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ABSTRACT 

The iterative interlacing error diffusion (IIED) technique consists of th,e combination 

of the error diffusion (ED) and the modified iterative interlacing (IIT) techniques to 

synthesize computer-generated holograms. The IIED technique leads to a fiairly dramatic 

improvement in the quality of reconstructed images provided that the two constant 

parameters involved in iterations are properly chosen. 

I .  INTRODUCTION 

The error diffusion(ED) method originally introduced by Floyd and s;teinbergl as a 

halftoning technique has been successfully applied to a number of applications. Hauck and 

~ r ~ n ~ d a h l ~  were the first to realize the applicability of ED to computer holography. 

Compared with iterative approaches such as the direct-binary-search3 (DBS) and 

projections onto constraint sets4 (POCS), various type$-7 of ED algorithrr~s have shared 

the sarne major advantage of faster computation. On the other hand, for continuous or 

finely quantized amplitude or phase holograms, better performance is gene:rally obtained 

with iterative procedures. 

A stagnation problem8 restricts the application of the POCS method in designing 

holograms with quantized amplitudes or phases. wyrowski7 attempted to solve this 

proble~m by stepwise introduction of quantization constraints. The total cornputation time 

with this modification is increased ,say, approximately ten times if a ten-step quantization 

per iteration is used. A recent approach called the iterative interlacing technique9 (IIT) 

avoids the stagnation problem and gives excellent results without increasing computation 

time. 

In this article, a new approach which combines the iterative interlacing technique 

and error diffusion is discussed to permit the preservation of the advantages of both 

methods while reducing their shortcomings and avoiding the stagnation problem. The 

resulti,ng technique is referred to as the iterative interlacing error diffusion (IIED) technique. 



In the following sections, the holograms to be discussed are Fourier holograms. In 

Fourier transform holography, the front and the back focal planes of a lens are used as the 

hologriim and the image planes. Then, the transformation between the two planes is 

essentially the Fourier transform, which is approximated in numerical computations by the 

discrete Fourier transform (DFT). Hence,we will describe the algorithms in the following 

sections in terms of discrete-space signals and discrete-space transforms. 

The paper consists of six sections. Section 2 discusses the IIT technique and a 

particular modification of it, which is used in the IIED technique in Section 4. Section 3 

briefly describes ED algorithms. The IIED technique is introduced in Section 4. The 

computer experiments showing the effectiveness of the IIED technique as compared to the 

IIT ancl the ED techniques are presented in Section 5. Conclusions are reached in Section 6. 

11. ITERATIVE INTERLACING TECHNIQUE 

The IIT approach9, which has been conceptually described as hierarchically 

design:ing and interlacing a number of holograms to add up coherently to a single desired 

recons~ruction, proves to be very effective in reducing reconstruction error and speeding up 

the corlvergence time. Each subsequent hologram is designed to reduce the reconstruction 

error obtained previously. 

In this article, we will consider interlacing two holograms with the ge:ometry shown 

in Fig. 1. The first hologram is designed for the odd-numbered rows of the total hologram 

and the: second hologram is designed for the rest. Let X(n 1 ,n2) be the desired object image, 

and Xrecl(n 1 ,n2) be the reconstructed image generated by the f is t  hologram,. The resulting 

error irnage can be written as 

E 1 (n 1 ,n2) = X(n 1 ,n2) - h 1 Xrec 1 (n 1 ,n2) (1) 

where h l  is a scaling factor. The technique of computation of h 1 is discussed in Ref. [9]. 

The second hologram is then designed to reconstruct El (nl ,n2)jhla If the second hologram 

were perfect, the sum of the two reconstructions would be equal to X(nl,n2)jhl, which 



differs from the desired image only by a scaling factor. This being not case,the total 

recons~mction yields an error image given by 

E2(n 1 ,n2) = X(n 1 ,n2) - h 2 (Xrec 1 (n 1 ,n2) + Xrec2(n 1 ,n2)) 

where :'<rec2(n 1 ,n2) is the reconstructed image generated by the second hologram, and h 2 

is the scaling factor associated with the total reconstruction after the second hologram is 

designed. This completes the first sweep of designing the two holograms. In the second 

sweep, E2(nl ,n2) is circulated back to the first hologram to reduce the reconstruction error 

further. In the previous paperg. this was done by modifying the desired image for the first 

h010g~ rim as 

X2,l (n 1 ,n2) = Xrec 1 (n 1 ,n2) + E2(n 1 ,n2)/h 2 (3) 

and the desired image for the second hologram as 

X2,2(n 1 ,n2) = Xrec2(n 1 ,n2) + E2, i (n 1 ,n2)/h 2,1 (4) 

where E2,l (n 1 ,n2) and h 2,1 are the new error image and the scaling fact'or for the first 

hologram,respectively. Similar procedures of modifying the desired im,ages are then 

applied in the subsequent designs. This process is continued for a number of sweeps until 

convergence or some error criterion is met. The implementations together with the DBS and 

the POCS algorithms have been shown9 to decrease the reconstruction error steadily. 

A modification of the IIT technique to obtain further improvement consists of 

updating Eqs. (3) and (4) as follows: 

Xi, 1 (n 1 ,n2) = p xi-  1 , I  (nl ,n2) + Ei- 1,201 1 ,n2)/ h i- ],2 (5  

Xi,2(n 1 ,n2) = P Xi- 1,2(n 1 ,n2) + Ei, 1 (n 1 ,n2)/ h i, 1 (6) 

where Xi,l (n 1 ,n2) and Xi- 1 , l  (nl ,n2) are the desired images for the first hologram in the 

ith ant1 (i- 1)th sweeps, respectively; Ei-1,2(n l,n2) , h i- 1,2 are the total reconstruction 

error imd the normalization constant after the design of the second hologram in the (i- 1)th 

sweep,respectively; P is a weighting factor between the previous inputs a.nd the desired 

correction terms.The terms Xi,2(n 1 ,n2), Ei, 1 (n 1 ,n2), and h i, 1 are similarly defined. It is 

the modified IIT technique which is mostly used in Section 4. Similar procedures of 



modifying the input image to improve the performance and speed of convergence of 

iterative procedures were used by ~ i e n u ~ l O  for the problem of recovering phase from 

intensity measurements, following the argument that a small change of the (desired image 

results :in a change of the reconsmcted image in the same general direction as the change of 

the desired image. 

111. ERROR DIFFUSION ALGORITHMS 

In general, the ED algorithms can be applied to the design of both real valued2 and 

comple:x-valued7 computer-generated holograms. In this article,only real binary holograms 

will be considered. Assuming the values of the pixels have been normalized between 0 and 

1, Fig. 2 illustrates an example of the sequential binarization process. The first pixel Hi is 

clipped by the hard-limiter having threshold T as shown in Fig. 3, yielding a binary value 

B 1 (0 or 1) and an error E 1 defined as 

El = H I  - Bl (7) 

This error is then added the next pixel. The same procedure is repeated with all the 

following pixels. 

The modified versions of the ED algorithm use the same scheme, anti differ only in 

their ways of distributing error. By properly choosing the direction of the error 

diffusi80n,one can separate the noise clouds from the desired image field reascsnably well. 

M. ~roja,ect.l l showed that the stability of ED methods depends on the choice of 

the weighting factors. When each generated error is diffused only to the next following 

pixel viith a diffusion coefficient w, the process can be described as 

where 0 I H m  5 1; 0 I T I l;f(.) is the hard-limiter, and T is a constant threshold. 

The error Em associated with the mth pixel can then be rewritten as 



In the case of instability, since - 1 <= (Hm - Bm) <= 1, we can assume that the absolute 

value of Em becomes much larger than 1, and obtain 

Depending on the sign of w , there are two different types of instability. A positive w ( w > 

1) leads to a monotonously increasing or decreasing error which depends on the sign of El 

while a negative w (w < - 1) leads to an increasing, oscillating error. In general, lwl < 1 is 

sufficient to limit the value of Em. For this reason, o less than 1 is used in the computer 

experiments described in Sec. V. 

I V .  ITERATIVE INTERLACING ERROR DIFFUSION 

By combining the iterative interlacing and the error diffusion techniques, we can 

achieve improvement i n  performance with reasonable computation time. A one- 

dimensional version of the ED algorithm as described above is adopted here to code the 

hologram, due to its strong capability of reducing reconstruction error6 and its 

compatibility to IIT. 

Real-valued holograms are realized by using Hermitian symmetry. We divide the 

image plane into four quadrants as shown i n  Fig. 4. Two quadrants contain the desired 

image and its Hermitian image surrounded with zeros, and the other two quadrants contain 

only zeros. This is required for two reasons. First, in order to satisfy the sampling 

theorem and to avoid overlapping the object with the unwanted terms, espe:cially a strong 

DC peak ,its twin image and noise from higher diffraction orders , e:rror diffusion 

techniques require the object to be surrounded by zeros in a larger data field, and to be 

shifted from the center by a large enough offset.. Secondly, the interlacing technique needs 

the two quadrants which do not contain the object images to be zero. This cam be explained 

as follows: 



Let a hologram H(kl,k2) have a corresponding Fourier domain image X(nl,n2). 

Followiing the interlacing concept described in Sec. 2, we define an odd-row hologram 

H'(k1 ,k2) of H(k1 ,k2) as 

H1(kl,k2)=H(kl,k2) f o r k l o d d  (13) 

= 0 otherwise 

which can be rewritten as 

H1(kl,k2) = 0.5((-llkl + l)H(kl ,k2) 

Its corresponding Fourier domain image X'(n 1 ,n2) can then be expressed as 

X1(nl ,n2) = 0.5(X(nl,n2) + X(nl+N/2,n2)] (1 5) 

i.e., the: Fourier domain image corresponding to Ht(kl,k2) is the sum of X(nl,n2) and its 

shifted version. With zero quadrants, this overlapping will not cause any distortion in the 

image quadrant and its Hermitian quadrant except for a scaling factor. Similar results can be 

obtaine:d for even-row holograms. 

In particular,when the desired image occupies only a portion of the image quadrant, 

as shown in Fig.S(a) surrounded with zeros, the corresponding odd-row and even-row 

h~logr~ams have an undisturbed image i n  the same position, as shown in Fig.S(b) and 

Fig.S(c). In all three cases of Fig.5, despite half the object fields are different, the 

amplitude freedom of the background surrounding object fields initialized with zeros is the 

same. Hence, it is reasonable to believe that, in tem-rs of reconstruction er-ror associated 

with the desired image, similar results from ED might be obtained for all thiree cases. This 

implies that holograms corresponding to the first case generated by ED may (contain a high 

degree of redundancy. In other words, by using odd rows(or even rows) alone, one can 

have a comparable result to the one generated by designing all rows togetlher. Then, one 

can us'e not yet designed rows as extra parameters to reduce the recon!;truction error 

further. By this reasoning, we expect that the IIED technique should outplerform the ED 

technique alone. 



In the following procedure of the IIED technique, the index i is used to specify the 

number of sweeps, and the index j equal to 1 or 2 is used to distinguish the tvvo holograms. 

The algorithm starts with initializing the desired image X(nl,n2) , sets i == 1, j = 1 and 

computes the following: 

1. In the ith sweep,the quadrant image X i,j(nl ,n2), which the jth hologram is designed to 

reconstruct, is updated according to 

X i,j(nl,n2) = X(nl,n2) i = 1, j :=I 

= X(n l,n2)/ h i j - Xrecl(n 1 ,n2) i = 1, j :=2 

= PXi-l , j(nl ,n2)+Ei-1,2(n1,n2)lhi-1,2 i > l , j = l  (1 6) 

= P x i-l,j(nl,n2) + E i-l,l(nl9n2)/hi-l,l  i > 1, j = 2 

2. Prepare a four-quadrant image as shown in Fig. 4. 

3. Compute the discrete Fourier transform (DFT) of the four-quadrant image ,and denote the 

resulting hologram image Hj(kl,k2). 

4. If j = 1, define 

H'j(kl,k2) = Hj(kl,k2) for kl even 

= 0 otherwise 

if j := 2, define 

H>(k 1 ,k2) = Hj(k 1 ,k2) for kl odd 

= 0 otherwise (1 8) 

5. Shift and normalize Hi(kl,k2) and define its result as 

H'>(kl,k2) = (H'j(k 1 ,k2) - H'min(k1 ,k2))/(H1max(k 1 ,k2) - HVmin(k 1 ,k2)) (19) 

where Htmin(kl ,k2) = min (H'j(k1 ,k2)), and Htmax(k l ,k2) = max(H'j(k1 ,,k2)) 

6. Apply ED to H>(kl,k2) and denote the resulting hologram HU)(kl,k2). The direction 

of ED is shown in Fig. 6. 

7. Conlpute the inverse discrete Fourier transform(1DFT) of HU'j(kl,k2), and define the 

reconstructed image corresponding to the image quadrant as Xrecj(nl,n2). 

8. Conlpu te the total reconstruction error. 



If some convergence criterion has been reached, stop the process, otherwise let 

Eiyj(nl,n2) = X(n1 ,n2) - h i j (Xrec 1 (nl ,n2) + Xrec2(n 1 ,n2)) (20) 

If this is the end of the i ~ h  sweep,let i = i + 1. 

9. Go to step 1. 

This procedure is shown in a flow chart in Fig. 7. A modification described below 

is also included in the flow chart to reduce the computation cost . The decimation process 

eventu,ally discards the unused rows(i.e. set those rows to zero). Henc:e, it is only 

necessary to normalize the rows of interest. With H'max(k1 ,k2) and H'min(k1 ,k2) defined 

above, the normalization process normalizes the maximum and the minimum values of 

desired rows to 1 and 0. The other rows are not computed. 

V . COMPUTER EXPERIMENTS 

In the first experiment, a 64 x 64 girl image was used as the object image. The 

object superimposed with a random phase was placed inside a data field of 512 x 512 

pixels and was centered at (32,-96). In the second experiment, a 64 x 32 binary image 

superirnposed with a random phase was placed inside a data field of 256 x 256 and 

centere:d at (16,-64). 

In the following, an iteration is defined to be a complete design of one hologram. In 

a two-hologram simulation, a sweep means two iterations. In Fig. 8, the: mean-square 

recons,truction error versus the ED coefficient o is shown. Curve A is the result of one 

iteration using one hologram, meaning ED alone. Curves B, C, D are calculated after 40 

iterations or 20 sweeps in the case of two holograms. Curve B corre:sponds to the 

combirlation of the unmodified IIT and the ED techniques. In curves C and 11, the modified 

IIT is used, with P = 1.0 and 1.5, respectively. 

The result from curve A is not unexpected. Lower reconstruction error can be 

achieved using ED techniques with a larger o. Curves of B,C,D show that further 

improvement can be obtained through iterative procedures. In all cases,the IIED technique 



had better results than those of unmodified IIT together with ED or IIT a1oneti.e. o = 0). 

As an example, Fig. 9 shows that, except for a transient peak during the first or second 

sweep which was typical with the IIED technique, the reconstruction error steadily 

decreases without experiencing any stagnation problems. In the experimen,ts, best results 

were obtained with p's between 1.0 and 2.0. Unlike the noniterative ED teclhniques which 

has best results with o = 1, values of o close to 0.2 were found to be optimal for the IIED 

technique at P = 1.5. One possible explanation is that the stable range of o with the IIED 

techniq,ue is smaller than those of noniterative ED techniques. 

Fig. 10 shows the reconstructed images obtained with the noniterative ED and the 

IIED t~xhniques with different error diffusion coefficients and iteration numbers.These 

images; are the desired pan of the total focal plane intensity image. The total focal plane 

intensity images are shown in Figs. 1 1 and 12, which were generated by hard-clipping all 

pixel values above the maximum value in the desired reconstructed image. This procedure 

was necessary for displaying the desired reconstruction image correctly with the image 

processing software used. 

In Fig. 10, the original girl image is shown at the top, followed by two 

reconstruction images obtained with the ED technique. In cases C and D, from left to right 

and top to bottom, the images reconstructed using the IIED technique are vvith o equal to 

0.0 , 0.05 , 0.1 , 0.2 , 0.4 , 0.6 , 0.8 and I .O, respectively. In case A,the larger o 

was used, the more noise was driven away from the reconstructed image and a lower 

reconstruction error was obtained. However, due to a well-known fact that ED techniques 

suffer from low efficiencies, lower contrast images were obtained using larger a ' s .  

Furthermore, even the best result among all noniterative cases( i.e. ED with o =1.0), some 

porti0.n of the image was corrupted with the diffusing noise. In contrast, iterative 

techniques such as IIT can reduce noise uniformly and obtain higher efficiency. Due to 

different effects of the two types of algorithms, the IIED technique sharing characteristics 

of both methods mentioned above turns out to be the best solution. In the computer 



experiments, the best result achieved using the ED technique and the IIED technique with o 

= 0.2 and P = 1.5 are shown in Figs. 11 and 12, respectively. The corres:ponding IIED 

hologram is shown in  Fig. 13. 

Three types of noise can be described in terms of their locations and sources in 

Figs 11 and 12; first, the noise that is driven away from the reconsmcted image due to the 

ED process; second, next to the girl image, the noisy image with high intensity resulting 

from the interlacing technique; third, the noise left in the desired image regi,on. In Fig. 11, 

since only the ED technique was used, most of the noise belongs to the first and the third 

kind. Dlue to the high intensity noise of the first kind, the image is reconsmc.ted with lower 

contrast and lower efficiency. Also, some portion of the desired image is c:orrupted with 

noise of the third kind. In  Fig. 12, the noise of the first kind with lower intensity, and the 

noise left in  the desired image region is more uniform resulting in a higher contrast image 

with higher efficiency. 

In the second part of computer simulations, a 64 * 32 binary image,which is part of 

an edge-enhanced image of the cross-section of a cat's brain, was used. The: binary image 

is shown in  Fig.14. Fig. 15 shows the mean-square error results, corresponding to Fig. 8 

of the previous case-The results were very similar to those obtained with the girl image. In 

this case, the best performance was achieved using the IIED technique with o = 0.1 and P 

= 1.5. 

VI.  CONCLUSIONS 

The IIED technique consists of the combination of the ED technique and the 

modified IIT technique. Experimentally, with P= 1.5, o =0.2 in the case of the girl image 

and o := 0.1 in  the case of the binary image, a fairly dramatic improvement in the quality of 

the rec:onstructed images resulted with the IIED technique. Unlike noniterative ED 

techniq,ues, which use o = 1.0 to drive the noise clouds away from the recon!;tructed image 

at the cost of lower efficiency, the IIED technique, using a small o and P = 1.5, was 



shown 'both to preserve the characteristic of the ED technique separating noise clouds from 

the reconstructed image and to uniformly distribute the remaining reconstruction noise. 

These properties resulted in improved image contrast and higher diffraction efficiency. 

In this article, the IIED technique was considered only for binary holograms, Its 

extension is possible to multi-level holograms with multi-level ED techniques12 and phase 

hologralms with complex ED techniques7. 
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Fig. 1. The Geometry Used in Constructing Two Interlaced Iiolograms. 
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Fig. 5. Generation of Twin Images due to Decimation into Two Holograms: 

A) No Decimation B) Odd-Row Hologram Only C) Even-Row Hologram 

Only. 
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Fig. 6. The Direction of Error Diffusion in the Two Holograms of the IED 

Technique. 
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Fig. 7. The Flow Chart of the IIED Technique. 
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o - ED coefficient 

A - 1 iteration, 1 hologram, using ED 
B - 20 sweeps, 2 holograms, using the unmodified TIT and ED 
C - 20 sweeps, 2 holograms, using TIED with b = 1.0 
D - 20  sweeps, 2 holograms, using IIED with b = 1.5 

Fig. 8. The Reconstruction Error versus the ED Coefficient with the Three 

Techniques Used with the Girl Image. 



n - iteration number 

n - iteration number 

Fig. 9. A) The Reconstruction Error versus the Iteration Numlber in the 

IIED Technique B) The Enlarged Right-Hand Side of Fig. 9 .A. 
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Images for Case C, o from 0.0 to 1.0 

Images for Case D, o from 0.0 to 1.0 

Fig. 10. T h e  Recons t ruc t ed  Images Obta ined  wi th  t h e  Three  Techniqtues. 



Fig. 11. The Total Reconstructed Image at the Focal Plane with the ED Technique. 



Fig. 12. The  To ta l  Recons t ruc t ed  Image  at t h e  Focal  P lane  wi th  t h e  lIED Technique. 



Fig. 13. T h e  Hologram Genera ted  by t h e  IIED Technique for  t h e  Girl Image. 
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o - ED coefficient 

A - 1 iteration, 1 hologram, using ED 
B - 10 sweeps, 2 holograms, using the unmodified IIT and ED 
C - 10 sweeps, 2 holograms, using IIED with b = 1.0 
D - 10 sweeps, 2 holograms, using IIED with b = 1.5 

Fig. 14. The Reconstruction Error versus the ED Coefficient o in the 'Three 

'Techniques Used with The Binary Image. 



Fig. 15. The Binary Image Used in 
t h e  Second Se t  of Computer  Experiment.  
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