, Qg jomatp
Qi M+ Qg 5, T2

Lemma 4: For any {i1,j1} and {is,j2}, there exists a pair of nonnegative integérs;, ms) with
eitherm} = 0 or mj = 0 such thatE/(m}, m3) < E(m, ms), for any other pair of nonnegative integers
(m1,ma),

Proof. For simplicity, definea; = 3;, j, o, j, tf, a2 = Bi, j, i, 5,tf @nde = pbtfc. Relaxm;, mq to
nonnegative real numbers andzsy. Then

a1r1 + asxs + ¢
Q5 T1 + Qg 5 T2

E(wl,wg) = 2k8(x1 + wg) +

Note that all the constants;, as, ¢, o, j,, anda;, j, are positive. To prove the lemma, it suffices to
show that there exists a point on the or z, axis that minimizesE(z1,x2) in the first quadrant. To
find the minimizers ofE(z1,x2) in the first quadrant, we can first minimize it along each rayhie
first quadrant, and then find the ray that gives the best mimmalue. Towards this purpose, consider
x9 = \x1, Where € [0, 00]. Then

(a1 + ag\)z1 + ¢
(@i, g, + iy, A)T1

2ks(1+ N)e n (a1 + az\)
Qi gyt aizyjz)‘ (Oéi] g1+ aizvjz)‘)

E(SL’l, /\1’1) :2]{73(1 + )\)1’1 +

>2

SE(x}, Az]).

Thus E(z7, Az7) is the minimum value achieved on the ray = A\z;. To prove the lemma, it suffices to

show that eithet\ = 0 or A = oo minimizes E(z7, Az7}). After some computationgy(z}, Az}) reduces

* * 1 a
E($17/\$1)=d3\/d2y+ +diy + —— 2 f(y),
Ay o Qdy,50

Wherey =3z 1 andd; = a1Q, 5, — Q200 4, doy = Oy o — Oy 5y andd3 = 2v/2ksc are all

in,do Aty gy Qg g

to

constants. Note that excegt andd,, all the other constants are positive. Asncreases front to oo,

y decreases from—L-—— to 0. Hence, it suffices to show that eith@or o= L__is a minimizer of

Qi g1 Xig.jo i1,41 Qig.j2

f(y)in [0, %} Note that the second-order derivative fify) is

1,51 iz j2

a2 f d2ds
- J - _ < 0.
dy? () A(day + 1ag, )32 =
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Thus f(y) is a concave function of in [0, —L——1. Since the minimizer of a concave function over a
1

i1,51 Xz,

of f(y) in [0, —L1—]. |

P —
Qi g1 Xig,jo

bounded set must be on the boundary of the set, we conclutieithar0 or _ is a minimizer

According to Lemma 4, for any given tw-pairs, we can always use one of them to construct a pure
trajectory that performs equally well or better than all tither mixed trajectories involving these two
A-pairs. Therefore, the following corollary follows immadily.

Corollary 1: The OPT is an optimal solution to Problem 1 under an additionastraintn, < 2.

The question now becomes that whether more energy can bd bavirther relaxing the constraint
onn,. It turns out to be not the case. In fact, the OPT is an optimiait®n to Problem 1 for an arbitrary
np. This can be proved by induction. The following lemma is tleg lof the induction procedure.

Lemma 5: For any BSTz with lengtht; andn, = [ + 1, there exists another BST with lengtht,
andn, <[ that consumes equal or less power than
The proof of Lemma 5 can be found in Appendix . By this lemmay BST corresponds to a pure
trajectory with no more power consumption. Thus the follogvtheorem follows immediately.

Theorem 4: The OPT defined in Theorem 3 is an OS2 for an arbitrayy

C. OPT vs. (ts-adapted) OPPT

In this subsection, we compare the OPT derived in last stibsewith the ¢ -adapted) OPPT derived
in Section IV to get a clearer picture of how the correspogdimo problems, initially formulated from
two different practical aspects, relate to each other.

Proposition 1. Let zr be an OPPT with period’ andz;, be an OPT with lengti; and2m switchings.
Denote byz;f thet s-adapted trajectory of. Let P(-) be the average power for a given trajectory. Then
the three trajectories satisfy:

1) P(2r) < P(z,) < P(2) for anyt; > 0;

2) If t; =1-T for somel € N, then P(z,) = P(zr) = P(2}});

3) P(z,) — P(2r) and P(z}) — P(zr) ast; — oc.

Proof: (i) Obviously P(z,) < P(z!) as z is also a trajectory with length;. Since 27 is
the best periodic trajectory?(zr) < P(P[z,]) = P(z,). The desired result follows. (ii) Obviously
P(zr) = P(z;f) as z§f is just the first/ periods of zr. Considering the result in (i), all the three
powers are equal. (iii) According to (i), it suffices to protieat P(zfpf) — P(zr) asty — oo. Let
my, = |t;/T]. Thenmy, T/t; — 1 ast; — oco. Denote byP, and P, the average power of! during

the interval[0, m;, T'] and [m,, T, ], respectively. According to (17}, > m;, T andzﬁf (t) = zp(t) for
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TABLE |

POWER MODES OF SYSTEMH1

modes 1 2 3 4 5 6

Di 01012 02| 03| 0.33| 04

t € [0,my, T]. ThusP; = P(z7). Note thatP, < py + LT + m@Q, Wherepy is the power of the
f

tf—mt

highest mode. Hence, dg — oo,

_ Pimy, T + Py(ty —my, T _
Ple) = P I P,

Remark 3. Any practical application corresponds to a finite If the ¢; is unknown, we can only
compute the OPPTz(). Applying 27 to the application results in &-adapted trajectory:éf. On the
other hand, ift; is knowna priori, a better trajectoryz,) than z}f can be computed. In facty, is
the best trajectory for the givety and its power is bounded from below #¥(z7) and from above by

P(f).

V1. SIMULATION

A. Fictional Example

Consider a system (H1) with 6 power modes as defined in TalAsdume that:; = 0.1, p, = 0.1
andr, = 3.5. For this system H1, we compute the OPRF)( the OPT ;) and thet ;-adapted OPPT
(zéf), according to Theorem 1, Theorem 4 and equation (17), otisply. Denote byP(-) the average
power of a given trajectory. In Fig. 11-(a), we plot the powéreach trajectory as a function of. It
can be seen tha?(z;,) always stays belowP(z{) and both of them converge ®(zr) from above as
ty — oo. It is also observed that the three trajectories have the sav@rage power when is an integer
multiple of the optimal periodl = 2.8284) of the OPPT. These observations are consistent with our
analysis in Section V-C. In Fig. 11-(b), we plot the optimabairs of zr and z;, as functions oft ;. It
can be seen that the optimatpair in z;, is initially {5,2} and eventually converges {&,4} which is

the optimalA-pair of zp (andzﬁf). This indicates that;, may involve differentA-pairs for differentt .
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Fig. 11. Simulation results of example 1

B. Practical Example

24

Our theoretical results can be applied in many real-worldliegtions, such as the power management

problem of a multiple-speed disk ([5]) and the dynamic wgpétacheduling (DVS) problem of a variable

speed processor ([4]). In this section, we use a DVS examglhustrate the effectiveness of our results.

Let X be an Intel Xscal processor ([23]) with five availableygs modes as defined in Table II. Suppose

that Y is a video card that fetches data from X at a constared@eMbps (1MB/s). The power per

megabyte for buffer B can be looked up in the datasheet ([24§)258 x 10~* W/MB. A typical value

of the switching energy is 0.1mJ in a microprocessor ([4J)c& the switching cost, in our model may
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TABLE Il

POWER MODES OFINTEL XSCALE PROCESSOR

modesi 1 2 3 4 5
fi (MHz) | 150 | 400 | 600 | 800 | 1000
ri (MB/s) | 045| 1.2 | 1.8 | 24| 3
p; (Watt) | 0.08| 0.17| 0.4 | 0.9 | 1.6

also include other switching penalties, such as the switchielay penalty, we test our method foy
ranging from 0.1mJ to 100mJ. As is usually large for video programs, the-adapted OPPT and the
OPT will provide almost the same power performance. For kaity we only implement the ;-adapted
OPPT in this simulation and refer to this method as SchemeHleuwkistic strategy, referred to as Scheme
2, is also implemented where X is switched to the highestdpadl the buffer is full and then switched
to the lowest speed until the buffer is empty. Scheme 2 igdefir four heuristically selected buffer
sizes 0.1MB, 0.3MB, 1MB and 8MB. The power consumptions die3ge 2 in these cases are compared
with Scheme 1 in Fig. 12. It can be seen that the proposed apsitrategy always performs the best for

eachk, and can save about 60% of power consumption compared withebhgstic ones.

VIlI. CONCLUSIONS

This paper introduces a modeling framework for the DBM peablusing hybrid systems. Two
practically important DBM problems are formulated as ojtirmontrol problems of a piecewise constant
hybrid system. Various necessary conditions are derivadjisome variational approach. It is shown that
the optimal pure trajectory (OPT) and the optimal pure mhcidrajectory (OPPT) are optimal solutions
to Problems 1 and 2, respectively. General guidelines ftuirgp practical DMB problems using these
optimal strategies are also discussed. For a particulalicagpn, if its time horizont; is unknown,
one can only compute the OPPT. Applying the OPPT to the amic results in & ;-adapted OPPT,
which is a good suboptimal strategy that converges to treedptimal strategy as; goes to infinity. On
the other hand, it is known, the best strategy OPT can computed, which guaarke least energy
consumption for this particular application. Future reskawill focus on the following two aspects: one
is to extend our analysis to the case where more than onerdaife inserted among multiple streamlined
components. The other one is to study the case where theatataaf components are varying or even

random instead of constant.
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Fig. 12. Power consumptions of various methods under diffiek,. For eachks, all the powers are normalized w.r.t. the

largest one.

APPENDIX

Proof: Let z(t) = (¢(t),o(t)) be an OS1 with switching instants, .. .,t,—1) and buffer size)).
Supposeg(t;) € (0,Q) for some:. Define z;, as in (6) withT" replaced byts. Thenz, has the same
buffer sizeQ as z, and similar to (9), its length ig% = t;,_; + tﬁf) + (tf — tiv1), wheretﬁf) is given
in (7). Definez, = S, [z1], wherecy, = tf/t’}. According to the properties of the scaling operation, the
buffer size ofz;, becomescQ and the length o, is changed back to,. Therefore,z, is a feasible

trajectory for Problem 1. Considering (3) and (10), the powfez;, is computed as

_ 1
P(2p;Q.ty) = 7 [E1 + B3+ 2ks + po, - h
f
ks(l — Ch)

2 n
f
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Taking the derivative ofP(2,; Q,ty) with respect toh, we have

dp£’7 ,t 1 - oy
(2h; Q:ts) _ i Kpﬂgyi)
dh (th> Oit1
f

@2 —q Ty — 7o,
: <75f = (tiy1 —tic1) + 7) - <1 + #>
T0i+1 —T‘y T0i+1 —’f'y

) <E1 +E3+ks+poi+lu>}

o1 — Ty
n nky —hngtf <1 Ty —To, > .
(tf) Toiyr — Ty

Therefore,P(2,; Q, ;) is monotone with respect th as the sign of'”+) does not depend oh.
Using the same argument as in the last paragraph of the pfdafroma 2, it follows that the optimal

solution to Problem 1 must also be a BST. [ |

Fig. 13. A trajectoryz with n, =1+ 1

Proof: Without loss of generality, assume thais as shown in Fig. 13 with the following switching

sequence

(Z.lajlr .. 7ilaj17' .. 7il+17jl+17 o 7il+17jl+1)-

my pairs my41 pairs
Define z; = Cy[2] andz = Coy,[2], wherea is the starting time of the first copy dfiz, jo} as shown

in Fig. 13. Let{o,0—} be a (virtual)A-pair whose data rates and powers are defined as

20 20
To, =Ty =+ ?7 o_ y ?7
I+1 I+1 (23)
E Pis, (le) Z p]k (T]k)
k=2 k=
Po,= y Po_=
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T, [8.12,]] :
- Slz] -HS[ZZ]—F:
) /EM' ******* MM:
A e :

4(0) 1T
————— I:;S‘C[Z2 ] 4>:
fffffffffffffffffff 15

(a) (b)

Fig. 14. (a) Two-mode representation &f; (b) The Optimal trajectory¥ and its corresponding original trajectory

whereT;, is the total timez, spends in mode;,. Thusp,, andp,_ in the above equation represent the
average powers of all the ascending modes and the descemdithgs ofzo, respectively. Note that the
so defined modes and o_ may not be feasible modes ifl. They are only introduced to simplify
the proof. Leté, be aA-trajectory with the virtual modeéo,,o_} as shown in Fig. 14-(a). Define the
switching cost inZ, to be2lk,/2. ThenZ, has the same buffer size and total energy-ashus 7[z1, 2]
consumes the same energy /asOn the other handJ [z, Z2] is a mixed trajectory withn, = 2; its
two different A-pairs {o;,0_} and{iy,j1} appear 1 andn; times, respectively. By Lemma 4, there
exists a pure trajectory involving only the pair{i;,j;} or {o4,0_} that consumes no more energy
than J[z1, 22].°> Thus Z also consumes no more energy tharlf Z involves only the paifi, j; }, then

it is a pure trajectoryf, = 1) satisfying all the constraints in Problem 1 with no more rggethan

z. On the other hand, i involves only the paif{o;,o_}, it may not satisfy the third constraint in
Problem 1 agr, ando_ may not be inS. In this caseZ must consist of a series of a scaled version of

Zo, 1.e., 2 = Jm[Sc|22]] for somem andc. According to (23).7,,[S¢[z2]] (obtained by replacing eve

®Note that{cy,o_} and{i1,j:} have different switching costs. However, with slight mazitions, Lemma 4 also applies

for the case where the twA-pairs have different switching costs.
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with z5) as shown in Fig 14-(b) consumes the same energy dsus we obtain a trajectory,,, [S.[z2]]
with n, =1 (involving only the valid modes,, jo, ..., 441, j+1) that consumes no more energy than
Hence, in either case we can find a trajectory with< [ that satisfies all the constraints in Problem 1

and consumes no more power than [ ]
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