Roundabout Prequalification Training

March 11, 2013
American Structurepoint, Inc.

- Jeromy Grenard, PE, PTOE
- Craig Parks, PE
Why Roundabouts?

- Everybody else is building them?
- They look cool?
- Circles are better than squares?
- We want to be like the Europeans?
SAFETY!

- According to the Insurance Institute of Highway Safety (IIHS), more than 800 people die and over 200,000 are injured in the U.S. each year in crashes that involve red light running.

- In 2000, the IIHS found that roundabouts had 79% fewer accidents with injuries than ordinary intersections.

- Since 2000, IIHS has issued a total of five reports promoting the use of roundabouts.
Safety - Speed Reduction

Figure from FHWA Design Guide
Safety - Vehicular Conflict Points

Total Conflict Points: 8
- Crossing (0)
- Diverging (4)
- Converging (4)

Total Conflict Points: 32
- Crossing (16)
- Diverging (8)
- Converging (8)
Safety - Type of Crashes

Typical 4-leg intersection

- Angle
- Left turn

Roundabout

- Sideswipe
Why Roundabouts?

- INDOT desires roundabouts to be considered for any intersection improvement project
- Another tool in the toolbox
- Not always the answer, but often you’ll be surprised!
Why Prequalification?

- Proven safety measure
- INDOT desires roundabouts to be considered in your planning process
- Sound design plays a major role in the function of a roundabout
- Understanding the important parameters of roundabouts is crucial to sound design.
Definitions

- **Splitter Island**
- **Central Island**
- **Circulatory Roadway**
- **Approach**
- **Exit**
What makes a Modern Roundabout?

- Deflected Entry
- Smooth Exit
- Diameter 100’-220’
- No Pedestrians in Center
- Yield on Entry
INDOT Roundabout Design Policy

- FHWA Guide (NCHRP 672)
- 2009 MUTCD (pavement markings and signage)
- HCM 2010 (operations)
- IDM Chapter 51-12.0 (written prior to NCHRP 672)
- Soon to be replaced by IDM 305-5.0 (supplement to NCHRP 672)
Roundabout Design Checklist

Purpose: To provide guidance to designers and reviewers on many of the major items to be considered during the design of roundabouts

Future IDM
Roundabout Design Checklist

- Not a comprehensive list nor a set of hard and fast rules
- Documentation is critical for reviewers to understand the designer’s intentions
- Diverging from the ranges outside of the desirable ranges shown is acceptable but needs to be justified with design documentation
Roundabout Design Checklist

- Divided into four major categories
 - Planning
 - Design Documentation
 - Roundabout Design
 - Design Plans

- Designers should submit completed checklist and documentation with all roundabout submittals
“A comparison of roundabout practicality/feasibility vs. other intersection types should be conducted, taking into consideration safety, traffic operations, capacity, ROW impacts, and cost.”
Roundabout Planning

Evaluation Criteria

- Operations
- Safety
- R/W impacts
- Construction cost
- User costs
- Constructability
- Public input
- Maintenance of traffic
- Noise and environmental impacts
Roundabout Planning
Locations Where Roundabouts Can Be Beneficial

- High-speed rural intersections
- Locations with mediocre/poor crash history
- Locations with traffic operational problems
- Closely spaced intersections
- Near structures, including freeway interchange ramps
- Access management
- Gateway or transition locations
- Where community enhancement is desired
- Near schools
- Corridors
NCHRP currently performing research to analyze roundabout corridors.

Our experience: work very well when all roundabouts are operating under capacity.

No need to coordinate timings.

Every vehicle on every approach must slow down to enter the roundabout.

Slower speeds increase motorist and pedestrian safety.
Within a system of coordinated signals
On a steep grade
Where stopping sight distance cannot be achieved
Near rail crossings
Near a signalized intersection
Memo or report with the following, where applicable:

- Traffic volumes and crash history
- 20-year traffic projections
- Capacity analysis
- Conceptual geometric design
- Public involvement
- Comparison to other intersection types, including “Do Nothing”
- Crash analysis
- Selection of preferred option
Roundabout Planning

Traffic Data

- 20-year forecasts
- Consider staged construction
 - Interim year analysis required
- Turning movements critical
 Roundabout capacity dependent on approach and conflicting circulating traffic
Roundabout Planning
Traffic Data - Calculating Volumes

<table>
<thead>
<tr>
<th>Intersection</th>
<th>Mason Road and Hickory Woods Drive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Hour</td>
<td>AM Peak</td>
</tr>
<tr>
<td>Analyst</td>
<td>TVW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR</th>
<th>SOUTH LEG</th>
<th></th>
<th></th>
<th></th>
<th>NORTH LEG</th>
<th></th>
<th></th>
<th></th>
<th>WEST LEG</th>
<th></th>
<th></th>
<th></th>
<th>EAST LEG</th>
<th></th>
<th></th>
<th></th>
<th>HOUR TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LEFT</td>
<td>THRU</td>
<td>RIGHT</td>
<td>LEFT</td>
<td>THRU</td>
<td>RIGHT</td>
<td>LEFT</td>
<td>THRU</td>
<td>RIGHT</td>
<td>LEFT</td>
<td>THRU</td>
<td>RIGHT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td>140</td>
<td>51</td>
<td>12</td>
<td>2</td>
<td>119</td>
<td>144</td>
<td>45</td>
<td>10</td>
<td>154</td>
<td>35</td>
<td>41</td>
<td>2</td>
<td>753</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td>200</td>
<td>70</td>
<td>20</td>
<td>0</td>
<td>170</td>
<td>200</td>
<td>60</td>
<td>10</td>
<td>220</td>
<td>50</td>
<td>80</td>
<td>0</td>
<td>1060</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Year 2030 Traffic Volumes
Mason Road and Hickory Woods Drive
AM Peak

Approach-Based Totals For Peak Hour

<table>
<thead>
<tr>
<th>Leg</th>
<th>Direction</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Leg</td>
<td>Leaving</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Approaching</td>
<td>370</td>
</tr>
<tr>
<td>East Leg</td>
<td>Leaving</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Approaching</td>
<td>110</td>
</tr>
<tr>
<td>South Leg</td>
<td>Leaving</td>
<td>440</td>
</tr>
<tr>
<td></td>
<td>Approaching</td>
<td>290</td>
</tr>
<tr>
<td>West Leg</td>
<td>Leaving</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>Approaching</td>
<td>290</td>
</tr>
</tbody>
</table>
Roundabout Planning
Capacity Analysis - Tools

Capacity Analysis (Macroscopic):
- RODEL / ARCADY
- SIDRA Intersection
- Equations from FHWA Roundabout Guide
- Equations from NCHRP Report 572 “Roundabouts in the United States” (published in 2007)
- HCM 2010 (HCS 2010, Synchro, SIDRA, etc.)

Simulations (Microscopic):
- Vissim
- Paramics
- Others
Roundabout geometric features used in design should match those in the capacity analysis if a capacity model with geometry inputs is being used (ARCADY, RODEL, SIDRA)

Learn the theory, limitations, and strengths of the software that you are using!
Roundabout Planning
Capacity - Approach vs. Circulating Flow

Figure 4-6 NCHRP 672
(Based on HCM 2010)
Roundabout Planning
Capacity - Rules of Thumb

- Single-lane roundabouts – up to 25,000 vpd
- Two-lane roundabouts – up to 40,000 vpd
- Three-lane roundabouts – in excess of 55,000 vpd
- Highly dependent upon turning movement percentages
- Rule of Thumb: Single lane approach volume = 1,100 – 1,200 vph
Roundabout level of service is similar to that of an unsignalized intersection.

<table>
<thead>
<tr>
<th>Control Delay (s/veh)</th>
<th>Level of Service by Volume-to-Capacity Ratio*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–10</td>
<td>A</td>
</tr>
<tr>
<td>>10–15</td>
<td>B</td>
</tr>
<tr>
<td>>15–25</td>
<td>C</td>
</tr>
<tr>
<td>>25–35</td>
<td>D</td>
</tr>
<tr>
<td>>35–50</td>
<td>E</td>
</tr>
<tr>
<td>>50</td>
<td>F</td>
</tr>
</tbody>
</table>

* For approaches and intersection-wide assessment, LOS is defined solely by control delay.

NCHRP Report 672 - Exhibit 4-9
(based on HCM)

Level of service should meet the IDM thresholds for different facility types.
(Currently Chapters 53-56)
Roundabout Planning

Capacity – LOS Requirements

<table>
<thead>
<tr>
<th>Design Element</th>
<th>Manual Section</th>
<th>2 Lanes</th>
<th>4 or More Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design-Year Traffic, AADT</td>
<td>40-2.01</td>
<td>< 400</td>
<td>400 ≤ AADT < 2000</td>
</tr>
<tr>
<td>Design Forecast Period</td>
<td>40-2.02</td>
<td>20 Years</td>
<td>20 Years</td>
</tr>
<tr>
<td>*Design Speed, mph (1)</td>
<td>40-3.0</td>
<td>Level: 60 – 70; Rolling: 50 – 60</td>
<td>60</td>
</tr>
<tr>
<td>Access Control</td>
<td>40-5.0</td>
<td>Partial Control / None</td>
<td>Partial Control / None</td>
</tr>
<tr>
<td>Level of Service</td>
<td>40-2.0</td>
<td>Desirable: B; Minimum: C</td>
<td>Desirable: B; Minimum: C</td>
</tr>
</tbody>
</table>

Travel Lane

<table>
<thead>
<tr>
<th>Width</th>
<th>Typical Surface Type (2) Chp. 52</th>
<th>12 ft</th>
<th>Asphalt / Concrete</th>
<th>12 ft</th>
<th>Asphalt / Concrete</th>
</tr>
</thead>
</table>

Shoulder (3)

| Width Usable | 45-1.02 | 6 ft | 8 ft | 11 ft (3b) | 11 ft (3b) | Right: 11 ft (3b) | Left: 4 ft (3e) |
| Width Paved | 45-1.02 | 4 ft | 6 ft | 10 ft (3b) | 10 ft (3b) | Right: 10 ft (3b) | Left: 4 ft (3e) |

Cross Section Elements**

| Travel Lane (4) | 45-1.01 | 2% | 2% |
| Shoulder (4A) | 45-1.02 | Paved Width ≤ 4 ft: 2%; Paved Width > 4 ft: 4% | Paved Width ≤ 4 ft: 2%; Paved Width > 4 ft: 4% |

Auxiliary Lane

| Lane Width (5) | 45-1.03 | Desirable: 12 ft; Minimum: 11 ft | Desirable: 12 ft; Minimum: 11 ft |
| Shoulder Width (6) | 45-1.03 | Same as Next to Travel Lane | Same as Next to Travel Lane |

Median Width

| Median Width | 45-2.0 | N/A | 0.0 ft | Desirable: 80 ft Minimum: 16 ft (7) |

Clear-Zone Width

| Clear-Zone Width | 49-2.0 | (8) | (8) |

Side Slopes (9)

<table>
<thead>
<tr>
<th>Cut</th>
<th>Ditch Width</th>
<th>4:1 (11)</th>
<th>4:1 (11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backslope</td>
<td>6:1 for 20 ft; 3:1 Max. to Top (12)</td>
<td>6:1 for 20 ft; 3:1 Max. to Top (12)</td>
<td></td>
</tr>
<tr>
<td>Fill</td>
<td>6:1 to Clear Zone; 3:1 Max. to Toe</td>
<td>6:1 to Clear Zone; 3:1 Max. to Toe</td>
<td></td>
</tr>
</tbody>
</table>

Median Slopes

| Median Slopes | 45-2.02 | N/A | Desirable: 8:1; Maximum: 5:1 |

New or Reconstructed Bridge

<table>
<thead>
<tr>
<th>*Structural Capacity</th>
<th>45-4.01</th>
<th>Chp. 60</th>
<th>HL-93 (13)</th>
</tr>
</thead>
</table>

Existing Bridge to Remain in Place

| *Clear-Roadway Width | 45-4.01 | Chp. 72 | HS-20 |

New or Replaced Overpassing Bridge (15)

| Existing Overpassing Bridge | 44-4.0 | Chp. 69 | |
| Sign Truss / Pedestrian Bridge (15) | 14 ft | New: 17.5 ft; Existing: 17 ft |

* Controlling design criterion. ** An arterial of 4 or more lanes on a new location should be designed as Divided. *** Selection of the cross section and bridge elements is based on the design-year traffic volume irrespective of the design speed.

GEOMETRIC DESIGN CRITERIA FOR RURAL ARTERIAL

New Construction or Reconstruction

Figure 53-2
Calculated queue lengths should not cause blocking of nearby drives or intersections (95th percentile queue length)
Design Documentation

Speeds Appropriate / Fastest Paths

- Definitions of paths per FHWA Guide
- Refer to NCHRP 672 Sections 6.7.1 and 6.7.2
- R1-R2-R3 movement is typically fastest path
NCHRP 672 provides illustrations of how to create these paths…
Design Documentation
Speeds Appropriate / Fastest Paths

...and how to measure the radii...

Exhibit 6-51
...and how to determine the speeds from the radii.

Exhibit 6-52
Eqn 6-1
Eqn 6-2
Use Eqn 6-4 to check R_3 speed.

$$V_3 = \min \left\{ \frac{V_{3\text{phase}}}{1.47} \sqrt{(1.47V_2)^2 + 2a_{23}d_{23}} \right\}$$

where

$V_3 =$ exit speed, mph;

$V_{3\text{phase}} =$ V_3 speed predicted based on path radius, mph;

$V_2 =$ circulatory speed for through vehicles predicted based on path radius, mph;

$a_{23} =$ acceleration between the midpoint of V_2 path and the point of interest along V_3 path $= 6.9$ ft/s2; and

$d_{23} =$ distance along the vehicle path between midpoint of V_2 path and point of interest along V_3 path, ft.
Design Documentation
Speeds Appropriate / Fastest Paths

R1, R2, R3, R4, R5

d_{23}
Design Documentation

Speeds Appropriate / Fastest Paths

<table>
<thead>
<tr>
<th>Roundabout Type</th>
<th>Recommended Fastest Path Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mini Roundabout</td>
<td>20 mph</td>
</tr>
<tr>
<td>Single Lane Roundabout</td>
<td>25 mph</td>
</tr>
<tr>
<td>Multi Lane Roundabout</td>
<td>25 – 30 mph</td>
</tr>
</tbody>
</table>

- Speeds can exceed these recommendations
- Engineering judgment must be used
- Documentation must be provided
Desirable to have all speeds in roundabout within 10mph – 15mph of one another

Refer to NCHRP 6.7.3.1

Should be balanced with other roundabout needs. All variances should be explained in documentation
All SSD calculations must be shown graphically

Refer to NCHRP 6.7.3.1

SSD is a level 1 criteria
Three locations should be checked:

- Approach sight distance
- Sight distance on circulatory roadway
- Sight distance to crosswalk on exit
All ISD calculations must be shown graphically

Refer to NCHRP 6.7.3.2

ISD is soon to be a level 1 criteria

Too much ISD can increase roundabout speeds

Use equations found in NCHRP 672
Eye location set 50’ from yield line

Use NCHRP 672 equation 6-6 and 6-7 with tc = 5.0s

d1 can be minimized to 50’ behind yield line (documentation required)

Eqn 6-6 \(\Rightarrow d_1= (1.468)(V_{major, \text{ entering}})(t_c) \)

Eqn 6-7 \(\Rightarrow d_2= (1.468)(V_{major, \text{ circulating}})(t_c) \)
Design Documentation
Allowable Landscaping Areas

- Include an overlay of all graphical checks of ISD and SSD on a single sheet
- Overlays will reveal areas where landscaping height is and is not restricted
- Must perform checks even if landscaping is not part of original plans
Splitter Island maximum landscaping height will be 1.5’ from top of curb

Refer to NCHRP 672 Chapter 9 for additional guidance
FHWA Roundabout Guide:

“For a roundabout to operate satisfactorily, a driver must be able to enter the roundabout, move through the circulating traffic, and separate from the circulating stream in a safe and efficient manner. To accomplish this, a driver must be able to perceive the general layout and operation of the intersection in time to make the appropriate maneuvers. Adequate lighting should therefore be provided at all roundabouts.”
Present guidance and resources

- NCHRP 672, Chapter 8
- IESNA Publication DG-19-08
- AASHTO
- Proprietary methods and vendor assistance
Several studies have been completed to determine the best lighting practices at roundabouts.

- Approaches
- Circulatory Roadway
- Exits

Light placement in advance of pedestrian facilities is critical – try not to “backlight” pedestrians

Pavement markings, signs, and lighting designs go hand-in-hand
Light poles can be placed in central island if necessary but should not be placed in splitter islands.
Important locations

- Crosswalks
- 45°, 135°, 225°, 315° quadrant points

Consider clear zone

Evaluate arm lengths
All roundabouts need to be lit
Place one light in advance of each approach crosswalk
Additional lighting at roundabouts should be considered to better illuminate the roundabouts and eliminate dark spots
Light pollution to neighboring residents can be a concern
Center island landscaping can incorporate uplighting for additional visibility
Roundabout Design

Geometry

- Roundabout geometry plays a major role in the capacity and safety of the roundabout.
- Geometry of roundabout design needs to match geometry in capacity analysis.
- If geometry is different than engineer’s report, designer should re-run capacity analysis.
Roundabout Design
Inscribed Circle Diameter
Roundabout Design

Inscribed Circle Diameter

<table>
<thead>
<tr>
<th>Roundabout Type</th>
<th>Low End</th>
<th>High End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Lane</td>
<td>90’</td>
<td>180’</td>
</tr>
<tr>
<td>Two Lane</td>
<td>150’</td>
<td>220’</td>
</tr>
<tr>
<td>Three Lane</td>
<td>200’</td>
<td>300’</td>
</tr>
</tbody>
</table>

- Refer to NCHRP 6.3.1
- Exhibit 6-9 provides better detail of inscribed diameters
- Document rationale if larger or smaller sizes are used
Roundabout Design

Approach Alignment

- Right offset should be avoided.
- Left offset is preferred because it typically improves deflection.
- Justification of right offset should be provided with documentation.
- Refer to NCHRP 6.3.2

Entry Alignment

Question
Should the approach alignment run through the center of the inscribed circle? Or is it acceptable to offset the approach centerline to one side?

Design Principle
The alignment does not have to pass through the center of the roundabout, however, it has a primary effect on the entry/exit design. The optimal alignment allows for an entry design that provides adequate deflection and speed control while also providing appropriate view angles to drivers and balancing property impacts/costs.

Alternative 1: Offset Alignment to the Left of Center
- **ADVANTAGES:**
 - Allows for increased deflection
 - Beneficial for accommodating large trucks with small inscribed circle diameter—allows for larger entry radius while maintaining deflection and speed control
 - May reduce impacts to right-side of roadway
- **TRADE-OFFS**
 - Increased exit radius or tangential exit reduces control of exit speeds and acceleration through crosswalk area
 - May create greater impacts to the left side of the roadway

Alternative 2: Alignment through Center of Roundabout
- **ADVANTAGES:**
 - Reduces amount of alignment changes along the approach roadway to keep impacts more localized to intersection
 - Allows for some exit curvature to encourage drivers to maintain slower speeds through the exit
- **TRADE-OFFS**
 - Increased exit radius reduces control of exit speeds/acceleration through crosswalk area
 - May require a slightly larger inscribed circle diameter (compared to offset-left design) to provide the same level of speed control

Alternative 3: Alignment to Right of Center
- **ADVANTAGES:**
 - Could be used for large inscribed circle diameter roundabouts where speed control objectives can still be met
 - Although not commonly used, this strategy may be appropriate in some instances (provided that speed objectives are met) to minimize impacts, improve view angles, etc.
- **TRADE-OFFS**
 - Often more difficult to achieve speed control objectives, particularly at small diameter roundabouts
 - Increases the amount of exit curvature that must be negotiated

Future IDM
Why is left offset preferred?

- Desired deflection is easier to achieve
- Can utilize a smaller circle without reducing deflection
- Results in slower entry speeds
Roundabout Design
Circulatory Roadway Width
Roundabout Design

Circulatory Roadway Width

<table>
<thead>
<tr>
<th>Roundabout Type</th>
<th>Low End</th>
<th>High End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Lane</td>
<td>16’</td>
<td>20’</td>
</tr>
<tr>
<td>Two Lane</td>
<td>28’</td>
<td>32’</td>
</tr>
<tr>
<td>Three Lane</td>
<td>42’</td>
<td>48’</td>
</tr>
</tbody>
</table>

- Refer to NCHRP 6.4.3 and 6.5.3
- “Rule of Thumb” is that circulatory roadway is 100% to 120% of entry width
Roundabout Design
Approach Radii
Design should match the geometry used in the capacity analysis

A wide range may be appropriate depending upon the components of the design

Refer to NCHRP 6.4.5 and 6.5.4
Roundabout Design
Entry Width
Roundabout Design

Entry Width

- Measured perpendicular to left and right curb lines
- Refer to NCHRP 6.4.2 and 6.5.2

<table>
<thead>
<tr>
<th>Roundabout Type</th>
<th>Low End</th>
<th>High End</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Lane</td>
<td>14’</td>
<td>18’</td>
</tr>
<tr>
<td>Two Lane</td>
<td>24’</td>
<td>30’</td>
</tr>
<tr>
<td>Three Lane</td>
<td>36’</td>
<td>45’</td>
</tr>
</tbody>
</table>
Roundabout Design

Exit Radii

Exit Radius
Roundabout Design
Exit Radii

- Typically 100’ to 800’
- 300’ to 600’ is desirable
- Refer to NCHRP 6.4.6 and 6.5.6
- Exit radii as small as 50’ can be used if necessary to control speeds at crosswalk
- Smaller exit radii can affect natural flow of traffic through roundabout and reduce capacity
Roundabout Design
Entry Path or Exit Overlap

- Only affects multi-lane roundabouts
- Refer to NCHRP 6.2.3
- Figure 51-22NN in current IDM illustrates how to avoid overlap
Roundabout Design
Entry Path or Exit Overlap

Desired Path of Vehicles

Entry Path Overlap

Speed & Trajectory of vehicle at yield point determines natural path

Striping and proper geometric design is crucial to achieving proper lane use!
Case Study - Entry Path Overlap
■ Truck apron allows large vehicles to track to the inside of the roundabout
■ Minimum effective/constructible width is 3’, minimum width of 5’ is desirable
■ No maximum width – based on turning templates
■ Refer to NCHRP 6.4.7.1 and 6.8.7.4
■ Documentation for proper design vehicle and illustrating adequate width should be included with design submittals
Roundabout Design
Pedestrian Crossing

- Crosswalk should be placed 20’-40’ behind Yield Line (one to two car lengths)
- Refer to NCHRP 6.4.1 and 6.8.1.2
- Ample length and width of splitter island should be designed to provide a safe refuge for pedestrians
- Placement should coincide with a vehicle’s slowest speed on approach
- Pay attention to cross-slope
Pavement markings and signs are critical to the function of roundabouts

Pavement marking schematics should be submitted with Stage 1 plans to illustrate design intent

Pavement markings should be designed in accordance with MUTCD 3C and NCHRP 7.3

Signs should be designed in accordance with MUTCD 2B.43-45 and NCHRP 7.4
Roundabout Design
Entry Grade Profile
Entry grade profile should be leveled out so as not to exceed 3%.
Entry grade profile is defined as the area approximately two car lengths from the outer edge of the circle.
Refer to NCHRP 6.8.7.5.
Roundabout Design

Drainage Structures

- Avoid drainage structures within circulatory roadway
- Desirable location is between circulatory roadway and curb ramps
- Primary reason for concern is maintenance difficulties
- Refer to NCHRP 6.8.7.6
- In some situations, this can not be avoided to meet spread/encroachment requirements
Spot elevations and/or grading plans should be clear and concise

Sign types and locations should be clearly defined

Specialty pavement markings must be clearly detailed
Design Plans

- Radii should be clearly labeled
- For early plan submittals – Provide the reviewer ample information to identify the critical elements (ICD, Approach & Exit Radii, etc.)
- For Stage 3 plans - Can a contractor build the roundabout with the information provided?
Future Policy Updates

- Indiana Design Manual Updates – Soon!
 - Significantly reduced
 - Largely relies on NCHRP 672
 - Incorporated into intersections chapter 305
 - May be organized per checklist
Future Policy Updates

- Checklist modifications
- All roundabouts will now be considered 4R
- Adding lane drop taper requirements
- High speed approach detail modifications
Future Policy Updates

- Clear zone definition
 - Curb offset + 4’ for interior
 - Curb offset + 6’ for perimeter
 - Clear zone transition zone on approach
- Pedestrian signal recommendations
Common Questions

- How important is public education?
- How do you maintain traffic during construction?
- What about visually impaired pedestrians?
- Are roundabouts safe on high speed facilities?
- What about bicyclists?
Single Lane Roundabout Layout
Single Lane Roundabout Layout

Getting Started

- 5 step process with a foundation of designing pavement marking alignments
- Multiple iterations of these 5 steps will need to be completed to achieve the optimum geometric design
- Curbs and edges of pavement are derived by the pavement markings in accordance with the FHWA Roundabout Guide.

Disclaimer: There are many approaches to achieve a sound geometric roundabout design. This approach is just one relatively simple method we have found to work.
Example 1
Single Lane
Scale 1” = 30’
Single Lane Roundabout Layout

Geometric Basics

- Inscribed diameter
 - Typically start with 130’ and adjust based on existing conditions
 - Dependent on your design vehicle

- Circulatory roadway width
 - Dependent on your design vehicle
 - Typically start with 15’-16’ for a single lane roundabout

- Truck apron width
 - Dependent on your design vehicle tracking
 - Typically start with 5’
Single Lane Roundabout Layout

Geometric Basics

- **Approach Radius**
 - Typically start with 100’
 - Affects roundabout capacity and speeds

- **Exit Radius**
 - Typically start with 600’
 - Affects roundabout capacity and speeds
Single Lane Roundabout Layout

Situation

- Simple 90 degree intersection
- Both roadways are 2 lane roads
Step 1

- Draw center circle
- Offset for circulatory roadway width
- Draw exits
Step 2

Fillet centerline to inside of circulatory roadway for exits
Step 3

Fillet inside of exit lane with inside circle to create inside approach lane.
Step 4
Offset inside of exit lane to match approaching lane width
Step 5

Fillet with outside edge of circulatory roadway
Step 6
Trim & review your geometrics
Deflection Check

Tangent to outside edge of approach should line up close to point where inside edge of approach intersects circulatory roadway.
Situation 2

- Offset intersection
- Higher speed on east-west road
Step 1

- Draw center circle to maximize deflection on higher speed approach
- Offset for circulatory roadway width
- Draw exits
Step 2
Fillet centerline to inside of circulatory roadway for exits
Step 3
Fillet inside of exit lane with inside circle to create inside approach lane
Step 4
Offset inside of exit lane to match approaching lane width
Step 5

Fillet with outside edge of circulatory roadway
Step 6
Trim & review your geometrics
Splitter Islands

Once layout is complete, create splitter islands as illustrated in Exhibit 6-13 of NCHRP 672.
Splitter Islands

- Where pedestrian facilities exist, the splitter island should be at least 50’

- Additional modifications to geometry may be necessary to develop required splitter island length
Alterations to Geometric Layout

- Can decrease exit radii to avoid R/W impacts or slow exiting traffic due to crosswalk
- Be careful not to reduce exit radii too much
- Can offset centerline in Step 4 additionally to create a longer splitter island
- When a median is involved, in Step 4 you can offset the line to match the inside approach edge of the existing median
Multi-Lane Roundabout Layout
Multi-Lane Roundabout Layout

Geometric Basics

- Inscribed diameter
 - Typically start with 160’ and adjust based on existing conditions
 - Dependent on your design vehicle

- Circulatory roadway width
 - Dependent on your design vehicle
 - Typically start with 30’-31’ for a 2 lane roundabout

- Truck apron width
 - Dependent on your design vehicle tracking
 - Typically start with 5’
Multi-Lane Roundabout Layout

Situation

- Skewed intersection
- East-west roadway is a 4 lane facility
- North-south roadway is a 2 lane facility
Multi-Lane Roundabout Layout

Step 1
- Draw Center Circle
- Offset for Circulatory Roadway Width
- Draw Exits
Step 2
Fillet inside of exit Lanes to inside of circulatory roadway
Step 3

- Fillet inside of exit lane with inside circle to create inside approach lane.
- Only do this for single lane entries!
Step 4

- Offset inside of exit lane to match approaching lane width
- Only do this for the single lane entries!
Step 5

- Fillet with outside edge of circulatory roadway
- Only do this for the single lane entries!
Multi-Lane Roundabout Layout

Desired Path of Vehicles

Entry Path Overlap

Speed & Trajectory of vehicle at yield point determines natural path

Striping and proper geometric design is crucial to achieving proper lane use!
Step 6
Create tangents on two-lane approaches to prevent entry path overlap
Multi-Lane Roundabout Layout

Step 7
Trim and review geometry