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a b s t r a c t

An accurate and efficient algorithm, called fast inverse using nested dissection (FIND), for
computing non-equilibrium Green’s functions (NEGF) for nanoscale transistors has been
developed and applied in the simulation of a novel dual-gate metal-oxide-semiconductor
field-effect transistor (MOSFET) device structure. The method is based on the algorithm
of nested dissection. A graph of the matrix is constructed and decomposed using a tree
structure. An upward and downward traversal of the tree yields significant performance
improvements for both the speed and memory requirements, compared to the current
state-of-the-art recursive methods for NEGF. This algorithm is quite general and can be
applied to any problem where certain entries of the inverse of a sparse matrix (e.g., its diag-
onal entries, the first row or column, etc.) need to be computed. As such it is applicable to
the calculation of the Green’s function of partial differential equations. FIND is applicable
even when complex boundary conditions are used, for example non reflecting boundary
conditions.

� 2008 Elsevier Inc. All rights reserved.

1. Introduction

The non-equilibrium Green’s function (NEGF) approach is being considered as a state-of-the-art modeling tool in predict-
ing performance and designing emerging nanoscale devices. Development of multi-dimensional simulators based on the
NEGF approach is crucial to capture both the quantum mechanical effects and the effect of scattering with phonons and other
electrons. Despite the fact that transport issues for nano-transistors, nanowires and molecular electronic devices are very
different from one another, they can be treated with the common formalism provided by the NEGF [1]. The approach is based
on the coupled solution of the Schrödinger and Poisson equations. So far, the difficulties in understanding the various terms
in the resultant equations and the computational burden needed for its actual implementation are perceived as great
challenges. A successful utilization of the Green’s function approach commercially is the nano-electronics modeling (NEMO)
simulator [2], which is effectively 1D and is primarily applicable to resonant tunneling diodes. Accurate and reliable multi-
dimensional modeling of realistic future nanoscale devices requires enormous computational efforts, yet the currently
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available algorithms are prohibitively expensive. This paper focuses on an accurate and efficient implementation of the NEGF
approach for 2D MOSFET device structures.

Our algorithm, fast inverse using nested dissection (FIND), reduces the computational cost of the most expensive part of
NEGF, which is the solution of the Green’s function equation for the electron density, which is then used in the Poisson equa-
tion. In a typical simulation, the Poisson equation needs to be solved self-consistently with the Schrödinger equation. Con-
sequently, the electron density gets typically computed multiple times until convergence is achieved. This leads to huge
computational costs which FIND can reduce by orders of magnitude.

The most expensive calculation is computing some of (but not all) the entries of the matrix Gr [1]:

GrðEÞ ¼ ½EI � H � R��1 ¼ A�1 ðretarded Green’s functionÞ ð1Þ

and G<(E) = GrR<(Gr)� (less-than Green’s function). In these equations, I is the identity matrix, and E is the energy level. � de-
notes the transpose conjugate of a matrix. The Hamiltonian matrix H describes the system at hand (e.g., nano-transistor). It is
usually a sparse matrix with connectivity only between neighboring mesh nodes, except for nodes at the boundary of the
device which may have a non-local coupling (e.g., non-reflecting boundary condition). The matrices R and R< correspond
to the self energy and can be assumed to be diagonal matrices. See Svizhenko [3] for this terminology and notations. In this
work, all these matrices are considered to be given and we will focus on the problem of efficiently computing some entries in
Gr and G<. As an example of entries which must be computed, the diagonal entries of Gr are required to compute the density
of states, while the diagonal entries of G< allow computing the electron density. The current can be computed from the upper
diagonal entries of G<.

Even though the matrix A in Eq. (1) is, by the usual standards, a mid-size sparse matrix of size typically 10,000 � 10,000,
computing the entries of G< is a major challenge since this operation is repeated at all energy levels for every iteration of the
Poisson–Schrödinger solver. Overall, the diagonal of G<(E) for the different values of the energy level E can be computed as
many as thousands of times.

The problem of computing certain entries of the inverse of a sparse matrix is relatively common in computational engi-
neering. Examples include:

� Least square fitting: in the linear least-square fitting procedure, coefficients ak are computed so that the error

X
i

Yi �
X

k

ak/kðxiÞ
" #2

is minimal, where (xi,Yi) are the data points. It can be shown, under certain assumptions that, in the presence of measure-
ment errors in the observations Yi, the error in the coefficients ak is proportional to Ckk where C is the inverse matrix of A:

Ajk ¼
X

i

/jðxiÞ/kðxiÞ

� Eigenvalues of tri-diagonal matrices: the inverse iteration method attempts to compute the eigenvector v associated with eigen-
value k by solving iteratively the equation

ðA� k̂IÞxk ¼ skxk�1

where k̂ is an approximation of k and sk is used for normalization. Varah [4] and Wilkinson [5–7] have extensively dis-
cussed optimal choices of starting vectors for this method. An important result is that, in general, choosing the vector
el (lth vector in the standard basis), where l is the index of the column with the largest norm among all columns of
ðA� k̂IÞ�1, is a nearly optimal choice. A good approximation can be obtained by choosing l such that the lth entry on
the diagonal of ðA� k̂IÞ�1 is the largest among all diagonal entries.

� Accuracy estimation: when solving a linear equation Ax = b, one is often faced with errors in A and b, either because of uncer-
tainties in physical parameters or inaccuracies in their numerical calculation. In general the accuracy in the computed
solution x will depend on the condition number of A: kAkkA�1k, which can be estimated from the diagonal entries of A
and its inverse in some cases.

� Sensitivity computation: when solving Ax = b, the sensitivity of xi to Ajk is given by oxi/oAjk = xk(A�1)ij.

Many other examples can be found in the literature.
Currently the state-of-the-art is a method developed by Klimeck and Svizhenko et al. [3], called the recursive Green’s

function method (RGF). This approach can be shown to be the most efficient for ‘‘nearly 1D” devices, i.e. devices which
are very elongated in one direction and very thin in the two other directions.

Assume that the matrix A is the result of discretizing a partial differential equation in 2D using a local stencil, e.g., with a 5
point stencil. Assume the mesh is the one given on Fig. 1.

For a 5 point stencil, the matrix A can be written as a tri-diagonal block matrix where blocks on the diagonal are denoted
by Aq (1 6 i 6 n), on the upper diagonal by Bq (1 6 i 6 n � 1), and on the lower diagonal by Cq (2 6 i 6 n).

RGF computes the diagonal of A�1 by computing recursively two sequences. The first sequence, in increasing order, is de-
fined recursively as [3]:
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F1 ¼ A�1
1

Fq ¼ ðAq � CqFq�1Bq�1Þ�1

The second sequence, in decreasing order, is defined as:

Gn ¼ Fn

Gq ¼ Fq þ FqBqGqþ1Cqþ1Fq

The matrix Gq is in fact the q diagonal block of the inverse matrix Gr of A. If we denote by Nx the number of points in the cross
section of the device and Ny along its length (n = NxNy) the cost of this method can be seen to be OðN3

x NyÞ. Therefore when Nx

is small this is a computationally very attractive approach. The memory requirement is OðN2
x NyÞ.

FIND improves on RGF by reducing the computational cost to OðN2
x NyÞ and the memory to OðNxNy ln NxÞ. FIND follows

some of the ideas of the nested dissection algorithm [8]. The mesh is decomposed into 2 subsets, which are further subdi-
vided recursively into smaller subsets. A series of Gaussian eliminations are then performed, first going up the tree and then
down, to finally yield entries in the inverse of A. Details are described in Sections 4 and 5.

In this article, we focus on the calculation of the diagonal of Gr and will reserve the extension to G< for a future publica-
tion. Nevertheless, we mention that we have already shown that such an extension is possible and gains similar to those
described in this paper can be achieved.

As will be shown below, FIND can be applied to any 2D or 3D device, even though it is most efficient in 2D. The geometry
of the device can be arbitrary as well as the boundary conditions. The only requirement is that the matrix A comes from a
stencil discretization, i.e., points in the mesh should be connected only with their neighbors. The efficiency degrades with the
extent of the stencil, i.e., nearest neighbor stencil vs. second nearest neighbor.

2. Review of existing methods

In addition to FIND which is based on nested dissection, other techniques have been developed to compute certain entries
in the inverse of a sparse matrix. We will now review them. The conclusion, though, is that none of these techniques is appli-
cable to our problem and hence this is our motivation for the development of FIND.

Takahashi et al. [9] observed that if the matrix A is decomposed using an LU factorization A = LDU then:

Gr ¼ A�1 ¼ D�1L�1 þ ðI � UÞGr; and ð2Þ
Gr ¼ U�1D�1 þ GrðI � LÞ: ð3Þ

Erisman et al. [10] applied this result to compute certain entries of Gr. Let’s define a matrix C such that:

Cij ¼
1; if Lij or Uij 6¼ 0
0; otherwise

�

Erisman et al. showed the following theorem:

Any entry Gr
ij such that Cji = 1 can be computed as a function of L, U, D and entries Gr

pq such that p P i, q P j, and Cqp = 1.

This implies that efficient recursive equations can be constructed. Specifically, from Eq. (2), for i < j:

Gr
ij ¼ �

Xn

k¼iþ1

UikGr
kj

The key observation is that if we want to compute Gr
ij with Lji 6¼ 0 and Uik 6¼ 0 (k > i) then Cjk must be equal to 1. This proves

that the theorem holds in that case. A similar result holds for j < i using Eq. (3). For i = j, we get [using Eq. (2)]:

Gr
ii ¼ ðDiiÞ�1 �

Xn

k¼iþ1

UikGr
ki

Despite the appealing simplicity of this algorithm, it has the drawback that the method does not extend to the calculation of
G< which is a key requirement in our problem.

K. Bowden developed an interesting set of matrix sequences which allows in principle to calculate the inverse of any block
tri-diagonal matrices very efficiently [11]. Without going into the details, four sequences of matrices are defined using recur-
rence relations, Kp, Lp, Mp and Np. Then an expression is found for any block (i, j) of matrix Gr, Gr

ij:

Fig. 1. Left: example of 2D mesh to which RGF can be applied. Right: 5-point stencil.
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j P i; Gr
ij ¼ KiN

�1
0 Nj

j 6 i; Gr
ij ¼ LiL

�1
0 Mj

However the recurrence relation used to define the four sequences of matrices turns out to be unstable due to roundoff er-
rors. Consequently this approach is not applicable to matrices of large size.

Schröder, Trottenberg et al. [12,13] created a method called total reduction which allows efficiently decimating the mesh
by removing half of the nodes at each step. This is similar to the cyclic reduction approach [14]. This leads to a new matrix in
the remaining unknowns which has a longer stencil than the original matrix. In the case of the Laplace equation, this stencil
decays very fast and therefore can be approximated with an exponentially small error using a constant number of terms. This
can be used to develop fast algorithms to compute the inverse matrix. However in the case of the Schrödinger equation, the
stencil decays very slowly and cannot be truncated. After a couple of decimations, the matrix, even though much smaller,
contain so many non-zero entries that overall no computational gain is achieved.

Consequently, we decided to start from the method of nested dissection [8]. This leads to an algorithm, FIND, which is
exact (in the absence of roundoff errors) and stable. It allows computing entries in both Gr and G<. This is asymptotically
the fastest direct method. It is most efficient in 1D and 2D. It can be applied in 3D as well; even though it leads to a
speed-up in 3D the scaling is not as advantageous in this case.

In this article, we will focus on the 2D case which is practically of most interest for this approach. We will describe the
method in the context of a matrix A corresponding to the discretization of a partial differential equation with a stencil
extending to the nearest neighbor only, and a structured rectangular mesh. This is a typical geometry and discretization used
for modeling MOSFETs [3]. Extensions to longer stencils or non-rectangular meshes (even finite-element meshes) are pos-
sible but will be postponed to future publications.

3. Motivation, background, and description of the physical problem

For quite some time, semiconductor devices have been scaled aggressively in order to meet the demands of reduced cost
per function on a chip used in modern integrated circuits. There are some problems associated with device scaling, however
[15]. Critical dimensions, such as transistor gate length and oxide thickness, are reaching physical limitations. Considering
the manufacturing issues, photolithography becomes difficult as the feature sizes approach the wavelength of ultraviolet
light. In addition, it is difficult to control the oxide thickness when the oxide is made up of just a few monolayers. In addition
to the processing issues, there are also some fundamental device issues. As the oxide thickness becomes very thin, the gate
leakage current due to tunneling increases drastically. This significantly affects the power requirements of the chip and the
oxide reliability. Short-channel effects, such as drain-induced barrier lowering, degrade the device performance. Hot carriers
also degrade device reliability.

To fabricate devices beyond current scaling limits, integrated circuit companies are simultaneously pushing (1) the
planar, bulk silicon complementary metal oxide semiconductor (CMOS) design while exploring alternative gate stack
materials (high-k dielectric and metal gates), band engineering methods (using strained Si or SiGe [15–17]), and (2)
alternative transistor structures that include primarily partially-depleted and fully-depleted silicon-on-insulator (SOI) de-
vices. SOI devices are found to be advantageous over their bulk silicon counterparts in terms of reduced parasitic capac-
itances, reduced leakage currents, increased radiation hardness, as well as inexpensive fabrication process. IBM launched
the first fully functional SOI mainstream microprocessor in 1999 predicting a 25–35% performance gain over bulk CMOS
[18]. Today there is also an extensive research in double-gate structures, and FinFET transistors [15], which have better
electrostatic integrity and theoretically have better transport properties than single-gated FETs. A number of non-classi-
cal and revolutionary technology such as carbon nanotubes and nanoribbons or molecular transistors have been pursued
in recent years, but it is not quite obvious, in view of the predicted future capabilities of CMOS, that they will be
competitive.

There is a virtual consensus that the most scalable MOSFET devices are double-gate SOI MOSFETs with a sub-10 nm gate
length, ultra-thin, intrinsic channels and highly doped (degenerate) bulk electrodes – see, e.g., recent reviews [19,20] and
Fig. 2. In such transistors, short channel effects typical of their bulk counterparts are minimized, while the absence of do-
pants in the channel maximizes the mobility. Such advanced MOSFETs may be practically implemented in several ways
including planar, vertical, and FinFET geometries. However, several design challenges have been identified such as a process
tolerance requirement of within 10% of the body thickness and an extremely sharp doping profile with a doping gradient of
1 nm/decade. The Semiconductor Industry Association forecasts that this new device architecture may extend MOSFETs to
the 22 nm node (9 nm physical gate length) by 2016 [21]. Intrinsic device speed may exceed 1 THz and integration densities
will be more than 1 billion transistors/cm2. In this work, we have focused on this particular device structure and employed
the NEGF method in the calculations of its transport properties.

The first step in the NEGF method to model nanoscale devices such as the double-gate SOI MOSFET in Fig. 2 is to identify a
suitable basis set and Hamiltonian matrix for an isolated channel region. The self-consistent potential, which is a part of the
Hamiltonian matrix, is included in this step. The second step is to compute the self-energy matrices, which describe how the
channel couples to the source/drain contacts and to the scattering process. For simplicity, only ballistic transport is treated in
this paper. After identifying the Hamiltonian matrix and the self-energies, the third step is to compute the retarded Green’s

S. Li et al. / Journal of Computational Physics 227 (2008) 9408–9427 9411



function. Once the retarded Green’s function is known, one can then calculate other Green’s functions and determine the
physical quantities of interest.

Recently, the NEGF approach has been applied in the simulations of two-dimensional MOSFET structures [3] as in Fig. 2.
The intrinsic device is discretized using a 2D non-uniform spatial grid (with Nx and Ny nodes along the depth and length
directions, respectively) with semi-infinite boundaries. Non-uniform spatial grids are essential to limit the total number
of grid points while at the same time resolving physical features. The Hamiltonian of a valley b for electrons associated with
the device under consideration is as follows:

HbðrÞ ¼ �
�h2

2
d
dx

1
mb

x

d
dx

� �
þ d

dy
1

mb
y

d
dy

 !
þ d

dz
1

mb
z

d
dz

� �" #
þ VðrÞ

where mb
x , mb

y and mb
z are the components of effective mass in valley b. The equation of motion for the retarded Green’s func-

tion (Gr) and less-than Green’s function (G<) are found to be (see [3] for details and notations):

E� �h2k2
z

2mz
� Hbðr1Þ

" #
Gr

bðr1; r2; kz; EÞ �
Z

Rr
bðr1; r; kz; EÞGr

bðr; r2; kz; EÞdr ¼ dðr1 � r2Þ

G<
b ðr1; r2; kz; EÞ ¼

Z
Gr

bðr1; r; kz; EÞR<
b ðr; r0; kz; EÞGr

bðr2; r0; kz; EÞ�drdr0

where * denotes the complex conjugate. Given Gr
b and G<

b , the density of states (DOS) and the charge density, q, can be written
as a sum of contributions from the individual valleys:

DOSðr; kz; EÞ ¼
X

b

Nbðr; kz; EÞ ¼ �
1
p
X

b

Im½Gr
bðr; r; kz; EÞ�

qðr; kz; EÞ ¼
X

b

qbðr; kz; EÞ ¼ �i
X

b

G<
b ðr; r; kz; EÞ

The self-consistent solution of the Green’s function is often the most time intensive step in the simulation of electron den-
sity. RGF [3] is an efficient approach to computing the diagonal blocks of the discretized Green’s function. The operation
count required to solve for all elements of Gr

b scales as N3
x Ny making it very expensive in this particular case. Note that

RGF provides all the diagonal blocks of the matrix even though only the diagonal is really needed. Faster algorithms to solve
for the diagonal elements with operation count smaller than N3

x Ny have been, for the past few years, very desirable. Our new-
ly developed FIND algorithm addresses this particular issue of computing the diagonal of Gr and G<, thereby reducing the
simulation time of NEGF significantly compared to the conventional RGF scheme.

4. Brief description of the algorithm for computing the diagonal of A�1

The main idea of the algorithm is to perform many LU factorizations on the given matrix to compute the diagonal ele-
ments of its inverse. Each LU factorization allows computing one diagonal entry in A�1; since the LU factorizations for all
the diagonal entries overlap significantly, we reuse them and thus reduce the computational cost.

The next paragraphs give a more precise view of FIND. Details are kept for the next section.
For a given n � n matrix A, the last entry on the diagonal of its inverse is given by A�1

nn ¼ 1=Unn, where A = LU is the LU
factorization of A. Therefore, the first issue is performing LU factorizations efficiently. By a proper reordering of the matrix
which minimizes fill-ins (see the method of nested dissection of George et al. [8]), we can preserve most of the sparsity of the
original matrix A and thus make the LU factorization very efficient.

Fig. 2. The model of a widely-studied double-gate SOI MOSFET with ultra-thin intrinsic channel. Typical values of key device parameters are also shown.
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Although we can only compute A�1
nn in this way, we can choose any node and reorder the original matrix to make that node

correspond to the (n,n) entry of the reordered matrix. In this way, all the diagonal elements of A�1 can be computed.
The second issue is that if we have to perform a full LU factorization for each of the n reordered matrices, the algorithm

will not be computationally efficient even though each LU factorization is very fast. However, many intermediate results of
the LU factorizations are identical. If we reorder those matrices properly, perform the LU factorizations in the right order, and
save these intermediate results, we can reduce the computational cost considerably. In an optimal implementation, comput-
ing all the diagonal entries of A�1 has the same O complexity as computing a single diagonal entry (e.g., O(N3/2) for a square
mesh with N nodes). This is shown in Sections 5.4 and 7.

We now give the details of the algorithm in Section 5 and rigorous proofs of its correctness in Section 6 (i.e., the algorithm
indeed produces the desired result).

5. Detailed description of the algorithm

The non-zero entries of a matrix A can be represented using a graph where each node corresponds to a row or column of
the matrix. If an entry Aij is non-zero, we create an edge (possibly directed) between node i and j. In our case, each row or
column in the matrix can be assumed to be associated with a node of a computational mesh. FIND is based on a tree decom-
position of this graph. Even though different trees can be used, we will assume that a binary tree is used in which the mesh is
first subdivided into 2 sub-meshes (also called clusters of nodes), each sub-mesh is subdivided into 2 sub-meshes and so on
(see Fig. 7). For each cluster, we can define three important sets:

� Boundary set: this is the set of all mesh nodes in the cluster which have a connection with a node outside the set.
� Inner set: this is the set of all mesh nodes in the cluster which do not have a connection with a node outside the set.
� Adjacent set: this is the set of all mesh nodes outside the cluster which have a connection with a node outside the set.

This is illustrated in Fig. 3. This is the case where each node is connected to its nearest neighbor as in a 5 point stencil. This
can be generalized to more complex connectivities.

5.1. Upward pass

The first stage of the algorithm, or upward pass, consists in eliminating all the inner mesh nodes contained in the tree
clusters. We first eliminate all the inner mesh nodes contained in the leaf clusters, then proceed to the next level in the tree.
Re-using the previous elimination, the remaining inner mesh nodes are again eliminated. This recursive process is shown in
Fig. 4.

Notation: C will denote the complement of C (that is all the mesh nodes not in C). The adjacent set of C is then always the
boundary set of C. The following notation for matrices will be used in this text:

M ¼ a11 a12 . . . a1n; a21 a22 . . . a2n; . . .½ �

denotes a matrix with the vector a11 a12 . . . a1n½ � on the first row and the vector a21 a22 . . . a2n½ � on the second (and
so on for other rows). The same notation is used when aij is a matrix. A(U,V) denotes the submatrix of A obtained by extract-
ing the rows (resp. columns) corresponding to mesh nodes in clusters U (resp. V).

We now define the notation UC. Assume we eliminate all the inner mesh nodes of cluster C from matrix A. Denote the
resulting matrix AC+ (the notation C+ has a special meaning described in more details in the proof of correctness of the algo-
rithm) and BC the boundary set of C. Then,

UC ¼ ACþðBC ;BCÞ

To be completely clear about the algorithm we describe in more details how an elimination is performed. Assume we have a
matrix formed by 4 blocks A, B, C and D where A has p columns:

Fig. 3. Cluster and definition of the sets. The cluster is composed of all the mesh nodes inside the dash line. The triangles form the inner set, the circles the
boundary set and the squares the adjacent set. The crosses are mesh nodes outside the cluster which are not connected to the mesh nodes in the cluster.
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A B

C D

� �

The process of elimination of the first p columns in this matrix consists in computing an ‘‘updated block D” (denoted D*) gi-
ven by the formula:

D� ¼ D� CA�1B

The matrix D* can also be obtained by performing a Gaussian elimination on [A B;C D] and stopping after p steps.
The pseudo-code for procedure eliminateInnerNodes implements this elimination procedure.

Fig. 4. The top figure is a 4 � 8 cluster with two 4 � 4 child clusters separated by the dash line. The middle figure shows the result of eliminating the inner
mesh nodes in the child clusters. The bottom figure shows the result of eliminating the inner mesh nodes in the 4 � 8 cluster. The elimination from the
middle row can be re-used to obtain the elimination at the bottom.
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5.2. Downward pass

The second stage of the algorithm, or downward pass, consists in removing all the mesh nodes which are outside of a leaf
cluster. This stage re-uses the elimination computed during the first stage. Denote C1 and C2 the two children of the root
cluster (which is the entire mesh). Denote C11 and C12 the two children of C1. If we re-use the elimination of the inner mesh
nodes of C2 and C12, we can efficiently eliminate all the mesh nodes which are outside of C1 and do not belong to its adjacent
set, i.e., the inner mesh nodes of C1. This is illustrated in Fig. 5.

The process then continues in a similar fashion down to the leaf clusters. A typical situation is depicted in Fig. 6. Once we
have eliminated all the inner mesh nodes of C, we proceed to its children C1 and C2. Take C1 for example. To remove all the
inner mesh nodes of C1, similar to the elimination in the upward pass, we simply need to remove some nodes in the bound-
ary sets of C and C2 because C1 ¼ C [ C2. The complete algorithm is given in procedure eliminateOuterNodes. For complete-
ness we give the list of subroutines to call to perform the entire calculation:

1. treeBuild(A) /* This routine is not described in this paper */;
2. eliminateInnerNodes(root);
3. eliminateOuterNodes(root);

Once we have reached the leaf clusters, the calculation is almost complete. Take a leaf cluster C. At this stage in the algo-
rithm, we have computed UC . Denote by ACþ the matrix obtained by eliminating all the inner mesh nodes of C (all the nodes
except the squares and circles in Fig. 6); ACþ contains mesh nodes in the adjacent set of C (i.e., the boundary set of C) and the
mesh nodes of C:

ACþ ¼
UC AðBC ; CÞ

AðC;BCÞ AðC;CÞ

� �

The entries of [A�1](C,C) are given by:

½A�1�ðC;CÞ ¼ ½AðC;CÞ � AðC; BCÞðUCÞ
�1AðBC ;CÞ�

�1 ð4Þ
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5.3. Nested dissection algorithm of George et al.

The algorithm in this paper uses a nested dissection-type approach similar to the nested dissection algorithm of George et
al. [8]. We highlight the similarities and differences to help the reader relate our new approach, FIND, to these well-estab-
lished methods. Both approaches are based on a similar nested dissection of the mesh. George’s algorithm is used to solve a
linear system whereas our algorithm calculates entries in the inverse of the matrix. The new objective requires multiple LU
factorizations. This can be done in a computationally efficient manner if partial factorizations are re-used. For example in the
sub-routine eliminateInnerNodes, the Gaussian elimination for cluster C reuses the result of the elimination for C1 and C2 by
using as input UC1 and UC2. See Procedure eliminateInnerNodes. The matrix UC produced by the elimination is then saved.
Note that Procedure eliminateInnerNodes could be used, with small modifications, to implement George’s algorithm.

The second sub-routine eliminateOuterNodes reuses results from both eliminateInnerNodes and eliminateOuterNodes.
See Procedure eliminateOuterNodes. The matrices UD (produced by eliminateOuterNodes) and UD1 (produced by eliminate-
InnerNodes) are being reused. The matrix obtained after elimination, UC, is then saved.

To be able to reuse these partial LU factorizations, FIND requires more independence among the partial eliminations com-
pared to George’s algorithm. As a result, FIND uses ‘‘separators” [8] with double the width. This is required for reusing the
partial elimination results in particular during the downward pass. Interestingly this makes FIND easy to parallelize even
though we do not discuss this point in this paper.

5.4. Sketch of the computational complexity

We sketch a derivation of the computational complexity. A more detailed derivation is given in Section 7. Assume for sim-
plicity that the mesh is square. We denote N the total number of mesh nodes. We assume moreover that N is of the form

Fig. 5. The first step in the downward pass of the algorithm. Cluster C1 is on the left and cluster C2 on the right. The circles are mesh nodes in cluster C11. The
mesh nodes in the adjacent set of C11 are denoted by squares; they are not eliminated at this step. The crosses are mesh nodes which are either in the boundary
set of C12 or C2. These nodes need to be eliminated at this step. The dash dotted line around the figure goes around the entire computational mesh (including
mesh nodes in C2 which have already been eliminated). There are no crosses in the top left part of the figure because these nodes are inner nodes of C12.

Fig. 6. A further step in the downward pass of the algorithm. Cluster C has two children C1 and C2. As previously, the circles are mesh nodes in cluster C1.
The mesh nodes in the adjacent set of C1 are denoted by squares; they are not eliminated at this step. The crosses are nodes which need to be eliminated.
They belong either to the adjacent set of C or the boundary set of C2.
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N = (2l)2 and that the leaf clusters in the tree contain only a single node. The cost of operating on a cluster of size 2p � 2p both
in the upward and downward passes is O((2p)3), because the size of both adjacent set and boundary set is of order 2p. There
are N/(2p)2 such clusters at each level, and consequently the cost per level is O(N2p). The total cost is therefore simply
O(N2l) = O(N3/2). This is the same computational cost (in the O sense) as the nested dissection algorithm of George et al.
[8]. It is now apparent that FIND has the same order of computational complexity as a single LU factorization.

6. Proof of correctness of the algorithm

In this section, we derive a formal proof of the correctness of the algorithm. The proof relies primarily on the properties of
the Gaussian elimination and the definition of the boundary set, inner set, and adjacent set. These sets can be defined in very
general cases (unstructured grids, etc). In fact, at least symbolically, the operations to be performed depend only on the
graph defined by the matrix. Consequently it is possible to derive a proof of correctness in a very general setting. This is re-
flected by the relatively general and formal presentation of the proof.

The algorithm is based on a tree decomposition of the mesh (similar to a domain decomposition). However in the proof
we define an augmented tree which essentially contains the original tree and in addition a tree associated with the comple-
ment of each cluster (C in our notation). The reason for this is that it allows us to present the algorithm in a unified form
where the upward and downward passes can be viewed as traversing a single tree: the augmented tree. Even though from
an algorithmic standpoint, the augmented tree is not needed (and perhaps make things more complicated), from a theoret-
ical and formal standpoint, this is actually a natural graph to consider.

6.1. The definition and properties of mesh node sets and trees

We start this section by defining M as the set of all the nodes in the mesh. If we partition M into subsets Ci, each Ci being a
cluster of mesh nodes, we can build a binary tree with its leaf nodes corresponding to these clusters. We denote such tree as
T0 = {Ci}. The subsets Ci are defined recursively in the following way: Let C1 = M, then partition C1 into C2 and C3, then par-
tition C2 into C4 and C5, C3 into C6 and C7, and partition each Ci into C2i and C2i+1, until Ci reaches the predefined minimum size
of the clusters in the tree. In T0, Ci and Cj are the two children of Ck iff Ci [ Cj = Ck and Ci \ Cj = ;, i.e., {Ci,Cj} is a partition of Ck.
Fig. 7 shows the partitioning of the mesh and the binary tree T0, where for notation simplicity, we use the subscripts of the
clusters to stand for the clusters.

Let C�i ¼ Ci ¼ M n Ci. Now we can define an augmented tree Tþr with respect to a leaf node Cr 2 T0 as Tþr ¼ ðfCjjCr � C�j;

j < �3gÞ [ ðT0 n fCjjCr � Cj; j > 0gÞ. Such augmented tree is constructed to partition C�r in a way similar to T0, i.e., in Tþr , Ci

and Cj are the two children of Ck iff Ci [ Cj = Ck and Ci \ Cj = ;. In addition, since C2 = C�3, C3 = C�2 and C�1 = ;, the tree nodes
C±1, C�2, and C�3 are removed from Tþr to avoid redundancy. Two examples of such augmented tree are shown in Fig. 8.

We denote by Ii the inner nodes of cluster Ci and Bi the boundary nodes as defined in Section 5. Then we recursively define
the set of private inner nodes of Ci as Si ¼ Ii n [Cj�Ci

Sj with Si = Ii if Ci is a leaf node in Tþr , where Ci and Cj 2 Tþr . Fig. 9 shows these
subsets for a 4 � 8 cluster.

Now we study the properties of these subsets. To make the main text short and easier to follow, we only list below two
important properties without proof. For other properties and their proofs, please see Appendix A.

The following property shows two different ways of looking at the same subset. This change of view happens repeatedly
in our algorithm.

Property 3. If Ci and Cj are the two children of Ck, then Sk [ Bk = Bi [ Bj and Sk = (Bi [ Bj)nBk.

The next property is important in that it shows that the whole mesh can be partitioned into subsets Si, B�r, and Cr. Such
property makes it possible to define a consistent ordering.

Property 4. For any given augmented tree Tþr and all Ci 2 Tþr , Si, B�r, and Cr are all disjoint and M ¼ ð[Ci2Tþr
SiÞ [ B�r [ Cr.

Fig. 7. The mesh and its partitions. C1 = M.
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Now consider the ordering of A. For a given submatrix A(U,V), if all the indices corresponding to U appear before the
indices corresponding to V, we say U < V. We define a consistent ordering of A with respect to Tþr as any ordering such
that

(1) The indices of nodes in Si are contiguous;
(2) Ci � Cj implies Si < Sj; and
(3) The indices corresponding to B�r and Cr appear at the end.

Since it is possible that Ci 6� Cj and Cj 6� Ci, we can see that the consistent ordering of A with respect to Tþr is not unique.
For example, if Cj and Ck are the two children of Ci in Tþr , then both orderings Sj < Sk < Si and Sk < Sj < Si are consistent. When we
discuss the properties of the Gaussian elimination of A, all the properties apply to any consistent ordering so we do not make
distinction below among different consistent orderings. From now on, we assume all the matrices we deal with have a con-
sistent ordering.

Fig. 8. Examples of augmented trees.

Fig. 9. Cluster C has two children C1 and C2. The inner nodes of cluster C1 and C2 are shown using triangles. The private inner nodes of C are shown with
crosses. The boundary set of C is shown using circles.
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6.2. Correctness of the algorithm

The major task of showing the correctness of the algorithm is to prove that the partial eliminations introduced in Section
5 are independent of one another, and that they produce the same result for matrices with consistent ordering; therefore,
from an algorithmic point of view, these eliminations can be reused.

We now study the properties of the Gaussian elimination for a matrix A with consistent ordering.
Notations: For a given A, the order of Si is determined so we can write the indices of Si as i1, i2, . . ., etc. For notation con-

venience, we write [Sj<Si
Sj as S<i and ð[Si<Sj

SjÞ [ B�r [ Cr as S>i. If g = ij then we denote Sijþ1
by Sg+. If i is the index of the last Si in

the sequence, which is always �r for Tþr , then Si+ stands for B�r. When we perform a Gaussian elimination, we eliminate the
columns of A corresponding to the mesh nodes in each Si from left to right as usual. We do not eliminate the last group of
columns that correspond to Cr, which remains unchanged until we compute the diagonal of A�1. Starting from Ai1 ¼ A, we
define the following intermediate matrices for each g = i1, i2, . . . ,�r as the results of each step of Gaussian elimination:

Agþ ¼ the result of eliminating the Sg columns in Ag

Since the intermediate matrices depend on the ordering of the matrix A, which depends on Tþr , we also sometimes denote
them explicitly as Ar,i to indicate the dependency.

Example. Let us consider Fig. 8 for cluster 10. In that case, a consistent ordering is: S12, S13, S14, S15, S6, S7, S8, S9, S3, S4, S�5, S11,
S�10, B�10, C10. The sequence ij is: i1 = 12, i2 = 13, i3 = 14, . . ., etc. Pick i = 15, then S<i = S12 [ S13 [ S14. Pick i = �5, then
S>i = S11 [ S�10 [ B�10 [ C10. For g = ij = 15, Sg+ = S6.

The first theorem in this section shows that the matrix preserves a certain sparsity pattern during the elimination process
such that eliminating the Si columns only affects the (Bi,Bi) entries. The precise statement of Theorem 1 is in the appendix
with a proof. The following two matrices show one step of the elimination, with the right pattern of 0s:

Ai ¼

AiðS<i; S<iÞ AiðS<i; SiÞ AiðS<i; BiÞ AiðS<i; S>i n BiÞ
0 AiðSi; SiÞ AiðSi;BiÞ 0
0 AiðBi; SiÞ AiðBi;BiÞ AiðBi; S>i n BiÞ
0 0 AiðS>i n Bi;BiÞ AiðS>i n Bi; S>i n BiÞ

0
BBB@

1
CCCA

)

Aiþ ¼

AiðS<i; S<iÞ AiðS<i; SiÞ AiðS<i;BiÞ AiðS<i; S>i n BiÞ
0 AiðSi; SiÞ AiðSi; BiÞ 0
0 0 AiþðBi; BiÞ AiðBi; S>i n BiÞ
0 0 AiðS>i n Bi; BiÞ AiðS>i n Bi; S>i n BiÞ

0
BBB@

1
CCCA

where Ai+(Bi,Bi) = Ai(Bi,Bi) � Ai(Bi,Si)Ai(Si,Si)�1Ai(Si,Bi).
Note: in the above matrices, for notation convenience, Ai(�,Bi) is written as a block. In reality, however, it is usually not a

block for any A with consistent ordering.
Because the matrix preserves the sparsity pattern during the elimination process, we know that certain entries remain

unchanged. More specifically, Corollaries 1 and 2 can be used to determine when the entries (Bi [ Bj,Bi [ Bj) remain un-
changed. Corollary 3 shows that the entries corresponding to leaf nodes remain unchanged until their elimination. Such
properties are important when we compare the elimination process of matrices with different orderings. For proofs of these
corollaries, please see Appendix A.

Corollary 1. If Ci and Cj are the two children of Ck, then Ak(Bi,Bj) = A(Bi,Bj) and Ak(Bj,Bi) = A(Bj,Bi).

Corollary 2. If Ci is a child of Ck, then Ak(Bi,Bi) = Ai+(Bi,Bi).

These two corollaries tell us that when we are about to eliminate the mesh nodes in Sk based on Bi and Bj, we can use the
entries (Bi,Bj) and (Bj,Bi) from the original matrix A, and the entries (Bi,Bi) and (Bj,Bj) obtained after elimination of Si and Sj.

Corollary 3. If Ci is a leaf node in Tþr , then Ai(Ci,Ci) = A(Ci,Ci).

This corollary tells us that we can use the entries from the original matrix A for leaf clusters (even though other mesh
nodes may have already been eliminated at that point).

Based on Theorem 1 and the above three corollaries, we can compare the partial elimination results of matrices with dif-
ferent orderings:

Theorem 2. For any r and s such that Ci 2 Tþr and Ci 2 Tþs , we have:

Ar;iðSi [ Bi; Si [ BiÞ ¼ As;iðSi [ Bi; Si [ BiÞ

Proof. If Ci is a leaf node, then by Corollary 3, we have Ar,i(Si [ Bi,Si [ Bi) = Ar,i(Ci,Ci) = Ar(Ci,Ci) = As(Ci,Ci) = As,i(Ci,Ci) =
As,i(Si [ Bi,Si [ Bi)
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If the equality holds for i and j such that Ci and Cj are the two children of Ck, then

� By Theorem 1, we have Ar,i+(Bi,Bi) = As,i+(Bi,Bi) and Ar,j+(Bj,Bj) = As,j+(Bj,Bj).
� By Corollary 2, we have Ar,k(Bi,Bi) = Ar,i+(Bi,Bi) = As,i+(Bi,Bi) = As,k(Bi,Bi) and Ar,k(Bj,Bj) = Ar,j+(Bj,Bj) = As,j+(Bj,Bj) = As,k(Bj,Bj).
� By Corollary 1, we have Ar,k(Bi,Bj) = Ar(Bi, Bj) = As(Bi,Bj) = As,k(Bi,Bj) and Ar,k(Bj,Bi) = Ar(Bj,Bi) = As(Bj,Bi) = As,k(Bj,Bi).

Now we have Ar,k(Bi [ Bj,Bi [ Bj) = As,k(Bi [ Bj,Bi [ Bj). By Property 4, we have Ar,k(Sk [ Bk,Sk [ Bk) = As,k(Sk [ Bk,Sk [ Bk). By
mathematical induction, the theorem is proved. h

If we go one step further, based on Theorems 1 and 2, we have the following corollary:

Corollary 4. For any r and s such that Ci 2 Tþr and Ci 2 Tþs , we have:

Ar;iþðBi;BiÞ ¼ As;iþðBi;BiÞ

Theorem 2 and Corollary 4 show that the partial elimination results are common for matrices with different orderings
during the elimination process, which is the key foundation of our algorithm.

6.3. The algorithm

Corollary 4 shows that A�,i+(Bi,Bi) is the same for all augmented trees, so we can have the following definition for any r:

Ui ¼ Ar;iþðBi;BiÞ

By Theorem 1, Corollaries 1 and 2, for all i, j, and k such that Ci and Cj are the two children of Ck, we have

Uk ¼ Ar;kðBk;BkÞ � Ar;kðBk; SkÞAr;kðSk; SkÞ�1Ar;kðSk;BkÞ ð5Þ

where

Ar;kðBk;BkÞ ¼
UiðBk \ Bi;Bk \ BiÞ AðBk \ Bi; Bk \ BjÞ
AðBk \ Bj; Bk \ BiÞ UjðBk \ Bj; Bk \ BjÞ

� �

Ar;kðSk; SkÞ ¼
UiðSk \ Bi; Sk \ BiÞ AðSk \ Bi; Sk \ BjÞ
AðSk \ Bj; Sk \ BiÞ UjðSk \ Bj; Sk \ BjÞ

� �

Ar;kðBk; SkÞ ¼
UiðBk \ Bi; Sk \ BiÞ 0

0 UjðBk \ Bj; Sk \ BjÞ

� �

and

Ar;kðSk;BkÞ ¼
UiðSk \ Bi; Bk \ BiÞ 0

0 UjðSk \ Bj; Bk \ BjÞ

� �

If Ck is a leaf node, then by Corollary 3, we have Ar,k(Bk,Bk) = Ar(Bk,Bk), Ar,k(Sk,Sk) = Ar(Sk,Sk), Ar,k(Bk,Sk) = Ar(Bk,Sk), and
Ar,k(Sk,Bk) = Ar(Sk,Bk).

By Eq. (5), we can compute U for upper level clusters based on (i) the original matrix A and (ii) the values of U for lower
level clusters. The values of U for leaf nodes can be computed directly through Gaussian elimination. The last step of the
elimination is shown below:

S<�r S�r B�r Cr

S<�r � � � 0
S�r 0 � � 0
B�r 0 � � �
Cr 0 0 � �

)

S<�r S�r B�r Cr

S<�r � � � 0
S�r 0 � � 0
B�r 0 0 � �
Cr 0 0 � �

In Eq. (5), we do not make distinction between positive tree nodes and negative tree nodes. We simply look at the augmented
tree, eliminate all the private inner nodes, and get the corresponding boundary nodes updated. This makes the theoretical
description of the algorithm more concise and consistent. When we turn the update rule into an algorithm, however, we
do not actually construct the augmented tree. Instead, we use the original tree and treat the positive tree nodes and negative
tree nodes separately.

Since no negative node is the descendant of any positive node in the augmented trees, we can first compute Ui for all i > 0.
The relations among the positive tree nodes are the same in the original tree T0 and in the augmented trees Tþr , so we go
through T0 to compute Ui level by level from the bottom up and call it the upward pass. This is done in procedure eliminate-
InnerNodes of the algorithm in Section 5.1.

Once all the positive tree nodes have been computed, we compute Ui for all the negative tree nodes. For these nodes, if Ci

and Cj are the two children of Ck in T0, then C�k and Cj are the two children of C�i in Tþr . Since C�k is a descendant of C�i in Tþr if
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and only if Ci is a descendant of Ck in T0, we compute all the Ui for i < 0 by going through T0 level by level from the top down
and call it the downward pass. This is done in the procedure eliminateOuterNodes in Section 5.2.

7. Complexity analysis

7.1. Running time analysis

In this section, we will analyze the most computationally intensive operations in the algorithm and give the asymptotic
behavior of the computational cost. By Eq. 5, we see that the computational cost for Ui is T 	 B2

i Si þ S3
i =3þ BiS

2
i flops, where

both Bi and Si are of order a for clusters of size a � a. For a squared mesh, since the number of clusters in each level is pro-
portional to a�2, the computational cost for each level is proportional to a and forms a geometric series. As a result, the top
level dominates the computational cost and the total computational cost is of the same order as the computational cost of
the topmost level. We now study the complexity in more details in the two passes below.

Before we start, we want to emphasize the distinction between a squared mesh and an elongated mesh. In both cases, we
want to keep all the clusters in the cluster tree to be as close as possible to square. For a squared mesh Nx � Nx, we can keep
all the clusters in the cluster tree to be either of size a � a or a � 2a. For an elongated mesh of size Nx � Ny, where Ny
 Nx, we
cannot do the same thing. Let the level of clusters each of size Nx � (2Nx) be level L, then all the clusters above level L cannot
be of size a � 2a. We will see the mergings and partitionings for clusters below and above the level L follow have different
behaviors.

In the upward pass, as a typical case, a � a clusters merge to a � 2a clusters and then to 2a � 2a clusters. In the first
merge, the size of Bk is at most 6a and the size of Sk is at most 2a. The time to compute Uk is T 6 ð62 � 2þ 23=3þ 22�
6Þa3

6
296

3 a3 flops and the per node cost is at most 148=3
a flops, depending on the size of each node. In the second merge,

the size of Bk is at most 8a and the size of Sk is at most 4a. The time to compute Uk is T 6 ð82 � 4þ 43=3þ 42 � 8Þa3
6

1216
3 a3 and the per node cost is at most 304

3 a. So we have the following level-by-level running time for a mesh of size Nx � Ny

with leaf nodes of size a � a for merges of clusters below level L:

148
3

NxNya!�2 304
3

NxNya!�1 296
3

NxNya!�2 608
3

NxNya . . .

We can see that the cost doubles from merging a � a clusters to merging a � 2a clusters while remains the same from merg-
ing a � 2a clusters to merging 2a � 2a clusters. This is mostly because the size of S doubles in the first change while remains
the same in the second change, as seen in Fig. 10. In Fig. 10, the upper figure shows the merging of two a � a clusters into an
a � 2a cluster and the lower figure corresponds to two a � 2a clusters merging into a 2a � 2a cluster. The arrows point to all
the mesh nodes belonging to the set, e.g., Bk is the set of all the boundary nodes of Ck in the top figure. Also note that the

Fig. 10. Merging clusters below level L.
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actual size of the sets could be a little smaller than the number shown in the figure. We will talk about this at the end of this
section.

For clusters above level L, the computational cost for each merging remains the same since both the size of B and the size
of S are 2Nx. The computational cost for each merging is T 	 56

3 N3
x 	 19N3

x flops. This is shown in Fig. 11. Since for clusters
above level L, we have only half mergings in the parent level compared to the child level, the cost decreases geometrically
for levels above level L.

Adding all the computational costs together, the total computational cost in the upward pass is

T 6 151NxNyðaþ 2aþ � � � þ Nx=2Þ þ 19N3
x ðNy=2Nx þ Ny=4Nx þ � � � þ 1Þ 	 1512

x Ny þ 19N2
x Ny ¼ 170N2

x Ny

In the downward pass, similar to the upward pass, for clusters above level L, the computational cost for each partitioning
remains the same since both the size of B and the size of S are 2Nx. Since the size of B and S is the same, the computational
cost for each merge is also the same: T 	 56

3 N3
x 	 19N3

x flops. This is shown in Fig. 12.
For clusters below level L, the cost for each level begins decreasing as we go downward in the cluster tree. When 2a � 2a

clusters are partitioned to a � 2a clusters, the size of Bk is at most 6a and the size of Sk is at most 8a. Similar to the analysis for
upward pass, the time to compute Uk is T 6 422a � 4a2. When a � 2a clusters are partitioned to a � a clusters, the size of Bk is
at most 4a and the size of Sk is at most 6a. The time to compute Uk is T 6 312a � 2a2.

So we have the following level-by-level running time per node, starting from Nx � Nx down to the leaf clusters:

. . . 422a !�1:35
312a !�1:48

211a !�1:35
156a

We can see that the computational cost changes more smoothly compared to that in the upward pass. This is because both
the size of B and the size of S increase relatively smoothly, as shown in Fig. 13.

The computational cost in the downward pass is

T 6 734NxNyaþ 734� 2NxNyaþ � � � þ 734NxNyNx=2þ 19N3
x ðNy=2NxÞ þ 19N3

x ðNy=4NxÞ þ � � � þ 19N3
x

	 734N2
x Ny þ 19N2

x Ny ¼ 753N2
x Nyflops

So the total computational cost is

T 	 170N2
x Ny þ 753N2

x Ny ¼ 923N2
x Nyflops

The cost for the downward pass is significantly larger than that for the upward pass because the size of sets B’s and S’s are
significantly larger.

In the above analysis, some of our estimates were not very accurate because we did not consider minor costs of the com-
putation. For example, during the upward pass (similar during the downward pass):

� when the leaf clusters are not 2 � 2, we need to consider the cost of eliminating the inner mesh nodes of leaf clusters,
� the sizes of B and S are also different for clusters on the boundary of the mesh, where the connectivity of the mesh nodes is

different from that of the inner mesh nodes.

Fig. 12. Partitioning of clusters above level L.

Fig. 11. Merging rectangular clusters. Two Nx �W clusters merge into an Nx � 2W cluster.
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Such inaccuracy, however, becomes less and less significant as the size of the mesh becomes bigger and bigger. It does not
affect the asymptotic behavior of running time and memory cost either.

7.2. Memory cost analysis

Since the negative tree nodes are the ascendants of the positive tree nodes in the augmented trees, the downward pass
needs Ui for i > 0, which are computed during the upward pass. Since these matrices are not used immediately, we need to
store them for each positive node. This is where the major memory cost comes from and we will only analyze this part of the
memory cost.

Let the memory storage for one matrix entry be one unit. Starting from the root cluster until level L, the memory for each
cluster is about the same while the number of clusters doubles in each level. Each Ui is of size 2Nx � 2Nx so the memory cost
for each node is 4N2

x units and the total cost is

Xlog2ðNy=NxÞ

i¼0

ð2i � 4N2
x Þ 	 8NxNyunits

Below level L, we maintain the clusters to be of size either a � a or a � 2a by cutting across the longer edge. For a cluster of
size a � a, the size B is 4a and the memory cost for each cluster is 16a2 units. We have Ny � Nx/(a � a) clusters in each level so
we need 16NxNy units of memory for each level, which is independent of the size of the cluster in each level. For a cluster of
size a � 2a, the size B is 6a and the memory cost for each cluster is 36a2 units. We have Ny � Nx/(a � 2a) clusters in each level
so we need 18NxNy units of memory for each level, which is independent of the size of the cluster in each level. For simplicity
of the estimation of the memory cost, we let 16 	 18.

There are 2 log2(Nx) levels in this part, so the memory cost needed in this part is about 32NxNy log2(Nx) units.
The total memory cost in the upward pass is thus:

8NxNy þ 32NxNylog2ðNxÞ ¼ 8NxNyð1þ 4log2ðNxÞÞunits

If all the numbers are double decision complex numbers, the cost will be 128NxNy(1 + 4 log2(Nx)) bytes.

8. Simulation of device and comparison with RGF

To assess the performance and applicability and benchmark FIND against RGF, we applied these methods to the non self-
consistent calculation of density-of-states and electron density in a realistic non-classical double-gate SOI MOSFETs as de-
picted in Fig. 2 with a sub-10 nm gate length, ultra-thin, intrinsic channels and highly doped (degenerate) bulk electrodes. In

Fig. 13. Partitioning of clusters below level L.
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such transistors, short channel effects typical for their bulk counterparts are minimized, while the absence of dopants in the
channel maximizes the mobility and hence drive current density. The ‘‘active” device consists of two gate stacks (gate con-
tact and SiO2 gate dielectric) above and below a thin silicon film. The thickness of the silicon film is 5 nm. Using a thicker
body reduces the series resistance and the effect of process variation but it also degrades the short channel effects. The
top and bottom gate insulator thickness is 1 nm, which is expected to be near the scaling limit for SiO2. For the gate contact,
a metal gate with tunable work function, /G, is assumed, where /G is adjusted to 4.4227 to provide a specified off-current
value of 4 lA/lm. The background doping of the silicon film is taken to be intrinsic, however, to take into account the dif-
fusion of the dopant ions; the doping profile from the heavily doped S/D extensions to the intrinsic channel is graded with a
coefficient of g which equals to 1 dec/nm. The doping of the S/D regions equals 1 � 1020 cm�3. According to the ITRS road
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Fig. 14. Density-of-states (DOS) and electron density plots from RGF and FIND.
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map [21], the high performance logic device would have a physical gate length of LG = 9 nm at the year 2016. The length, LT, is
an important design parameter in determining the on-current, while gate metal work function, /G, directly controls the off-
current. The doping gradient, g, affects both on-current and off-current.

Fig. 14 shows that the RGF and FIND algorithms produce identical density of states and electron density. The code used in
this simulation is nanoFET and is available on the nanoHUB (www.nanohub.org). The nanoHUB is a web-based resource for
research, education, and collaboration in nanotechnology; it is an initiative of the NSF-funded Network for Computational
Nanotechnology (NCN).

Fig. 15 shows the comparisons of running time between FIND and RGF. In the left figure, Nx = 100 and Ny ranges from 105
to 5005. In the right figure, Nx = 200 and Ny ranges from 105 to 1005. We can see that FIND shows a considerable speed-up in
the right figure when Nx = 200. The running time is linear with respect to Ny in both cases, as predicted in the computational
cost analysis. The scaling with respect to Nx is different. It is equal to N3

x for RGF and N2
x for FIND.

Fig. 16 show the comparisons of running times between FIND and RGF when Ny’s are fixed. We can see clearly the speed-
up of FIND in the figure when Nx increases.

9. Conclusion

We have developed an efficient method of computing the diagonal entries of the retarded Green’s function (density of
states) and the diagonal of the less-than Green’s function (density of charges). The algorithm is exact and uses Gaussian elim-
inations. A simple extension allows computing off diagonal entries for current density calculations. This algorithm can be
applied to the calculation of any set of entries of A�1 where A is a sparse matrix.

In this paper, we described the algorithm and proved its correctness. We analyzed its computational and memory costs in
details. Numerical results and comparisons with RGF confirmed the accuracy, stability and efficiency of FIND.

We considered an application to quantum transport in a nano-transistor. A 2D rectangular nano-transistor discretized
with a mesh of size Nx � Ny, Nx < Ny was chosen. In that case, the cost is OðN2

x NyÞ, which improves over the result of RGF
[22], which scales as OðN3

x NyÞ. This demonstrates that FIND allows simulating larger and more complex devices using a finer
mesh and with a small computational cost. Our algorithm can be generalized to other structures such as nanowires, nano-
tubes, molecules and 3D transistors, with arbitrary shapes. FIND was incorporated in an open source code, nanoFET [23],
which can be found on the nanohub web portal (www.nanohub.org).
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Appendix A. Properties, theorem, corollaries, and their proofs

In this appendix, we first list all the properties of the mesh node subsets with proofs if necessary, then the precise state-
ment of Theorem 1 with its proof, and lastly the three corollaries with proofs, which were used in Section 6.2.

The first property is fairly simple but will be used again and again in proving theorems, corollaries, and other properties.

Property 1. By definition of Tþr , one of the following relations must hold: Ci � Cj, Ci � Cj, or Ci \ Cj = ;.

The next property shows another way of looking at the inner mesh nodes. It will be used in the proof of Property 3.

Property 2. Ii ¼ [Cj�Ci
Sj, where Ci and Cj 2 Tþr .

Proof. By the definition of Si, we have Ii � ðIi n [Cj�Ci
SjÞ [ ð[Cj�Ci

SjÞ ¼ Si [ ð[Cj�Ci
SjÞ ¼ [Cj�Ci

Sj, so it remains to show
[Cj�Ci

Sj � Ii. Since Sj � Ij and then [Cj�Ci
Sj � [Cj�Ci

Ij, if suffices to show [Cj�Ci
Ij � Ii.

To show this, we show that Cj � Ci implies Ij � Ii. For any Ci, Cj 2 Tþr and Cj � Ci, if Ij 6� Ii, then IjnIi 6¼ ; and
Ij � Cj � Ci = Ii [ Bi) IjnIi � (Ii [ Bi)nIi = Bi) IjnIi = (IjnIi) \ Bi � Ij \ Bi) Ij \ Bi 6¼ ;, which contradicts the definition of Ii and Bi.
So we have Ij � Ii and the proof is complete. h

The following property shows that the whole mesh can be partitioned into subsets Si, B�r, and Cr, as has been stated in
Section 6.1 and illustrated in Fig. 9.

Property 3. If Ci and Cj are the two children of Ck, then Sk [ Bk = Bi [ Bj and Sk = (Bi [ Bj)nBk.

Property 4. For any given augmented tree Tþr and all Ci 2 Tþr , Si, B�r, and Cr are all disjoint and M ¼ ð[Ci2Tþr
SiÞ [ B�r [ Cr.
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Proof. To show that all the Si in Tþr are disjoint, consider any Si and Sk, i 6¼ k. If Ci \ Ck = ;, since Si � Ci and Sk � Ck, we have
Si \ Sk = ;. If Ck � Ci, then we have Sk � [Cj�Ci

Sj, and then by the definition of Si, we have Si \ Sk = ;. Similarly, if Ci � Ck, we
have Si \ Sk = ; as well. By Property 1, the relation between any Ci, Ck 2 Tþr must be one of the above three cases, so we have
Si \ Sk = ;.

Since 8Ci 2 Tþr we have Ci � C�r, by Property 2, we have Si � I�r. Since I�r \ B�r = ;, we have Si \ B�r = ;. Since C�r \ Cr = ;,
Si � C�r, and B�r � C�r, we have Si \ Cr = ; and B�r \ Cr = ;. By Property 2 again, we have [Ci2Tþr

Si ¼ [Ci�C�r Si ¼ I�r . So we have
ð[Ci2Tþr

SiÞ [ B�r [ Cr ¼ ðI�r [ B�rÞ [ Cr ¼ C�r [ Cr ¼ M. h

Below we list properties of Si for specific orderings.

Property 5. If Si < Sj, then Cj 6� Ci, which implies either Ci � Cj or Ci \ Cj = ;.

This property is straightforward from the definition of Si < Sj and Property 1.
The following two properties are related to the elimination process and will be used in the proofs of Theorems 1 and 2.

Property 6. For any k,u such that Ck;Cu 2 Tþr , if Sk < Su, then Su \ Ik = ;.

Proof. By Property 5, we have Cu 6� Ck. So for all j such that Cj � Ck, we have j 6¼ u and thus Sj \ Su = ; by Property 3. By Prop-
erty 2, Ik ¼ [Cj�Ck

Sj, so we have Ik \ Su = ;. h

Property 7. If Cj is a child of Ck, then for any Cu such that Sj < Su < Sk, we have Cj \ Cu = ; and thus Bj \ Bu = ;.

This is because the Cu can be neither a descendant of Cj nor an ancestor of Ck.

Proof. By Property 5, either Cj � Cu or Cj \ Cu = ;. Since Cj is a child of Ck and u 6¼ k, we have Cj � Cu) Ck � Cu) Sk < Su, which
contradicts the given condition Su < Sk. So Cj 6� Cu and then Cj \ Cu = ;. h

Now we re-state Theorem 1 more precisely with its proof.

Theorem 1. If we perform Gaussian elimination as described in Section 6.2 on the original matrix A with ordering consistent with
any given Tþr , then

(1) Ag(SPg,S<g) = 0;
(2) "h P g,Ag(Sh,S>hnBh) = Ag(S>hnBh,Sh) = 0;
(3) (a) Ag+(Bg,S>gnBg) = Ag(Bg,S>gnBg);

(b) Ag+(S>gnBg,Bg) = Ag(S>gnBg,Bg);
(c) Ag+(S>gnBg,S>gnBg) = Ag(S>gnBg,S>gnBg);

(4) Ag+(Bg,Bg) = Ag(Bg,Bg) � Ag(Bg,Sg)Ag(Sg,Sg)�1Ag(Sg,Bg).

The matrices Ai and Ai+ show one step of elimination and may help understand this theorem.

Proof. Since (1) and (2) imply (3) and (4) for each i and performing Gaussian elimination implies (1), it is sufficient to prove
(2). We will prove (2) by strong mathematical induction.

(1) For g = i1, (2) holds because of the property of the original matrix, i.e., an entry in the original matrix is nonzero iff the
corresponding two mesh nodes connect to each other and no mesh nodes in Sh and S>hnBh are connected to each other.
The property is shown in the matrix below:

Sh Bh S>h n Bh

Sh � � 0
Bh � � �
S>h n Bh 0 � �

(2) If (2) holds for all g = j such that Sj < Sk, then by Property 1 we have either Cj � Ck or Cj \ Ck = ;.
� if Cj � Ck, consider u such that Sk < Su. By Property 6, we have Ik \ Su = ;. Since Ck = Ik [ Bk, we have (SunBk) \ Ck = ;. So

we have Bj \ (SunBk) � (SunBk) [ Cj � (SunBk) \ Ck = ; ) Bj \ (S>knBk) = ;.
� if Cj \ Ck = ;, then Bj � Cj and Sk � Ck) Bj \ Sk = ;.
So in both cases, we have (Bj,Bj) \ (Sk,S>knBk) = ;. Since for every Sj < Sk, (1), (2), (3), and (4) hold, i.e., eliminating the Sj

columns only affects the (Bj, Bj) entries, we have Ak(Sk,S>knBk) = Ak(S>knBk,Sk) = 0. Since the argument is valid for all
h P k, we have "h P k, Ak(Sh, S>hnBh) = Ak(S>hnBh,Sh) = 0. So (2) holds for g = k as well.

By strong mathematical induction, we have that (2) holds for all g such that Cg 2 Tþr . h

Below we restate Corollaries Corollaries 1–3 and give their proofs.

Corollary 1. If Ci and Cj are the two children of Ck, then Ak(Bi, Bj) = A(Bi,Bj) and Ak(Bj,Bi) = A(Bj,Bi).
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Proof. Without loss of generality, let Si < Sj. For any Su < Sk, consider the following three cases: Su < Sj, Su = Sj, and Sj < Su < Sk.
If Su < Sj, then by Property 1, either Cu � Cj or Cu \ Cj = ;.

� if Cu � Cj, then since Ci \ Cj = ;, we have Cu \ Ci = ; ) Bu \ Bi = ;;
� if Cu \ Cj = ;, then since Bu � Cu and Bj � Cj, we have Bu \ Bj = ;.

So we have (Bu,Bu) \ (Bi,Bj) = (Bu,Bu) \ (Bj,Bi) = ;.
If Su = Sj, then Bu = Bj and Bi \ Bj = ;, so we also have (Bu,Bu) \ (Bi,Bj) = (Bu,Bu) \ (Bj,Bi) = ;.
If Sj < Su < Sk, then by Property 7, we have Bu \ Bj = ;. So we have (Bu,Bu) \ (Bi,Bj) = (Bu,Bu) \ (Bj,Bi) = ; as well.
So for every Su < Sk, we have (Bu,Bu) \ (Bi,Bj) = (Bu, Bu) \ (Bj,Bi) = ;. By Theorem 1, eliminating Su only changes A(Bu,Bu), so

we have Ak(Bi,Bj) = A(Bi,Bj) and Ak(Bj,Bi) = A(Bj,Bi). h

Corollary 2. If Ci is a child of Ck, then Ak(Bi,Bi) = Ai+(Bi,Bi).

Proof. Consider u such that Si < Su < Sk. By Property 7, we have Bu \ Bi = ;. By Theorem 1, eliminating Su columns will only
affect (Bu,Bu) entries, we have Ak(Bi, Bi) = Ai+(Bi,Bi). h

Corollary 3. If Ci is a leaf node in Tþr , then Ai(Ci,Ci) = A(Ci,Ci).

Proof. Consider Su < Si, by Property 1, we have either Cu � Ci or Cu \ Ci = ;. Since Ci is a leaf node, there is no u such that
Cu � Ci. So we have Cu \ Ci = ; ) Bu \ Ci = ;. By Theorem 1, we have Ai(Ci,Ci) = A(Ci,Ci). h
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