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Lower Bounds on Threshold and Related 

Circuits via Communication Complexity 

V. P. Roychowdhury * K. Y. Siu t A. Orlitsky t 

Abstract 

Communication-complexity definitions and arguments are used to  derive linear 

(Q(n)) and almost-linear (Q(n/ log n)) lower bounds on the size of circuits implement- 

ing certain functions. The techniques utilize only basic features of the gates used and of 

the functions implemented hence apply to a large class of gates (including unbounded 

fan-in AND/OR, threshold, symmetric, and generalized symmetric) and to a large 

class of functions (including equality, comparison, and inner product mod 2). Each of 

the bounds derived is shown to be tight for some functions and some applications t o  

threshold-circuit complexity are indicated. The results generalize and in some cases 

strengthen results in [I, 21. 

Index Terms: Linear/Almost-Linear Circuit-size Lower Bounds; Communication Com- 

plexity; Threshold gates/circuits; Symmetric gates/circuits; Equality, Comparison and Inner 

Product mod 2 Boolean functions. 
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1 Introduction 

We describe the model, review known results, and introduce techniques and results presented 

in this paper. 

Gates, Circuits, and Complexity 

An n-variable Boolean function is a mapping 

An element of ( 1 , .  . . ,n) is a variable. An element of {O,l){"..""), viewed as a value assign- 

ment to the variables, is an input. If x is an input, then f (x)  is the corresponding output of 

f. 
An n-variable gate is a physical device computing a single n-variable function. The 

input variables of a gate can be permuted, omitted, or repeated, hence we identify the gate 

with the set of functions derived by such operations. For example, the set of functions 

implementable by a gate computing the 4-variable function (xAy)V(zAw), where A is logical 

"AND" and V logical "OR," includes functions such as (xAz)V(yAw), (xAy)V(xAy) = xAy 

and (YAY)V(YAY) = Y. 

We usually consider a set, or a family, of gates. We identify the family with the union of 

the function sets corresponding to each of its gates. 

Let G be a family of gates. A circuit whose gates are all from G is a G-circuit. The size 

of a circuit is the number of gates it contains and its depth is the maximum number of gates 

along a path from an input to an output. The G-circuit complexity CG(f)  of f is the size of 

the smallest G-circuit that computes f .  In principle, some function may not be computed by 

a G-circuit. However, every gate family considered here forms a complete basis, and hence 

CF( f )  is always defined. 

The circuit complexity of functions has many theoretic and practical applications. There- 

fore, several gate families have been extensively investigated. They include: 

AND/OR/NOT gates (AON) These gates perform logical "ANDn or "C)R" of their, pos- 

sibly negated, inputs. AND/OR/NOT gates come in two varieties: constant fan-in 

gates and unbounded fan-in gates. The bounds we prove apply to  both. 



Symmetric gates (SYM) Gates of the form g(Ci",, xi) for arbitrary binary functions g. 

These gates compute some binary function of their input sum. 

One type of a symmetric gate is a mod, gate. It computes a binary function of the 

form g((Cy=, x;) mod m) for some constant integer rn. 

Threshold gates (774 Gates of the form sgn(C2,  wixi-T) where T is an arbitrary thresh- 

old, the w;'s are integer weights, and sgn(x) is 1 if x 2 0 and 0 otherwise. 

In the analysis we distinguish between general (arbitrary weight) threshold gates and 

polynomial-weight threshold gates where the w;s are restricted to be polynomial in n. 

Generalized symmetric gates (GS)  Gates of the form g(Cy=l w;x;) for arbitrary function 

g and weights w; that are polynomial in n. 

The weights are restricted to be polynomial because every function can be computed 

by a single generalized symmetric gate with arbitrary weights. 

Note that  every AND/OR/NOT gate is also a polynomial-weight threshold gate and that 

any polynomial-weight threshold gate as well as any symmetric gate is also a generalized- 

symmetric gate. 

Related Results and Motivation 

Much research has gone into estimating CG(f) for various functions and gate families [3]. 

The strongest results apply to  bounded-depth circuits. For constant depth AND/OR/NOT 

circuits and mod, circuits (where p is prime), [4, 5, 61 established exponential-size lower 

bounds for specific functions such as the parity. For more powerful circuits, less is known. 

For example, [7] proved an exponential-size lower bound on the size of depth-2 threshold 

circuits implementing the n-variable inner product mod 2 function: 

1 if x,:, x i ~ y i  is odd, 
IP(xl , .  . . ,Xf ,y1,. . . ,yq) = 

0 otherwise. 

However, this bound applies only when the weights in the second layer are restricted to  

be polynomial. No superlinear lower bounds are known for depth-':! threshold circuits with 

exponential weights in the second layer, or for depth-3 threshold circuits with polynomial 

weights. 



For unrestricted-depth unbounded-fan-in circuits even weak lower bounds, such as linear 

or logarithmic in the number of input variables, are considered difficult to prove [3, 11. For 

example, an R(1og n) lower bound on the size of threshold circuits computing the parity of n 

bits is shown in [3]. Only recently have linear/almost-linear lower bounds been established 

for circuits with gates of unbounded fan-in. A linear-size lower bound on circuits where each 

gate computes a commutative and associative function, was given in [8]. However, the family 

of gates is too restrictive to apply to symmetric or threshold circuits. 

Recently, [I] established an R(n/ log n) lower bound on the size of symmetric-gate circuits 

computing the n-variable equality function: 

1 i f z ; = y ; f o r a l l l L i ~ ~ ,  
EQ(xll. . . l x f l ~ l ~ '  ' ~ f  ) = {  

0 otherwise. 
Novel techniques such as analytic-function interpolation of Boolean functions and the differ- 

ential dimension were used. More recently [2] proved a linear lower bound (7114) on the size 

of arbitrary-weight threshold circuits computing the n-variable IP . 

Techniques and Results in this Paper 

Using communication-complexity concepts and techniques, we derive linear and almost-linear 

lower bounds on the size of circuits implementing certain functions. This approach utilizes 

only basic features of the gates used, hence the bounds hold for general families of gates 

of which the symmetric and threshold gates considered in [I, 21 are special cases. Thus 

communication complexity arguments serve to generalize known lower bounds and unify 

their proofs. 

In the next section we define the decomposition number and the largest monochromatic 

rectangle of a function. These are simple attributes that have proven useful in analyzing the 

communication complexity of various functions. 

In Section 3 we consider polynomially-rectangular gates. These gates, which include 

symmetric, generalized symmetric, and polynomial-weight threshold gates, compute func- 

tions with small decomposition numbers. We show that functions computed by small-size 

circuits of polynomially-rectangular gates have small decomposition numbers. It follows that 

functions with high decomposition numbers require large circuits. We then use some effec- 

tive techniques that have been developed to lower bound decomposition n.umbers to prove 

almost-linear lower bounds on the circuit complexity of several functions. 



In Section 4 we strengthen the results for triangular gates. These gates, which include 

all threshold gates, compute functions with large monochromatic rectangles. We show that 

any function computed by a small circuit of triangular gates contains a large monochromatic 

rectangle. Therefore, functions with only small monochromatic rectangles require large, in 

some cases linear-size, circuits. 

We illustrate the results using the equality and the inner product mod 2 functions defined 

earlier in this section. The bounds we derive imply: 

1. Any implementation of n-variable EQ or IP by generalized symmetric gates requires 

about n/  log n gates. Namely, if the weights are bounded by nk, then 

1 n log3 n 
2 Ccs(EQ), Ccs(1P) 2 ~ l o g n  . 4(k + 1) log n 

2. Any implementation of n-variable EQ or IP by symmetric gates requires at least 

gates: 

3. Any implementation of n-variable EQ or IP by AND/OR/NOT gates requires about 

n gates: 
n 

2 log 3 
5 C*onr(EQ) , CAON(IP) 5 2n . 

4. Any implementation of n-variable IP by threshold gates requires about n gates. 

Both upper and lower bounds apply to arbitrary- and polynomial-.weight threshold 

circuits. 

Note that the bounds in (I) ,  (2), and (3) are tight up to a small multiplicative factor. 

Related to EQ is the n-variable comparison function: 

1 if r,tl 2'x; 2 rEl Pp;, COMP(x1,. . . ,xg, 31,. . . , y f )  = 
0 otherwise. 

Although we do not discuss COMP explicitly, it shares the same size bounds as EQ . 



2 Communication Complexity Arguments 

As before, let f : (0, 1){1'.'.7n' + {0,1) be an n-variable Boolean function. Recall that an 

element of {l , .  . . ,n) is a variable and an element of 10, 1){1'+.'7n' is an input. If X is a set of 

variables then an element of { O , l ) X  is a value assignment to the variables in X and is called 

an X-input. 

Let {X, Y)  partition the set of variables (XUY = (1,. . . ,n) and XUY == 0). An X-input 

x together with a Y-input y correspond in an obvious way to an input which we call the 

joint input and denote by (x, y). In the same way, the set of all inputs corresponds to the 

Cartesian product (0, llX x { O ,  llY. We can therefore associate with the function f and 

the partition {X, Y)  a matrix Mf,X,y. It has 2Ix1 rows, each indexed by an X-input, 21YI 

columns, each indexed by a Y-input, and 

An {X., Y)-rectangle is a Cartesian product A x B where A is a set of X-inputs and B is 

a set of Y-inputs. The  sire of the rectangle is IAl- I B(,  the number of inputs it contains. An 

{X, Y)-decomposition is a partition of (0, 1 l X  x { O , 1 )  into {X, Y)-rectangles. The sire of 

the decomposition is the number of rectangles in the partition. A set of inputs is f-constant 

if f assigns the same value to  all its elements. An f-constant {X, Y)-decomposition is an 

{X, Y)-decomposition whose rectangles are all f -constant. 

Rectangles play a major role in the following communication complexity problem. As 

before, let f be an n-variable Boolean function and {X, Y) a partition of the variables. 

A person Px knows an X-input, a person Py knows a Y-input, and they communicate 

according to a predetermined protocol in order to find the value of f on their joint input. 

We are interested in e(f, X, Y), the number of bits Px and Py must transmit for the worst 

input. 

As shown by [9], 

1. Every protocol induces an {X, Y)-decomposition. 

2. If the protocol always produces the correct answer, this decomposition is f-constant. 

3. The number of bits required by the  protocol for the worst input is a t  least the logarithm1 

'All logarithms are to  the base 2. 



of the size of the decomposition. 

Let pf,x,y be the smallest size of an f-constant {X, Y)-decomposition. From the above, 

a/, x, Y) t 1% Pf,X,Y . (1) 

Aho, Ullrnan, and Yanakakis [lo] showed that this bound is not far from being tight: 

d ( f ,  x ,  Y) 5 log2 Pf,X,Y - 

For that reason, several simple methods were introduced to  lower bound pf,x,y for arbi- 

trary f ,  X ,  and Y. 

Largest f -constant rectangle 

Let L f,X,Y be the size of the largest f -constant {X,  Y)-rectangle. Clearly, 

Fooling set 

An f-constant subset S of (0, llX x {O,l) is an {X,  Y)-fooling set if (xI ,  yl), (x2, yz) E 

S implies that either f (xl  , y2) or f (xz, yl) differs from the common -value of f over S. 

Let Ff ,X,Y be the size of the largest {X, Y)-fooling set. An f -constant {X, Y)-rectangle 

contains a t  most one element of a given {X, Y}-fooling set, hence: 

Rank 

The matrix representing the indicator function of a rectangle has rank 1, and ranks are 

suba.dditive under matrix addition. Melhorn and Schmidt [ll] concluded that under 

any field 

Pf,X,Y 2 rank(Mf*x,y) . 

In our applications, we can choose the most advantageous partition of the input variables. 

We therefore define the decomposition number of f ,  

pf gf m a ~ { p ~ , ~ , ~  : {.Y, Y) partitions (1, .  . . ,n)) , 

to be the number of rectangles needed in the variable partition that yields the strongest 

bound in i(1). We use the methods above to  lower bound the decomposition number of our 

two functions. 



E x a m p l e  1 We show that the decomposition numbers of both EQ i ~ n d  IP are larger 

than 21. In the following, X = (1, . . . , f )  and Y = {f + 1 , .  . . ,n}. Every ;-bit sequence 

corresponds in an obvious way to an X-input and to  a Y-input. We can therefore talk about 

the joint input (x, x) where x E {O, I )? .  

Equa l i ty  The set {(x, x) : x E { 0 , l )  f ) is an {X, Y)-fooling set of size 2 f ,  implying that 

~ E Q , X , Y  > 2 f .  In fact, p,, = ~ E Q , X , Y  = 2ff1. 

I n n e r  p r o d u c t  m o d  2 MIp,X ,y  has full rank over the reals, hence p ~ p  > 23. 

3 Rectangular gates 

The last section was motivated by the notion that a function with a high decomposition 

number is "complicated." To show that computing such a function requires many gates, we 

now show that the gates used are "simple," that is, they can be decomposed into a small 

number of' rectangles. 

A function f is r-rectangular for some integer r if for every variable partition {X, Y)  

there is an f -constant {X, Y)-decomposition consisting of at most r rectangles. Namely, if 

Let p : 2+ -+ 2. A family G of functions is p-rectangular if for every m 5 n, all m- 

variable functions in G are p(n)-rectangular. The family is polynomially-rectangular if it is 

prectangular for some polynomial p. These definition apply to gates and families of gates 

via their underlying functions. The next lemma, its simple proof omitted, provides a basic 

tool for proving that a function is r-rectangular. 

L e m m a  1. Let f be a Boolean function and let {X, Y)  partition the set of variables. If 

f (x, y) car1 be expressed as h(gl(x), g2(y)) then 

where Jg; 1 is the size of the range of gi. 0 

To prove t,hat a function is r-rectangular we apply the lemma to  all possible partitions of 

the variables. 



Example 2 We show that the gate families mentioned in the introduction are polynomi- 

ally rectangular. In the following, {X, Y)  is an arbitrary partition of (1, . . . ,n). 

AND/OR/NOT gates 

hence the lemma implies that every AND gate is 4-rectangular (three rectangles suffice). 

The  same holds for NOT gates. 

Symmetric gates 

hence 

Generalized symmetric gates 

f (x7 y) = h ((C WiXi + (C wixi 
iEX iEY 

where the wj7s are bounded by some polynomial p(n). The first sum attains a t  most 

( I  X I + 1) p(n) values and likewise for the second, hence f is (: + s p 2  (n)-rectangular. 

It follows that the family of generalized symmetric functions (and in particular, of 

polynomial-weight threshold circuits) is polynomially rectangular. 

Lemma 2 Let G be a prectangular family of gates. If an G-circuit consisting of k gates 

computes an n-variable function f, then 

Proof: Order the gates in the circuit so that if i < j then gate i does not follow gate 

j. Let g j  denote the function computed by gate j. We prove by induction on j that the 
def vector-valued function Gj = (gl,g2,. .  . ,gj) has p c , , ~ , ~  5 (p(n))j for all variable partitions 

{X, Y).  The lemma will follow. 

The induction basis holds by definition; suppose it holds for j, and consider the ( j  + 1)st 

gate. Let {X, Y)  be a variable parti tion. There is a Gj-constant {X, Y )-decomposi tion 



consisting of a t  most (p(n))J rectangles. Let R be a rectangle in this decomposition. Over 

R, all of gl, . . . ,gj are constant, hence the (j + 1)st gate coincides with a p(n) rectangular 

function of the original variables. Therefore R can be partitioned into p(n) Gj+l-constant 

{X, Y) rectangles, and the induction step follows. 

Corol1ar:y 1 Let G be a prectangular family of gates. For every n-variable function f ,  

We apply the corollary to lower bound the number of gates needed to implement our two 

functions. 

1. For circuits consisting of AND, OR, and NOT gates: 

2. For circuits consisting of-generalized symmetric gates: 

More specifically, if the weights are bounded by nk,  then 

1 n log3 n 
5 Ccs(EQ), Ccs(IP) 5 ~ l o g n  . 4(k  + 1) log n 

3. For circuits consisting of symmetric gates: 

Proof: All six lower bounds follow from Corollary 1 as both EQ and IP have decomposition 

numbers of a t  least 2f. The upper bounds in (1) follow from a simple construction. To prove 

the upper bounds in (2) we implement EQ as a depth-2 threshold circuit, yielding a simple 

circuit with slightly more gates than the upper bound. We implement IP as a depth-3 

generalized symmetric circuit (the next section shows it cannot be impleinented using less 

than n threshold gates). 



Let m = 2 Lk log n]. Clearly, m-variable COMP can be written as 

thus can he implemented by a single threshold gate with weights of at rnost nk. For i = 

1, .  . . ,m/ in l ,  let xi = x(i-l)m/2+1,.. . , ~ i . ~ / 2  and yi = y(i-l).,/z+l,. . . , ~ i . ~ / : z .  Then, 

. . 
EQ(x', y') = COMP(X', y') + COMP(~ ' ,  x i)  - 1 . 

Hence, m-variable EQ can be implemented by a depth-2 threshold circuit with weights of at 

most nk and where the top gate is just a weighted sum of the first-level oiltputs (without a 

threshold). Finally, observe that 

Since any AND is just the sum of its variables with an appropriate thi:eshold, this gate 

can be combined with the second layer above to derive a depth-2 circuit for EQ of size 

2 b / 2 k  lognl + 1. When generalized symmetric gates are used instead of threshold gates, 

the number of gates can be reduced to b / 2 k  log nl + 1. 

When trying to meet the lower bound for IP, we cannot use threshold gates as we did for 

EQ. The next section shows that any threshold circuit for IP (even with exponential weights) 

has at least linear size. Yet, we can use the circuit structure applied to EQ. Every (k log n)- 

variable function, in particular IP(xl, . . . ,xklogn/2, y1, . . . ,yklognI2), can be computed by a 

single generalized symmetric gate with weights of a t  most nk.  Use b / k  log nl generalized 

symmetric gates to compute the partial IP's, then use a single (symmetric) gate to compute 

their parity. 17 

A note on COMP : Equation (2) shows that n-variable COMP can be computed by a 

single threshold gate with exponential weights. However, if the weights are polyno- 

mially bounded, then as noted in the introduction, the lower bound on EQ can be 

modified to  show that CGs(COMP) 2 R(n/ log n). Thus a single th:reshold gate with 

polynomial weights cannot compute COMP . We next show that the lower bound can 

be met by a depth-3 polynomial-weight threshold circuit. It is not kriown whether the 

lower bound can be met by a polynomial-weight threshold circuit of depth two. 



Let m = 2rlognl. For i = 1, .  . . , rn /ml ,  let 

ci = sgn 1 C 2j(xj - y,)) , 
=(i-l).m/2+l 

and 
i.m/2 

Ci = sgn C 2'(xj - y,) - 1 
j=(i-l).m/Z+l 

Note that both Ci and Ci can be computed with threshold gates of polynomially 

bounded weights. Further, 

and 
i.m/2 i.m/2 

ei = 1 iff C 2jxj > C 2jyj 
j=(i-l).m/2+l j=(i-l).m/2+1 

Defirie Boolean expressions 

Brn/ml = Crnlml 

rn/m1 
Bk = ek A Cj for k =  2, ..., [n/ml - 1 

j=k+l 

b/ml 
and B1 = A C, 

j=1 

It is straightforward to see that 

The first layer of our circuit for the COMP function has O(n/  log n) gates computing 

the C: and 6;. With these computed values as inputs, the second layer has O(n/ log n) 

gates each computing the Bj. Finally the output gate computes the (3R (V) of all the 

Bj7s. The total number of gates is O(n/ log n). 

4 Triangular Gates 

A matrix iis strictly triangular if all its rows and columns are nondecreasing. In a strictly 

triangular Boolean matrix, the sets of 1's and 0's resemble a (possibly truncated) triangle, 



hence the name. A matrix is triangular if its rows and columns can be permuted so that the 

resulting matrix is strictly triangular. 

Lemma 3 (Alternative Definition) A binary matrix is triangular if and only if it contains 

no 2 by 2 rectangle of the form 

(recall that a rectangle need not be contiguous). 

Proof: Row and column permutations preserve this non-containment property, so "only 

ifn is clear. For the other direction, permute the rows so that the number of 1's in each 

row is non decreasing, then permute the columns so that the number of 1's in each column 

is non decreasing. The resulting matrix is strictly triangular for if in some column a 1 

appears above a 0, then, as the numbers of 17s does not decrease with the rows, there must 

be another column where in the same locations a 0 appears above a 1, contradicting the 

non-containment assump tion. 

Some :properties of triangular matrices are apparent: 

1. Evexy submatrix of a triangular matrix is triangular. 

Proof: Obvious by either definition. 

2. Every triangular matrix contains a constant rectangle of 1/4 the size. 

Proof: Permute the rows/columns till you get a strictly-triangular matrix. Consider 

the mid point (x, y). If the (x,  y)th element of the matrix is 0 then the rectangle above 

and to the left of (x, y) is all 0, otherwise, the rectangle to the right and below (x, y) 

is all 1. 

3. Every submatrix of a triangular matrix contains a constant rectang1.e of 1/4 its size. 

Proof: Combine properties 1 and 2. 

An n-variable function f is triangular if I W ~ , ~ , ~  is triangular for all { X ,  Y)-partitions of 

the variables. A family of functions is triangular if all the functions in the family are. The 

definition applies to gates and families of gates via the underlying functiolns. 



Example 3 ([2]) Threshold gates (and in particular AND and OR gates) are triangular. 

We use the Lemma 3. Let f (x,  y) = sgn(C uix;+C v; y;). Suppose that f (x, y) = f (s t ,  yt) = 1 

and that f (x, yt) = f (xt, y ) = 0. Then C u;x; + C viy; > C uixi + C v; yf while C uix: + 
C viy; < u;x: + C viyf. Impossible. 

Recall that L f,x,y was defined to be the size of the largest f-constant {X, Y)-rectangle. 

Define L to be L ,x,y for the most advantageous partition of the variables: 

Lf gf min{Lj,x,y : {X,Y)  partitions (1,. . . ,n} } 

Lemma 4 If a circuit consisting of k triangular gates computes a function f then 

Proof: As in Lemma 2, order the gates in the circuit so that if i < j then gate i does 

not follow. gate j. Let gj denote the function computed by gate j .  We prove by induction 

on j that the vector-valued function Gj !?if (g1,g2,.. . ,gj) has Lg,x,y 2 $ for all variable 

partitions {X, Y). The lemma will follow. 

The induction basis holds by property (2) above. Suppose it holds for j ,  and consider 

the ( j  + 1)st gate. Let {X, Y)  be a variable partition. By induction hypothesis, there is a 

Gj-constant {X, Y)-rectangle R of size 2"/4" Over R, the outputs of the first j gates are 

fixed, hence the input to the ( j  +l)s t  gate varies only with the original inputs. It follows that 

over R the ( j  + 1)st gate coincides with a triangular function whose inputs are the original 

inputs. By property (3), there must be a subrectangle of R of size > I R)/4  over which the 

( j  + 1)st gate has a constant output. 

Corol1ar;y 3 For every function f and every family S of triangular gates, 

n - log Lf 
C,(f) 2 2 

. 

Example 4 Let X = (1, . , . ,;) and Y = {: + 1, . . . ,n). Lindsey [12] showed that the 

largest IP-constant {X,  Y)-rectangles are of size at most 2:. Hence 



The bound on CrN(IP) is asymptotically tight too. A simple dept h-3 circuit computes IP 

using Qn 4- 1 polynomial-weight threshold gates. In a sense, this circuit is depth optimal too. 

[7] showed that every depth-2 threshold circuit for IP has exponential size if the weights at 

the seconcl layer are polynomial. It is not known whether there is a polynomial size depth-2 

threshold circuit for IP when exponential weights are allowed at the second layer. 

5 Application To Threshold Circuits 

We briefly discuss some applications of the results and techniques discussed in the previous 

sections to threshold-circui t complexity. 

Depth-Weight  Tradeoffs in Threshold  Circui ts  

Recent results [13] have shown that any depth-d threshold circuit (with arbit#rary weights) can 

be simulated by a dept h-(d + 1) polynomial-weight threshold circuit with only a polynomial 

factor increase in size (for fixed d). However, no upper- or lower-bounds have been shown 

for the degree of this polynomial. 

One can implement the n-variable EQ using only 3 threshold gates in depth-2. Yet 

Corollary 2 gave a lower bound of R(n/ log n )  on the size of any polynomial-weight threshold 

circuits for EQ . We therefore have: 

Corollary 4 There are n-variable functions whose polynomial-weight threshold-circuit 

complexity (regardless of depth) is at least n/  log n times larger than their unrestricted- 

weight depth-3 threshold-circuit complexity. CI 

Weighted-Sum ga tes  

In our discussions, we often observed that the output gate of a given threshold circuit does not 

always require the sgn function usually associated with a threshold gate. A gate that com- 

putes a linear combination C wix; of its inputs (without taking a threshold) is a weighted-sum 

gate. No explicit function is known that requires super-polynomial size when implemented 

by a depth-2 arbitrary-weight threshold circuit with a weighted-sum gate at the output. 

This is a special case of the more difficult open problem of proving that some given function 

requires super-polynomial size when implemented by a depth-:! arbitrary-weight threshold 

circuit (with a threshold allowed in the output gate). We prove a partial result regarding 

weighted-sum gates in the context of the equality and other related functions. 



As mentioned earlier, the n-variable EQ can be implemented by a depth-2 circuit con- 

sisting of 2 threshold gates with exponential weights in the first layer and a weighted-sum 

gate in the second layer. We show that any circuit for EQ that consists of polynomial-weight 

threshold gates at the first layer and of a weighted-sum gate at the second layer (possibly 

with exponential weights) has exponential size. 

Lemma 5 Suppose that a depth-2 circuit consisting of p(n)-rectangular gates in the first 

layer and a weighted-sum gate (possibly with exponential weights) at the output computes 

the n-variable EQ. Then the size of the circuit is at least 2?lp(n). 

Proof:  Let g,, . . . ,gk be the output functions of the k gates in the first layer of the circuit. 

Consider the 'natural' partition X = {I,. . . ,:) and Y = {: + 1,. . . ,n) of the input variables. 

Since the output function is a weighted sum of 9;'s we have 

By subadditivity of ranks, 

But 

and for all. i E (1, . . . ,k), 

The 1emm.a follows. 

Corol lary  5 Suppose that a depth-2 circuit consisting of polynomial-weight threshold 

gates in the first layer and a weighted-sum gate (possibly with exponential weights) at the 

output, computes the n-variable EQ. Then the size of the circuit is R(24-') for every t > 0. 

Proof :  Example 2 implies that any threshold gate with weights bounded by p(n) is (; + 
l)2p2(n) rectangular. 

The above result holds for all functions f, (e.g., COMP ) for which rank(MjTxVy) is 

exponentially large for some partition {X, Y} of the input variables. 



6 Concluding Remarks 

Several problems remain unresolved. 

1. The best symmetric-gates lower bounds for EQ and IP are R(n/  log n )  while the best 

upper bounds are linear. 

2. Is there a two-layer polynomial-weight threshold circuit for COMP that meets the 

lower bound of R(n/  log n)? 

3. The set of polynomially-rectangular gates, introduced in Section 3, includes the set of 

generalized symmetric gates. Are the two sets the same? Similarly the set of triangular 

gates, introduced in Section 4, includes the set of threshold gates. Are these sets the 

same? 



APPENDIX 

A lower bound on the Differential Dimension of Boolean 

Functions 

Smolensky [l] used the differential dimension of Boolean functions to lower-bound symmetric- 

circuit complexity. In this paper we used communication-complexity arguments to simplify 

the proofs. We now show that similar communication-complexity arguments can be used to 

lower bound the differential dimension of Boolean functions 

Let S be a finite set of points in the n-dimensional complex vector space Cn. Let V 

denote the space of functions from S to C. 

Differential Dimension 

The differential dimension of an analytic function g : C" + C over S is the dimension of the 

subspace of V spanned by the restrictions to S of g and all of its partial derivatives. 

Since we are concerned with functions that interpolate Boolean functions, we assume 

without loss of generality that S = {O, 1}{1'...7n). 

Differential Dimension of Boolean Functions 

The differential dimension of a Boolean function f : {0,1} {l'...'n) + {O, 1) is the minimal 

differential dimension over S = {0,1} {1'..'9n) of any analytic function g : Cn + C that 

interpolates f .  

Let g : Cn + C be an analytic function and let v E Cn. The shifted function g, is defined 

by: g,(x) == g(x - v )  V x E Cn. 

Proposition 1 ([I]) The subspace of V spanned by all the partial derivates of all orders 

of g restricted to S coincides with the subspace of V spanned by all the shifts of g restricted 

to S. 

Thus if g interpolates a given Boolean function f ,  then the dimension of the space spanned 

by the shifts g, for all v E S = {O, 1}{17...7n) lower bounds the differential dimension of g. 

Any function g restricted to the set S = {O, 1}{'"..'") can be viewed as a 2"-dimensional 

vector in Cn; each coordinate of the vector is the value of g at a distinct point in S. For any 

vi E S ,  we shall represent the shift g ,  restricted to S as  a 2"-dimensional vector, and denote 



it as gv,,s. Then the dimension spanned by the shifts g,, ,g,,, - . -  ,g,,, v; E S ,  is the of 

the following 2" x k matrix: 

[gVl,s gyps ' .. gvks] ' 

Lemma 6 Tbe differential dimension of a Boolean function f is C!(r), where 

r = max{rank ( M f , ~ , y )  : { X ,  Y )  partitions ( 1 , .  . . , n ) )  

Proof: :Let { X ,  Y )  partition ( 1 , .  . . , n )  and let M f V X , y  be the corresponding function ma- 

trix. Choose k = rank ( M f , x V Y )  linearly independent columns of M f x y ,  and let { y l ,  y2, - - . , y k )  

be the set of Y-inputs corresponding to the chosen columns. Let g ( x ,  y )  interpolate f and 

c~nsider  the following k shifts: g ( ~ , - ~ ,  ), g ( ~ , - ~ ) ,  - - .  , g ( ~ , - ~ ~ ) .  One can show the following for 

the shifts g(o,-,), restricted to S = {O, l)tlq...'nl. 1 )  g(o,-y,)(x,O) = ~ ( x , Y ; )  = f ( x ,  pi), is 

known for every x E {O,1Ix  and the values of g(o,-yi)(x,  y )  might be undetermined if y # 0;  

2 )  If the entries of the vector g(o,-y,),s are arranged so that the first 2Ix1 entries correspond 

to (4 E { 0 , 1 )  {l,...,nl , then in the following 2" x k matrix 

the sub-matrix defined by the first 2Ix1 rows are the k linearly independent columns (cor- 

respondin,g to Y-inputs ( y l ,  . , y k )  chosen from MfYx,y .  Thus rank (Yk) = k. Hence by 

Proposition 1, the differential dimension of any function g interpolating the Boolean func- 

tion f is II(rank ( M t , x , y ) ) .  o 

The above result implies, for example, that the differential dimensions of the n-variable 

EQ and C!OMP are R(2"''). 
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