1980

Transient Stress Produced in Internal Suspension Springs of Hermetic Refrigeration Compressor During Start and Stop Operations

A. Futakawa
N. Muramatsu
K. Tsuchiya

Follow this and additional works at: http://docs.lib.purdue.edu/icec

http://docs.lib.purdue.edu/icec/311

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/Herrick/Events/orderlit.html
TRANSIENT STRESS PRODUCED IN INTERNAL SUSPENSION SPRINGS OF HERMETIC REFRIGERATION COMPRESSOR DURING START AND STOP OPERATIONS

Akemi Futakawa, Dr. Eng., Manager
Central Research Laboratory
Mitsubishi Electric Corp.
Amagasaki, Hyogo, Japan

Naoki Muramatsu and Kunihiko Tsuchiya
Nagoya Works
Mitsubishi Electric Corp.
Nagoya, Aichi, Japan

Naoki Muramatsu
Nagoya Works
Mitsubishi Electric Corp.
Nagoya, Aichi, Japan

ABSTRACT

This paper presents the theoretical and experimental investigations on the transient stress of the suspension spring in a reciprocating hermetic refrigeration compressor. The torques acting to the compressor body of a multi-cylinder compressor and the transient vibration of the compressor body are analyzed over a wide range of start and stop operations. The dynamic stresses of the suspension springs are numerically calculated in connection with the transient motion of the compressor body. At the same time, the dynamic stress measurements are carried out on three suspension springs of a five-cylinder compressor under several operating conditions. As a result, it is confirmed that the theoretical results are generally in good agreement with the experimental results. The transient vibration of the compressor body during start and stop operations are revealed. The effects of the operating conditions and the frequency of power source on the dynamic stress of the suspension spring are also clarified.

INTRODUCTION

A reciprocating hermetic refrigeration compressor has a construction such that a compressor body is supported in a hermetic shell by several internal suspension springs with the aim to reduce the running speed torques and forces transmitted to the shell. The start and stop operations of the compressor, however, accompany a very abrupt torque change, thus leading to the transient vibration with the large magnitude in the compressor body. As the compressors are provided with higher performances, this transient vibration tends to increase. This situation motivates this study to clarify the generation mechanism and behavior of the transient stress of the internal suspension spring involved thereby.

Tanaka\(^{(1)}\) has reported on the transient stress of the internal suspension springs during stop operation. This study was carried out from the viewpoint of the balance of energy, but was not so far reaching as to clarify the generation mechanism of the transient stress of the suspension springs.

In this study, an approximate analysis is made on the transient motion produced in the compressor body of a multi-cylinder hermetic refrigeration compressor during start and stop operations. The accompanying transient stress of the internal suspension springs is also analyzed. Stress measurements are carried out on a five-cylinder hermetic refrigeration compressor. Comparing the theoretical results with the experimental results, the generation mechanism of the transient stress produced in the internal suspension springs are discussed.

THEORY

Assumptions

Fig. 1 shows an idealized cylinder pressure -crank angle diagram used in this analysis. The following assumptions were made in order to analyze the transient stress generated in the internal suspension springs.

(i) During the compression stroke indicated by AB, the refrigerant inside the cylinder makes the adiabatic change which is expressed by:

\[p v^k = \text{const.} \] \hspace{1cm} (1)

(ii) During the discharge stroke indicated by BC, the cylinder pressure is equal to the discharge pressure and is maintained constant during this stroke.
During the compression stroke, the cylinder pressure at a crank angle \(\theta_i \) is expressed by:

\[
P_i = P_1 \left(\frac{2 + C}{1 + C + \frac{d}{4} + \cos \theta_i - \frac{d}{4} \cos 2 \theta_i} \right)
\]

where \(\rho = r/l \), \(C = c/r \). Considering the pressure at the piston rear face is equal to the suction pressure, the force \(F_{gi} \) charged on the \(i \)-th piston gas pressure during the compression stroke is expressed by:

\[
F_{gi} = A_p P_1 \left(\frac{2 + C}{1 + C + \frac{d}{4} + \cos \theta_i - \frac{d}{4} \cos 2 \theta_i} \right) - 1
\]

During the discharge stroke, the discharge and suction pressures act to both sides of the piston. The force \(F_{gi} \), therefore, is expressed by:

\[
F_{gi} = A_p (P_2 - P_1)
\]

NOMENCLATURE

- \(A_p \) = piston area, mm\(^2\)
- \(c \) = top clearance, mm
- \(d \) = bar diameter of spring, mm
- \(I_R, I_S \) = moment of inertia of rotating portion and compressor body, N·mm\(^2\)
- \(k \) = ratio of specific heats to gas
- \(K \) = torsional stiffness, N·mm/rad
- \(l \) = length of connecting rod, mm
- \(L \) = distance between the crank shaft and spring center line, mm
- \(n \) = number of active coils in the spring
- \(P_1, P_2, P \) = suction pressure, discharge pressure, and cylinder pressure, Pa
- \(r \) = length of crank arm, mm
- \(R \) = coil radius, mm
- \(T_R, T_S \) = torque for crank shaft and compressor body, N·mm
- \(v \) = specific volume of gas in cylinder at any time, mm\(^3\)
- \(\zeta \) = viscous damping coefficient, N·mm·s
- \(\theta \) = revolution angle of crank shaft, rad
- \(\phi \) = angular displacement of motion of compressor body, rad
- \(\omega \) = angular speed of crank shaft, rad/s
- \(\tau \) = shear stress of suspension springs, N/mm\(^2\)
During the suction stroke, the assumption provides that the same pressure acts to both sides of the piston. The force F_{gi} therefore, becomes

$$F_{gi} = 0$$ \hspace{1cm} (5)$$

Inertia Force of Piston. The reciprocating movement of the i-th piston produces such an inertia force F_{pi} as shown in Fig. 2. This inertia force F_{pi} is expressed by

$$F_{pi} = \frac{W_{p}}{g} \cdot r_{w}^{2} \cdot (\cos \theta_{i} - \cos 2\theta_{i})$$ \hspace{1cm} (6)$$

where W_{p} and g are the piston weight and gravitational acceleration, respectively.

Force by Connecting Rod Motion. The motion of a connecting rod is considered as the composition of the line and rotating motions centering around the piston. Accordingly, the modified couple induced by this motion produces the force F_{ci} shown in Fig. 2 at both ends of the i-th connecting rod. This force F_{ci} is expressed by

$$F_{ci} = \frac{W_{c}}{2g} \cdot h(1 - h - a^{2}) \cdot r_{c} \cdot \left(\frac{r_{1}}{r_{0}}\right)^{2} \cdot \sin 2\theta_{i}$$ \hspace{1cm} (7)$$

where W_{c}, a, and h are the weight of connecting rod, the radius of gyration around the mass center of the connecting rod, and the distance between the mass center of the connecting rod and the crank pin, respectively.

Torque Acting to Compressor Body and Crank Shaft

Torque Acting to Compressor Body. As shown in Fig. 2, the forces acting to the i-th cylinder are the component force F_{g1}' of the gas pressure force F_{gi}, the component force F_{pi}' of the inertia force F_{pi} of the piston, and the connecting rod force F_{ci}. These forces produce the torque T_{si} acting to the compressor body around the compressor center line, which is expressed by

$$T_{si} = (F_{g1}' + F_{pi}' + F_{ci}) \cdot x_{i}$$ \hspace{1cm} (8)$$

Expressing F_{g1}', F_{pi}' and x_{i} with θ_{i} and then summarizing all the torques produced in the m-cylinder, the total torque T_{s} acting to the m-cylinder compressor body is expressed by

$$T_{s} = \sum_{i=1}^{m} [r_{i}(F_{g1} + F_{pi}) \cdot \sin \theta_{i}]$$

Torque by Crank Shaft Motion. The forces acting to the crank pin are the component force F_{g1}'' of the gas pressure force F_{gi}, the component force F_{pi}'' of the inertia force F_{pi} of the piston, and the connecting rod force F_{ci}. The total torque for the crank shaft of the m-cylinder compressor, therefore, is expressed by

$$T_{R} = \sum_{i=1}^{m} \left[(F_{g1} + F_{pi}) \cdot (\sin \theta_{i} - \frac{2}{2} \sin 2\theta_{i}) + F_{ci} \cos \theta_{i} \right]$$ \hspace{1cm} (9)$$

Starting Torque of Motor. In the hermetic refrigeration compressor, two-pole motor drives the compressor directly. When the power source is supplied to the motor, the starting torque of motor acts to the compressor body as the reactional torque. The starting torque of the motor is generally expressed by

$$T_{m} = \frac{3PV^{2}}{4\pi f g} \left(\frac{\frac{r_{1}}{r_{0}}}{s} \right)$$ \hspace{1cm} (11)$$

where P = number of pole; V = voltage of power source; f = frequency of power source; r_{0} and r_{1} = primary resistance of coil and secondary resistance in terms of primary resistance, respectively, X_{1} and X_{2} = primary leakage reactance and secondary reactance in terms of primary leakage reactance, respectively, and s is slip of motor which is given by

$$s = 1 - \frac{PN}{120f}$$ \hspace{1cm} (12)$$

where N is rotating speed of rotor.

Rotating Speed of Crank Shaft

As can be seen in Eqs. (9) ~ (11), the torques acting to the compressor body and crank shaft during start and stop operations are expressed as a function of the crank angle. In order to obtain the crank angle at the arbitrary time during start and stop operations, the rotating speed of the crank shaft should be analyzed.

The assumptions are made in this analysis that the angular speed of the crank shaft is ω_{0} before the power source of the motor is turned on or off, and that is ω at the
arbitrary time \(t \) after motor start or shut off. The other assumptions are also made that during this period, the work made by the starting torque \(T_m \) of the motor is almost consumed for the increase of the kinetic energy at the moving section of the compressor, and for the compression action of the refrigerant. That is, there is no viscous dissipation during this period because the time to get the normal rotating speed or standstill of the crank shaft after motor start or shut off is very short. These assumptions lead to the following equation established in regard to the angular speed of the crank shaft at the arbitrary time \(t \).

\[
\frac{1}{2g} (\omega^2 - \omega_0^2) = \int (T_R - T_m) \, dt
\]

(13)

Transient Motion of Compressor Body

Fig. 3 shows a cross sectional view of the hermetic refrigeration compressor to be tested. The compressor body is supported to the axial direction by the upper and lower springs at the center portion, and to the circumferential direction by three springs at the outer peripheral portion. During the start and stop operations of the compressor, both the torques \(T_s \) and \(T_m \) act to the circumferential direction of the compressor body. These torques induce to the compressor body the torsional vibration centering around the crank shaft which passes through its mass center.

The system in which the transient motion will occur consists of the compressor body, the motor, and the circumferential springs. The mathematical model with one degree of freedom system, therefore, can be helpful to analyze the transient motion produced in the compressor body.

When the power source is turned on, the starting torque \(T_m \) of the motor acts to the compressor body in a step manner. At the same time, the torque \(T_s \) caused by the compression action of the refrigerant acts to the compressor body to the transverse direction to the rotating direction of the crank shaft. These torques will be generated on the compressor body as correspond to the difference between two torques. When the crank shaft reaches the normal revolution, the above two torques come to the equilibrium condition, thus leading to no torque apparently acting to the compressor body.

When the power source is turned off under the normal operating conditions of the crank shaft, the equilibrium condition between the above torques is collapsed abruptly. The torque \(T_s \) mainly resulting from the compression action of the refrigerant acts to the compressor body in a step manner. This phenomenon is maintained until the rotating speed of the crank shaft becomes zero. The following equations, therefore, are obtained on the torsional vibration of the compressor body.

(i) \(0 \leq t \leq t_s \)

\[
\frac{I_s}{g} \frac{d^2 \phi}{dt^2} + \frac{d}{dt} \frac{d \phi}{dt} + K \phi = T_m - T_s
\]

(14)

(ii) \(t \geq t_s \)

\[
\frac{I_s}{g} \frac{d^2 \phi}{dt^2} + \frac{d}{dt} \frac{d \phi}{dt} + K \phi = 0
\]

(15)

where \(t_s \) is the time to get the normal rotating speed or standstill of the crank shaft after motor start or shut off, respectively.

The transient vibration caused on the compressor body during start and stop operations can be obtained by solving Eqs. (14) and (15) which contain the non-linear external forces \(T_s \) and \(T_m \).

Transient Stress of Internal Suspension Spring

Using the angular displacement \(\phi \) of the compressor body caused by the transient vibration, the shear stress on the outside surface of the coil of the internal suspension spring is given by (6)

\[
\tau = \left(\frac{8R + d}{8R - 4d} - \frac{0.615d}{2R} \right) \frac{GGL}{4rnR^2} \phi
\]

(16)

where \(G \) and \(L \) are the modulus of elasticity in torsion and the distance between the crank shaft and the spring center line, respectively.
NUMERICAL CALCULATION

As Eqs. (13) and (14) involve the non-linear torques T_m and T_s which depend on the crank angle δ_i, no analytical solution can be obtained. The following numerical procedure was used to get the solution of Eqs. (13) ~ (15) in this study.

Numerical Procedure for Starting Period

(i) Under the initial conditions at $t = 0$, the angular speed of the crank shaft is $\omega_0 = 0$, and the angular displacement and angular velocity of the compressor body are $\varphi = \varphi' = 0$, respectively. The angle of the first crank is regarded as $\delta_1 = 0$.

(ii) Simpson’s formula is applied to Eq. (13) and the 4th Lunge-Kutta method is applied to Eq. (14). Both equations are simultaneously arranged to get ω and φ.

(iii) The time step in this calculation is selected with $t = 0.001$ s, and it is further divided into 10 sub-sections for the numerical integration.

(iv) The time t_s when the change of the angular speed of the crank shaft is less than 0.1 rad/s is defined as the start-up time of the compressor.

(v) Expressing the initial conditions with the angular displacement and angular speed of the compressor body at the time t_s, Eq. (15) is solved by the 4th Lunge-Kutta method.

(vi) Substituting the angular displacement of the compressor body into Eq. (16), the transient stress of the internal suspension spring is obtained.

Numerical Procedure for Stopping Period

(i) Under the initial conditions at $t = 0$, the assumptions are made that $\omega_0 = 120$ rad/s, $\varphi = \varphi' = 0$, and $\delta_1 = 0$.

(ii) Simpson’s formula is applied to Eq. (13) and the 4th Lunge-Kutta method is applied to Eq. (14) under $T_m = 0$. Both equations are simultaneously arranged to get ω and φ.

(iii) The time step for calculation is $t = 0.001$ s.

(iv) The time t_s when the angular speed of the crank shaft becomes zero is defined as the time to get no rotating speed of the crank shaft.

(v) Expressing the initial conditions with the angular displacement and

EXPERIMENTAL PROCEDURE AND RESULTS

Hermetic Refrigeration Compressor used for Experiment

Figs. 4 and 5 show a block diagram of the experimental arrangement and a view of the experimental equipment, respectively. Table 1 gives the specifications for the hermetic refrigeration compressor which was used for this experiment. The compressor used for the experiment is provided with five-cylinders. The compressor body is supported to the vertical direction by the upper and lower springs at the center portion and to the circumferential direction by three springs at the peripheral portion. The hermetic shell of the compressor is divided into two sections and these are...
Table 1 Specifications for tested compressor

<table>
<thead>
<tr>
<th>Cylinder diameter (mm)</th>
<th>42.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke (mm)</td>
<td>25.9</td>
</tr>
<tr>
<td>Number of cylinder</td>
<td>5</td>
</tr>
<tr>
<td>Moment of inertia of compressor body (N·cm²)</td>
<td>27800</td>
</tr>
<tr>
<td>Moment of inertia of rotating portion (N·cm²)</td>
<td>931</td>
</tr>
<tr>
<td>Volume of cylinder (cm³/rev)</td>
<td>187.0</td>
</tr>
</tbody>
</table>

Connected by the flange. This construction makes easy to take out the lead wires from the strain gauges.

Fig. 6 shows a view of the strain gauges mounted on the internal suspension springs. The one-element strain gauges were so oriented on the outside surface of the spring coil to detect a normal strain proportional to the shear strain. They were bonded with an angle of 45 degrees to the spring coil axis.

Fig. 6 Arrangement for strain measurement of internal suspension spring.

Experimental Procedure

The test conditions are given in Table 2. By changing the valve settings for the cooling water and the refrigerant charge in the system, the test conditions of the compressor were adjusted to any required operating condition. R 22 was used as the refrigerant in this test. The power source voltage and frequency were 200 V and 60 Hz, respectively. In this experiment, the variations in the displacement amplitude of the compressor body were also measured under the damped free vibration. And the damping coefficient was estimated from the logarithmic decrement.

Table 2 Test conditions

<table>
<thead>
<tr>
<th>Suction pressure P1 (x10^5 Pa)</th>
<th>Discharge pressure P2 (x10^5 Pa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting</td>
<td>Stopping</td>
</tr>
<tr>
<td>7.0</td>
<td>19.0</td>
</tr>
<tr>
<td>9.2</td>
<td>9.2</td>
</tr>
<tr>
<td>5.0</td>
<td>20.0</td>
</tr>
<tr>
<td>6.4</td>
<td>28.6</td>
</tr>
<tr>
<td>2.0</td>
<td>28.6</td>
</tr>
</tbody>
</table>

Experimental Results

Fig. 7 shows a typical example of the results obtained from the measurement of the shear stress generated in the internal suspension spring during start operation. In this figure, the shear stresses were derived by substituting the measured normal strains into the following equation.

\[\tau = 2GE \] \hspace{1cm} (17)

where G and \(\varepsilon \) are the modulus of elasticity in torsion and the measured normal strain, respectively.

The signs from I to III shown in Fig. 7 represent the shear stress at the center portion of the spring. The signs from IV to VI indicate the shear stress at every other pitch from the end portion. Fig. 8 shows a typical example of the measured shear stress at two different internal suspension springs during stop operation. The signs from I' to III' shown in Fig. 8 represent the shear stress at the center portion of the spring. The signs from IV' to VI' represent the shear stress at every other pitch from the end portion. The lines with the signs from IV' to VI' shown in Fig. 8 are the data for another spring and are recorded with the reversed sign in order to distinguish the data from that of the former spring.

When the power source is supplied to the compressor, the stress variations shown in Fig. 7 are caused in the internal suspen-
These phenomena indicate that the internal suspension springs are almost evenly deformed to these axial directions. The stress variations at the end portion of the spring shown with the signs VI and VI', however, are somewhat different from those at the central portion. This may be caused by the contact of the spring coil with the spring supports at the end portions.

DISCUSSION

Torque Acting to Compressor Body

Starting Torque Variations of Motor. Fig. 9 shows the theoretical result of the starting torque-time curves when the test compressor is started under the power source with a voltage of 200 V and a frequency of 60 Hz. When the power source is supplied to the compressor under a suction pressure of 7.0×10^5 Pa, and a discharge pressure of 19.0×10^5 Pa, the starting torque is maximum at about 0.10 s. If there is no pressure difference between the suction and discharge pressures, the starting torque becomes maximum at about 0.06 s because of the reduction in the compressor loading.

Meanwhile, if the power source frequency is changed from 60 Hz to 50 Hz under the same power source voltage, the starting torque is increased by about 1.6 times as large as that in 60 Hz case. This leads to the reduction in the start-up time, thus accompanying the maximum starting torque at 0.03 to 0.05 s.

Torques by Pressure of Refrigerant and Inertia of Crank Mechanism. Fig. 10 shows the theoretical result of the torque T_s acting to the compressor body under a normal rotating speed of 3600 rpm. As can be seen...
The torque acting to the compressor body is ruled with that caused by the compression action of the refrigerant. This means that the torque caused by the inertia of the crank mechanism could be ignored. The average value of this torque variation tends to be large when both suction and discharge pressures are high. Even if the discharge pressure is high, the average torque is comparatively small under the low suction pressure.

Rotating Speed of Crank Shaft

Rotating Speed during Start Operation. Fig. 11 shows the theoretical result of the angular speed of the crank shaft when the compressor is started under the power source with a voltage of 200 V and a frequency of 60 Hz. When motor start is undertaken under such a voltage and a power source frequency of 60 Hz, the starting torque of the motor will increase to about 1.6 times as large as that in 60 Hz case. This leads to the reduction of the start-up time, shortened to about 0.05 - 0.06 s.

On the other hand, if motor start is undertaken at the same voltage and a power source frequency of 50 Hz, the starting torque of the motor will increase to about 1.6 times as large as that in 60 Hz case. As can be seen in Fig. 10, very complicated torques act to the compressor body until the rotating speed of the crank shaft reaches standstill. During this period, the angular speed of the crank shaft decreases almost constantly with increasing the time as shown in Fig. 12. Fig. 12 also indicates that the time to get the rotating speed of zero is about 0.11 s under a suction pressure of 6.4 x 10^5 Pa, and a discharge pressure of 28.6 x 10^5 Pa. It is about 0.19 s under a suction pressure of 2.0 x 10^5 Pa and a discharge pressure of 28.6 x 10^5 Pa. The time required for stop operation is almost in proportion to the average torque obtained from the torque variations shown in Fig. 10. If the compressor is under the normal rotating speed at a power source frequency of 50 Hz, the decreasing tendency in the rotating speed of the crank shaft is quantitatively similar to that in 60 Hz case.

Fig. 12 Relationship between angular speed of crank shaft and time during stop operation.

Transient Stress Produced in Internal Suspension Spring

Comparison between Theoretical and Experimental Results. Figs. 13 ~ 17 show the comparison between the theoretical and experimental results on the shear stress because the starting torque is consumed only for the increase in the rotating speed of the crank shaft.

Fig. 11 Relationship between angular speed of crank shaft and time during start operation.
produced in the internal suspension spring over a wide range of test conditions. In these figures, the variations of the shear stresses are indicated on the base that shear stresses before motor start or shut off are zero. From these results, it is clear that the theoretical results are comparatively in good agreement with the experimental results. This means that the calculation is successful to simulate the generation mechanism of the shear stress produced in the internal suspension spring. The theoretical result also shows that the effect of the damping on the shear stress is comparatively small. This leads to the conclusion that the damping coefficient in Eqs. (14) and (15) can be neglected in the practical spring design.

Transient Stress during Start Operation. When the compressor is started up under a suction pressure of 7.0×10^5 Pa, a discharge pressure of 19.0×10^5 Pa, a voltage of 200 V, and a frequency of 60 Hz, the shear stress produced in the suspension spring is in the pulsating fluctuation within the period of 0.12 s as shown in Fig. 13. When the motor is started up, both the torques caused by the motor start and the compression action of the refrigerant act to the compressor body in a step manner. This phenomenon induces the pulsating fluctuation shown in Fig. 13 in the stress variations during this period. When the rotating speed of the crank shaft reaches the normal rotating speed, they become in the equilibrium condition, accompanying no torque apparently acting to the compressor body. This phenomenon produces the completely reversed fluctuation of the shear stress because of the free vibration of the compressor body. On the other hand, if there is no pressure difference between the suction and discharge pressures, the time to get the normal rotating speed of the crank shaft is shortened to about 0.08 s. During this period, a large transient shear stress is caused in the internal suspension spring as shown in Fig. 14.

When the compressor is started up under the power source with a voltage of 200 V and a frequency of 50 Hz, the starting torque of the motor is about 1.6 times as large as that under a power frequency of 60 Hz. This induces the larger stress than that in the internal suspension spring under a power frequency of 50 Hz.

Transient Stress during Stop Operation. Comparing Figs. 15 ~ 17 with Fig. 12, it is clear that the stress fluctuation caused in the internal suspension spring during stop operation correctly corresponds to the time to get the rotating speed of zero. Namely, if the power source is turned off under a normal rotating speed of 3600 rpm, a suction pressure of 5.0×10^5 Pa, and a discharge pressure of 20.0×10^5 Pa, the torque shown in Fig. 10 acts to the compressor body within the period of 0.16 s until the compressor comes to standstill. This torque
induces the transient vibration in the compressor body and the shear stress of the internal suspension spring with the pulsating fluctuation. After the rotating speed of the crank shaft becomes zero, the vibration of the compressor body turns to the free vibration because of no external exciting torque acting to the compressor body. At the same time, the shear stress of the internal suspension spring also turns to the completely reversed fluctuation.

In the case when both the suction and discharge pressures are high, the rotating speed of the crank shaft becomes zero immediately after the second peak appears in the stress fluctuation. Thereafter, the compressor body turns to the free vibration with the large amplitude. This phenomenon is accompanied by the large stress variation, as indicated in Fig. 16. Meanwhile, if the suction pressure is low and the discharge pressure is high, the time to get standstill in the crank shaft rotation increases to about 0.19 s. In this case, three peaks appear in the stress fluctuation during this period.

Comparing Figs. 15 and 17 with Fig. 10, it is clear that the stress amplitude of the internal suspension spring is effectively ruled with the average level of torque obtained from these fluctuation torques rather than the maximum value of the torque fluctuation. In other word, if the suction and discharge pressures are high, the shear stress of the internal suspension spring is also large. Meanwhile, if the suction pressure is low, it is not necessarily large even though the discharge pressure is high. The maximum stress value of the internal suspension spring amounts to about 1.90 ~ 1.95 times as large as that obtained under the assumption that the average value of the fluctuating torque acts to the compressor body in a step manner.

CONCLUSIONS

An approximate analysis was conducted on the transient stress produced in the internal suspension spring of the multi-cylinder hermetic refrigerating compressor during start and stop operations. At the same time, experiments were carried out on the hermetic refrigeration compressor with five cylinders, and the transient stresses of the internal suspension springs were measured over a wide range of start and stop conditions. Comparing the theoretical results with the experimental results, the stress generation mechanism was discussed. The results obtained are as follows:

1. When the compressor is started up, the difference between the starting torque of the motor and the torque by the compression action of the refrigerant acts to the compressor body in a step manner. When the power source is turned off, only the torque by the latter acts to the compressor body in a step manner. These abrupt torque variations induce the transient vibration to the compressor body, accompanying the transient stress in the internal suspension spring.

2. The transient stress produced in the internal suspension spring has the close correlation with the time to get the normal rotating speed or standstill of the crank shaft. During these periods, the stresses of the internal suspension spring are in the pulsating fluctuation. After the rotating speed of the crank shaft reaches the normal rotating speed or zero, the transient vibration of compressor body turns to the free vibration, accompanying the stress variations of the internal suspension spring with the completely reversed fluctuation.

3. The stress produced in the internal
The suspension spring is almost ruled with the average value of the fluctuating torque rather than the maximum value of the torque which acts to the compressor body. This transient stress amounts to \(1.90 \sim 1.95 \) times as large as the static stress obtained under the assumption that the average torque acts to the compressor body in a step manner.

When the compressor is started up under the same power source voltage, the larger stress is produced in the internal suspension spring under a power frequency of 50 Hz than that under a power source frequency of 60 Hz. When the power source is turned off, however, the power source frequency does not influence the stress of the internal suspension spring.

From this study, it is confirmed that the current spring design is acceptable. This means that the design concept described above is in accordance with practical experience for the internal suspension spring. The design of the internal suspension spring has been largely a matter of trial and error up to date. Through this investigation, however, it is considered to be made possible to determine quantitatively the dimensions of the internal suspension spring.

This study has been conducted for a comparatively large hermetic compressor. In order to establish the general concept of the spring design, further investigations are needed to conduct for a small hermetic compressor with multi freedom for the vibration of the compressor body.

REFERENCES