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Abstract

This paper studies a dynamic buffer management problem withone buffer inserted between two

interacting components. The component to be controlled is assumed to have multiple power modes

corresponding to different data processing rates. The overall system is modeled as a hybrid system and the

buffer management problem is formulated as an optimal control problem. Different from many previous

studies, the objective function of the proposed problem depends on the switching cost and the size of

the continuous state space, making its solutions much more challenging. By exploiting some particular

features of the problem, the best mode sequence and the optimal switching instants are characterized

analytically using some variational approach. Simulationresult based on real data shows that the proposed

method can significantly reduce the energy consumptions compared with another heuristic scheme in

several typical situations.

I. INTRODUCTION

Dynamic buffer management (DBM) is an effective power management technique that can reduce the

power consumptions of electronic devices by inserting buffers among interacting components. The buffer

insertion makes it possible to turn off underutilized component at appropriate times without affecting

the service for the other components, thus reducing the system power consumption. The optimal buffer

size resulting in the largest power reduction is derived in [1], [2], [3] for some simple DBM problems.

A major limitation of these studies is that they all assume that the components to be controlled have

only two power modes, “on” and “off”. However, in practice, many components can work in more than

two power modes, such as the variable speed processors ([4])and the multi-speed disks ([5]). For such

a component, instead of completely turning it off, one can properly design a switching strategy, namely

the scheduling of different power modes of the component, tofurther reduce its power consumption.
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This paper studies a more general DBM problem, where the component to be controlled has multiple

power modes. Since different power modes correspond to different data accumulation/depletion rates

in the buffer, the overall system is perfectly modeled as a piecewise-constant hybrid system, or more

accurately, a multi-rate automata ([6]). The DBM problem isthus formulated as an optimal control

problem of the underlying hybrid system.

Optimal control of hybrid systems is a challenging researchtopic that has attracted many researchers.

In [7], a unified framework is formulated for optimal controlof hybrid systems; some conceptual

algorithms based on the Bellman equation are also proposed for computing the optimal control policies.

A similar idea is employed in [8], where a more detailed algorithm based on the discretization of the

continuous state space is developed to solve the Bellman inequality. In [9], [10], a two-stage optimization

method is proposed for switched systems, where in the first stage the optimal continuous input is computed

for a fixed switching strategy and then in the second stage thedynamic programming algorithm is used

to compute the best switching strategy. In parallel with these dynamic-programming-based approaches,

variational methods have also been extensively studied. In[11], [12], the maximum principle is generalized

to solve a time optimal control and a linear quadratic control problem for switched systems with linear

subsystems. Some more general versions of the maximum principle for hybrid systems are proved in [13]

and [14]. Variational approaches are also used in [15], [16]to derive necessary conditions for the optimal

switching instants and/or the optimal continuous control input for switched systems with a fixed switching

sequence. Although an algorithm for updating the switchingsequence is discussed in [16], finding the

best switching sequence is still an NP-hard problem. More recently, [17] propose a way of embedding

a switched system into a larger family of systems, whose solutions, obtained by the traditional optimal

control methods, can be used to construct the optimal control of the switched systems without enumerating

the switching sequences. Besides these theoretical works,applications of the optimal control theory of

hybrid systems in various practical contexts have also beenwell studied. The problems in this category

as in [18], [19], [20], [21], usually deal with particular model structures and cost functions that often

enable one to find better analytical and numerical solutions. The optimal control problem considered in

this paper falls into this category.

Despite the richness of the literature in this field, the problem studied in this paper can not be directly

solved using the existing methods as it has the following distinct features: (i) transitions among discrete

modes depend on the evolution of the continuous state; whereas many previous studies ignore such

dependency; (ii) the switching (mode) sequence is a decision variable that cannot be assumed fixed; (iii)

the switching cost ignored in most previous papers is an important part of our cost function; (iv) the
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Fig. 1. System Configuration

buffer size that determines the range of the continuous states is variable, indicating that both the optimal

control and the optimal size of the continuous state space are to be designed at the same time. Few

existing results have addressed all of these issues.

The main contributions of this paper are the following: (i) Hybrid system framework is successfully

applied to model the DBM problem, which is an important problem in the low power design of embedded

systems. (ii) Two practically important DBM problems are formulated as optimal control problems of

a piecewise-constant hybrid system and solved analytically through a variational approach. (iii) Several

issues of implementing the proposed optimal strategy in practical systems are addressed. The results are

also verified through some simulations based on real data.

The rest of this paper is organized as follows. In Section II,two DBM problems are introduced and

formulated as optimal control problems of a piecewise constant hybrid system. In Section III, several

operations on hybrid trajectories are introduced. These operations are then used in Sections IV and V to

derive the optimal solutions. Two simulation examples are given in Section VI to illustrate the effectiveness

of the optimal strategies. Concluding remarks and future research directions are discussed in Section VII.

II. PROBLEM FORMULATION

A. System Description

Consider two interacting components X and Y as shown in Fig. 1, where X produces data for Y to

consume. Suppose that Y is always “on” and consumes data at a constant speedry. On the other hand,

assume that X hasN different operation modes where in modei, i = 1, 2, . . . , N , it produces data at a

constant speedri and consumes powerpi. Without loss of generality, assumer1 < r2 < · · · < rN . Usually,

a lower data rate corresponds to a lower power consumption; thus we requirep1 < p2 < · · · < pN . Denote

by I andJ the sets of indices whose corresponding data rates are greater and smaller thanry, respectively,



4

i.e.,

I = {i | ri > ry, i = 1, . . . , N},

and J = {j | rj < ry, j = 1, . . . , N}.

Assume that bothI andJ are nonempty, i.e.,rN > ry > r1. Note that we ignore the degenerate case

where ry can be perfectly matched by one of the power modes of X, since in this case no buffer is

needed and the DBM problem becomes trivial. A modeσ is called anascending mode if σ ∈ I and a

descending mode otherwise. To ensure smooth operation, a buffer B with capacity Q is inserted between

X and Y. See Fig. 1 for the configuration of the overall system.

Many real-world applications can be described by the above system. One simple example is the data-

copying process, where a device Y copies data from a hard drive X. The hard drive has two power modes

“on” and “off”. If the data rate of the hard drive is faster than that of Y, then X can be turned off during

some time intervals to save energy. In this case, the system memory, which serves as the buffer B in our

model, is needed to temporarily store the data from X for later delivery. As another example, consider the

video playing process. Let X be the Intel Xscale processor ([22]) that can operate on multiple voltages

corresponding to different speedsri’s and powerspi’s; let Y be a video card that demands data from

X at a constant speed, say 30frame/sec. To ensure smooth operation, the system memory is needed as

a buffer to store the data that has been decoded by X but yet to be displayed by Y. Thus, the abstract

system as shown in Fig. 1 represents a class of practical systems. Minimizing the power consumption of

such a system has important practical implications.

B. Hybrid System Model

The above problem can be modeled as a hybrid system H. The discrete state space of H consists of

N modes:S = {1, 2, . . . , N}, corresponding to the operation modes of X. The continuous state q(t) is

defined as the amount of data stored in the buffer B, and is thusrequired to take values in the interval

[0, Q]. The evolution ofq(t) is determined by the speed difference between the two components, i.e.,

q̇(t) = ri − ry for modei. As a physical constraint, there can be no buffer underflow oroverflow. Thus,

we require that wheneverq(t) hits the boundary of its domain, namely,q(t) = 0 or Q, the system must

transit to another mode that can bringq(t) back to the inside of[0, Q]. Except for this, there are no other

transition rules and guard conditions. The reset map of the system is trivial, i.e., there is no jump inq(t)

at the transition instant.
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Fig. 2. Hybrid trajectories

Given a time period[0, tf ], the behavior of the above system can be uniquely determinedby the

switching strategyσ : [0, tf ] → S, which determines the active mode of the system over[0, tf ]. The

overall trajectoryz(t) = (q(t), σ(t)) of the hybrid system consists of the trajectories of the continuous

stateq(t) and the discrete stateσ(t). For a given initial valueq(0), the system is governed by the following

differential equation:

dq(t)

dt
= rσ(t) − ry, ∀t ∈ [0, tf ]. (1)

In this paper, we study the power consumption of the whole process of transferring a certain amount of

data from X to Y. It is thus required that the system must startwith an empty buffer att = 0 and end

up with an empty buffer att = tf when Y have received all the data produced by X. This yields two

boundary conditions for the continuous state, namely,q(0) = 0 and q(tf ) = 0. The hybrid trajectories

that satisfy these two conditions are calledfeasible trajectories (See Fig. 2-(b)).

Assume that there is a partition of[0, tf ], t0 = 0 ≤ t1 ≤ . . . ≤ tn = tf , for somen ≥ 0, so that

σ(t) ≡ σi ∈ S is constant in each subinterval[ti−1, ti), i = 1, . . . , n. The sequence(σ1, . . . , σn) is called
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the switching sequence and (t0, . . . , tn−1) is called theswitching instants1.

A hybrid trajectoryz(t) = (q(t), σ(t)) over [0,∞) is calledperiodic with periodT if q(t + T ) = q(t)

andσ(t + T ) = σ(t) for all t ∈ [0,∞). For such a trajectory, denote bynT the number of switchings in

each period. For example,nT = 5 for the trajectory in Fig 2-(c).

A feasible trajectory is called aΛ-trajectory if it consists of one ascending modei and one descending

modej with exactly two switchings as shown in Fig 2-(d). The pair ofmodes{i, j} in a Λ-trajectory is

called aΛ-pair.

A feasible trajectoryz(t) = (q(t), σ(t)) with switching instants(t0, . . . , tn−1) is called aboundary-

switching trajectory (BST) if q(ti) = Q or 0 for any i = 0, . . . , n − 1. In other words, a BST only

switches at the boundary of the range ofq(t). Denote byΩ the class of all BST’s. Every BST can be

decomposed into a series ofΛ-trajectories with the same buffer size. Denote bynp the number ofdistinct

Λ-pairs in a BST. For example,np = 3 for the BST in Fig 2-(e). A BST is calledpure if np = 1 and is

calledmixed otherwise. In other words, a pure trajectory must be a BST andis obtained by repeating a

Λ-trajectory for a certain number of times (See Fig. 2-(f)).

The power consumption of a given hybrid trajectoryz(t) = (q(t), σ(t)) consists of three parts: the

running power, namely the power consumed by componentX2, theswitching power and thebuffer power.

Note thatpσ(t) is the instantaneous power of X at timet. Thus the average running power over[0, tf ]

is 1
tf

∫ tf

0 pσ(t)dt. Assume that switchings among different modes consumes thesame amount of energy

ks
3. Then the average switching power over[0, tf ] is nks/tf , wheren is the number of switchings in

the trajectoryz. The buffer power includes the static buffer power and the dynamic buffer power. The

static buffer power is proportional to the buffer size whilethe dynamic buffer power only depends on

the actual amount of data in the buffer. Since the dynamic buffer power is much smaller than the static

one, in this paper, we only consider the static buffer power and denote it bypbQ, wherepb is a positive

constant andQ is the buffer size. Thus the total average power of the systemduring [0, tf ] can be written

as

P̄ (z;Q, tf ) =
1

tf

∫ tf

0
pσ(t)dt +

nks

tf
+ pbQ, (2)

1The system is turned on att = 0. Hence, we assume that there is always a switching att = 0 and ignore the switching, if

any, att = tf for all trajectories.

2The power ofY is ignored in this paper since it is a constant independent ofthe switching strategy.

3There may exist other switching penalties, such as the switching delay penalty. To simplify discussion, we assume that all

the switching penalties are transformed to an equivalent energy cost and incorporated intoks.
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and the total energy associated withz(t) during [0, tf ] is

Eσ(z;Q, tf ) =

∫ tf

0
pσ(t)dt + nks + pbQ · tf .

The three terms on the right hand side of the above equation represent therunning energy, theswitching

energy, and thebuffer energy, respectively.

C. Problem Statements

The goal of this paper is to find a feasible trajectory that canfinish a given task with the least energy

consumption. For some applications, the amount of data to betransferred to Y is knowna priori. In this

case,tf is a given constant which equals to the amount of data to be transferred divided by the data rate

of Y. The energy minimization problem can be formulated as the following optimal control problem of

the hybrid system H.

Problem 1: minz,Q P̄ (z;Q, tf ) subject to the constraints: (i)z(t) = (q(t), σ(t)) satisfies equation (1);

(ii) q(t) ∈ [0, Q], ∀t ∈ [0, tf ] andq(0) = q(tf ) = 0; (iii) σ(t) ∈ S, ∀t ∈ [0, tf ].

Problem 1 requires the exact knowledge oftf . However, in some applications, the time horizontf is

not knowna priori. For example, consider that a network card (component X) downloads a live video

broadcast from the internet and at the same time sends the received data to a video card (component

Y). The tf in this example may not be known until X receives the last frame. In this case, we are

usually interested in periodic strategies that are easy to implement and whose power can be computed

even without the knowledge oftf . Therefore, another meaningful problem is to find the optimal periodic

trajectory with the least average power consumption.

Let z(t) be a periodic trajectory with(σ1, . . . , σnT
) and (t0, . . . , tnT−1) as the switching sequence

and switching instants during the first period[0, T ], respectively. Note that the periodic trajectory has an

infinite length, i.e.,tf = ∞. The average power ofz is the same as its average power during the first

period, i.e.,

P̄ (z;Q,∞)= P̄ (z;Q,T )=
1

T

(
nT∑

i=1

pσi
τi+nTks

)

+pbQ,

whereτi = ti − ti−1. Since every feasible solution must start with zero buffer,it follows that q(T ) =

q(0) = 0. Different from Problem 1, to find the best periodic solution, one not only needs to optimize the

switching sequence and switching instants, but also needs to find the best periodT . This is formulated

as the following problem.
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Problem 2: minz,Q,T P̄ (z;Q,T ) subject to the constraints: (i)z(t) = (q(t), σ(t)) is periodic with

periodT and satisfies equation (1); (ii)q(t) ∈ [0, Q], ∀t ∈ [0, T ] and q(0) = q(T ) = 0; (iii) σ(t) ∈ S,

∀t ∈ [0, T ].

Remark 1: The two problems in this section are independent of each other and serve different purposes.

Problem 1 is suitable for the case where the value oftf is known exactly before the system starts operating.

On the other hand, for unknowntf , Problem 2 prepares for the worst case by assumingtf = ∞ and only

focuses on infinite-length periodic strategies. However, for real applications the time horizontf must be

finite. Thus, when the solution of Problem 2 is applied to a real system, only part of the strategy will be

used. See Section IV-C for implementation details of periodic strategies.

For any optimal solutions to Problem 1 and 2, to avoid the unnecessary power consumption by the

unused buffer space,Q should be chosen as small as possible so that the buffer is full at least once

during [0, tf ]. In addition, sinceq(t) ≥ 0 andq(0) = 0, the following lemma follows immediately.

Lemma 1: If z(t) = (q(t), σ(t)) is an optimal solution to Problem 1, then

min
t∈[0,tf ]

q(t) = 0, and max
t∈[0,tf ]

q(t) = Q.

This condition also holds for Problem 2 withtf replaced byT .

According to Lemma 1, the optimal buffer size is completely determined by a given trajectoryz(t).

From now on, we will callQ a valid buffer size of z if max q(t) ≤ Q and theoptimal buffer size of z

if equality holds.

The rest of this paper is devoted to deriving analytical solutions to the two problems formulated in this

section. Specifically, we will prove that: (i) the optimal solutions to both problems must be boundary-

switching trajectories (BST’s); (ii) the optimal pure periodic trajectory (OPPT) withnp = 1 is an optimal

solution to Problem 2 for an arbitrarynp; (iii) the optimal pure trajectory (OPT) with lengthtf andnp = 1

is an optimal solution to Problem 1 for an arbitrarynp; (iv) the OPT is different from the OPPT in general

and will converge to the OPPT astf goes to infinity. Although we consider all feasible trajectories as

candidate solutions, the above results enable us to only focus on pure (periodic) trajectories in finding

the optimal solutions. Since a pure trajectory involves only one (distinct)Λ-pair and only switches when

q(t) is 0 or Q, the OPT and OPPT, which are optimal solutions to Problems 1 and 2, can be easily

characterized analytically.

III. O PERATIONS ONHYBRID TRAJECTORIES

In this section, we introduce some important operations that can transform an existing trajectory to

a new one while preserving certain properties. These operations play an important role in deriving the



9

optimal solutions to Problems 1 and 2.

A. Cropping

Cropping, denoted byCa,b[·], is an operation that obtains a new trajectory by trimming off the

uninteresting parts of the original trajectory. For example, the cropped trajectoryCa,b[z] will only keep

the part ofz(t) wheret ∈ [a, b], i.e.,

Ca,b[z](t) = z(t + a), for t ∈ [0, b − a].

B. Joining

Joining, denoted byJ [·, · · · , ·], is an operation that obtains a new trajectory by putting several

finite-length trajectories together. For example,J [z(1), z(2)] corresponds to a new trajectory obtained

by appendingz(2) to the end ofz(1). More precisely,

J [z(1), z(2)](t) =







z(1)(t) , t ∈ [0, t
(1)
f ]

z(2)(t − t
(1)
f ) , t ∈ [t

(1)
f , t

(1)
f + t

(2)
f ]

,

wheret
(1)
f and t

(2)
f are the lengths ofz(1) andz(2), respectively. To prevent introducing discontinuities,

it is required thatz(1) and z(2) have consistent boundary conditions, i.e.,q(1)(t
(1)
f ) = q(2)(0), where

q(1) and q(2) are the continuous states ofz(1) andz(2), respectively. Denote byJm[z] a special joining

operation that repeats the trajectoryz satisfyingz(0) = z(tf ) for m times, i.e.,

Jm[z] = J [z, . . . , z
︸ ︷︷ ︸

m z′s

].

C. Periodic Extension

Periodic extension, denoted byP[·], is an operation that obtains a periodic trajectory by repeating a

given trajectoryz for infinitely many times. Mathematically,P[·] can be defined in terms of the joining

operation asP[z] = J∞[z]. For a trajectoryz(t) of length tf , P[z](t + l · tf ) = z(t) for all t ∈ [0, tf ]

and any nonnegative integerl .

D. Scaling

For an arbitrary hybrid trajectoryz(t) = (q(t), σ(t)), the scaling operation with parameterc > 0 is

defined as

Sc[z](t) = (cq(t/c), σ(t/c)).
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If z(t) = (q(t), σ(t)) is a hybrid trajectory in[0, tf ] with buffer sizeQ, switching sequence(σ1, . . . , σn)

and switching instants(t0, . . . , tn−1), thenSc[z] is a hybrid trajectory in[0, ctf ] with buffer sizecQ,

switching sequence(σ1, . . . , σn) and switching instants(ct0, . . . , ctn−1). In other words,Sc[z] follows

exactly the same switching sequence asz, but the time it spends in each mode before switching to a new

one is scaled by a factor ofc. An important property of the scaling operation is that it does not change

the running power of a trajectory. It can be easily verified that the total average power ofSc[z] is

P̄ (Sc[z]; cQ, ctf )=P̄ (z;Q, tf )+
(1−c)nks

ctf
+pb(c−1)Q. (3)

E. Folding

Folding operation, denoted byFm[·], is only defined for theΛ-trajectories. It obtains a pure trajectory

with 2m switchings from aΛ-trajectory with2 switchings. Fig. 3 illustrates a 3-fold folding for aΛ-

trajectory z(t). The operation consists of the following three steps. First, the range ofz(t) is divided

evenly into 3 sections. Each section corresponds to two segments of the trajectory; one is ascending and

the other one is descending. Then by appending each descending segment to the end of the corresponding

ascending one, a newΛ-trajectory is obtained in each section. Finally, all the three Λ-trajectories are

joined together to obtain the final trajectory as shown in Fig. 3-(c).

If Q is the optimal buffer size ofz(t), thenFm[z] contains2m switchings and has an optimal buffer

sizeQ/m. In fact, any finite-length pure trajectory (e.g. Fig 3-(c))can be thought of as obtained from a

Λ-trajectory (e.g. Fig 3-(a)) through the folding operationwith certain parameterm.

F. Switching Instant Perturbation (SIP)

Switching instant perturbation is defined only for two-switching trajectories, namely the trajectories

(may not be feasible in general) with exactly two switchings. Let z(t) = (q(t), σ(t)) be a two-switching
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trajectory with switching sequence(σ1, σ2), switching instants(0, t1) and buffer sizeQ. Suppose that

q(0) = q1, q(tf ) = q2. Denote byHh[z] = (q̂(t), σ̂(t)) the SIP ofz. Roughly speaking, the SIP is

an operation that perturbs the switching instantt1 to a neighboring valueh while at the same time

changes the timetf accordingly to a certain valuêtf to maintain the same trajectory boundary values,

i.e., q̂(0) = q1 and q̂(t̂f ) = q2. Fig. 4 illustrates an example of obtainingHh[z] from z(t). It can be seen

that the new trajectoryHh[z] switches from modeσ1 to modeσ2 at time h instead oft1 and ends at

time t̂f when its continuous state hitsq2. Mathematically, the perturbed trajectoryHh[z] = (q̂(t), σ̂(t))

can be defined as

σ̂(t) =







σ1 , t ≤ h

σ2 , h < t ≤ t̂f
,

dq̂(t)

dt
=rσ̂(t) − ry, for t ∈ [0, t̂f ],

and t̂f =h +
h(ry − rσ1

) + q2 − q1

rσ2
− ry

.

(4)

Under the above notations, a SIPHh[z] is calledvalid if

0 ≤ h ≤ t̂f and q̂(t) ∈ [0, Q] ∀t ∈ [0, t̂f ]. (5)

In other words,Hh[z] is valid if it spends nonnegative time in each mode and it doesnot cause any

buffer overflow or underflow. The set ofh for which Hh[z] is valid is called thedomain of h and is

denoted byDh. Thus for anyh ∈ Dh, ẑ = Hh[z] defined in (4) satisfies the following properties:

1) ẑ follows the same switching sequence(σ1, σ2) asz and spends nonnegative time in each mode.

2) q̂(0) = q(0) = q1 and q̂(t̂f ) = q(tf ) = q2.

3) q̂(t) ∈ [0, Q] for all t ∈ [0, t̂f ].

Note thatDh is a bounded connected interval. For example, consider the trajectoryz1 as shown in

Fig. 5-(a). Let(q̂(t), σ̂(t)) = Hh[z1](t). If h < a, then t̂f as defined in (4) will be less thanh, which
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violates the first condition in (5). On the other hand, ifh > b, thenq̂(t) < 0 for t ∈ (b, h], which violates

the second condition in (5). Hence,Dh = [a, b] for z1. As another example, consider the trajectoryz2

as shown in Fig. 5-(b) for whichq(t1) is on the boundary of[0, Q]. By a similar argument as in the

first example, the range ofh for z2 is Dh = [c, t1]. It is observed from these two examples that if

q(ti) ∈ (0, Q), thent1 is an interior point ofDh. On the other hand, ifq(ti) = 0 or Q, thenti is on the

boundary ofDh. This property actually holds for the SIP of arbitrary two-switching trajectories.

The SIP is a specific yet useful operation. Since it can perturb the switching instant without affecting

the boundary values (q(0) andq(tf )) and the buffer sizeQ, it can be used, together with other operations

such as cropping and joining, to study the effect of perturbing only one switching instant of a general

trajectory.

IV. OPTIMAL PERIODIC SOLUTION

In this section, we derive the optimal solutions of Problem 2(denoted by OS2 for simplicity). The

following lemma can greatly simplify the problem and is crucial for later proofs.

Lemma 2: If z is an OS2, thenz ∈ Ω. In other words, optimal solutions to Problem 2 must be

boundary-switching trajectories.

Proof: The key idea of the proof is to use the operations defined in Section III to construct a better

trajectory with less power consumption for any given trajectory that has switchings at some interior

points of [0, Q]. Let (z(t), Q, T ) be a solution to Problem 2. Denote by(σ1, . . . , σnT
) and(t1, . . . , tnT

)

the switching sequence and switching instants in the first period of z(t). Suppose thatz(t) has a switching

at some interior point of[0, Q], i.e., 0 < q(ti) < Q for somei. Divide the first period ofz(t) into three
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parts through the cropping operation as shown in Fig. 6-(a):

z(1)(t) = C0,ti−1
[z](t), z(2)(t) = Cti−1,ti+1

[z](t),

and z(3)(t) = Cti+1,T [z](t). (6)

Assume thatz(2)(t) = (q(2)(t), σ(2)(t)), q(2)(0) = q1 andq(2)(ti+1 − ti−1) = q2. Perform the SIP onz(2)

to obtain a new trajectoryz(2)
h = (q

(2)
h (t), σ

(2)
h (t)) , Hh[z(2)]. According to (4), the length ofz(2)

h is

t
(2)
h = h +

h(ry − rσi
) + q2 − q1

rσi+1 − ry
. (7)

By definition, the SIP does not change the boundary values ofz(2), i.e., q(2)
h (0) = q1 andq

(2)
h (t

(2)
h ) = q2.

Thus we can rejoinz(1), z
(2)
h andz(3) as shown in Fig. 6-(b) to obtain

zh , J [z(1), z
(2)
h , z(3)]. (8)

It is obvious that the length ofzh is

Th = ti−1 + t
(2)
h + (T − ti+1). (9)

Now we show thatzh consumes less power thanz for someh. Recall thatDh is the set ofh that z(2)
h

remains valid. According to (5),Q is a valid buffer size forzh if h ∈ Dh. Thus∀h ∈ Dh the power of
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zh with buffer sizeQ is

P̄ (zh;Q,Th) =
1

Th

[
E1 + E3 + nTks + pσi

· h

+ pσi+1
(t

(2)
h − h)

]
+ pbQ, (10)

where E1 and E3 are the running energy ofz(1) and z(3), respectively. Taking the derivative of

P̄h(zh;Q,Th) with respect toh, we have

dP̄ (zh;Q,Th)

dh
=

1

(Th)2

[(

pσi
+ pσi+1

ry − rσi

rσi+1
− ry

)

·
(

T−(ti+1 − ti−1)+
q2 − q1

rσi+1
− ry

)

−
(

1+
ry − rσi

rσi+1
− ry

)

·
(

E1 + E3 + nTks + pσi+1

q2 − q1

rσi+1
− ry

)]

. (11)

Note that theh-related terms in the numerator have been cancelled out. Suppose thatDh = [a, b]. Since

q(ti) ∈ (0, Q) by assumption,ti ∈ (a, b) as discussed in Section III-F. From (11) it is clear that the

sign of dP̄ (zh;Q,Th)
dh does not depend onh, which indicates that̄P (zh;Q,Th) is monotone with respect

to h in [a, b]. Thus eitherza (Fig. 7-(a)) orzb (Fig. 7-(b)) consumes less power thanz. Without loss of
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generality, assumeza consumes less power thanz. Then the periodic extension ofza, P[za], is a better

periodic solution to Problem 2 thanz. Thus it follows thatq(ti) = 0 or Q for all i = 1, . . . , nT , i.e., the

OS2 must be a BST.

Lemma 2 enables one to focus on the BST’s (Ω) in deriving the optimal solutions to Problem 2. Recall

that the variablenp is used to describe the purity of a BST. In the rest of this section, we will first solve

a simple case of Problem 2 where only the pure periodic trajectories with np = 1 are considered as

candidate solutions. Then we will prove that the solution inthis simple case is actually an OS2 for an

arbitrarynp.

A. Optimal Pure Periodic Trajectory (OPPT)

The Optimal pure periodic trajectory (OPPT) is defined as the optimal periodic solution to Problem 2

under an additional constraintnp = 1, i.e., the candidate trajectories must be pure boundary-switching

trajectories. Letz be a periodic trajectory satisfying this condition. Then every period ofz consists of

the sameΛ-pair. Thus the main task of this subsection is to find the bestΛ-pair and the best periodT

of z.

For a givenΛ-pair {i, j}, the periodTij can be expressed in terms of the corresponding buffer size

Qij as

Tij =
Qij

ri − ry
+

Qij

ry − rj
, αijQij. (12)

Denote byβij the running power ofz over a period, i.e.,

βij=
1

Tij

[
Qijpi

ri − ry
+

Qijpj

ry − rj

]

=
1

αij

[
pi

ri − ry
+

pj

ry − rj

]

. (13)

Note that bothαij andβij are constants depending only on the givenΛ-pair. With these notations, the

average power ofz over one period is given by

P̄ T
ij (Qij) = βij +

2ks

αijQij
+ pbQij. (14)

Taking the derivative of (14) with respect toQij and setting it to zero, we obtain the optimal buffer size

for the Λ-pair {i, j} as:

Q∗
ij =

√

2ks

αijpb
. (15)

Thus the minimum achievable power for theΛ-pair {i, j} is P̄ T
ij (Q∗

ij). The optimalΛ-pair {σ+
T , σ−

T } can

be obtained by minimizinḡP T
ij (Q∗

ij) with respect to{i, j}, i.e.,

{σ+
T , σ−

T } = arg min
{i∈I,j∈J}

P̄ T
ij (Q∗

ij). (16)
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Fig. 8. A boundary-switching trajectory withnT > 2

Since solving (16) entails comparison of at mostN(N − 1)/2 quantities, the computational cost for

obtaining the bestΛ-pair is fairly low. Note that the minimizers in (16) may not be unique. Denote by

Σ the set of all the minimizers in (16) and by|Σ| the number of elements inΣ. Two or more elements

in Σ are calledequivalent Λ-pairs if they correspond to the same optimal buffer size as defined in (15).

In other words, the equivalentΛ-pairs are theΛ-pairs that minimize (16) with the same optimal buffer

size. The following theorem summaries the above results andgives a rigorous definition of the OPPTs.

Theorem 1: Let z(t) be a pure periodic trajectory with(i, j) and(0, Q
ri−ry

) as the switching sequence

and switching instants in its first period, respectively. If{i, j} ∈ Σ andQ = Q∗
ij as defined in (15), then

z is an OPPT with periodTij .

B. General Optimal Solutions

In this section, we will prove that the OPPT derived in the last section for the casenp = 1 is actually

an OS2 for an arbitrarynp. Furthermore, ifΣ contains equivalentΛ-pairs, then the OPPT can be used as

a building block to construct more complicated OS2s that arenot pure. The main result of this section

is the following theorem.

Theorem 2: The OPPT defined in Theorem 1 is an OS2.

Proof: Let z∗(t) be an OPPT as defined in Theorem 1 andP̄ ∗ be its average power. Letz(t) =

(q(t), σ(t)) be an arbitrary periodic trajectory with average powerP̄ . We need to show that̄P ∗ ≤ P̄ .

According to Lemma 2, we can assumez ∈ Ω. If z is pure, then by the definition ofz∗, we automatically

haveP̄ ∗ ≤ P . Hence, we assume thatz is mixed withnp > 1 and its first period is as shown in Fig 8.

Let Ti, i = 0, . . . ,m, be the successive time instants such thatq(Ti) = 0. Denote byP̄i, i = 1, . . . ,m, the

average power ofCTi−1,Ti
[z], which is the part ofz(t) within the interval[Ti−1, Ti). It is obvious thatP̄ =

P̄1T1+···+P̄m(Tm−Tm−1)
Tm

is a convex combination of̄P1, . . . , P̄m. Thus P̄ ≥ P̄i∗ , wherei∗ = arg mini P̄i.
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Furthermore, we also havēPi∗ ≥ P̄ ∗, as otherwise the periodic extension ofCTi∗−1,Ti∗
[z] is also pure but

consumes less power thanz∗, which contradicts the optimality ofz∗. Hence,P̄ ∗ ≤ P̄i∗ ≤ P̄ .

When |Σ| > 1, the OPPT is not unique and neither is the OS2 according to Theorem 2. Furthermore,

if Σ contains equivalentΛ-pairs, we can use them to even construct an OS2 that is not pure. To see

this, let z1 andz2 be two different OPPTs consisting of equivalentΛ-pairs with optimal buffer sizesQ1

andQ2, optimal periodT1 andT2 and average power̄P1 and P̄2, respectively. By the definition of the

equivalentΛ-pairs, we must havēP1 = P̄2 and Q1 = Q2. Define ẑ1 = C0,T1
[z1], ẑ2 = C0,T2

[z2] and

z = P[J [ẑ1, ẑ2]]. In other words,z is a periodic trajectory with each period defined by connecting one

period ofz1 andz2 together. It is obvious thatz consumes the same average power asz1 andz2. Thus

z is an OS2 with two differentΛ-pairs, i.e.,np = 2. In a similar way, more complicated OS2s can be

constructed ifΣ contains more than two equivalentΛ-pairs.

Although mixed OS2s may exist, the OPPT is the simplest OS2 which can be easily computed and

implemented. Thus we will focus on the OPPT in the rest of thispaper for optimal solutions of Problem 2.

C. tf -adapted OPPT

The OPPT is an infinite-length periodic trajectory that requires an infinite amount of incoming data.

However, for real applications, the amount of data to be transferred is finite. Therefore, when the OPPT

is used in a real application, another guard condition should be added to the system: switch component

X to the lowest power mode (mode 1) whenever there is no more incoming data. Suppose that for an

application, X needs to producetfry amount of data for Y and this amount is not known during the

design process. In this case, we can solve Problem 2 to obtainan OPPTzT = (q(t), σ(t)) with period

T . To evaluate how wellzT performs for this application, define thetf -adapted trajectory, denoted by

Atf
[zT ], as

Atf
[zT ] = (q̂(t), σ̂(t)),

where σ̂(t) =







σ(t) , t ≤ ts

1 , ts < t ≤ tf
,

and
dq̂(t)

dt
=







rσ̂(t) − ry , t ≤ ts

−ry , ts < t ≤ tf
,

(17)

wherets 6= tf is the unique solution of equationq(ts) = (tf − ts)ry. In other words,Atf
[zT ] follows

exactly the original trajectoryzT until the time ts when X finishes producing thetfry amount of data.

During the interval[ts, tf ], component X is switched to the lowest power mode consuming aconstant
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powerp1, while component Y is reading the remaining data in the buffer. Note that regardless of whether

r1 is 0 or not, X is not producing any new data during[ts, tf ] as all thetfry amount of data has been

sent to the buffer beforets. TheAtf
[zT ] reflects what actually happens to the system when the strategy

zT is applied to a real application with unknown but finite duration tf . Although it is obtained based on

the optimal periodic trajectoryzT , it may not be optimal for this particular application unless tf is an

integer multiple ofT .

V. OPTIMAL SOLUTIONS FORFIXED AND GIVEN tf

For unknowntf , the OPPT is a good switching policy since it is the best periodic strategy that can

be easily implemented by computers (resulting in atf -adapted trajectory). In this section, we study the

case where the exact value oftf is known and derive optimal solutions to Problem 1 (OS1). An OS1 can

be used to construct a periodic trajectory with periodtf through the periodic extension. In this sense,

Problem 1 can be thought of as a version of Problem 2 with a fixedperiodT = tf . With the constraint

for the period, Problem 1 becomes more difficult than Problem2. On the other hand, with the additional

knowledge oftf , we expect to obtain a solution that performs even better than thetf -adapted OPPT for

this particulartf .

Not surprisingly, the optimal solution to Problem 1 must also be a boundary-switching trajectory.

Lemma 3: If z is an OS1, thenz ∈ Ω.

Remark 2: The perturbed trajectoryzh defined in (8) plays an important role in the proof of Lemma 2.

However, sincezh has a different length fromz, it can not be directly applied to prove Lemma 3 where

the time horizontf is given and fixed. The key idea of the proof of Lemma 3 is to further perturbzh

using scaling operation with a proper parameterc so thatSc[zh] has the same length asz and then show

that the average power ofSc[zh] is less than that ofz for certainh if z has interior switchings. Refer to

Appendix for a complete proof.

Lemma 3 enables one to consider only the BST’s in finding the OS1’s. Similar to the periodic case,

in the rest of this section, we will first find a solution in a simple case wherenp = 1 and then prove that

this solution is also an OS1 for an arbitrarynp.

A. Optimal Pure Trajectory (OPT)

The optimal pure trajectory (OPT) is defined as the optimal solution to Problem 1 under an additional

constraintnp = 1, i.e., only pure trajectories are considered as candidate solutions. As discussed in

Section III-E, any finite-length pure trajectory can be thought of as obtained from aΛ-trajectory through
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a folding operation. Thus the main task is to determine the bestΛ-pair and the corresponding best folding

parameter.

Let z1(t) be aΛ-trajectory with lengthtf andΛ-pair {i, j}. Sincetf is fixed, its optimal buffer size

is given by:

Qij =
tf
αij

, (18)

whereαij is the constant defined in (12). Definezm = Fm[z1]. Thenzm is a pure trajectory as shown in

Fig. 9 with 2m switchings and the sameΛ-pair asz1. As discussed in Section III-E,zm has an optimal

buffer sizeQij/m and its average power is

P̄
tf

ij (m) = βij +
2mks

tf
+

pbtf
mαij

, (19)

whereβij is the constant defined in (13). Taking the derivative ofP̄
tf

ij with respect tom and setting it

to zero, we obtain the optimal value ofm as

m̂ij = tf

√
pb

2ksαij
. (20)

Note that the folding parameterm must be an integer, and the function̄P
tf

ij (m) is convex inm. Therefore,

if m̂ij is not an integer, the optimal feasible value ofmij , m∗
ij, is whichever of the two neighboring

integers ofm̂ij that results in a smaller value of̄P
tf

ij (m) as defined in (19). Hence,

m∗
ij = arg min

m∈{⌊m̂ij⌋,⌈m̂ij⌉}
P̄

tf

ij (m). (21)

The minimal achievable power with theΛ-pair {i, j} is P̄
tf

ij (m∗
ij). Then the bestΛ-pair {σ+

tf
, σ−

tf
} can

be obtained as

{σ+
tf

, σ−
tf
} = arg min

{i∈I,j∈J}
P̄

tf

ij (m∗
ij). (22)
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Denote byΣf the set of all minimizers of (22) and by|Σf | the number of elements inΣf . The following

theorem summarizes the above results.

Theorem 3: Let zm(t) be a pure trajectory as shown in the right side of Fig. 9 with2m switchings

andΛ-pair {i, j}. If {i, j} ∈ Σf andm = m∗
i,j, thenzm is an OPT with optimal buffer sizeQij/m

∗
ij .

B. General Optimal Solution

In last subsection, we derive analytically the optimal puretrajectories withnp = 1. A natural question

is that whether the power can be further reduced if we relax the constraint onnp. To answer this question,

we start with a simple case where the candidate trajectoriesare allowed to contain at most two distinct

Λ-pairs,4 i.e., np ≤ 2. Let zm1,m2
be a BST consisting ofm1 copies ofΛ-pair (i1, j1) andm2 copies of

Λ-pair (i2, j2). Without loss of generality, assume that all the same pairs are grouped together as shown

in Fig 10. In other words, the switching sequence ofzm1,m2
is assumed to be

(σ1, . . . , σ2(m1+m2)) = (i1, j1, . . . , i1, j1
︸ ︷︷ ︸

m1 pairs

i2, j2, . . . , i2, j2
︸ ︷︷ ︸

m2 pairs

).

The optimal buffer size ofzm1,m2
is uniquely determined byQ = tf

αi1,j1
m1+αi2,j2

m2
, whereαi,j is the

constant defined in (12). Letβi,j be the running power of theΛ-pair {i, j} as defined in (13). Then the

4Two differentΛ-pairs may consist of three or four different modes. For example, {σ1, σ2} and{σ1, σ3} are also called two

different Λ-pairs although they have one mode in common.
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total energy consumed byzm1,m2
is computed as

E(m1,m2) = 2(m1 + m2)ks+

pbt
2
f + βi1,j1αi1,j1m1tf + βi2,j2αi2,j2m2tf

αi1,j1m1 + αi2,j2m2
.

Lemma 4: For any {i1, j1} and {i2, j2}, there exists a pair of nonnegative integers(m∗
1,m

∗
2) with

eitherm∗
1 = 0 or m∗

2 = 0 such thatE(m∗
1,m

∗
2) ≤ E(m1,m2), for any other pair of nonnegative integers

(m1,m2),

Proof: For simplicity, definea1 = βi1,j1αi1,j1tf , a2 = βi2,j2αi2,j2tf andc = pbt
2
f . Relaxm1, m2 to

nonnegative real numbersx1 andx2. Then

E(x1, x2) = 2ks(x1 + x2) +
a1x1 + a2x2 + c

αi1,j1x1 + αi2,j2x2
.

Note that all the constantsa1, a2, c, αi1,j1 , andαi2,j2 are positive. To prove the lemma, it suffices to

show that there exists a point on thex1 or x2 axis that minimizesE(x1, x2) in the first quadrant. To

find the minimizers ofE(x1, x2) in the first quadrant, we can first minimize it along each ray inthe

first quadrant, and then find the ray that gives the best minimum value. Towards this purpose, consider

x2 = λx1, whereλ ∈ [0,∞]. Then

E(x1, λx1) =2ks(1 + λ)x1 +
(a1 + a2λ)x1 + c

(αi1,j1 + αi2,j2λ)x1

≥2

√

2ks(1 + λ)c

αi1,j1 + αi2,j2λ
+

(a1 + a2λ)

(αi1,j1 + αi2,j2λ)

,E(x∗
1, λx∗

1).

ThusE(x∗
1, λx∗

1) is the minimum value achieved on the rayx2 = λx1. To prove the lemma, it suffices to

show that eitherλ = 0 or λ = ∞ minimizesE(x∗
1, λx∗

1). After some computations,E(x∗
1, λx∗

1) reduces

to

E(x∗
1, λx∗

1) = d3

√

d2y +
1

αi2,j2

+ d1y +
a2

αi2,j2

, f(y),

wherey = 1
α2

i2,j2
λ+αi1,j1

αi2,j2

andd1 = a1αi2,j2 − a2αi1,j1 , d2 = αi2,j2 − αi1,j1 andd3 = 2
√

2ksc are all

constants. Note that exceptd1 andd2, all the other constants are positive. Asλ increases from0 to ∞,

y decreases from 1
αi1,j1

αi2,j2

to 0. Hence, it suffices to show that either0 or 1
αi1,j1

αi2,j2

is a minimizer of

f(y) in [0, 1
αi1,j1

αi2,j2

]. Note that the second-order derivative off(y) is

d2f

dy2
(y) = − d2

2d3

4(d2y + 1/αi2,j2)
3/2

≤ 0.
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Thusf(y) is a concave function ofy in [0, 1
αi1,j1

αi2,j2

]. Since the minimizer of a concave function over a

bounded set must be on the boundary of the set, we conclude that either0 or 1
αi1,j1

αi2,j2

is a minimizer

of f(y) in [0, 1
αi1,j1

αi2,j2

].

According to Lemma 4, for any given twoΛ-pairs, we can always use one of them to construct a pure

trajectory that performs equally well or better than all theother mixed trajectories involving these two

Λ-pairs. Therefore, the following corollary follows immediately.

Corollary 1: The OPT is an optimal solution to Problem 1 under an additional constraintnp ≤ 2.

The question now becomes that whether more energy can be saved by further relaxing the constraint

on np. It turns out to be not the case. In fact, the OPT is an optimal solution to Problem 1 for an arbitrary

np. This can be proved by induction. The following lemma is the key of the induction procedure.

Lemma 5: For any BSTz with length tf andnp = l + 1, there exists another BST̂z with length tf

andnp ≤ l that consumes equal or less power thanz.

The proof of Lemma 5 can be found in Appendix . By this lemma, any BST corresponds to a pure

trajectory with no more power consumption. Thus the following theorem follows immediately.

Theorem 4: The OPT defined in Theorem 3 is an OS2 for an arbitrarynp.

C. OPT vs. (tf -adapted) OPPT

In this subsection, we compare the OPT derived in last subsection with the (tf -adapted) OPPT derived

in Section IV to get a clearer picture of how the corresponding two problems, initially formulated from

two different practical aspects, relate to each other.

Proposition 1: Let zT be an OPPT with periodT andztf
be an OPT with lengthtf and2m switchings.

Denote byztf

T the tf -adapted trajectory ofzT . Let P̄ (·) be the average power for a given trajectory. Then

the three trajectories satisfy:

1) P̄ (zT ) ≤ P̄ (ztf
) ≤ P̄ (z

tf

T ) for any tf ≥ 0;

2) If tf = l · T for somel ∈ N, then P̄ (ztf
) = P̄ (zT ) = P̄ (z

tf

T );

3) P̄ (ztf
) → P̄ (zT ) and P̄ (z

tf

T ) → P̄ (zT ) as tf → ∞.

Proof: (i) Obviously P̄ (ztf
) ≤ P̄ (z

tf

T ) as z
tf

T is also a trajectory with lengthtf . Since zT is

the best periodic trajectory,̄P (zT ) ≤ P̄ (P[ztf
]) = P̄ (ztf

). The desired result follows. (ii) Obviously

P̄ (zT ) = P̄ (z
tf

T ) as z
tf

T is just the firstl periods ofzT . Considering the result in (i), all the three

powers are equal. (iii) According to (i), it suffices to provethat P̄ (z
tf

T ) → P̄ (zT ) as tf → ∞. Let

mtf
= ⌊tf/T ⌋. Thenmtf

T/tf → 1 as tf → ∞. Denote byP̄1 and P̄2 the average power ofztf

T during

the interval[0,mtf
T ] and [mtf

T, tf ], respectively. According to (17),ts > mtf
T andz

tf

T (t) = zT (t) for
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TABLE I

POWER MODES OF SYSTEMH1

modei 1 2 3 4 5 6

ri 0 1 2 3 4 5

pi 0.1 0.12 0.2 0.3 0.33 0.4

t ∈ [0,mtf
T ]. Thus P̄1 = P̄ (zT ). Note thatP̄2 ≤ pN + 2ks

tf−mtf
T + pbQ, wherepN is the power of the

highest mode. Hence, astf → ∞,

P̄ (z
tf

T ) =
P̄1mtf

T + P̄2(tf − mtf
T )

tf
→ P̄ (zT ).

Remark 3: Any practical application corresponds to a finitetf . If the tf is unknown, we can only

compute the OPPT (zT ). Applying zT to the application results in atf -adapted trajectoryztf

T . On the

other hand, iftf is known a priori, a better trajectory (ztf
) than z

tf

T can be computed. In fact,ztf
is

the best trajectory for the giventf and its power is bounded from below bȳP (zT ) and from above by

P̄ (z
tf

T ).

VI. SIMULATION

A. Fictional Example

Consider a system (H1) with 6 power modes as defined in Table I.Assume thatks = 0.1, pb = 0.1

andry = 3.5. For this system H1, we compute the OPPT (zT ), the OPT (ztf
) and thetf -adapted OPPT

(ztf

T ), according to Theorem 1, Theorem 4 and equation (17), respectively. Denote byP̄ (·) the average

power of a given trajectory. In Fig. 11-(a), we plot the powerof each trajectory as a function oftf . It

can be seen that̄P (ztf
) always stays below̄P (z

tf

T ) and both of them converge tōP (zT ) from above as

tf → ∞. It is also observed that the three trajectories have the same average power whentf is an integer

multiple of the optimal period (T = 2.8284) of the OPPT. These observations are consistent with our

analysis in Section V-C. In Fig. 11-(b), we plot the optimalΛ-pairs ofzT andztf
as functions oftf . It

can be seen that the optimalΛ-pair in ztf
is initially {5, 2} and eventually converges to{5, 4} which is

the optimalΛ-pair of zT (andz
tf

T ). This indicates thatztf
may involve differentΛ-pairs for differenttf .
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Fig. 11. Simulation results of example 1

B. Practical Example

Our theoretical results can be applied in many real-world applications, such as the power management

problem of a multiple-speed disk ([5]) and the dynamic voltage scheduling (DVS) problem of a variable

speed processor ([4]). In this section, we use a DVS example to illustrate the effectiveness of our results.

Let X be an Intel Xscal processor ([23]) with five available power modes as defined in Table II. Suppose

that Y is a video card that fetches data from X at a constant speed 8 Mbps (1MB/s). The power per

megabyte for buffer B can be looked up in the datasheet ([24])as6.258× 10−4 W/MB. A typical value

of the switching energy is 0.1mJ in a microprocessor ([4]). Since the switching costks in our model may
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TABLE II

POWER MODES OFINTEL XSCALE PROCESSOR

modei 1 2 3 4 5

fi (MHz) 150 400 600 800 1000

ri (MB/s) 0.45 1.2 1.8 2.4 3

pi (Watt) 0.08 0.17 0.4 0.9 1.6

also include other switching penalties, such as the switching delay penalty, we test our method forks

ranging from 0.1mJ to 100mJ. Astf is usually large for video programs, thetf -adapted OPPT and the

OPT will provide almost the same power performance. For simplicity we only implement thetf -adapted

OPPT in this simulation and refer to this method as Scheme 1. Aheuristic strategy, referred to as Scheme

2, is also implemented where X is switched to the highest speed until the buffer is full and then switched

to the lowest speed until the buffer is empty. Scheme 2 is tested for four heuristically selected buffer

sizes 0.1MB, 0.3MB, 1MB and 8MB. The power consumptions of Scheme 2 in these cases are compared

with Scheme 1 in Fig. 12. It can be seen that the proposed optimal strategy always performs the best for

eachks and can save about 60% of power consumption compared with theheuristic ones.

VII. C ONCLUSIONS

This paper introduces a modeling framework for the DBM problem using hybrid systems. Two

practically important DBM problems are formulated as optimal control problems of a piecewise constant

hybrid system. Various necessary conditions are derived using some variational approach. It is shown that

the optimal pure trajectory (OPT) and the optimal pure periodic trajectory (OPPT) are optimal solutions

to Problems 1 and 2, respectively. General guidelines for solving practical DMB problems using these

optimal strategies are also discussed. For a particular application, if its time horizontf is unknown,

one can only compute the OPPT. Applying the OPPT to the application results in atf -adapted OPPT,

which is a good suboptimal strategy that converges to the true optimal strategy astf goes to infinity. On

the other hand, iftf is known, the best strategy OPT can computed, which guarantees the least energy

consumption for this particular application. Future research will focus on the following two aspects: one

is to extend our analysis to the case where more than one buffers are inserted among multiple streamlined

components. The other one is to study the case where the data rates of components are varying or even

random instead of constant.
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APPENDIX

Proof: Let z(t) = (q(t), σ(t)) be an OS1 with switching instants(t0, . . . , tn−1) and buffer sizeQ.

Supposeq(ti) ∈ (0, Q) for somei. Definezh as in (6) withT replaced bytf . Thenzh has the same

buffer sizeQ as z, and similar to (9), its length isthf = ti−1 + t
(2)
h + (tf − ti+1), wheret

(2)
h is given

in (7). Defineẑh = Sch
[zh], wherech = tf/thf . According to the properties of the scaling operation, the

buffer size ofẑh becomescQ and the length of̂zh is changed back totf . Therefore,ẑh is a feasible

trajectory for Problem 1. Considering (3) and (10), the power of ẑh is computed as

P̄ (ẑh;Q, tf ) =
1

thf

[
E1 + E3 + 2ks + pσi

· h

+ pσi+1
(t

(2)
h − h)

]
+ pbchQ +

nks(1 − ch)

chthf
.
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Taking the derivative of̄P (ẑh;Q, tf ) with respect toh, we have

dP̄ (ẑh;Q, tf )

dh
=

1
(

thf

)2

[(

pσi
+ pσi+1

ry − rσi

rσi+1
− ry

)

·
(

tf − (ti+1 − ti−1) +
q2 − q1

rσi+1
− ry

)

−
(

1 +
ry − rσi

rσi+1
− ry

)

·
(

E1 + E3 + ks + pσi+1

q2 − q1

rσi+1
− ry

)]

+
nks − pbQtf

(thf )2

(

1 − ry − rσi

rσi+1
− ry

)

.

Therefore,P̄ (ẑh;Q, tf ) is monotone with respect toh as the sign ofdP̄ (ẑh;Q,tf )
dh does not depend onh.

Using the same argument as in the last paragraph of the proof of Lemma 2, it follows that the optimal

solution to Problem 1 must also be a BST.
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……

1z 2z

Fig. 13. A trajectoryz with np = l + 1

Proof: Without loss of generality, assume thatz is as shown in Fig. 13 with the following switching

sequence

(i1, j1, . . . , i1, j1
︸ ︷︷ ︸

m1 pairs

, . . . , il+1, jl+1, . . . , il+1, jl+1
︸ ︷︷ ︸

ml+1 pairs

).

Definez1 = C0,a[z] andz2 = Ca,tf
[z], wherea is the starting time of the first copy of{i2, j2} as shown

in Fig. 13. Let{σ+, σ−} be a (virtual)Λ-pair whose data rates and powers are defined as

rσ+
= ry +

2Q

tf
, rσ−

= ry −
2Q

tf
,

pσ+
=

l+1∑

k=2

pik
(τik

)

tf − a
, pσ−

=

l+1∑

k=2

pjk
(τjk

)

tf − a
,

(23)
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Fig. 14. (a) Two-mode representation ofz2; (b) The Optimal trajectorỹz and its corresponding original trajectory

whereτik
is the total timez2 spends in modeik. Thuspσ+

andpσ−
in the above equation represent the

average powers of all the ascending modes and the descendingmodes ofz2, respectively. Note that the

so defined modesσ+ and σ− may not be feasible modes inS. They are only introduced to simplify

the proof. Letẑ2 be aΛ-trajectory with the virtual modes{σ+, σ−} as shown in Fig. 14-(a). Define the

switching cost inẑ2 to be2lks/2. Thenẑ2 has the same buffer size and total energy asz2; thusJ [z1, ẑ2]

consumes the same energy asz. On the other hand,J [z1, ẑ2] is a mixed trajectory withnp = 2; its

two different Λ-pairs {σ+, σ−} and {i1, j1} appear 1 andm1 times, respectively. By Lemma 4, there

exists a pure trajectorỹz involving only the pair{i1, j1} or {σ+, σ−} that consumes no more energy

thanJ [z1, ẑ2].5 Thus z̃ also consumes no more energy thanz. If z̃ involves only the pair{i1, j1}, then

it is a pure trajectory (np = 1) satisfying all the constraints in Problem 1 with no more energy than

z. On the other hand, if̃z involves only the pair{σ+, σ−}, it may not satisfy the third constraint in

Problem 1 asσ+ andσ− may not be inS. In this case,̃z must consist of a series of a scaled version of

ẑ2, i.e., z̃ = Jm[Sc[ẑ2]] for somem andc. According to (23),Jm[Sc[z2]] (obtained by replacing everŷz2

5Note that{σ+, σ
−
} and{i1, j1} have different switching costs. However, with slight modifications, Lemma 4 also applies

for the case where the twoΛ-pairs have different switching costs.
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with z2) as shown in Fig 14-(b) consumes the same energy asz̃. Thus we obtain a trajectoryJm[Sc[z2]]

with np = l (involving only the valid modesi2, j2, . . . , il+1, jl+1) that consumes no more energy thanz.

Hence, in either case we can find a trajectory withnp ≤ l that satisfies all the constraints in Problem 1

and consumes no more power thanz.
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