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Feasibility of DDoS Attacks with P2P Systems and
Prevention through Robust Membership Management

Xin Sun, Ruben Torres and Sanjay Rao
School of Electrical and Computer Engineering, Purdue University
West Lafayette, IN47907
{sunl9, rtorresg, sanjay}@ecn.purdue.edu

ABSTRACT in a safe, secure and robust manner, and understand

We show that malicious nodes in a peer-to-peer system maytheir impact on an Internet environment already suf-
impact the external Internet environment, by causing large fering from several security problems. Peer-to-peer sys-
scale distributed denial of service attacks on nodes nat eve tems enable rapid deployment by moving funCtl‘?n?hty
part of the overlay system. This is in contrast to attacks tha t© end'SYSteI.HS- However, the¥ are Vumer?ble to insider
disrupt the normal functioning, and performance of the over 2ttacks coming from (potentially CO}IUdmg) attackers
lay system itself. We formulate several principles critica that infiltrate the overlay or compromise member nodes.
to the design of membership management protocols robust S‘?‘feral recent ‘f"orks [8,11,27,28,33] have Studlefl how
to such attacks. We show that (i) pull-based mechanismsalicious nodes in a peer-to-peer system may disrupt
are preferable to push-based mechanisms; (ii) it is ctitica Fhe normal .functlonlng, and performance of the system
to validate membership information received by a node, and itself- In this paper, however, we focus on attacks where
even simple probe-based techniques can be quite effectivetnalicious nodes in a peer-to-peer system may lmpact
(iii) validating information by requiring corrobarationdim the external Internet environment, by causing large-
multiple sources can provide good security properties with Scale distributed denial of service (DDoS) attacks on
insignificant performance penalties; and (iv) it is impatta ~ nodes not even part of the overlay system. In particu-
to bound the number of distinct logical identifier (e.g. Isi 1T, an attacker could subvert membership management
a DHT) corresponding to the same physical identifier (e.g., mechanisms, fmd force a l?rge fraction of nodes m the
IP address), which a participating node is unable to vali- System to bel{eve m tl}e existence va and communicate
date. We demonstrate the importance of these principles inWith @ potentially arbitrary node in the Internet. Such
the context of the Kad system for file distribution, and ESM attacks may be hard to detect as the packets arriving at
system for video broadcasting. To our knowledge, this s & Victim are not distinguishable frf)m normal PTOtQCOI
the first systematic study of issues in the design of member-Packets.  These attacks may be viewed as a particu-
ship management algorithms in peer-to-peer systems so the)}ar kind of reflector attacks [22], however the scale and

may be robust to attacks exploiting them for DDoS attacks Whidue properties of peer-to-peer systems make them
on external nodes. worthy of study in their own right.

We show that a potential attacker can launch attacks

of hundreds of megabits a second on an external node,

1. INTRODUCTION by exploiting popularly deployed file distribution sys-
tems such as eMule [12], and the extensively deployed
video broadcast system ESM [10]. While recent work
[5,21] has presented attacks exploiting the Gnutella and
Overnet systems, we show that the problem is far more
critical than these works demonstrate, and is general
to a wider range of systems. We believe these attacks
are merely the tip of the iceberg, and unless the chal-
lenges are systematically addressed, there is potential

Peer-to-peer systems are rapidly maturing from being
narrowly associated with copyright violations, to a tech-
nology that offers tremendous potential to deploy new
services over the Internet. The recently released Win-
dows Vista is equipped with its own, under-the-hood
P2P networking system [2], and several commercial ef-
forts are exploring the use of peer-to-peer systems for

live media streaming and video distribution [3,6,13,23,

32,35]. Recent studies [9] indicate that over 60% of net- for catastrophic consequences on the Internet akin to
work traffic is dominated by peer-to-peer systems, and the congestion collapse in the mid 80’s or the large-scale

the emergence of these systems has drastically affected worm outbreaks in the last deca.ude. . .
traffic usage and capacity engineering We present the first systematic study of issues in the

With the proliferation of peer-to-peer systems, it be- design of membership management algorithms in beer-
comes critical to consider how they can be deployed to-peer systems so they may be robust to such exploits.



Figure 1: a) Kad search mechanism. b) Redi-
rection attack

We show that pull-based approaches, where informa-
tion conveyed by a member is always in response to
a prior solicitation, are preferable to push-based ap-
proaches where a member may disseminate member-
ship information to other members in an unsolicited
fashion. We evaluate techniques for validating group
membership information communicated from one node
to another. These techniques include direct validation
through probes, and techniques where information can
be used only if it is validated from multiple nodes. While
the latter technique is inspired by prior analytical work
on Byzantine-tolerant gossip algorithms [16-18,20], we
study the costs in convergence/performance, and bene-
fits in terms of enhanced security properties in the con-
text of an actual system. Finally, we show that it is
important to bound the number of distinct logical iden-
tifier (e.g. IDs in a DHT) corresponding to the same
physical identifier (e.g., IP address), which a participat-
ing node is unable to validate.

Based on the principles above, we implement several
refinements to the membership management algorithms
in Kadand ESM. We conduct detailed evaluation stud-
ies of the systems with the various refinements using
controlled experiments on Planetlab. Overall, our re-
sults demonstrate their effectiveness in minimizing the
vulnerability of the systems to DDoS attacks without
significant degradation in application performance.

The rest of the paper is organized as follows. Sec-
tion 2 describes the rationale for choosing the Kadand
ESM systems, and the vulnerabilities. Section 3 presents
results demonstrating the feasibility of DDoS attacks on
these systems. Section 4 describes issues important in
the design of resilient membership management algo-
rithms. Section 5 describes our methodology to evalu-
ate the issues, and Section 6 presents results.

2. VULNERABILITIESIN P2P SYSTEMS

In this paper, we focus on DDoS attacks triggered
by exploiting the membership management algorithms
of peer-to-peer systems. The membership management
algorithms in a peer-to-peer system enable a node to
join the group, and maintain information about other
members, even though nodes may join or leave the sys-
tem. To scale to large group sizes, typical nodes main-
tain knowledge of only a small subset of group mem-
bers. While a large number of peer-to-peer systems
have emerged in recent years, two of the most com-
mon approaches for membership management involve
the use of distributed hash tables (DHTs) [19,24,25,
29,37], and gossip-based algorithms. While popular file-
distribution systems like BitTorrent [7] and eMule [12]
originally relied on centralized servers (trackers) for group
management, more recent versions use decentralized mech-
anisms based on DHTs. Many other systems such as
ESM and CoolStreaming [10,36] employ gossip-like mech-
anisms to maintain group membership information.

To demonstrate the generality of the issues discussed,
we consider peer-to-peer systems targeted at applica-
tions with very contrasting propertie very different mem-
bership management designs. In particular, we con-
sider file distribution and video broadcasting applica-
tions. Video broadcast applications are distinguished
by their stringent real-time constraints requiring timely
and continuously streaming delivery. Both applications
are bandwidth-intensive, and large scale, corresponding
to tens of thousands of users simultaneously participat-
ing in the application.

The particular systems we consider in this work in-
clude Kad [12] for file distribution and ESM [10] for
video broadcasting. Kad is a DHT based on Kadem-
lia [19], which is supported by the popular eMule [12]
clients and other eMule-like clients such as aMule [4]
and xMule [34]. To the extend of our knowledge, Kad
is the largest DHT currently used, with more than one
million concurrent peers [30]. ESM is a video broadcast-
ing system that employs gossip-based membership algo-
rithms. It is one of the first operationally deployed sys-
tems and has seen significant real-world deployment [10].
We are motivated to use these systems given their ex-
tensive deployment, the contrasting applications they
represent, and the different yet representative member-
ship algorithms they employ.

2.1 DHT-Based File Distribution:K ad

In Kad, users and files have IDs that are globally
unique and randomly chosen from the same ID space
of 128 bits. Each node mantains a routing table with
a subset of peers that are part of the system. For any
given file, there are “index-nodes” which maintain a list
of members who own that file. Index nodes are not
dedicated nodes but regular participants, who have an
ID close to a file ID. For example, in Figure 1.a), node



A wishes to download a file F. A must first discover
the index-node I, and obtain from it a list of members
having the file. To discover I, A will query members that
it has in its own table, which are either index nodes or
can point A to nodes closer in the ID space to the file
ID, which are likely to be index nodes. In our example,
A will initially query B which is not an index node for
file F. B responds with C whose ID is closer to the
ID of F. Next, A will query C who will respond with
I. This process can repeat several times, but given the
properties of distributed hash tables, convergence of the
search process is likely. In our case, I is the index node
for file F and will respond to A with a set of sources that
own a partial or complete copy of the file. Finally, A
will contact the sources to begin the download process.

Kad performs a similar lookup process for keyword
search, file and keyword publishing, and routing ta-
ble maintenance. Other important mechanisms such
as bootstrapping are also implemented in Kad but are
not relevant to this paper.

Vulnerability: Kad may be exploited to cause a
DDoS attack on a victim that is not part of the Kad
network by creating a redirection attack. Whenever
the attacker receives a lookup query from a peer, it will
return a response containing the victim’s IP address and
port. For example, Figure 1.b) shows how malicious
user M can make user A send a query to V, which is
an Internet user, not part of the Kad network. The
attack at the victim can be magnified if many valid users
contact the attacker when looking for index nodes. In
addition, a coalition of attackers could further increase
the magnitude of the traffic at the victim.

2.2 Gossip-based Video Broadcast: ESM

ESM is a video broadcasting system built on top of
an overlay network. It constructs a multicast tree for
data delivery and employs a gossip-based mechanism to
propagate the existance of members on the group. This
information is later used by the nodes in the system to
change parents when necesary in the multicast tree. To
be more specific, for the gossip mechanism each mem-
ber A, periodically (every 1.5 seconds) picks another
member B at random, and sends it a subset of group
members that it knows. B adds to its list any members
that it did not already know, and may send messages
to the new nodes as part of normal protocol operations.

Vulnerability: The gossip mechanism to propagate
membership information, may be exploited by having
malicious users trick valid users into sending protocol
related messages to a victim that is not part of ESM. A
malicious user M, could generate a gossip message that
contains false information about the victim as being
part of the group. Valid users will include the victim
in their list of known peers. At a later time, the victim
could receive a high rate of unsolicited traffic from valid
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Figure 2: Sensitivity to the heuristic employed
by the attacker to increase the attack
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Figure 3: CDF of the distinct (IP,port) pairs
generating raffic at the victim

users of the system. The attack can be magnified if
malicious users gossip fake messages at a higher rate.

3. ACHIEVING HIGH MAGNITUDE DDOS
ATTACKS

In this section, we show the feasibility to exploit vul-
nerabilities in membership management algorithms of
peer-to-peer systems, to create DDoS attacks on nodes
not part of the system. We discuss various heuristics
used to increase the attack magnitude at the victim.
These heuristics provide insights that can help to for-
mulate key principles that must guide the design of ro-
bust membership management protocols.

3.1 Attack using Kad

Our approach is to create a redirection attack where
every lookup message the attacker receives, will be re-
turned containing the victim’s IP address and port.
Then, the valid user will query the victim. But query
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Figure 5: Total traffic seen at victim, with 200
attackers, over a period of 15 hours.

messages are usually small and making a few valid users
contact the victim will not cause a high impact at the
victim. Therefore, we combine a set of heuristic that
will magnify the attack at the victim.

e Baseline: As described in Figure 1.a), node A may
seek to locate the node nearest to a given target ID F.
As part of the operations, it may send a message to a
(malicious) node M that A already knows, who in turn
responds with the IP address and port of the victim V
(indicating that V is part of the group) along with a
fake id for V which is closer to F. A then sends query
messages to V, as part of its normal operation.

e Attraction: The magnitude of the attack above is de-
pendent on the frequency with which other nodes may
contact the malicious node. In general, this is small
given that the group may involve millions of members,
but there are only a few attackers. We found a vul-
nerability in Kad where a malicious node may proac-
tively push information about itself to a large number
of nodes in the system, forcing them to add the node to

their routing tables. A key parameter for the attraction
heuristic is the rate at which the attacker spreads itself
in the tables of other nodes. We discuss the implications
of the parameter later in the section.
o Multifake: While the attacks above cause several clients
to contact the attacker and be redirected to the victim,
better amplification can be achieved if the attacker in-
cludes the victim’s information several times in response
to a query. The key insight behind the attack is the dis-
tinction between the physical identifier of a participat-
ing node such as its IP address, and its logical identifier,
the node-id in the DHT space. Kad, and indeed many
peer-to-peer systems, are designed to allow a participat-
ing node to communicate with multiple logical identi-
fiers even though they share the same physical identifier
(IP address). This has several advantages, for instance,
enabling distinct users behind the same Network Ad-
dress Translator (NAT) to participate in the system,
even though they share the same physical IP address
(see Section 4.3 for further discussions). The Multifake
heuristic exploits this to achieve large amplifications by
having the attacker redirect innocent clients to multi-
ple logical identifiers, all sharing the IP address of the
victim. Further, it seeks to achieve even greater mag-
nification by having the attacker include itself in the
query responses a small number of times, so that the
valid user could be repeatedly attracted to the attacker
and redirected to the victim.
Results: We instrumented an aMule client to imple-
ment attackers with the heuristics above and make them
join the real live Kad network. The victim node is in
our laboratory. Each experiment runs for several hours,
and we report on magnitudes of attack seen. The exper-
iments employ 5 attackers unless otherwise mentioned.
Figure 2 shows the traffic at the victim with the three
heuristics. The X-Axis is the time since the start of the
experiment. The Y-Axis is the amount of traffic seen in
Mbps. From bottom to top, the first three curves corre-
spond to the attack magnitude with the given heuristic
alone. The last two curves correspond to the combina-
tion of the previous heuristics at different times of the
day. High magnitudes of over 10Mbps seen at the victim
when all heuristics are turned on. It is also interesting
to see that the entire set of heuristics is required to
generate the high attack magnitudes, and any subset is
insufficient. We also observed that the magnitude of the
attack traffic is sensitive to the time of day. As shown
in the last two curves Combination was obtained dur-
ing the day and Combination-night was obtained late
at night. In our experiments, the attacks could go as
high as 100 Mbps in some runs during the night.
Figure 3 shows the distribution of distinct (IP ad-
dress,port) pairs of innocent clients that are being redi-
rected to the victim when all heuristics are turned on.
A point (X,Y) in this graph means that traffic Y is con-



tributed by X percent of distinct IP and port. Over
200,000 distinct (IP,port) pairs were redirected in the
attack. Asshown, the distribution is not sharply skewed
indicating the traffic is not coming from any single client
alone which can make the attack difficult to contain.

Figure 4 shows the traffic observed at one attacker,
both in terms of traffic sent and received. The Y-Axis
is traffic rate in Kbps. The X-Axis is time in hours.
The main observation from this graph is that the traf-
fic seen at the attacker is only about 250Kbps, which
while higher than what a normal user sees, is 40 times
lower than the traffic seen by the victim. Even if the
total traffic at all attackers is consider, there is still a
magnification factor of 8. A point to note is the spike
at the start of the experiment. This is due to the at-
traction heuristic where a malicious node attempts to
insert itself in the routing tables of several other nodes.
We discuss the implications in the next paragraph.

We considered whether even higher attack magni-
tudes are possible by combining larger number of nodes
and increasing the rate of the attraction heuristic. Fig-
ure 5 shows an attack generated using 200 malicious
nodes scattered around Planetlab, with the victim in
our laboratory. Traffic of over 700 Mbps was received
by the victim after 14 hours of experiment. This far
exceeded what we feared, and indicates the criticality
and seriousness of the problem. We abandoned further
experiments on this line given the seriousness of the
attacks. An ISP of one of the attacker nodes was con-
cerned whether the node was running a random port-
scan attack. This was because each attacker probed
around 100,000 Kad nodes as part of the attraction
heuristic, and not all nodes responsed since they were no
longer in the system. While this offers hope that such
attacks could be detected, it may be feasible to evade
detection by reducing the rate at which malicious nodes
spread information about themselves to others. Signif-
icant attack magnitudes may still be achieved, though
it may take longer for the attacks to ramp up to these
values. We have conducted (carefully controlled) exper-
iments to confirm this observation.

3.2 Attack using ESM

We exploit the vulnerability described in Section 2
where a malicious node M sends gossip messages to an
innocent client C, falsely indicating that the victim V
is part of the group. Similiar to Multifake in Kad,
we augmented the heuristic to achieve greater attack
magnitudes by including the IP address of the victim
several times, each time with a different logical identi-
fier. ESM also makes use of logical identifiers (called uid
in [10]) distinct from IP address and port information,
primarily to handle issues with NATSs. Like Kad, ESM
allows a participating node to communicate with mul-
tiple logical identifiers even though they share the same
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Figure 6: Sensitivity to number of clients. Per-
centage of malicious clients fixed to 10%

physical identifier (IP address). Again this is motivated
by NATs.

Results: We conducted experiments in Planetlab us-
ing the attacker described above. Figure 6 shows the
magnitude of the DDoS attack in comparison to the to-
tal number of ESM clients. We fixed the percentage of
malicious clients to be 10% and varied the total num-
ber of clients. The traffic seen by a victim is several
Megabits a second, a factor of 1000 more than control
traffic seen by a normal ESM member (about 3 Kbps).
Further, the attack traffic increases approximately lin-
early as the number of participants increase. In a real
scenario, involving tens of thousands of participating
nodes, the attack magnitude could be orders of magni-
tude higher. The experiments above assume that 10%
of the hosts are malicious. Figure 7 plots the attack
traffic fixing the number of clients at 472, and varying
the percentage of malicious clients. Even a very small
fraction of malicious clients can cause a serious attack at
the victim, with 1% of nodes being malicious resulting
in attacks of 4Mbps at the victim.

4. RESILIENT MEMBERSHIP MANAGEMENT

While several “point-solutions” may be feasible to
limit the specific attacks we presented in Section 3, we
believe these attacks are symptomatic of more funda-
mental issues that must be carefully addressed in de-
signing robust membership management protocols. We
elevate and highlight some of the principles involved.
These principles then guide the design of various refine-
ments to the ESM and Kad systems.

4.1 Pull vs. Push

A fundamental factor that impacts the vulnerability
of membership management algorithms is whether they
are push-based, or pull-based. In a push-based design,
members may disseminate membership information to
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other members in an unsolicited fashion. In contrast,
in a pull-based design, any information conveyed by a
member is always in response to a prior solicitation.
Systems like ESM and CoolStreaming [10,36] use push-
based gossip algorithms, while BitTorrent and eMule
use pull-based techniques.

We argue that pull-based protocols are preferable from
the perspective of robust design since an attacker does
not have control over the rate at which it can pro-
pogate malicious information. In contrast, push-based
protocols are more vulnerable to compromise, since an
attacker can control the rate at which it can contact
other victim nodes. That said, a few points are in or-
der. First, attacks where a node pushes malicious in-
formation at higher rates than normal in push-based
approaches are potentially detectable since the amount
of traffic that must be generated to spread false informa-
tion is high. However, solutions for detection may not
be straight-forward. They may either require all service
providers of all nodes taking part in the P2P system to
detect abnormal variations in traffic, or they may re-
quire correlating observations across multiple nodes in
the system, neither of which are trivial. Second, pull-
based algorithms may themselves not suffice. In partic-
ular, a factor dictating the vulnerability of pull-based
algorithms is the ability of an attacker to attract queries
from innocent nodes towards itself. This may in turn
depend on the number of nodes that know an attacker,
as well as the skew in distribution of requests to any
node - for example, arising due to variations in popular-
ity of files owned by various nodes. In fact, our attacks
on the Kad system leveraged a vulnerability which en-
abled an attacker to populate routing tables of a large
number of innocent clients, thereby attracting queries
towards itself. Finally, a subtle implementation issue
with pull-based algorithms is that a member must be
able to verify that any reply is actually in response to

a prior request. This could be handled through a vari-
ety of well-known mechanisms. In fact, both Bittorrent
and Kad handle this by storing transaction identifiers
of outgoing pull requests and requiring that responses
have identifiers matching outgoing requests.

4.2 Validating Information

When A receives information about a member C from
member B, clearly it would be desirable to have a means
of validating the information. However, validation could
incur costs as well. We discuss a list of techniques we
consider for validating information, and their pros and
cons:

e No-Validation: This is a strawman solution where
when information is learnt about a new member C, that
information is accepted without any further validation.
Evidently, this solution is the most vulnerable to being
exploited in a DDoS attack, however no costs are in-
curred in terms of performance or overheads. The ESM
system does not have mechanisms for validation.

e Direct-Validation: In this solution, when a node learns
information about C, it directly contacts C to ensure C
is alive and can respond to the message. C is accepted as
a valid group member only if C responds to the message.
The Kad system employs a direct validation scheme. A
potential concern is that this kind of validation itself can
become subject to exploit if a large number of innocent
nodes try to conduct the validation, as our results with
Kad have shown. Further, under lossy conditions, loss
of validation packets (or responses) may mistakenly lead
a node to conclude a remote member is not actually part
of the group. While this could be potentially offset by
transmitting a larger number of validation packets, this
could increase overhead, and magnitude of attack traffic
as well.

o Multi-Node-Validation: In this solution, a node does
not directly contact C to validate it, but waits until
it learns about C from at least m nodes, where m
is a parameter. This approach has been used in sev-
eral prior works on Byzantine-tolerant diffusion algo-
rithms [16-18,20]. These works assume the maximum
number of faulty nodes is known apriori, and require
corroboration from at least 1 more than the number
of faulty nodes. We adopt a more probabilistic vari-
ant, where the parameter m determines the number of
sources from which corroboration is required. In our
heuristic, a node may still receive false information (for
example, when the number of attackers exceeds m).
However, further confirmation could be obtained using
Direct-Validation. The scheme helps by minimizing the
number of direct validation requests sent to the victim.
The disadvantage however is that waiting for responses
from several nodes may take a long while, and can slow
down convergence and performance. Clearly, the pa-
rameter m is critical - a higher value offers potentially



stronger security properties, but slower convergence.

One additional consideration in schemes that employ
validation is whether A must spread information about
a member C when it is still in the process of validating
whether C is really in the group. Doing this has the
advantage that good information can propagate fast in
the absence of attackers. However, it has the disadvan-
tage that malicious information could also propagate
fast, with minimal effort from the attacker, and making
the attacker harder to detect. This trade-off is inter-
esting only if the “length” of validation interval is long.
Direct validation schemes that involve a single probe-
response, have a validation period which is short, and
hence the trade-offs involved in whether information yet
to be validated is spread or not is likely insignificant.
The trade-off is however interesting in schemes involv-
ing longer validation periods, for instance a repeated
series of pings, or with multi-node validation. We defer
an investigation of these trade-offs to future work.

4.3 Bounding Logical Idsfor aPhysical Id

Many peer-to-peer systems use logical identifiers to
identify participating nodes, rather than physical iden-
tifiers such as its IP address, as mentioned in Section 3.
Participating nodes with different logical identifiers may
share the same physical identifier. For example, hosts
behind the same NAT, likely have the same IP, though
their logical identifiers differ. Other examples include
two users working on a time-shared machine, or mul-
tiple reincarnations of a host (a user that leaves the
group, and rejoins with a different logical identifier).

The attacks in Section 3 on both the Kad (Multifake
heuristic) and the ESM systems exploit the fact that
a malicious node could repeatedly redirect an innocent
client to a victim IP address, but using different logical
identifiers for the victim IP each time. This aspect was
instrumental in magnifying the traffic at the victim.

An intuitive heuristic to mitigate such attacks is to
bound the total number of distinct logical identifiers
corresponding to the same physical identifier, which a
participating node is unable to validate. We refer to this
as the Bound-LogIDforPhyID heuristic. The key issue
in doing this is designing bounds that are small enough
to help limit DDoS attacks, yet are realistic enough to
take into account the prevalence in real deployments of
instances where nodes with different logical identifiers
share the same physical identifier due to factors such as
NATSs discussed above.

While the Bound-LogIDforPhyID heuristic has po-
tential to limit DDoS attacks on victims not in the
group, it has a vulnerability that could be exploited
by an attacker. In particular, an attacker could discon-
nect a client (victim) who is really part of the group,
by flooding other clients with several logical identifiers
for the victim, and the physical identifier (IP address)

of the victim. This causes other clients to exceed their
bound for the victim, and not communicate with the

victim. To address this, we consider the Bound-LogIDforPhylD-

Src heuristic which bounds the total number of distinct
logical identifiers corresponding to the same physical
identifier that have been learned from the same mem-
ber and which a participating node is unable to vali-
date. While this requires more state information to be
maintained, it can prevent disconnection attacks above.
Further, it can still limit DDoS attacks, however the
magnitude that can be achieved depends on the bounds
used for the above, and the number of attackers.

Finally, we have considered whether to simply bound
the total number of logical identifiers (irrespective of
physical identifier) learnt from a given member which
a participating node is unable to validate. This heuris-
tic is simpler than the Bound-LogIDforPhyID-Src de-
scribed above and requires less state, however, the bounds
involved need to be larger, which in turn implies higher
DDoS magnitudes at a victim.

5. EVALUATION METHODOLOGY

Our evaluations explore the importance of the prin-
ciples discussed in Section 4, study security and per-
formance trade-offs involved between design heuristics,
and parameterize heuristics. In this section, we present
our evaluation goals, metrics, refinements implemented

in the Kad and ESM system and our experimental method-

ology.

5.1 Evaluation Goals

Our evaluations are motivated by several goals:
e How effective are pull-based mechanisms in lowering
attack magnitudes as compared to push-based mecha-
nisms?
e How effective is Direct- Validation compared to No-
Validation in limiting the magnitude of DDoS attacks?
Are the additional overheads acceptable? How well does
Direct- Validation perform under lossy conditions, given
that loss of validation request/response packets may
lead to invalidation of a genuine node part of the group?
e How effective is Multi- Node- Validation in preventing
DDoS attacks? How critical are the performance con-
cerns introduced? What factors do the parameter m
depend on? We recall that m is the number of dis-
tinct sources that must verify membership information
before it is used.
e How prevalent is the use of multiple logical identifiers
for the same physical identifier in actual deployments?
How do they influence choice of realistic bounds for the
Bound-LogIDforPhylID and Bound-LogIDforPhylID-Src
heuristics? How serious are disconnection attacks using
the Bound-LogIDforPhyID 7 How effective is Bound-
LogIDforPhyID-Src in mitigating DDoS attacks?



5.2 Performance Metrics

We characterize the performance and security trade-
offs in our heuristics as follows:
o Application performance: For file distribution (Kad),
we consider the time taken for a search for a given tar-
get id to be successful. Since some searches may not be
successful at all, the fraction of searches that are suc-
cessful is also considered. For video broadcast (ESM),
we consider the fraction of the streaming video rate re-
ceived by participating nodes.
o Attack Impact: We evaluate the impact of an attack
on a victim by considering the rate of traffic received at
the victim.

5.3 Methodology

To evaluate the heuristics we introduce, we have im-
plemented several refinements to the ESM and Kad sys-
tems, and conducted evaluations over Planetlab. The
base ESM system does not employ validation, and uses
push-based mechanisms. Each member picks a ran-
dom member it knows, and sends it a random subset of
members that it knows. We implemented a pull-based
version, where a member picks a random member at
the same frequency, and requests it to send it a subset
of group members it knows. We also implemented a
scheme for direct validation where a member A probes
any member B that it learns about and accepts B only
if it receives a response from B. The base Kad system
does adopt validation, and uses pull-based mechanisms.
We modified it to implement the Multi-Node-Validation
scheme, and the Bound-LogIDforPhyID, and Bound-
LogIDforPhyID-Src heuristics.

ESM experiments: Our experiments with ESM lever-
aged traces from real broadcast events [10] to model
the group dynamics pattterns, and bandwidth-resource
constraints of nodes. We emulate twenty minute seg-
ments of the trace. The clients already present in the
trace at the start of the segment join in a burst over
the first two minutes, then follow join/leave patterns
exactly as in the trace for the next twenty minutes. For
the trace segment used, 363 nodes participate, with a
group peak size of 108 nodes. The streaming video rate
employed was 475Kbps, which represents typical media
streaming rates in real settings like [10]. We used two
versions of the attacker. In the first version, the attacker
behaved similar to a regular node, except that whenever
it needed to push membership information (or was con-
tacted by another member pulling membership informa-
tion), fake information regarding the victim was sent.
We term such an attacker undetectable-attacker, since
the traffic patterns it introduces are not distinguishable
from a normal node in the system. We also consid-
ered a second attacker that we term aggressive-attacker,
which periodically pushes fake membership information
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Figure 8: Traffic seen by victim and attacker,
for undetectable and aggressive attackers

about the victim to a large number of nodes in the sys-
tem. This kind of attacker only impacts a push-based
solution. We note that an aggressive-attacker may be
sending more traffic than regular nodes in the system.

Kad experiments: Our Kad experiments used a syn-
thetic trace of join/leave patterns where the inter-arrival
patterns of nodes, and the stay time duration of nodes
followed a Weibull distribution. This was based on
recommendations by a recent measurement study [31].
The trace has 1455 instances in total, with peak group
size around 300. Nodes executed a search pattern where
each node periodically (30 seconds) conducted a search
for a random logical identifier, which was intended to
simulate a search request for a file. We assumed that the
search successfully reached an index-node if it reached
any of the k members closest to the logical identifier for
which the search was conducted. We used k values of 5,
but conducted sensitivity of our results to this parame-
ter. To model attackers in Kad, we used the heuristics
in Section 3.1. To study disconnection attacks alone, we
slightly modified the attacker to redirect the client to a
victim IP actually in the group rather than outside, still
returning several fake logical identifiers for that IP. The
remaining heuristics were similar to those described in
Section 3.1.

Kad Measurement Study: To understand the preva-
lence of multiple logical identifiers for the same physical
identifier in actual deployments, we have conducted a
measurement study of the real Kad infrastructure. We
implemented a Kad crawler which constantly performed
searches for random logical identifiers at a very high rate
and extracted (Logical identifier, IP, Port) triples from
the responses it received. We ran 6 such crawlers from
6 machines for a time period of 20 hours, and were able
to collect about 4 million distinct(Logical identifiers ,
IP, Port) triples.
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6. RESULTS

Section 6.1 discusses potential benefits of pull-based
over push-based approaches. Section 6.2 discusses ben-
efits and issues with Direct-Validation. ESM uses push,
and does not employ validation. Kad uses pull, and em-
ploys validation. Therefore, our experiments in the first
two sections employ ESM. Section 6.3 focus on benefits
of a more sophisticated validation scheme, Multi-Node-
Validation. Section 6.4 shows issues with logical and
physical identifiers. The last two sections are relevant
to both Kad and ESM, and we focus our discussions on
Kad.

6.1 Pull vs. Push Approaches

We present evaluation results of the base ESM system
with push-based mechanisms, as well as our refinements
that employ pull-based mechanisms. Our evaluations

0.99

0.96 -

0.95 -

Bandwidth Ratio

0.94 -

0.93

0.92 -

pUex

0.91

0 10
Loss Rate [Percentage]

Figure 11: Bandwidth Ratio seen by members
of multicast group, where 10% of the members
of the group are attackers, for different loss rate
percentages

are conducted using both the undetectable-attacker and
aggressive-attacker described in Section 5.3. Figure 8
plots the average traffic seen at the victim and an at-
tacker during the run, for both the undetectable-attacker,
and the aggressive-attacker. Further, for the undetectable-
attacker, traffic is shown for both pull and push cases
and for the aggressive-attacker, traffic is shown only for
the push case since pull is not relevant here. We note
that the traffic at the attacker is extremely small for
the undetectable-attacker but about 300 Kbps for the
aggressive-attacker. This is consistent with the amount
of work the attacker does in each case. We also note
that the traffic at the attacker, for all cases, is at least
one order of magnitude less than the traffic at the vic-
tim, which demostrate the potency of the attack.

From the perspective of the victim, there are two
points to note from the graph. First, the magnitude
of attack traffic can be very high with push-based ap-
proaches when an aggressive attacker is employed, which
may be prevented by pull-based approaches. Second,
even with an undetectable-attacker, the magnitude of
attack traffic with pull-based mechanisms is slightly less
than push-based mechanisms. This is because with
push-based techniques, an attacker may always infect
a client in any iteration - in pull-based techniques, this
is dependent on the probability with which a normal
client contacts an attacker machine.

6.2 Direct validation

While the results above show the importance of pull-
based mechanisms, we next consider the need for a node
to directly validate any information it receives by prob-
ing any new peer it learns about.

Figure 9 shows the average attack traffic generated
at the victim in the presence of malicious nodes in ex-



periments over 20 minute periods. Four schemes are
considered. The first scheme is push without any val-
idation (push) which refers to the original ESM sys-
tem. The remaining schemes are pull without vali-
dation (pull), push with Direct-Validation (push-DV),
and pull with Direct-Validation (pull-DV), depending
on whether they use pull alone, validation alone, or
both. We see that the use of Direct-Validation greatly
reduces the magnitude of traffic seen at the victim, irre-
spective of whether pull or push based mechanisms are
used.

While the results above indicate the benefits of Direct-

Validation, this mechanism by itself is insufficient, and
must be used in addition to pull. This is because an
aggressive-attacker could push information at high-rates
and still make normal users query the victim a signifi-
cant number of times. We performed experiments with
this approach and noted that while push-DV does per-
form better than push, the magnitude of the attack was
still high (almost 1 Mbps) - avoiding this requires the
use of pull-DV.
Loss Experiments: One concern with direct valida-
tion is the performance under lossy conditions. Good
nodes may be mistakenly assumed as invalid when a
validation request is lost. We conducted experiments
to evaluate this concern by measuring the bandwidth
ratio seen by nodes under lossy conditions. We emu-
lated a loss rate on Planetlab, by dropping a random
fraction L of packets when they arrived at the receiver.
We varied L, so 0%, 10% and 20% of the packets were
dropped. We note these losses are in addition to natural
losses that occur on the Planetlab (which we observed
was small).

Figure 10 shows the bandwidth ratio, or the frac-
tion of the source rate received by users participating
in the broadcast, for the pull and pull-DV schemes un-
der lossy conditions, when no malicious nodes are part
of the system. There are 3 sets of bars, corresponding
to the three different loss rates, and each set has 2 bars
corresponding to the two schemes. While the perfor-
mance of pull and pull-DV are very similar under no
loss and 10% loss, the performace of pull-DV does show
more degradation under 20% loss. This is because loss
of validation requests/responses can force a node to not
consider certain members as candidate parent choices,
thereby not making the best use of available choices in
the tree.

While the results above were obtained under non-
malicious workloads, Figure 11 shows the bandwidth
ratio of the pull and pull-DV scheme under lossy con-
ditions, with 10% of the nodes being malicious. While
both schemes degrade under loss, the degradation for
pull is more pronounced than pull-DV. With malicious
nodes and the pull scheme, nodes may be filled with
fake membership information, thereby greatly reducing
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Figure 13: Average success ratio of searches, as
a function of the number of attackers.

the performance of the system. In contrast, with pull-
DV, while some genuine parent choices may be missed
due to loss of packets in the validation process, there is
no false membership information at nodes. Thus, the
benefits of avoiding consideration of false members out-
weighs the costs of missing a few genuine members.

To summarize, with non-malicious workloads, and
significantly lossy conditions, pull-DV can have modest
performance degradation compared to pull. However,
when malicious workloads are considered, pull-DV out-
performs pull considerably even under loss. This indi-
cates the promise of using the pull-DV heuristic.

6.3 Multiple member validation

Our results so far demonstrated the importance of
pull-based approaches and direct validation. We next
consider the trade-offs involved in using the more so-
phisticated Multi-Node-Validation scheme. We believe
these results are applicable to both ESM and Kad, but
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we focus our investigation on Kad.

Figure 12 shows the traffic generated at the victim
as a function of the number of attackers. There are
two sets of bars, each set corresponding to a setting
with a particular number of attackers. Each set has 3
bars corresponding to the parameter m (the number of
nodes required for validation). A value of 1 indicates
the default Kad system. Results are not shown for the
number of attackers being zero, as clearly there is no
traffic at the victim in such a case. Even in the pres-
ence of a moderate number of attackers, the overheads
at the victim are high for m = 1 - about 6 Mbps for 6
attackers. Using m = 2 is effective in reducing the over-
heads at the victim, with attack magnitudes about 89
Kbps even for settings with 10 attackers. Using a higher
value of m enables further reduction in overheads, but
the benefits are marginal.

While these results indicate the promise of using Multi-
Node-Validation in minimizing DDoS attacks, an im-
portant concern is performance. Figure 13 shows the
success ratio, or the fraction of searches that are suc-
cessful. Again, each set of bars corresponds to a set-
ting with a particular number of attackers, and there
are multiple bars in each set corresponding to different
values of m. There are several observations to make.
First, in the absence of attackers, a value of m = 1
has a success ratio of close to 1, but m = 2 performs
well too, with a success ratio of 0.98. The success ratio
with m = 4 is much lower, only around 0.7. Second,
when attackers are considered, the results are particu-
larly interesting. While the performance with m = 1
degrades significantly, the performance with m = 2 is
relatively unaffected, and m = 4 continues to perform
poorly. This indicates that using modest degrees of
Multi-Node-Validation not only minimize traffic at the
victim, but also sustain good application performance
in the presence of attackers; and has modest peerfor-
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mance degradaton in the absence of them. However us-
ing higher degrees of Multi-Node-Validation may have
an unacceptably high performance cost.

While the success ratio is one metric of performance,
Figure 14 shows the delays incurred by successful searches.
For any setting, all searches conducted across all nodes
are considered, and the average delays are computed.
The lower the bars, the better the performance. The
results are consistent with the success ratio metric. In
the absence of attackers, m = 1 does perform the best
with average delays across searches less than 1 second.
The performance of m = 2 is slightly worse, but still ac-
ceptable, with average delays around 2 seconds. With
a value of m = 4 however, the average delays are high,
and over 12 seconds. In the presence of attackers, the
performance with m = 1 degrades significantly, with
searches taking over 10 seconds with 6 attackers. The
performance with m = 2 shows only modest degrada-
tion, with average delays of less than 6 seconds even
with 10 attackers. The delays with m = 4 continue to
remain high in the presence of attackers.

We further considered why the performance with m =
2 performs better in the presence of attackers as com-
pared to m = 1 and higher m values. The performance
of m = 1 degrades with attackers because search re-
quests to a given target id may be redirected to non-
existent nodes. Using m = 2 requires validation from
multiple nodes, and offers a better degree of protection
in ensuring searches are not misdirected. While m =4
could potentially provide even stronger validation, the
downside is that the penalty or “wait-time” involved in
confirming the observations from so many sources be-
comes high, and outweighs the benefits of invalidating
malicious information.

Figure 15 studies the sensitivity of our results to the
dynamicity of the trace. Each group of bars corresponds
to the success ratio with a particular group dynamics
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pattern, and each bar corresponds to a different scheme.
The three patterns all follow the Weibull distribution
with an inter-arrival pattern of 0.4 joins per second -
however the mean stay time differs and values of 10,
30 and 60 minutes are used. The number of attackers
is fixed at 6. Across all traces, the performance with
m = 2 is better than the performance with m = 1, but
the performance with m = 4 is significantly worse.

Overall, our results show that modest degrees of Multi-
Node-Validation significantly reduces vulnerability to
DDoS exploits, has modest performance degradation in
the absence of attackers, and offers performance ben-
efits in the presence of attackers. Higher degrees of
Multi-Node-Validation however has too significant a per-
formance cost to be viable. While using m = 2 was
effective in the particularly settings we considered, our
results are limited by the size of our test-bed. Our on-
going work seeks to parametrize m using simulations
in settings with hundreds of thousands of nodes and
hundreds of attackers.

6.4 Bounding Logical Idsfor aPhysical Id

As discussed in Section 4.3, an important source of
attack amplification arises when a malicious node re-
peatedly redirects an innocent client to a victim IP
address (or (IP,port) pair, or even IP prefix), but us-
ing different logical identifiers for the same physical
identifier each time. The Bound-LogIDforPhylD, and
Bound-LogIDforPhylID-Src heuristics seek to bound the
number of distinct logical identifiers corresponding to
the same physical identifier, which a participating node
is unable to validate. We present our results below
parametrizing and evaluating these heuristics.

To guide the design of bounds for the heuristics, we
analyzed a trace from a real Kad deployment which con-
tains 4 million clients, and includes the logical identifier,
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the TP address and the port for each client, obtained as
discussed in Section 5. Our objective is to understand
how common it is to find nodes with different logical
identifiers that share the same physical identifier due to
factors such as NATSs.

Figure 16 presents results from the analysis of the
traces. There are 3 sets of bars, each corresponding
to a different notion of a physical identifier - (IP,port)
pair, IP address, and IP prefix. For each set, there
are 3 bars, corresponding to 1, 5, and 10 logical iden-
tifiers. Each bar shows the fraction of distinct physical
identifiers that are associated with a certain number of
logical identifiers, or less. Almost close to 100% of the
(IP,port) pairs involve only 1 logical identifier. There
is a tail, and there exists one (IP,port) pair for which
over 6000 logical identifiers are used (not shown in the
graph). When the IP address alone is considered as the
physical identifier, over 92% of the IP addresses are as-
sociated with only 1 logical identifier. Over 99.8% of
IP addresses are associated with 10 logical identifiers or
less, and there exists a tail as before. Barring the tail,
the results indicate that reasonably small bounds can
be used with the Bound-LogIDforPhylD, and Bound-
LogIDforPhyID-Src heuristics.

So far, we have considered attacks where innocent
clients are repeatedly redirected to a victim IP address
using different logical identifiers. However, a more so-
phisticated attacker could target a network by redirect-
ing traffic to hosts with particular IP address prefixes.
Figure 16 also shows the fraction of 24-bit IP prefixes
that are associated with a certain number of logical
identifiers (or less). Only 35% of the prefixes are associ-
ated with at most 1 logical identifier, and about 81% of
the prefixes are associated with less than 10 distinct log-
ical identifiers. This indicates that larger bounds may
be required when limiting the rate of packets sent to a
given prefix. We believe the bounds could be lower if
we not only consider nodes that share the same prefix,
but also consider the number of these which do not re-
spond to validation requests (for example, because they
left the group). Obtaining these estimates is subject of
our ongoing extensions to our measurement study.

We have conducted experiments with the
Bound-LogIDforPhylID and Bound-LogIDforPhylID-Src
heuristics. Our experiments confirm our hypothesis that
the Bound-LogIDforPhyID heuristic is vulnerable to
disconnection attacks. In our experiments, each client
applies a bound on the number of logical identifiers for
a particular IP address that it cannot validate. A single
attacker conducts a disconnection attack as described in
Section 5.3. The attacker redirects innocent clients to
a victim IP actually in the group rather than outside,
still returning several fake logical identifiers for that IP.
Figure 17 shows the success ratio of the searches. The
success ratio is less than 0.1 for searches conducted for
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the victim id, while it is over 0.9 for searches conducted
for other client ids. We have also conducted experi-
ments with the Bound-LogIDforPhyID-Src. While we
omit results, overall, they confirm our intuition that this
heuristic is not only effective in limiting the magnitudes
of DDoS attacks, but also is effective in preventing dis-
connection attacks.

7. RELATED WORK

Researchers have recently shown the potential to ex-
ploit the Gnutella and Overnet systems to launch DDoS
attacks on the external Internet [5,21]. Our research
seeks to generalize the issues involved, and to propose
and design solutions. Ours is the first work to system-
atically study defenses to the best of our knowledge.

The attack on the Overnet system [21] relies on a
attacker impersonating the victim when talking to an
innocent client, which forces the client to communicate
with the victim. Further, due to an implementation
vulnerability in Overnet, spoofing at the IP source ad-
dress level is not required, but merely at the application
payload level. The paper also proposed another type
of DDoS attack in which the attacker tries to falsely
publish the victim as sources for popular files so other
peers will try to download the files by initiating TCP
connections to the victim. In contrast, the attacks we
present exploit issues with push-based protocols, having
attackers attract query traffic, and achieving amplifica-
tion through multiple logical identifiers being mapped
to the same physical identifier. The attack magnitudes
we report are also orders of magnitude higher than those
reported in [21].

Other works have explored attacks caused by DNS
and web-server reflectors, and misuse of web-browsers
and bot-nets [1,14,15,22]. We believe the rich and com-
plex design space of peer-to-peer systems makes them
worthy of study in their own right. Several works [8,
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11,27,28,33] focus on how malicious nodes in a peer-to-
peer system may disrupt the normal functioning, and
performance of the overlay itself. In contrast, we focus
on DDoS attacks on the external Internet environment.
Our work benefits from work on the design of byzantine
resilient gossip protocols in the traditional distributed
systems community [16-18,20]. While we leverage in-
sights from these works, we believe the scalability, het-
erogeneity and performance requirements with peer-to-
peer networks and applications pose unique challenges
and it is necessary to investigate the issues in the con-
text of actual systems. Finally [26] has looked at de-
tecting faults, anomalies and security vulnerabilities in
overlays using query processing.

8. SUMMARY AND CONCLUSIONS

We have shown the feasibility of exploiting the mem-
bership management algorithms in peer-to-peer systems
to create large-scale DDoS attacks on the Internet. Our
results shown on two mature and extensively deployed
peer-to-peer systems (Kad and ESM), along with recent
attacks shown on Gnutella and Overnet [5,21] highlight
the generality and criticality of the problem.

We have conducted the first systematic study of the
design of membership management algorithms in peer-
to-peer systems so they may be robust to such exploits.
We summarize our key findings below:

e The use of pull-based protocols is preferable to push-
based protocols, given that an attacker has less control
over the rate at which it can infect innocent clients.

e Validation of membership information received from
another member is important. Even simple mechanisms
like Direct-Validation can significantly reduce the mag-
nitude of DDoS attacks compared to No-Validation.

While Direct-Validation incurs modest performance degra-

dation under lossy conditions and non-malicious work-
loads, it outperforms No-Validation under malicious work-
loads even under loss. Though Direct-Validation is al-
ready used in some systems such as Kadtoday, its usage
is ad-hoc - our results highlight its criticality, and sys-
tematically evaluates its effectiveness and concerns.

e Direct-Validation could be exploited to cause attack
traffic to be launched at a victim. This may be avoided
by corroborating information from multiple members.
Multi-Node-Validation with small values of the param-
eter m can significantly reduce vulnerability to DDoS
exploits, has modest performance degradation in the
absence of attackers, and improves performance in the
presence of attackers. Larger values of m involve too
significant a performance cost to be viable.

e It is important to bound the number of distinct logi-
cal identifiers corresponding to the same physical iden-
tifier (such as (IP,port) pair, IP address, or IP prefix),
which a participating node is unable to validate. A



measurement study of a real Kad deployment indicates
low bounds are feasible. We considered two heuristics
to achieve this bound - Bound-LogIDforPhylD, and
Bound-LogIDforPhyID-Src. While both heuristics can
help to contain DDoS attacks on an external victim, the
former heuristic is vulnerable to attacks that disconnect
genuine nodes part of the system.

We believe this work has taken a first but impor-
tant step towards ensuring the safe, secure and robust
deployment of peer-to-peer systems. Our ongoing and
future work involves considering a wider range of sys-
tems, vulnerabilities in other components of peer-to-
peer systems, evaluating the performance of heuristics
at scale using analysis and simulations, and exploring
techniques that can detect DDoS attacks exploiting
peer-to-peer systems.
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