8-1-1991

CONSENSUAL NEURAL NETWORKS

Jon A. Benediktsson
University of Iceland, Department of Electrical Engineering & Laboratory for Information Technology and Signal Processing

Okan K. Ersoy
Purdue University School of Electrical Engineering

Philip H. Swain
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

http://docs.lib.purdue.edu/ecetr/319

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Consensual Neural Networks

Jon A. Benediktsson
Okan K. Ersoy
Philip H. Swain

TR-EE 91-37
August 1991
CONSENSUAL NEURAL NETWORKS

Jon A. Benediktsson*, Okan K. Ersoy** and Philip H. Swain**

TR-EE 91-37
August 1991

* Department of Electrical Engineering
 and
Laboratory for Information Technology and Signal Processing
University of Iceland
Hjardarhaga 2-6
107 Reykjavik, Iceland.

** School of Electrical Engineering
 and
Laboratory for Applications of Remote Sensing
Purdue University
W. Lafayette, IN 47907, U.S.A.
ACKNOWLEDGEMENTS

The Colorado data set was originally acquired, preprocessed and loaned to us by Dr. Roger Hoffer of Colorado State University. Access to the data set is gratefully acknowledged.

The research was supported in part by the National Aeronautics and Space Administration through Grant No. NAGW-925.

This work was supported in part by NASA Grant No. NAGW-925 "Earth Observation Research - Using Multistage EOS-like Data" [Principal Investigators: David A. Landgrebe and Chris Johannsen).
ABSTRACT

A new neural network architecture is proposed and applied in classification of data from multiple sources. The new architecture is called a consensual neural network and its relation to hierarchical and ensemble neural networks is discussed. The consensual neural network architecture is based on statistical consensus theory and involves using non-linearly transformed input data. The input data are transformed several times and the different transformed data are applied as if they were independent inputs. The independent inputs are classified using stage neural networks and the outputs from the stage networks are then weighted and combined to make a decision. Experimental results based on remote sensing data and geographic data are given. The performance of the consensual neural network architecture is compared to that of a two-layer conjugate-gradient backpropagation neural network. The results with the proposed neural network architecture compare favourably to the backpropagation method in terms of classification accuracy.

1. INTRODUCTION

The recent resurgence of research in neural networks has resulted in the development of new and improved neural network models. These new models have been trained successfully to classify complex data. In the remote sensing community, the question of how well neural network models perform as classifiers is very important. In previous papers [1],[2], it has been shown that neural networks
compared well to statistical classification methods in classification of multisource remote sensing/geographic data and very-high-dimensional data. The neural network models were superior to the statistical methods in terms of overall classification accuracy of training data. However, statistical methods based on consensus from several data sources outperformed the neural networks in terms of overall classification accuracy of test data. Thus it would be very desirable to combine certain aspects of the statistical consensus theory approaches and the neural network models. However, it is very difficult to implement statistics in neural networks [3].

In this report, consensual neural networks are proposed and implemented as stage-wise neural network algorithms. These network models do not use prior statistical information but are somewhat analogous to the statistical consensus theory approaches. A short overview of consensus theory is given in the next section followed by a discussion of neural networks as related to the proposed consensual neural networks. The consensual neural networks are then addressed in some detail and experimental results using these networks are presented.

2. CONSENSUS THEORY

Consensus theory [3],[4],[5],[6] is a well-established research field involving procedures for combining estimated probability distributions of multiple data sources under the assumption that the data sources are Bayesian. In most consensus theoretic methods, the
data from each source are at first classified into a **source-specific number of data classes** [1]. The information from the sources is then aggregated by a global membership function and the data are classified according to the usual maximum selection rule into a **user-specified number of information classes**. The combination formula obtained in consensus theory is called a **consensus rule**. Several consensus rules have been proposed. Probably the **most commonly used** consensus rule is the **linear opinion pool** which has the following form for the information class \(\omega_j \) if \(n \) data sources are used:

\[
C(X) = \sum_{i=1}^{n} \alpha_i p(\omega_j|x_i)
\]

(1)

where \(X = [x_1, \ldots, x_n] \) is the vector of multichannel data values at a pixel, \(p(\omega_j|x_i) \) is a source-specific posterior probability and \(\alpha_i \)s (\(i = 1, \ldots, n \)) are source-specific weights which control the relative influence of the data sources. The weights are associated with the sources in the global membership function to express quantitatively our **confidence** in each source [3]. The linear opinion pool is simple but **has** several shortcomings, e.g., it is not externally Bayesian since it is not derived from class-conditional probabilities using Bayes' rule. Another consensus rule which overcomes the shortcomings associated with the linear opinion pool is the **logarithmic opinion pool**:

\[
L(X) = \prod_{i=1}^{n} (p(\omega_j|x_i))^{\alpha_i}
\]

(2)
The logarithmic opinion pool has performed well in classification of data from multiple sources [3],[4].

It is desirable to implement consensus theoretic approaches in neural networks: consensus theory has the goal of combining several opinions, and a collection of different neural networks should be more accurate than a single network in classification. It is important to note that neural networks have been shown to approximate class-conditional probabilities, \(p(\omega_j|x_j) \), at the output in the mean square sense [7]. Using this property of neural networks, it becomes possible to implement consensus theory in the networks.

3. NEURAL NETWORK METHODS

A neural network is an interconnection of neurons, where a neuron can be described in the following way: A neuron receives input signals \(X_j, j = 1,2,\ldots,N \), which represent the activity at the input or the momentary frequency of neural impulses delivered by another neuron to this input [8]. In the simplest formal model of a neuron, the output value of the neuron, \(o \), is often approximated by

\[
o = K \phi(\sum_{j=1}^{N} w_j x_j - \theta)
\]

(3)
where K is a constant and ϕ is a non-linear function, e.g., the threshold function which takes the value 1 for positive arguments and 0 (or -1) for negative arguments. The W_j are called synaptic efficacies or weights, and Θ is a threshold. A single layer neural network, only has one layer of weights; a multilayer network has a number of such layers [9]. In the neural network approach to pattern recognition, the neural network operates as a black box which receives a set of input vectors x (observed signals) and produces responses O_j from its output neurons i ($i = 1, \ldots, L$ where L depends on the number of information classes). A common output representation used in neural network theory is that the outputs are either $O_j = 1$, if neuron i is active for the current input vector x, or $O_j = 0$ (or -1) if it is inactive. In supervised learning the weights are learned through an adaptive (iterative) training procedure in which a set of training samples is presented to the input (Figure 1). The network gives an output response for each sample. The actual output response is compared to the desired response for the input and the error between the desired output and the actual output is used to modify the weights in the neural network. The training procedure ends when the error is reduced to a prespecified threshold or it cannot be minimized any further. Then all of the data to be classified are fed into the network to perform the classification, and the network provides at the output the class representation for each pixel.
Figure 1. Schematic Diagram of Supervised Neural Network Training Procedure
3.1 Neural Networks with Parallel Stages

Implementing consensus theory in neural networks may be achieved by using a collection of neural networks. The parallel self-organizing hierarchical neural network (PSHNN) proposed by Ersoy and Hong [10] is a neural network which is in some respects related to the consensual neural network to be proposed here. The PSHNN involves a self-organizing number of stages, similar to a multilayer neural network. Each stage can be a particular neural network, here referred to as a stage neural network (SNN). Unlike a multilayer network, each SNN is essentially independent of the other SNNs in the sense that each SNN does not receive its input directly from the previous SNN. At the output of each SNN, there is an error detection scheme. If an input vector is rejected, it goes through a non-linear transformation before being input to the next SNN. This property is distinct from conventional neural networks.

Valafar and Ersoy [11] proposed a parallel, self-organizing, consensual neural network (PSCNN) which is related to the PSHNN [10]. The PSCNN uses non-linear transformations of the input data and creates accept/reject boundaries for each SNN in a similar fashion to the PSHNN. Pre- and post-voting are used to make decisions with the SNNs. The post-voting is somewhat similar to error boundaries in the PSHNN, but is not related to consensus theory.

Nilsson [12] proposed his committee machines as an attempt to formulate a multilayer neural network which could classify
complicated data. The committee machines are related to the consensus neural networks proposed here. However, the committee machines are not based on consensus theory and all the stages use the same inputs. The committee machines are an attempt to design a multilayer neural network by using one-layer networks.

Hansen and Salamon discussed the application of an ensemble of multilayer neural networks [13]. Their ensemble consists of several SNNs but each SNN receives the same input data similar to Nilsson's committee machines. Each SNN is based on the backpropagation network and the weights in different SNNs are initialized differently in order to avoid the same local minima for all of the networks. The ensemble network makes the final decision (classification) based on the majority vote from all the networks. The architecture in [13] is not based on consensus theory and does not use the capability of changing the input data through non-linear transformations.

The approach taken here is to use the data as separate and distinct inputs obtained through non-linear transformations of the input data, and to base the design of the total network on consensus theory.

3.2 The Consensual Neural Network

A block diagram for the proposed consensual neural network (CNN) architecture is shown in Figure 2. Each stage neural network (SNN) has the number of output neurons equal to the number of
Weights:

Figure 2. The Consensual Neural Network - Sum (CNNS) Architecture
information classes and is trained for a fixed number of iterations or until the training procedure converges. When the training of the first stage is complete, the classification error is computed. Then another stage is created. The input data to the second stage are obtained by a non-linear transform (NLT) of the original input vectors. This stage is trained in a fashion similar to the first stage. When the training of the second stage is complete, the consensus for the SNNs is computed. The consensus is obtained by taking class-specific weighted averages of the output responses of the SNNs using source-specific weights [3] similar to the ones in equations (1) and (2). Error detection is then performed and the consensual classification error is computed.

The CNN is self-organizing in the following sense: If the consensual classification error is lower than the classification error for the first stage, another stage is created and trained in a fashion similar to the previous stages, but with another non-linear transformation of the input data. Stages are added to the consensual neural network in this manner as long as the consensual classification error decreases or a tolerance limit is reached. If the consensual classification error does not decrease or is lower than the tolerance limit, the training is stopped. Using this architecture it can be guaranteed that the CNNs should do no worse than single stage networks, at least in training. To guarantee such performance in classification of test data, cross-validation methods can be used [14]. Also, it is easy to show [13] that if all the networks in a collection of neural networks arrive at the correct classification with a likelihood $1-p$ and the networks make independent errors, the chances of seeing exactly k errors among N copies of the network is:
\[
\binom{N}{k} p^k (1-p)^{N-k} \quad (4)
\]

which gives the following likelihood of a sum of network outputs being in error:

\[
\sum_{k>N/2} \binom{N}{k} p^k (1-p)^{N-k} \quad (5)
\]

which is monotonically decreasing in \(N \) if \(p < 1/2 \). **Thus**, using a collection of networks reduces the expected classification error if the networks have equal weights and make independent errors.

Here we propose two versions of the CNN. The **CNN** in Figure 2 is called **CNN - Sum** (CNNS) and is a consensual neural network version of the linear opinion pool. The **CNN - Product** (CNNP) shown in Figure 3 is a consensual neural network version of the logarithmic opinion pool. Both **CNNs** combine the information from distinct inputs and can be considered neural network implementations of the consensus rules in equations (1) and (2). In contrast to the data sources usually referred to in multisource classification, the inputs here consist of non-linearly transformed data which have been transformed several times from the raw data. In neural networks it is very important to find the "best" representation of input data; the consensual method attempts to average over the results from several input representations. Also, in the consensual neural networks, classification of test data can be done in parallel, with all stages receiving data simultaneously, which makes this method attractive.
Figure 3. The Consensual Neural Network - Product (CNNP) Architecture

Weights:

Stage 1
Input Data
NLT
Stage 2
SNN 1
Output Response 1
Stage n
SNN n
Output Response n

Combined Output Response

\[\alpha_1 \]
\[\alpha_2 \]
\[\alpha_n \]
for implementation on parallel machines. Learning can also be made parallel, once the number of stages is determined.

The CNNs presented here are related to the PSHNN in the sense that both algorithms use stage networks. However, there are two major differences between the CNNs and the PSHNN. First, the CNNs non-linearly transform all the data whereas the PSHNN only propagates misclassified samples to the next stage and non-linearly transforms those samples. Secondly, the CNNs weight the outputs of the different SNNs whereas no weighting is done in the PSHNN. These properties of the CNNs are important since the CNNs need no rejection scheme at the outputs of the SNNs, but weight the outputs instead. The selection of non-linear transformations and weights for the CNNs are discussed below.

3.2.1 Non-Linear Transformations

The major source of classification error in single-stage neural networks is the linear nonseparability of the classes. To reduce or eliminate classification errors, it is desirable to find a transformation which maps the input vectors into another set of vectors that can be classified more accurately. A variety of schemes can be used in the CNNs to transform the data.

In the experiments performed here the input vectors were represented by the Gray code. The Gray code representation can be derived from the binary code representation in the following
manner: If $b_1 b_2 \ldots b_n$ is a code word in an n-bit binary code, the corresponding Gray code word $g_1 g_2 \ldots g_n$ is obtained by the rule:

$$g_1 = b_1$$

$$g_k = b_k \oplus b_{k-1} \quad k \geq 2$$

where \oplus is modulo-two addition. One simple possibility for a non-linear transformation is to use this scheme successively for the stages that follow [9]. This is done by looking at the Gray coded input of the previous SNN as $b_1 b_2 \ldots b_n$ and then take the Gray code of the Gray code.

Another possible technique for the non-linear transformation of the data is to use the real discrete Fourier transform (RDFT) [15]. The RDFT is a linear transform which can be made non-linear by truncating its output to 0 and 1 or -1 and 1. The RDFT can be computed using a fast transform which is known as the real fast discrete Fourier transform (RFFT) [16].

3.2.21 Weight Selection Schemes

The weights (α_is) should reflect the goodness of the input data, i.e., relatively large weights should be given to input data that can be classified with high accuracy. Various weight selection schemes can be used to select weights for the CNNs. One possibility
is to use equal weights, which effectively takes the average of the outputs from the SNNs. Other possibilities include use of reliability measures which rank the sources according to their goodness. These reliability measures are, for example, source-specific classification accuracies of training data, source-specific overall separabilities of training data and equivocation among the data sources [1].

4. EXPERIMENTAL RESULTS

The CNNs were used to classify a data set consisting of the following 4 data sources:

1) Landsat MSS data (4 data channels)

2) Elevation data (in 10 m contour intervals, 1 data channel)

3) Slope data (0-90 degrees in 1 degree increments, 1 data channel).

4) Aspect data (1-180 degrees in 1 degree increments, 1 data channel)

Each channel comprised an image of 135 rows and 131 columns; all channels were co-registered.
The area used for classification was a mountainous area in Colorado having 10 ground-cover classes (Table 1). One class is water; the others are forest types. It is very difficult to distinguish among the forest types using the Landsat MSS data alone since the forest classes show very similar spectral response. In addition, as seen in Table 2, the pairwise J M distance separabilities [17] between most of the forest types in the Landsat MSS data are relatively low. With the help of elevation, slope and aspect data, the forest types can be better distinguished.

Reference data were compiled for the area by comparing a cartographic map to a color composite of the Landsat data and also to a line-printer output of each Landsat channel. By this method, 2019 reference points (11.4% of the area) were selected from two or more homogeneous fields in the imagery for each class. In the first experiment with the data, the largest field for each class was used as a training field and the other fields were used for testing the classifiers. Overall 1188 pixels were used for training and 831 pixels for testing the classifiers.

The CNN algorithms were implemented using one-layer conjugate-gradient delta rule neural networks [18],[19] as its SNNs. Using just one-layer SNNs makes each stage computationally less demanding. However, each stage can only guarantee to separate linearly separable data. The conjugate-gradient versions of the feedforward neural networks are computationally more efficient than conventional gradient descent neural networks [3],[18].
Table 1
Training and Test Samples for Information Classes in the First Experiment on the Colorado Data Set

<table>
<thead>
<tr>
<th>Class #</th>
<th>Information Class</th>
<th>Training Size</th>
<th>Test Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water</td>
<td>408</td>
<td>195</td>
</tr>
<tr>
<td>2</td>
<td>Colorado Blue Spruce</td>
<td>88</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>Mountane/Subalpine Meadow</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>Aspen</td>
<td>75</td>
<td>65</td>
</tr>
<tr>
<td>5</td>
<td>Ponderosa Pine</td>
<td>105</td>
<td>139</td>
</tr>
<tr>
<td>6</td>
<td>Ponderosa Pine/Douglas Fir</td>
<td>126</td>
<td>188</td>
</tr>
<tr>
<td>7</td>
<td>Engelmann Spruce</td>
<td>224</td>
<td>70</td>
</tr>
<tr>
<td>8</td>
<td>Douglas Fir/White Fir</td>
<td>32</td>
<td>44</td>
</tr>
<tr>
<td>9</td>
<td>Douglas Fir/Ponderosa Pine/Aspen</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>Douglas Fir/White Fir/Aspen</td>
<td>60</td>
<td>39</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1188</td>
<td>831</td>
</tr>
</tbody>
</table>
Table 2

Pairwise JM Distances Between the 10 Information Classes in the Landsat MSS Data Source [Maximum Separability is 1.00]

<table>
<thead>
<tr>
<th>Class #</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>0.97</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>0.84</td>
<td>0.80</td>
<td>0.79</td>
<td>0.90</td>
<td>0.99</td>
<td>0.86</td>
<td>0.79</td>
<td>0.76</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>0.89</td>
<td>0.90</td>
<td>0.92</td>
<td>0.96</td>
<td>0.93</td>
<td>0.90</td>
<td>0.92</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.73</td>
<td>0.75</td>
<td>0.99</td>
<td>0.77</td>
<td>0.25</td>
<td>0.65</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.27</td>
<td>0.99</td>
<td>0.29</td>
<td>0.74</td>
<td>0.60</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.99</td>
<td>0.23</td>
<td>0.76</td>
<td>0.67</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.99</td>
<td>0.99</td>
<td>0.99</td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.78</td>
<td>0.65</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Average: 0.89
The original input data were Gray coded and the non-linear transform for each succeeding stage was the Gray code of the preceding Gray code. Each SNN had 57 input neurons and 10 output neurons (one output neuron was set as 1 for each class the other neurons set equal to 0). In this experiment all the stages were given equal weights. For comparison the single-stage conjugate-gradient backpropagation (CGBP) algorithm with two layers (hidden, output) [18] was trained on the same data. All of the neural networks used the sigmoid activation function [9]. The CGBP neural network had 57 inputs, 32 hidden neurons and 10 output neurons. The experiment was run on a Gould NP-1 computer (as were all others).

The results of the first experiment are shown in Tables 3.a (training) and 3.b (test). The CNNS achieved its best results with 3 stages and 400 iterations per stage. The CNNP needed 4 stages and 300 iterations per stage. The best results with the CGBP were reached at 200 iterations. The training and classification time of the CNNP was the highest in this experiment. The reason for the time difference between CNNP and CNNS is that the CNNP needed 4 stages whereas the CNNS used only 3 stages.

Looking at the training results in Table 3.a, it is seen that the CGBP algorithm does a little better than the CNNs during training, both in terms of overall accuracy (OA) which is weighted by the number of pixels in each class and average (over the classes) accuracy (AVE). On the other hand, the test results in Table 3.b show that the CNNP with 4 stages is slightly better than the CGBP algorithm, in terms of overall and average accuracies for these data. The CNNP achieved around 0.7% better overall accuracy and about
Table 3

Neural Network Methods Applied to Colorado Data.
First Experiment:
(a) Training Samples, (b) Test Samples.

Table 3.a

<table>
<thead>
<tr>
<th>Method</th>
<th># of Its.</th>
<th># of Stages</th>
<th>CPU Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>OA</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNNS</td>
<td>400</td>
<td>3</td>
<td>1810</td>
<td>100.0</td>
<td>98.9</td>
<td>86.7</td>
<td>97.3</td>
<td>76.2</td>
<td>84.9</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>95.45</td>
<td>94.40</td>
</tr>
<tr>
<td>CNNP</td>
<td>300</td>
<td>4</td>
<td>2106</td>
<td>100.0</td>
<td>98.9</td>
<td>86.7</td>
<td>97.3</td>
<td>73.3</td>
<td>85.7</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>95.29</td>
<td>93.79</td>
</tr>
<tr>
<td>CGBP</td>
<td>200</td>
<td>1</td>
<td>1427</td>
<td>100.0</td>
<td>100.0</td>
<td>93.3</td>
<td>100.0</td>
<td>85.7</td>
<td>92.1</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>97.84</td>
<td>97.11</td>
</tr>
<tr>
<td>Number of Pixels</td>
<td></td>
<td></td>
<td></td>
<td>408</td>
<td>88</td>
<td>45</td>
<td>75</td>
<td>105</td>
<td>126</td>
<td>224</td>
<td>32</td>
<td>25</td>
<td>60</td>
<td>1188</td>
<td>1188</td>
</tr>
</tbody>
</table>

Table 3.b

<table>
<thead>
<tr>
<th>Method</th>
<th># of Its.</th>
<th># of Stages</th>
<th>Percent Agreement with Reference for Class</th>
<th>OA</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNNS</td>
<td>400</td>
<td>3</td>
<td>99.5</td>
<td>83.3</td>
<td>50.0</td>
</tr>
<tr>
<td>CNNP</td>
<td>300</td>
<td>4</td>
<td>100.0</td>
<td>79.2</td>
<td>52.4</td>
</tr>
<tr>
<td>CGBP</td>
<td>200</td>
<td>1</td>
<td>99.0</td>
<td>83.3</td>
<td>45.2</td>
</tr>
<tr>
<td>Number of Pixels</td>
<td></td>
<td></td>
<td>195</td>
<td>24</td>
<td>42</td>
</tr>
</tbody>
</table>
0.1% better average accuracy for the test data. The test classification accuracies of the CNNs with 3 stages and CGBP were very similar.

The training data used in the experiment above were selected in such a way that one field for each class was used for training and the others as test data. It has been shown [3], [19] that neural networks are sensitive to having representative training samples. In order to see how well the CNNs compared to the CGBP with a more representative training sample, another experiment was conducted. In this experiment, training samples were selected uniformly spaced over the image. Approximately 50% of the samples were used for training and the rest for testing the neural networks (see Table 4).

The results of the second experiment are shown in Tables 5.a (training) and 5.b (test). Both CNNs used 3 stages and achieved their best results after 200 iterations per stage. The CGBP reached its best performance at 150 iterations. The CNNs with 3 stages needed about 250 CPU seconds more for training and classification than the CGBP. However, the CNNs are potentially much faster since they can implemented in parallel stages. Looking at the training results in Table 5.a, it can be seen that all of the neural networks gave similar overall and average accuracies: i.e., with representative training samples, the training performance of all networks was almost the same. However, the test results in Table 5.b show that the three-stage CNNs outperformed the two-layer CGBP by more than 3.5%. It is also significant that these results are better than the best statistical results achieved in [3]. Therefore, the results are very
<table>
<thead>
<tr>
<th>Class #</th>
<th>Information Class</th>
<th>Training Size</th>
<th>Test Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Water</td>
<td>301</td>
<td>302</td>
</tr>
<tr>
<td>2</td>
<td>Colorado Blue Spruce</td>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>Mountane/Subalpine Meadow</td>
<td>43</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Aspen</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>5</td>
<td>Ponderosa Pine</td>
<td>157</td>
<td>157</td>
</tr>
<tr>
<td>6</td>
<td>Ponderosa Pine/Douglas Fir</td>
<td>122</td>
<td>122</td>
</tr>
<tr>
<td>7</td>
<td>Engelmann Spruce</td>
<td>147</td>
<td>147</td>
</tr>
<tr>
<td>8</td>
<td>Douglas Fir/White Fir</td>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>Douglas Fir/Ponderosa Pine/Aspen</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>Douglas Fir/White Fir/Aspen</td>
<td>49</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1608</td>
<td>1011</td>
</tr>
</tbody>
</table>
Table 5

Neural Network Methods Applied to Colorado Data.

Second Experiment:
(a) Training Samples, (b) Test Samples.

Table 5.a

<table>
<thead>
<tr>
<th>Method</th>
<th># of Its.</th>
<th># of Stages</th>
<th>CPU Time</th>
<th>Percent Agreement with Reference for Class</th>
<th>OA</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNNS</td>
<td>200</td>
<td>3</td>
<td>1190</td>
<td>100.0 85.7 74.4 91.4 68.9 78.7 100.0 50.0 76.0 98.0</td>
<td>88.84</td>
<td>95.79</td>
</tr>
<tr>
<td>CNNP</td>
<td>200</td>
<td>3</td>
<td>1190</td>
<td>100.0 85.7 74.4 91.4 68.2 78.7 100.0 47.4 76.0 98.0</td>
<td>87.10</td>
<td>81.80</td>
</tr>
<tr>
<td>CGBP</td>
<td>150</td>
<td>1</td>
<td>967</td>
<td>100.0 94.6 46.5 97.1 65.6 84.4 100.0 47.4 68.0 100.0</td>
<td>87.20</td>
<td>80.36</td>
</tr>
<tr>
<td>Number of Pixels</td>
<td>408</td>
<td>88</td>
<td>45</td>
<td>75</td>
<td>125</td>
<td>126</td>
</tr>
</tbody>
</table>

Table 5.b

<table>
<thead>
<tr>
<th>Method</th>
<th># of Its.</th>
<th># of Stages</th>
<th>Percent Agreement with Reference for Class</th>
<th>OA</th>
<th>AVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNNS</td>
<td>200</td>
<td>3</td>
<td>100.0 80.4 50.0 87.1 59.9 78.7 93.3 31.6 44.0 90.0</td>
<td>82.49</td>
<td>72.10</td>
</tr>
<tr>
<td>CNNP</td>
<td>200</td>
<td>3</td>
<td>100.0 80.4 50.0 85.7 59.9 79.5 93.3 31.6 44.0 90.0</td>
<td>82.49</td>
<td>72.04</td>
</tr>
<tr>
<td>CGBP</td>
<td>150</td>
<td>1</td>
<td>100.0 82.9 36.4 67.1 57.3 70.5 98.6 28.9 36.0 80.0</td>
<td>78.93</td>
<td>66.77</td>
</tr>
<tr>
<td>Number of Pixels</td>
<td>195</td>
<td>24</td>
<td>42</td>
<td>65</td>
<td>139</td>
</tr>
</tbody>
</table>
satisfying, showing that the CNNs generalized well with representative training samples.

The results in both experiments showed that the CNN architecture can be considered a desirable choice in multisource, classification, especially if training samples are representative. This architecture can also be used for other difficult classification problems. Although the CGBP algorithm showed superior performance in training accuracy, it did not generalize as well as the CNN. These results were achieved by a network consisting of one-layer networks whereas the CGBP network is a two-layer network. As noted earlier, one-layer networks can only separate linearly separable data in contrast to the two-layer networks which can separate non-linearly separable data. Using multilayer stage networks in the CNN architecture is also a possibility, but it makes the training procedure computationally more complex.

5. CONCLUSIONS

Our experiments have shown the CNN architecture to be a useful alternative to conjugate-gradient backpropagation for multisource classification. Two versions of the architecture, the CNNS and the CNNP, were tested on a multisource data set consisting of Landsat MSS data, elevation data, slope data, and aspect data. The CNN algorithms outperformed the method of conjugate-gradient backpropagation in terms of test accuracy for this data set. The CNNs needed no more than 4 stages but more time-consuming in training and classification than the CGBP. However, they are
potentially much faster since they can be implemented in parallel stages.

At this point, the CNNs need to be tested more extensivly. Different non-linear transformations and various weight-selection schemes need to be explored. Equal weights were used in the experiments reported here. Other weights could further improve the accuracy of the CNNs. The CNNs were trained on binary input data. Using continues-valued inputs [19] for the CNNs is a subject of current research. Also, different types of CNN architectures are being explored. These architectures include CNNs with different non-linear transformations for each stage and different numbers of iterations for the stages.
REFERENCES

