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ABSTRACT 
 
 

High-throughput biological imaging promises to be a powerful tool for modern biological 

research. These imaging technologies are used to monitor the behavior of large 

populations of cells in response to different experimental conditions. The resulting 

knowledge can help in drug discovery and in understanding biological phenomena. 

Different imaging modalities are used for high-throughput imaging. These include 2D 

fluorescence images, 3D confocal datasets, time-lapse image sequences, and 

multispectral images. Integrated analysis of these multi-modality spatial, temporal, and 

spectral data sets for extracting quantitative knowledge is challenging and requires new 

modeling and data processing tools. This paper presents a multi-layered architecture and 

spatio-temporal models for analysis of such data. The analysis is divided into low-level 

and high-level processing. At the lower level, issues like segmentation, tracking and 

object recognition are addressed, and at the high level, finite state machine- and Petri-

net–based models are used for spatio-temporal event recognition. This approach provides 

a mechanism for extracting high-level spatio-temporal knowledge, and improves 

searching and retrieval of high-throughput biological imaging data by means of semantic 

and conceptual queries. 
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1. Introduction 
 

 Recent advances in high-speed cameras, automation technologies, fluorescent probes, 

and optics have given rise to the field of high-content/high-throughput screening 

(HCS/HTS) [1]. HCS systems are used for monitoring the behavior of large populations 

of cells under different experimental conditions. The resulting knowledge can help in 

drug target selection, in understanding disease mechanisms, and in deciphering complex 

biological processes [2]. The wealth of data provided by these sophisticated technologies 

combined with the genomic and proteomic information can help unravel complex 

biological processes. The realization of this dream requires intelligent data processing 

tools that can extract objective and quantitative information from large volumes of HCS 

data sets [3]. Traditional visual examination is extremely slow and prone to human error. 

There is a need for intelligent multimedia interpretation tools that can extract high-level 

knowledge from large multi-modality biological imaging data sets. In this paper we 

describe a multi-layered architecture, and models for extracting spatio-temporal 

information from biological imaging datasets.  

 

Traditionally, biologists have used small-scale experimentation followed by visual 

examination for understanding biological processes. Based on the limited experimental 

information, hypotheses are developed which are then tested by further experimentation. 

This approach, though satisfactory for small-scale biology, has serious shortcomings for 

high-throughput technologies. A tremendous amount of genomic and proteomic data has 

been made available in recent years by successful collaborative efforts [4]. It is clear that 

understanding of highly complex biological processes requires the integrated analysis of 
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cells, tissues, and higher-level organisms instead of just one component in isolation. Our 

work focuses on developing data-modeling schemes and automated knowledge extraction 

tools for optical imaging of biological specimens using different imaging modalities.  

1.1 Imaging modalities 
 

High-throughput imaging devices combine sophisticated optics and cameras with 

automation technologies and provide large volume of imaging data for cell-based 

systems. Different imaging modalities can be used for this purpose [5]. Bright-field, dark-

field, phase-contrast, and multi-photon imaging generate 2D images. As most biological 

specimens are three dimensional, this 2D information is not sufficient. Confocal 

microscopy provides 3D image sets that can be used for 3D reconstruction and 

visualization. Confocal microscopes use a pinhole in the optical path that rejects most of 

the out-of-focus light. This way the image is produced only from a thin section of the 

sample. By collecting many such sections, a 3D representation of the sample is generated. 

Multispectral imaging is used for differentiating fluorochromes with similar spectra or for 

separating autofluorescence from fluorochrome fluorescence [6]. This imaging modality 

uses various types of filters to collect sample information at different spectral bands. 

Moreover, dynamic biological processes require time-lapse imaging, and many biological 

applications require combinations of these imaging modalities. This gives rise to 5-

dimensional image sets (three spatial, one temporal, and one spectral dimension).  

Integrated analysis of these multi-modality spatial, temporal, and spectral data sets for 

extracting quantitative knowledge is challenging and requires new modeling and data 

processing tools. 
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 1.2 Spatio-temporal modeling of multimedia 
 

Numerous multimedia modeling techniques have been developed in the past [7-9]. 

Applications of these modeling schemes range from automatic surveillance to 

summarization and indexing of sports and news videos.  However, biological multimedia 

data have only recently started attracting attention. Objective and quantitative analysis of 

biological data sets requires robust modeling approaches and intelligent analysis tools. 

There is a pressing need for biologists and multimedia experts to work together and 

jointly solve the complicated problems of biological multimedia analysis. Many 

applications can benefit from automatic semantic analysis of biological data. Analysis 

and quantitation of cell phenotypes help in understanding the response of cells to 

different environmental conditions. This information is also useful for understanding the 

function of cells and the alterations in their function due to diseases. Different cellular 

phenomena like apoptosis, phagocytosis, cell division, motility, etc. can be studied in a 

quantitative fashion, and effects of different drugs or experimental conditions can be 

ascertained. These techniques can provide a wealth of information for systems biology 

approaches and can potentially speed up the drug discovery process.  

2. Multi-layered modeling of biological multimedia data 
 
Knowledge extraction from biological multimedia data is extremely challenging and 

requires modeling at multiple levels. At the lower level, it requires sophisticated image 

processing techniques for preprocessing, segmentation, pattern recognition, and cell 

tracking, and at the higher level it necessitates the modeling of spatial and temporal 

dynamics of biological systems to extract high-level semantics. A multi-layered modeling 
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scheme as shown in Figure 1 is therefore necessary to capture not only the low-level 

details of biological objects but also the higher-level semantics. Biological applications 

vary in terms of their semantic analysis requirements. Some applications only require 

quantification of simple parameters like size or fluorescence intensity whereas others 

require recognition of biological objects or quantitative analysis of the evolution of 

biological objects over time. A multi-level modeling approach therefore meets the 

requirements of a variety of biological applications. This paper focuses on spatial and 

temporal analysis which constitutes the two middle layers shown in Figure 1. 

 
Knowledge extraction and representation layer 

 
Temporal analysis layer 

 
Spatial analysis layer 

 
Object recognition and tracking layer 

 
Raw multimedia biological data 

 

Figure 1. Multi-layered abstraction 
 

2.1 Object recognition and tracking layer 
Raw multimedia biological data may consist of 2D images, 3D confocal data sets, 

multispectral images, and time-lapse microscopic videos. Analysis of acquired images 

starts at the object recognition and tracking layer. The first step is to separate objects of 

interest from background. This step is made more challenging by variations in biological 
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objects and in acquisition parameters of imaging instruments, such as illumination 

conditions [10,11]. Some preprocessing steps like illumination normalization, denoising 

and deconvolution are generally needed before segmentation [12]. Sample preparation 

may also improve segmentation accuracy. Dilute samples in which cells are not clustered 

may be more suitable for automated segmentation. Cell segmentation algorithms aim at 

separating objects of interest from the background. Algorithms based on deformable 

templates and watershed transform have been successfully used for this purpose [13-15]. 

Some algorithms first segment the nuclei and then use them for segmenting the 

cytoplasm in fluorescence imaging [16]. 

 

Object recognition is the next step after segmentation. Object features like size, shape, 

and texture are first extracted, and then classification algorithms like neural networks, 

decision trees, or support vector machines are used [17]. Object recognition requires prior 

training of these algorithms with examples of objects of interest.  This layer also provides 

functionality for tracking cell movements.  Tracking of cellular and molecular objects is a 

challenging problem that has attracted significant attention [18-20]. Cell tracking 

algorithms based on correlation, deformable models, image level sets and mean shift have 

been proposed in the literature [18-20]. Appropriate algorithms can be used for tracking 

objects and all per-object information can be stored using appropriate data structures.  

 

2.2 Spatial analysis layer 
Once different objects in a frame are identified, this information is passed onto the spatial 

analysis layer. Study of spatial distribution of cells and spatial relationships among 

 10



biological objects is essential for understanding biological processes. Spatial distribution 

analysis tries to find patterns in the distribution of cells. Such patterns are useful for 

studying the behavior of cells and changes in these patterns may indicate disease states. 

Spatial relationship analysis tries to localize objects like drug molecules or particles like 

quantum dots with respect to intracellular objects. As biological objects are mostly 

transparent, contrast agents called markers are used to stain specific cell sites. These 

markers fluoresce at their emission bands when illuminated with proper excitation. When 

multiple markers are used, spatial relations between different cell sites are of interest. For 

example, to check if a drug stains a particular cell site, the drug and cell sites of interest 

can be stained with different dyes and then spatial relations between these fluorescent 

objects can be analyzed to localize the drug inside cells. Formalisms for specifying 

spatial relations among different objects are presented in section 3.  

2.3 Temporal analysis layer 
 
Many biological processes are dynamic in nature and happen over a period of time. Cells 

undergoing apoptois or mitosis are examples of temporal events. Different environmental 

conditions can affect the timing of these events. A study of the temporal dynamics of 

such processes yields valuable information. The temporal analysis layer extracts this 

information. We introduce FSM and Petri-net–based formalisms in section 3 for 

specifying temporal events. The FSM approach models cells in terms of their features, 

and spatio-temporal events in terms of changes in these features with the passage of time. 

The Petri-net approach is used to model temporal constraints of complex events. 

Templates of spatio-temporal events are provided by user, and instances of those events 

in the imaging data are identified at this layer. 
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2.4 Knowledge extraction and representation layer 
 
The final step of processing is the representation of extracted knowledge. The knowledge 

extraction and representation layer deals with this issue. Spatial and temporal events that 

are identified by lower layers are analyzed to identify patterns in the data. This 

conceptual information along with spatial and temporal information is then stored. In 

other work, we have proposed an XML-based language for storing this high-level 

semantic information [21]. This representation serves three purposes. Firstly, it makes it 

possible to store the semantic information in a machine-readable format so that this 

information can be shared with other research groups. Secondly, it makes it possible to 

use data mining tools for identifying hidden patterns in multimedia imaging data. Thirdly, 

the same semantic information serves as high-level metadata and makes semantic 

querying and retrieval possible.    

 
                                 (a)                                        (b)                                       (c)  

Figure 2. Different spatial representations. (a) Bounding box (b) Convex hull (c) Exact 
outline 
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Figure 3. Projection of bounding boxes on coordinate axes for spatial analysis 

3. Spatio-temporal models 
In our data model, cells and other biological entities are modeled as objects with specific 

attributes like color, size, shape, etc., and events are modeled in terms of specific values 

of attributes of participating objects along with spatial relationships between these 

objects.  

3.1. Spatial analysis in two dimensions 
Inter-object spatial relations describe the relationships between the locations of two 

objects in two or three dimensional space. Orthogonal (north, south) and containment 

relations (contained, disjoint) are the two types of spatial relations defined for objects in 

images [9]. The first step for establishing spatial relations is to have a spatial 

representation of objects. Figure 2 shows different spatial representations for objects that 

include bounding box (BB), convex hull (CH) and exact outline (EO). A bounding box 

around the object is a simple spatial representation. Even though it is imprecise compared 

to other approaches, its simplicity and speed make it an attractive choice for situations 

where a high level of accuracy is not required, for example samples containing low-

density, non-touching cells. For the bounding box case, inter-object spatial analysis can 

be carried out using projections on coordinate axes as shown in Figure 3. An extension of 

temporal relations shown in Table 1 [22] to two and three dimensions is then used to 

describe the inter-object relationships, as described in [23]. As shown in Table 1, there 

are seven basic relations between temporal intervals, six of which have inverses whereas 

‘equals’ relation has no inverse. This gives a total of 13 relations between temporal 

intervals. An extension of this approach to two and three dimensions yields 13x13 

relations in two dimensions and 13x13x13 relations in three dimensions [24]. Other 
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spatial representations include convex hull of the object and the exact outline which are 

more accurate compared to the bounding box approach. EO is the most accurate of the 

three spatial representations. For CH and EO representations, polygon intersection tests 

are used to determine spatial relations between objects. We define predicates for these 

three cases using different spatial representations in Table 2.  

Relation Symbol Graphical representation 

A before b B  
A meets b M  

a overlaps b O 
 

a contains b C 
    

A starts b S 
 

a equals b E 

 
a completes b CO 

 

a b

a b

a
b

a

a
b

a
b

a
b

Table 1. Temporal relations 
 

We now discuss the computational complexity of carrying out spatial analysis using 

different spatial representations. The bounding-box approach uses a fixed number of 

point comparisons for establishing spatial relations, hence it has complexity O(1). The 

polygon intersection test for convex polygons with m and n vertices has complexity 

O(m+n), whereas the polygon intersection test for two arbitrary polygons with n and m 

vertices can have complexity Ω(nm) [25]. Hence, spatial analysis using the bounding box 

is the fastest, but is inaccurate compared with other techniques, whereas spatial analysis 

using exact outline is the most accurate but the slowest at the same time. Spatial analysis 

using convex hull falls between bounding box and exact outline in terms of speed and 

accuracy. A combination of these approaches can be used to provide trade-off between 

speed and accuracy. A crude analysis can first be performed using BB, followed by a 
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more detailed analysis using CH or EO or a combination of both. In Figure 4 we present 

three different algorithms that combine BB, CH and EO based analysis. These algorithms 

make use of the fact that the exact outline of an object is fully contained in the convex 

hull, and the convex hull is fully contained in the bounding box. Inputs to these 

algorithms are lists of objects between which spatial relations are to be established, for 

example, a list of nano particles and a list of cells.  

Predicate Explanation 
projx(a) Returns the projection on the x axis of the bounding box of object a. 

projy(a) Returns the projection on the y axis of the bounding box of object a. 

projz(a) Returns the projection on the z axis of the bounding box of object a. 

BOverlap 
(a,b) 

Returns true if the following condition holds 

⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ∧∨∧

)))(),((.....(
))(),((

)))(),((.....(
))(),((

bprojxaprojxECOSCOM
aprojybprojyO

bprojyaprojyECOSCOM
bprojxaprojxO

 
BDisjoint (a,b) Returns true if the following condition holds 

⎥⎦
⎤

⎢⎣
⎡

∨
∨∨

))(),(())(),((
))(),(())(),((

bprojyaprojyBbprojxaprojxB
bprojyaprojyBbprojxaprojxB  

BEnclosed 
(a,b) 

Returns true if the following condition holds 
[ ]))(),((..))^(),((.. bprojyaprojyCOSCbprojxaprojxCOSC  

CContain 
(a,b) 

Returns true if the convex hull of a is contained within the convex hull of b. 

COverlap 
(a,b) 

Returns true if the convex hull of a has an overlap with the convex hull of b. 

CDisjoint 
(a,b) 

Returns true if the convex hull of a is disjoint from the convex hull of b. 

PContain 
(a,b) 

Returns true if the exact outline of a is contained within the exact outline of b. 

POverlap 
(a,b) 

Returns true if the exact outline of a has an overlap with the exact outline of b. 

PDisjoint 
(a,b) 

Returns true if the exact outline of a is disjoint from the exact outline of b. 

Bound(a) Returns the corner pixels of the bounding box of object a. 

PList(a) Returns the list of pixels of the object a. 
Rel(a,b) Returns the spatial relation between objects a and b. 

PeriphObjs(a,B) Returns all objects in the object list B that lie on the periphery of the object a. 
∀ b ∈ B | Rel(a,b) ≠ Rel(Erosion(a),b) 

Table 2. Predicates for spatial analysis. B, M, S, O, C, E, CO refer to temporal relations 
as defined in Figure 4. 
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Hybrid1_BB_CH(objList1, objList2) 
1.    for i→1 to n 
2.        for j→1 to m 
3.            if BDisjoint(objList1[i], objList2[j]) 
4.                Return ‘disjoint’ 
5.            else if CDisjoint(objList1[i], objList[j])                                               
6.      Return ‘disjoint’ 
7.  else if COverlap(objList1[i], objList[j]) 
8.                     Return ‘overlap’ 
9.   else  
10.        return ‘contain’ 
11.            end if    
12.      end for 
13.   end for 
Hybrid2_BB_EO(objList1, objList2) 
1.    for i→1 to n 
2.        for j→ to m 
3.            if BDisjoint(objList1[i], objList2[j]) 
4.                Return ‘disjoint’ 
5.            else if EDisjoint(objList1[i], objList[j])                                               
6.       Return ‘disjoint’ 
7.  else if EOverlap(objList1[i], objList[j]) 
8.                     Return ‘overlap’ 
9.   else  
10.        Return ‘contain’  
11.            end if  
12.      end for 
13.   end for 
Hybrid3_BB_CH_EO(objList1, objList2) 
1.    for i→1 to n 
2.        for j→1 to m 
3.           if BDisjoint(objList1[i], objList2[j]) 
4.                Return ‘disjoint’ 
5.            else if CDisjoint(objList1[i], objList[j])                                               
7.                  Return ‘disjoint’ 
8.  else  
9.                    if EDisjoint(objList1[i], objList[j])                                               
10.            Return ‘disjoint’ 
11.          else if EOverlap(objList1[i], objList[j]) 
12.                         Return ‘overlap’ 
13.          else  
14.            Return ‘contain’ 
15.                  end if  
16.               end if       
17.       end for 
18.    end for 

Figure 4. Hybrid algorithms for spatial analysis. 

3.2. Spatial analysis in three dimensions 
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For 3D spatial analysis, we extend the bounding box approach to three dimensions. The 

predicates defined in Table 2 can be extended to three dimensions by using the projection 

of the bounding box on the z axis. We present three different algorithms for 3D spatial 

analysis. The first algorithm (3DBB) is based on the extension of two-dimensional 

bounding-box analysis to 3D. The other two algorithms (3DHybrid and 3DPixComp) are 

presented in Figure 5. 3DHybrid uses the bounding box representation for the smaller 

objects (particles), and extracts the eight corners of the bounding box for spatial analysis. 

If all the corners points of the bounding box are found to be inside the three dimensional 

representation of the cell, then the whole particle is localized inside the cell. If all corner 

of the bounding box are located outside, then the particle is localized outside the cell and 

otherwise it has a partial overlap. The third algorithm (3DPixelComp) uses individual 

pixels of particles to check if they are contained within the cells.  

3DHybrid(objList1, objList2) 
1.for i→1 to n 
2     for j→1 to m 
3.       if BDisjoint(objList1[i], objList2[j]) 
4             Return ‘disjoint’ 
5.        else 
6.            if  ∃p1(x1,y1)∈Bound(ObjList1(i)),p2(x2,y2)∈ 
                      Bound(ObjList1(i) | p1(x1,y1) ∈ 
                      PList(ObjList2(j))  
                      & p1(x2,y2) ∉PList(ObjList2(j))  
7.     return ‘overlap’  
8. else 
9.      return ‘contain’ 
10. end if 
11.       end if 
12.    end for 
13. end for  
3DPixelComp() 
1.for i→1 to n 
2     for j→1 to m 
3.       if BDisjoint(objList1[i], objList2[j]) 
4             Return ‘disjoint’ 
5.        else 
6.            if ∃ p1(x1,y1)∈PList(ObjList1(i)),p2(x2, y2) ∈ 
                      PList(ObjList1(i)) | p1(x1,y1)  
                      ∈ PList(ObjList2(j)) & 
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                      p2(x2,y2) ∉PList(ObjList2(j))  
7.     return ‘overlap’  
8. else 
9.      return ‘contain’ 
10.           end if 
11.       end if 
12.    end for 
13. end for     

Figure 5. Algorithms for 3D spatial analysis 
 

3.3. FSM-based modeling 
In order to capture the evolution of object properties and inter-object spatial relationships 

over time, we use an event detection finite state machine (EDFSM). In this model, spatio-

temporal event knowledge is represented in the form of different states and transitions 

among them. The states define different sub-events of a composite event, and the 

transitions represent the conditions required to move from one state to another. The 

spatio-temporal knowledge represented in EDFSM is used by the FSM transition function 

to identify occurrences of events in image sets. The transition function takes EDFSM 

representations of events of interest and finds any instances of those events in image sets. 

Extracted knowledge about such occurrences is stored in the form of an event 

representation graph (ERG). The ERG stores information about different states of the 

event occurrence, participating objects along with their spatial relations, and the time 

spent in each state.  

3.3.1 EDFSM 
 
Biological events involve complex interactions among objects and also evolution of 

objects over time. In order to capture the inter-object spatial relationships as well as the 

changes in the attributes of objects with the passage of time, we introduce the concept of 

an EDFSM. Formally, an EDFSM is a seven-tuple, 
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( )ΦΙ,,sΓ,aΓ,oΓΤ,Σ,  where,  

Σ is a set of states, is a set of transitions, is a set of types of objects that make up an 

event, is a set of conditions on the attributes of objects that make up an event, is a 

set of conditions on the spatial projections of objects that make up the event, is the set of 

initial states, and Φ  is a set of final states. EDFSM can be represented graphically or 

using a state transition table. Figure 6 shows different components of an EDFSM.  

Τ oΓ

aΓ sΓ

Ι

 

(a) (b) (c) (d)  
Figure 6. Symbols used for EDFSM and ERG. (a) start node (b) end node (c) 

intermediate node (d) transition. 
 

3.3.2 Event representation graph 
Detected events are represented using an ERG. Formally an ERG is G = (V,E) where V is 

the set of vertices and E is the set of edges. Each vertex is a three-tuple  where is 

the start frame, is the duration, andΟ is the set of objects that constitute the event. Each 

edge represents a temporal relationshipΤ between events where, 

( Οη,μ, ) μ

η

 {before, meets, overlaps, during, starts, equals, finishes} ∈Τ

as defined in Table 1. Table 3 shows the functions used for maintenance of ERG.  

Function name Explanation 
Create(S) Create node for state S. 
Increment(S) Increment durationη for the state S. 
Rollback(S1, S2) Rollback ERG from state S1 to S2. 

Table 3. Functions for maintaining ERG.  
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3.3.3 FSM transition function 
Figure 7 describes the FSM transition function. The current state and the action are 

determined by the previous state and the input. State transition and action constraints are 

defined by means of the state transition table. FSM logic tries to identify if the event 

specified by EDFSM occurs in the time-lapse images. If any such event is identified, an 

ERG representation for that event is generated.         

State transition 
constraints 

Current state 

Action 
constraints Action 

Input 

 
Figure 7. FSM transition function. 

 

3.4 Petri-net–based modeling 
FSM-based modeling works well for simple events. For more complicated events, for 

example multi-threaded events involving multiple objects with temporal constraints 

between constituent events, we use petri-nets [26]. A petri-net is a directed bipartitie 

graph which is used for modeling distributed systems. A petri-net contains place nodes, 

transition nodes, and directed arcs. Place nodes contain information about events and may 

be composed of simpler events. They may also contain delay nodes to express timing 

constraints between different events. This way a complex sequence of events can be 

identified. This composition of events can be used to  
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E1
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E3 E4 

Event: 
{Apoptosis} 
Duration: 
{δ1} 
Objects: 
 {b∈B}  

Event: 
{Phenotype1} 
Duration: 
{δ2} 
Objects: 
 {m∈M}  

Event: 
{Phagocytosis} 
Duration: 
{δ3} 
Objects: 
{m, b} 

Event: 
{Apoptosis} 
Duration: 
{δ4} 
Objects: 
{m} 

E1

E2

E3

E5 

D2

D1

E4

  S   V E L 

(a) 

(b) 

(c) 

Delay place 

Delay place  

Figure 8.  (a) EDFSM for apoptosis event. S, V, E, and L correspond to start, live, early 
apoptotic, and late apoptotic states, (b) A composite event represented using petri-net,  

(c) A composite event with delay places represented using petri-net. 
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Figure 9. ERG representation of events in an imaging experiment 
 

investigate the correlation between different events. In the example of Figure 8 (b), one 

may wish to query if phagocytosis of an apoptotic cell by a macrophage is followed by 

apoptosis of the macrophage. This can be achieved by finding all the instances in which 

the chain of events E1, E2, and E3 is followed by event E4 and then all the instances in 

which it is not. The probability that event E4 will happen after events E1, E2, and E3 can 

then be calculated. This mechanism can be used for discovering new knowledge from 

biological image sets. Figure 8 (c) shows an example event where timing constraints 

between sub-events of the composite event can also be specified using delay places.  

3.5 Semantic querying and event mining 
Different types of spatial and temporal events happen in a biological imaging study. 

Modeling and identification of these events can help answer important biological 

questions. The semantic event information extracted using the modeling techniques 

described above can be used to populate a database which makes conceptual queries and 

data mining possible. For instance, the effect of different drugs on different biological 

processes like apoptosis and phagocytosis can be studied using this approach. A graphical 
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representation of different events happening over a period of time in an experiment is 

shown in Figure 9. A database populated with this information can be used to answer 

semantic queries like the following.  

(a) What is the percentage increase in the number of phagocytosis events after the 

addition of a drug. 

(b) How many cells follow a certain set of states undergoing apoptosis.  

(c) Are two different types of spatio-temporal events correlated with each other. 

Answering such queries in an objective and quantitative manner can significantly help in 

biological discovery.  

4. Examples 
In this section we demonstrate the expressive power of our model by encoding different 

events happening during apoptosis and phagocytosis. 

4.1. Time-lapse apoptosis screening example 
Apoptosis is defined as programmed cell death [27]. Study of apoptosis is important for 

cancer cell research. Many drugs are aimed at inducing apoptosis in cancer cells. 

Apoptosis can be detected by using a specific surface marker, for example Annexin V 

fluorescein isothiocyanate (FITC) and other markers for staining the nucleus and 

cytoplasm. Another stain called propidium iodide (PI) is used to verify cell viability. This 

marker cannot penetrate the cell membrane of living cells so it is not found in the nuclei 

of living cells. As the cell undergoes apoptosis, its cell membrane becomes more 

permeable and the dye stains the nucleus of the cell as well. A set of images depicting 

cells in different states is shown in Figure 10. Table 4 shows different states of cells 

during apoptosis along with their spatial constraints. Figure 8 (a) shows the EDFSM 
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encoding to identify all live cells that go through early and late apoptotic states. The 

corresponding state transition table is shown in Table 5. 

 

  
(a) (b) 

(c) (d) 
Figure 10. HL60 cells in different states during an apoptosis screen. (a) Hoechst 33342, 
(b) Annexin V FITC, (c) PI, (d) Merged image. The three images were pseudo-colored 
and merged to make the composite image. Blue, green and red colors correspond to 
Hoechst 33342, Annexin V FITC, and PI respectively. Cells in blue only are live, cells in 
blue and green are in early apoptotic state, and cells in blue, green, and red are in late 
apoptotic state. 
 
 

State Spatial relations 
Live Disjoint(H,A) & Disjoint(H,P) 
Early apoptotic(EA) Overlap(H, A) & Disjoint(H,P) 
Late apoptotic(LA) Overlap(H,A) & Overlap(H,P) 

Table 4. Cell states and corresponding spatial relations between Hoechst(H), Annexin-V-
FITC(A), and PI(P). 
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Current state Objects Spatial 
Relations 

Next state Action 

S H Live V Cr(S1) 
V H Live V Inc(S1) 
V H, A EA E Cr(S2) 
E H, A EA E Inc(S2) 
E H, A, P LA L Cr(S3) 

Table 5. State transition table corresponding to the EDFSM of Figure 5. Actions cr and 
inc correspond to the create and increment functions that create a node in ERG or 
increment the duration of a node in ERG. Spatial relations refer to the ones defined in 
Table 2. 
 

 
Figure 11. Sequence of events constituting a phagocytosis event 

 

 

S2 S4S3 S5S1

Figure 12. EDFSM for a phagocytosis event, S1, S2, S3, S4, S5 correpond to start, 
disjoint, ingestion_start, ingestion_complete and phagocytosis_complete. 

 

4.2. Phagocytosis 
We next give an example of a  multiple-object event. Phagocytosis is defined as the 

process of engulfment of a microorganism or an object by cells.  This process is essential 

for body defense against harmful bacteria and infections. We consider the sequence of 
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spatial events that make up the composite event “phagocytosis” as shown in Figure 11 

[28]. We next present FSM representation of the sequence of events. The process 

involves the detection, engulfment, and ingestion of microorganisms. Sometime it is also 

followed by an oxidative burst. The process can be detected by following the movements 

of different objects. The sequence of events in Figure 11 shows the phagocytosis of 

erythrocytes by macrophages. As is obvious, the erythrocyte and the macrophage are 

initially at disjoint positions. At a later time the distance between the two decreases and 

they have an overlap for some time, after which the erythrocyte is ingested. Figure 12 

shows the FSM representation of this composite event and Table 6 shows the 

corresponding state transition table. 

      

Current 
state 

Object 
constraints 

Object attribute 
constraints 

Spatial 
constraints 

Next 
state 

Action 

S1 EeMm ∈∈ ,  - Disjoint(m,e) S2 Create(S2)
S1 EeMm ∈∈ ,  - Touch(m,e) S3 Create(S3)
S1 EeMm ∈∈ ,  - Overlap(m,e) S4 Create(S4)
S1 EeMm ∈∈ ,  Brightness(e)<threshold Enclosed(m,e) S5 Create(S5)
S2 EeMm ∈∈ ,  - Disjoint(m,e) S2 Inc(S2) 
S2 EeMm ∈∈ ,  - Touch(m,e) S3 Create(S3)
S2 EeMm ∈∈ ,  - Overlap(m,e) S4 Create(S4)
S2 EeMm ∈∈ ,  Brightness(e)<threshold Enclosed(m,e) S5 Create(S5)
S3 EeMm ∈∈ ,  - Touch(m,e) S3 Inc(S3) 
S3 EeMm ∈∈ ,  - Overlap(m,e) S4 Create(S4)
S3 EeMm ∈∈ ,  Brightness(e)<threshold Enclosed(m,e) S5 Create(S5)
S3 EeMm ∈∈ ,  - Disjoint(m,e) S2 RB(S3, S2) 
S4 EeMm ∈∈ ,  - Overlap(m,e) S4 Inc(S4) 
S4 EeMm ∈∈ ,  Brightness(e)<threshold Enclosed(m,e) S5 Create(S5)
S4 EeMm ∈∈ ,  - Touch(m,e) S3 RB(S4, S3) 
S4 EeMm ∈∈ ,  - Disjoint(m,e) S2 RB(S4, S2) 
Table 6. State transition table corresponding to the EDFSM of Figure 10. Actions create, 
inc and rb create a node in ERG, increment duration, and rollback to an appropriate state 

respectively. 
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5. Experimental results and discussion 

5.1. Spatial analysis 
In this section, we present the results of a comparison between the algorithms presented 

in section 3.1. Relationship accuracy and speed are our performance criteria. We used 

images generated by a particle delivery study [29]. Delivery of gold particles to sub-

cellular locations can enhance the Raman signal of the molecules that are located in close 

proximity and hence increases the detection sensitivity. In order to quantitatively 

investigate the localization of gold particles inside cells, cells were stained with nucleus 

and cytoplasm specific dyes and were subsequently imaged using confocal microscopy. 

Nuclei and gold particles were segmented using a manually defined threshold, and 

cytoplasm was segmented using the algorithm described in [30]. This generated three 

images for each set. A representative set is shown in Figure 13. For our experiments we 

used 13 sets of images containing 119 cells and 2149 gold particles. Spatial relationship 

of gold particles was established with nuclei and cytoplasm. As it is not feasible to 

manually validate the accuracy for this large number of spatial comparisons (~20,000), 

we use EO algorithm as the baseline. EO algorithm provides the most accurate spatial 

representation. The only inaccuracies that it may have are the result of segmentation 

errors, which are not the focus of this paper. We check whether the gold particles are 

disjoint, have a partial overlap or are contained within the nuclei or cytoplasm. The 

accuracy is determined in terms of the number of gold particles that are correctly 

assigned to the objects that they are actually contained in or have a partial overlap with. 

Table 7 presents the comparison of accuracy for different algorithms. Next, we present 

the time taken by each of these algorithms in Table 8. As can be seen the accuracy of BB 

as well as CH is higher for nucleus than for cytoplasm. This is so because both the BB 
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and CH are a better spatial representation for nucleus than for cytoplasm as is shown in 

Figure 14. For the same reason hybrid3 algorithm gives a speedup of ~14 for nuclei and 

only ~4 for cytoplasm (EO algorithm is used as baseline for speedup). This implies that 

the choice of algorithm for a particular application depends on the shape of the objects. 

Also, BB algorithm is the fastest but the least accurate whereas EO and hybrid algorithms 

using EO are the most accurate. From the results, it is clear that hybrid algorithms using 

BB and EO or BB, CH, and EO are to be preferred when maximum accuracy is needed. 

Inter-object spatial relations can be used for studying localization of objects and different 

aspects of the distribution of particles within cells in a quantitative manner. Figure 15 

shows histograms of the area of particles that are distributed in cytoplasm and nuclei.  

 
Figure 13. A representative set of images, (Upper left) Nuclei, (Lower left) Segmented 
nuclei, (Upper middle) Cytoplasm, (Lower middle) Segmented cytoplasm, (Upper right) 

Gold particles, (Lower right) Segmented gold particles. 
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                                                           (a)                                                      (b) 
Figure 14. (a) Convex hull of cytoplasm, (b) Convex hull of nuclei. Convex hull is a better 

spatial representation for nuclei than cytoplasm. 
 
 
 
 

Algorithm Accuracy for  
nuclei (%) 

Accuracy for 
 cytoplasm (%) 

Bounding box (BB) 82.41 71.75 
Convex hull (CH) 96.51 87.25 
Exact outline (EO) 100 100 
Hybrid1 (BB+CH) 96.51 87.25 
Hybrid2 (BB+EO) 100 100 
Hybrid3(BB+CH+EO) 100 100 

Table 7. Comparison of accuracy of different algorithms. EO algorithm is used as the 
base case. 

 
 

Algorithm Time for nuclei (sec) Time for  cytoplasm (sec) 
Bounding box (BB) 6.766 6.7809 
Convex hull (CH) 101.17 111.53 
Exact outline (EO) 317.48 1385 
Hybrid1 (BB+CH) 13.24 31.62 
Hybrid2 (BB+EO) 25.59 441.48 
Hybrid3 (BB+CH+EO) 22.88 354.77 

Table 8. Comparison of speed of different algorithms.  
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(a) 
 

(b) 

Figure 15. Particles localized inside cells (a) Histogram of the area of particles localized 
inside cytoplasm. (b) Histogram of the area of particles localized inside nucleus. 

 
In order to evaluate the 3D spatial-analysis algorithms, we used simulated 3D confocal 

data. Two data sets were generated: a smaller set containing 20 confocal slices with each 

slice having a size of 100x100 pixles, and a larger set containing 50 confocal slices with 

each slice having a size of 500x500 pixels. The results of the 3D spatial analysis are 

shown in Table 9 for the two data sets. Pixel comparison–based analysis is the fastest. 

Although the bounding box–based spatial analysis itself is very fast, the computation of 

bounding boxes for a large number of objects in 3D is time consuming and responsible 

for the overall slow speed of this method. Pixel-level comparison also has the best 

accuracy of the three algorithms.   

 
Algorithm Large (sec)  Small (sec) 
3DBB 10.1107 0.5500 
3DHybrid 4.8636 0.1852 
3DPixComp 3.6597 0.0664 

Table 9. Comparison of the runtime for different 3D-spatial-analysis algorithms. An 
image set containing 50 z-slices was used. Each slice was 500x500 pixels. 
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(a)  

 
(b) 

 
Figure 16. (a) Surface rendering of the 3D confocal data set simulating cells (b) Surface 

rendering of the 3D confocal data set simulating particles.  
 

5.2. Temporal analysis 
The extra information provided by per-cell analysis can be used to compensate for 

experimental discrepancies. Human cervical cancer cells (HeLa) were treated with an 

apoptosis-inducing drug (camptothecin) and were imaged using an imaging cytometer 

(iCys research imaging cytometer, CompuCyte Corporation, Cambridge, MA) every 

thirty minutes for 4 and a half hours. Image registration issues were resolved, and cells 

were segmented and tracked. The numbers of live, early apoptotic, and late apoptotic 

cells were found for every frame of image sequence on a population basis using the 

spatial relations defined in Table 4. The results are shown in Figure 17 (a). The cells were 

then analyzed on a per-cell basis. Time profile of two different cells is shown below.  

V V E E L L E L L  

V V V E E L L V L 

Cells can only transition from live to early apoptotic and from early apoptotic to late 

apoptotic state. Hence the transition from L→E and L→V is not possible. Sources of 
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error may include photobleaching of dyes, inconsistent illumination, and faulty auto-

focus module. This inaccuracy can however be fixed if single cells are tracked during the 

experiment. Rules can be defined that check for inconsistent state transitions and remove 

the discrepancy. The revised results are shown in Figure 17 (b). These results were 

obtained by checking the previous state for each current state and removing all 

inconsistent state transitions. We would like to mention that a careful study of the sources 

of error is required for choosing appropriate rules for artifact removal. Spatio-temporal 

modeling is useful not only for removing artifacts from experimental data but also for 

studying the behavior of large populations of cells on a per-cell basis. 

 

(a) (b) 

Figure 17. (a) Original population counts for time-lapse apoptosis study (b) Revised 
population counts for time-lapse apoptosis study 

         

5.3 Validation 
 

As HCS technologies generate large volume of data, it is not feasible to manually 

validate analysis algorithms [31]. In our case, the data set contains 363 cells. This means 
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visual validation will require inspecting 363 x 9 x 3 = 9801 objects, which is time 

consuming and prone to human error. Validation, therefore, requires modeling the data 

generation process. We model the data generation process for the apoptosis screen as a 

Markov chain with state space S, initial distribution and transition matrix P. As most 

cells in the beginning are in live state, it is given a high probability in . We also assume 

that the probability of a cell moving to the immediate next state is equal to it maintaining 

its current state while it is in state V or E. In state V, cells are more likely to move to state 

E than moving directly to state L hence the transition V→L is given half the probability 

of the transition V→E. The state L is assumed to be an absorbing state.. 

Π

Π

           
},1/61/6,2/3,{Π

},,,{

=
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100L
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Next we model system error as a process that changes a particular state to an earlier state 

with probability p, which is the parameter of our system. With this model for data 

generation we report the performance of our error correction rule in Table 10 for 1000 

cells imaged at 9 time points. As can be seen, a significant number of artifacts is 

removed. 

  
p No. of artifacts No. of artifacts 

removed  
% artifacts removed 

1/10 793 616 77.68 

1/5 1656 1238 75.85 

1/3 2643 1949 73.74 

1/2 3876 2590 66.82 

2/3 5153 2852 55.35 

Table 10. Performance of artifact removal rule on synthetic data. 
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6. Conclusion and future work 
Analysis of massive amount of multimedia biological data generated by HCS 

technologies requires intelligent multimedia analysis and knowledge extraction tools.  

Integration of phenotypic information with genomic and proteomic information requires 

modeling at multiple levels. It is important to extract not only the low-level image 

features but also the high-level semantic information in terms of biological events. 

Quantitative analysis of this high-level spatio-temporal information in response to 

different environmental and experimental conditions provides insights into the working 

of biological cells and organisms. In this work we have demonstrated how high-level 

semantic information can be extracted using different spatio-temporal models. In the 

future we plan to apply these tools to more biological applications and explore different 

algorithms for event mining for discovering biological knowledge. 
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