
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

6-1-1992

ADAPTIVE CONTROL OF
KINEMATICALLY REDUNDANT ROBOTS
Shengwu Luo,
Purdue University School of Electrical Engineering

Shaheen Ahmad
Purdue University School of Electrical Engineering

Mohamed Zribi
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Luo,, Shengwu; Ahmad, Shaheen; and Zribi, Mohamed, "ADAPTIVE CONTROL OF KINEMATICALLY REDUNDANT
ROBOTS" (1992). ECE Technical Reports. Paper 293.
http://docs.lib.purdue.edu/ecetr/293

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F293&utm_medium=PDF&utm_campaign=PDFCoverPages


TR-EE 92-22 
JUNE 1992 



ADAPTIVE CONTROL OF KINEMATICALLY 

REDUNDANT ROBOTS 

Shengwu Luo, Shaheen Ahmad and Mohamed Zribi 

Real-Time Robot Control Laboratory 

School of Electrical Engineering, Purdue University 

West Lafayette, IN 47907-1285, USA 

Abstract 

A redundant robot has more degrees of freedom than what is needed to  uniquely 
position the robot end-effector. In a usual robotic task, only the end-effector position 
tr'ajectory is specified. The joint position trajectory is unknown, and it must be selected 
from a self-motion manifold for a specified end-effector. In many situations the robot 
dynamic parameters such as link mass, inertia and joint viscous friction are unknown. 
The lack of knowledge of the joint trajectory and the dynamic parameters make i t  
difficult to  control redundant robots. 

In this paper, we show through careful problem formulation that the adaptive 
control of redundant robots can be addressed as a reference velocity tracking problem in 
the joint space. A control law which ensures the bounded estimation of the unknown 

dynamic parameters of the robot, and the convergence to  zero of the velocity tracking 

error is derived. In order to ensure that the joint motion on the self-motion manifold 

remains bounded, a homeomorphic transformation is found. This transformation 

decomposes the velocity tracking error dynamics into a cascade system consisting of the 

dynamics in the end-effector error coordinates and the dynamics on the self-motion 

manifold. The dynamics on the self-motion manifold is directly shown to be related to  

the concept of zero-dynamics. It is shown that if the reference joint trajectory is selected 

t o  optimize a certain type of objective functions, then stable dynamics on the self-motion 

manifold results. This ensures the overall stability of the adaptive system. Detailed 
simulations are given to  verify the theoretical developments. The proposed adaptive 

scheme does not require measurements of the joint accelerations or the inversion of the 

inertia matrix of the robot. 
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1. Introduction 

A redundant robot is one which has more joints than what is required to  poeition 

the end-effector. The extra joints can be used to  configure the manipulator posture, to 
avoid obstacles in the workspace or to  avoid joint singularities. Initial interest in the 
control of redundant robots started with the work of Whitney [28] who devised the 

kinematical resolved motion rate control. Liegeois et al. [IS] formulated a kinematic 

control which optimized an objective function to avoid obstacles and joint eingularities. 

Their control scheme added a term (the so called null space term), which was used to  

produce the joint motion without affecting the end-effector motion. Since then several 

researchers have addressed the problem of kinematic motion coordination of redundant 

robots; see Nenchev [18] for a review of those developments. The tutorial review by 

Siciliano [24] and the tutorial workshop report on the theory and application of 
redundant robots covered some more recent devel~pments. Recently, a handful of 
researchers took into account the dynamic model of the manipulator when they addressed 
the control problem of redundant robots. One of the first papers to rigorously address 

the redundant robot system stability while taking into account the dynamic model, was 
the paper by Hsu et al. [lo]. They showed that i t  was necessary to ensure that the 
redundant joints contributing to  the velocity in the null space exhibit stable behavior. To 
achieve this, they proposed a control law that included a null space term. In an effort to 
minimize the joint torque for redundant robots, Nakamura and Hanafusa [17] proposed 
an optimal control law which minimized the integral of the joint torque. De Luca (61 used 
the notion of zero dynamics to investigate the control and stability of redundant robot 
motions. Baillieul et al. [3] also addressed the problem of controlling redundant robots. 

Recently a tremendous research effort has been directed toward the area of adaptive 
control of non-redundant rigid joint robots. These efforts are summarized in the survey 

papers written by Ortega and Spong [20] and Abdallah et al. [I]. Despite this progress i t  

remained difficult to extend the adaptive control techniques of non-redundant rigid joint 

robots to  the redundant robots case. This is the case because no explicit kriowledge of the 
desired joint positions is available, usually only the end-effector path is given. As the 
redundant robot can assume an infinite set of joint positions for a given end-effector 
position, joint positions must be selected to  ensure that the manipulator does not become 
singular. Further it is necessary to ensure stable motion of the joints while the end- 
effector tracks a desired trajectory. 

In the area of redundant robot adaptive control, Seraji [23] presented an approach 

based on the model reference adaptive control theory. He resolved the redundancy 
problem by the so-called "configuration control scheme". The end-effector coordinates 

were augmented with functionally independent kinematic functions so that the resulting 

task-space configuration vector was of the same dimension as the joint vector, (therefore 

the joint solutions were unique). Hence the corresponding augmented Jacobian relating 

the velocities of the end-effector and the joints was a square matrix. Seraji's direct 

adaptive control scheme required the invertibility of the augmented Jacobian. Niemeyer 
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and Slotine [lg] applied sliding mode adaptive control to redundant manipulatore. They 
used the passivity principle to prove the stability of the adaptive system. In their echeme, 

through knowledge of the end-effector Cartesian reference velocity i, and the performance 

index H, a reference joint velocity tj, and acceleration i, were obtained. The reference 
joint velocity and the reference joint acceleration were used in the control law. Niemeyer 

and Slotine also performed some experiments to  demonstrate their control law. In depth 

stability analysis of the null space motion was not carried out by Seraji or Niemeyer and 

Slotine in their respective papers. Colbaugh et al. [5] proposed an adaptive inverse 

kinematics algorithm that did not require the knowledge of the kinematics of the robots. 

However their algorithm required persistent excitation conditions; also their algorithm 

did not consider the dynamics of the robot. 

Middelton and Goodwin [16] proposed an adaptive computed torque control scheme 

for non-redundant robots. Their control law did not require the measurement of the joint 

accelerations. The convergence of the adaptive system was well proven. We made an 

attempt to  extend Middelton and Goodwin's least square estimation based adaptive 

computed torque control law to redundant rigid manipulators. This attempt was not 
successful since the L2 convergence of the prediction error in this scheme was not 

sufficient to  ensure the asymptotic convergence of the redundancy resolution algorithms. 

Several researchers such as Bayard and Wen [4], Illchmann and Owens [ll], Sadegh and 

Horowitz [22] and Song et  al. [25] proposed several exponentially stable adaptive 
algorithms for the control of rigid link and rigid joint non-redundant manipulators. 
These algorithms did not require persistent excitation conditions for exponential 

convergence of the joint tracking error, and hence it is possible that the basic ideas 

behind these control schemes may be developed further for redundancy resolution. 

This paper is organized in seven sections. In section 2, the redundancy resolution is 
discussed, and a model for the redundancy resolution is developed. The redundancy 

resolution problem is formulated as a differential equation involving the joint velocity 
tracking a computed reference signal. In section 3, an adaptive control scheme that  leads 
to  the convergence of the joint velocity tracking error is derived. This velocity tracking 
scheme is based on the redundancy resolution scheme formulated in section 2. In section 
4, we investigate the boundedness of the joint motions and the boundedness of the control 
torques. The boundedness of the velocity tracking error leads to a differential equation 

perturbed by decaying term. We show that the boundedness of the decayed perturbation 
system is guaranteed by the boundedness of the solution of the unperturbed system. In 
section 5, The overall stability of the adaptive redundancy resolution algorithm is 

discussed. We find that  the overall stability can be investigated in two parts as the 
unperturbed system can be transformed into a cascade system. One component of the 

cascade system corresponds to  the dynamics on the self-motion manifold, the other 
component corresponds to  the dynamics in the end-effector coordinates. Connections 
between the well established concept of zero dynamics and the joint dynamics on the self- 
motion manifold, are also shown in section 5. The overall stability of the adaptive 

system is proved for a class of objective functions used for redundancy resolution. In 
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section 6, the performance of the adaptive system is evaluated through simulations and 

numerical verification of theoretical results. Finally, summary and conclusions are given 

in section 7. 

2. Asympto t i c  Resolution of  the R e d u n d a n c y  

Pr- . . 

Consider a kinematically redundant manipulator with the end-effector positioned in 

the workspace a t  point z E X, and the joints positioned in the joint space a t  q E Q. The 
differentiable kinematic mapping relating z and q is K:Q-+Xsuch that, 

= K(9) (1) 

with the workspace X c IRm and the joint space Q c IRn and m < n. Further the degree 
of redundancy is r =  n-m. Therefore for an end-effector point z=zo in the workspace, 
there exists a set of joint positions, QN, which lie on the self-motion manifolds in the 
joint space such that  QN= { ~ E Q  ( z=zo =K(q)). In order to determine a unique solution of 

the joint vector additional requirements on the joint vector must be found. In order t o  do 
this, we will state several properties of the kinematic mapping given by (1). We will 

denote the Jacobian of the kinematic map byt J(q) ,  J=E E IRmXn. Further we note the 
8~ 

relationship between the end-effector and joint velocities, as, 

Thus, if In is the n by n identity matrix then the projection operator onto the null space of 
J is denoted by PJ(*) = In-J+J E IRnXn, and the right inverse of J (assuming rank(J)=m) 

will be denoted as J+=J~( J J~ ) - ' .  We will let all the columns of the matrix NJ(q) E IRnXr 

be the normalized bases of ker(J), ( ker(J) is the null space of J. Hence we have, 

JPj=O, and ker(J)=span(NJ) (3) 

The bases vectors of the matrix N j  represent the local tangents of the self-motion 

manifold QN. The matrix N j  has the following properties, 

for any vector E IRn if NT(q)i=0 E IRr then Pj(q)i=O E IRn . 
Notice also that  the matrix [ ' ) is a square matrix of full rank, thus we have, NJ 

From the above properties we can conclude that  the pairs (J,N;) and (J+,Nj) are 

orthogonal complement operator pairs. 

t Note that we will drop functional dependencies whenever it is possible. 
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A joint position q can be found from the specification of the end-effector position z 
and the optimization of an objective function H(q). This is known as  the redundancy 

resolution, and it  results in a constrained optimization of the objective function H. The 
problem can be formulated as follows, given a desired position zd, find the joint position q 

such that, 

min H(q) subject to zd = K(q) . 
s (6) 

We can conclude from the Lagrange multiplier method that the necessary condition for 
the optimization of problem (6) satisfies the following set of "constrained" differential 
equations: 

PJ(q)VH(q)=O and zd=K(q) . (7) 

To develop the control problem, we will define the end-effector path tracking error, e, as 

then we desire the "asymptotic resolution of the redundancy problem" such that, c'+O, 

e+O, and Pj(q)VH(q)+O as t --, oo. We want to optimize H(q) by appropriate joint motion 
on the self-motion manifold, QN. At the optimal point, we do not desire further motion on 
the self-motion manifold. Therefore the projection of the joint velocity on the self-motion 

manifold must be zero, and NJQ --, 0 as t --, oo. Hence, i t  is sufficient (not necessary) to  
write the asymptotic redundancy resolution as t+w, 

N;(i-AVH)+O , with NJ~--,o. (9) 

Where, 7 > 0 and AZO are some constants. The first equation above can be written as 

Ji-id+7e+0. After grouping terms and using the matrix inversion result in ( 5 ) ,  we get, 

as t+co, 

with q-{q E Q 1 N;VH=O and K(q)=zd } (10) 

Therefore the "asymptotic resolution of the redundancy problem" can be expressed by the 

conditions on the differential equations given by (10). These conditions result in the joint 

velocity vector approaching its desired value, meanwhile the joint position vector would 

be at  the solution of a set of constraint equations. Notice that the redundancy resolution 

problem is characterized by the fact that the desired joint positions are unknown in 
advance. This fact prevents us from directly using the existing adaptive schemes that  
achieve joint position tracking. 

Now by denoting u E IRn as, 

the asymptotic redundancy resolution of the problem can be solved by a scheme that  

June 1, 1992 5 adpx 



ensures the velocity tracking error 4-v-0, as t-oo. In the next section we will develop 
such an adaptive scheme. 

3. Parameter Update Law and the Control Law 

Ll D y W  

The dynamics of a rigid robot with n joints can be represented explicitly in terms of 

the structural parameters by the following Euler-Lagrange equation : 

= D(q;e)F+ C(q, i;e)i+g(q;e) , (12) 

where, 0 E IR* is the vector of structural parameters of the manipulator and a is the 
number of unknown parameters. The inertia matrix is D E IRnXn. Further, C E IRmXn is 
the Coriolis and centrifugal matrix, and g E IRn is the gravitational force term. The 
dynamics of the manipulator has the following properties, 

(PI)  Positive definiteness of the inertia matrix, 

D ( ~ ; O ) = D ~ ( ~ ; O )  > 0 with 0 E IR* and q E IRn (13) 

(P2) Skew-symmetry of the matrix D-2C [26], 

P' (~(q;0)-2C(q,i;e)) p = 0, for any p E IRn . (14) 

(P3) Linear parameterization of the dynamical equations. 

The Euler-Lagrange equation (12) is linear with respect to the structural parameters 
0 ([I, 201 ), hence, 

D (4 ;e)i + C(9, i;O)i + 9 (9;B) = Y(9, i, i l e a  (15) 

Further, we can show that [26], 

D(q;0)a+C(q, i ;o)v+~(~;o)= Y(9, i;v, . (16) 

Here the vectors v and a E IRn. The regressor matrix Y(.) E IRnX* is known. The matrix 
Y and the vectors a and v are independent of the structural parameters 0. Notice that i t  is 

not necessary to satisfy a = ir . 
A similar relation to (16) holds when the estimates of the parameters ; are used to replace 
the exact parameters 8, i.e., 

i a +  &+i= ~ ( q ,  i;v, a); (17) 

where for brevity we have denoted i : = ~ ( q ; i ) ,  e:=C(q,i;i) and i:=g(q;i). 

3.2 C- 
. . 

Now consider a control torque of the form, 

.z = ia+6v+i-~,((1-v) , (I81 

where the matrix K,=K,' > 0. Using (12), (16), (17) and (18), this control torque leads to 

the following composite (error) system: 
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where the parameter error is defined as 8:=;-0. The vectors a and v in equation (18) will 
be determined in a way to  resolve the redundancy. 

The convergence of the above control law can be improved (this will be seen later), if 
we use a scalar positive time increasing function w, as follows, 

p:=w,(i-v) and i):=w,(q-a) . (20) 

Then the composite system (19) can be written as, 

I r Robot I 
I I 

u + control ~ a w  D W 
Dynamiu 1 

8 4 -  
I I 

i par amettr 
...................... 

update 

Fig. 1 The Structure of the Adaptive Control Scheme 

The next theorem asserts that the stability of the above closed loop system is 

guaranteed when the following parameter update law is used: 
. . - 1 

e=~=-r-l yTpw, - - ~ ( t )  r-1 i , (22) 

where the constant gain matrix r=rT > 0. The "a-modification" scheme [12] is used to  

prevent the drift of the parameter estimates in an unbounded manner in the presence of 

unmodeled disturbances. The scalar function a(t) is chosen as, 

~ ( t ) = o  if \ l i ( l @  

and, a(t)=ao if 1 I ~ I  1 > 8 

where the constant 8 is an upper bound of the norm of the actual parameters, such that 
- 
8 > ( I  B 1 I, and a, is a positive constant. 

Theorem (The stability of the closed loop adaptive system.) 

The control torque (18) and the parameter update law (22) when applied to the dynamic 

system given by (12), achieve a bounded stable closed loop system such that p E L2nLm 

and 8 E Lm (see Fig. 1 for depiction of the control scheme). 0 
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-2' - 
Proof : Consider the Lyapunov function candidate V defined by, v:=+p2'~p++d rd, 
then by using properties (PI)  - (P3) and equations (21) and (22), i t  is easy to show that, 

V=-p T~,p-a(t)(i-O)Ti 5 - p T ~ r p  50. This is true because the term - u ( t ) ( i - ~ ) ~ i  is non- 

positive as, 

- ~ ( t ) ( i - e ) ~ i s  - ~ ( t ) (  I ~ I  l 2+~( t ) l  1 lie1 1 2 - ~ ( t ) l  ]ill ( 1 lil 1-3 15 o . 
As the Lyapunov function Vis globally positive definite and radially unbounded for (p,i), 

and the matrices D, r and Kr are positive definite, we have p E L%Lm and E L" for the 
system given by (12), (18) and (22). 

We now define the velocity tracking error 6, as, 

The convergence of 4-u=wylp to  zero is guaranteed by the boundedness of p, and i t  can be 
improved by specifying the scalar time dependent function wi in (20). 

&~~JLI  (The type of stability is determined by w,.) 

If w, is a scalar time increasing function, then 6,=(4-u)-0 a t  the rate of w,-'. If w,-' is an 

integrable function, then (i-u) belongs to L1 and (i-u)-0, as t-oo. The integrable 
functions from which w, can be chosen, include the exponential function and functions of 
the form, 

~ , ( t ) = ( t + l ) l + ~  with cr > 0 . (25) 

Furthermore if w,=exp(bt), then (i-u)-0 a t  the rate of exp(-bt). 

Proof : The results immediately follows from the fact that (i-u)=pw,-I. AB p(t) is 
bounded by B,:=a:p ( I ~ ( t )  1 1 ,  we have, 

I06011=I I ~ - ~ [ Q ) J I ~ B ~ W ~ - ~  . (26) 

Notice that the boundary function D(t):=B,w,-' is independent of q. Also notice that if w, 
05 

is given by (25), then wi-' E L1, since J =l /c r<m,  t h e r e f o r e 6 , ~ L ' . I f w e s e l e c t  
( t+ l ) l+Q 

an exponential weighting function then from (26), we can immediately see that 6,-0 at  

the rate of exp(-bt). rn 

Remark : The transformation (20) between the reference acceleration, a, and the 

reference velocity, u, is : 

Notice that v is independent of 4 (see equation (11) ), and hence a is not a function of & 
Therefore the adaptive scheme does not require the measurement of the joint acceleration 
. . 
4. 0 

From equation ( l l ) ,  the reference velocity, u, for redundant robots is given by, 
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Thus the reference acceleration becomes, 

Remnrk 2 We have shown that  if the adaptive control law given by equation (18) and 

(22) is used, we have i + v  as t+m. However we have to show that  q i8 bounded, and then 

we can conclude that  i and v(q) are bounded, which then ensures the boundedness of 7. 

4. Boundedneee  of the J o i n t  Motions a n d  Con t ro l   torque^ 

In this section we will show that  the boundedness of q, tj, and 7, is dependent on the 

stability of a perturbed differential equation. From the results of theorem 1 and 
equations (24) and (26), the velocity tracking error can be expressed as a perturbed 
dynamical system with a decaying perturbation, thus, 

Recall from corollary 1 that 1 )6,(q,t)l I <P(t)+O, thus the perturbation 6, is bounded and 

tends to  zero as  t+m. 

We will prove the boundedness of q in the perturbed system described by equation 

(30) by ensuring the boundedness of q in the unperturbed system given by i=v(q). In the 
following, we will establish the relationship between the boundedness of the perturbed 
and unperturbed systems. The first important result needed to  achieve this is the result of 
Markus and Opial (see [8], p. 282). 

Lemma (Stability of the perturbed system.) [8] 

Consider the perturbed differential equation with f :  IRn + IRn and 26, 6(zb,t)€IRn, such 
that,  

This dynamic system is called "asymptotically autonomous" if (1) G(zs,t)-0 as t-m 
uniformly for 28  in an arbitrary compact set fl in IRn, or (2) G(zb,t) E L1 for all zb(t) which 

are bounded and continuous on R for t>O. Then, the positive limit sets (i.e., the set with 

t E IR+ and t+m) of the solutions of (31) are invariant sets of the original stable 

differential equation, 

i= f(z) with z(0)=zO , (32) 

where zEIRn. 0 

Recall that  the set S is said to  be an invariant set under the vector field i=f(z) if for 

any z0 E S, we have z(t,to,zO) E S for all t E IR+. Therefore if we choose rut-' E L1 then the 

redundancy resolution, equation (30), modeled as a perturbed system is indeed 

asymptotically autonomous, since the perturbation term 6,€L1, as 
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03 w 

( 16.1 1 '= I 1 16.1 1 du<Bp I wr-' du . In the next lemma we will show that 1 (26-zl 1 is 
I4 .dl 

bounded for t + oo. Finally in lemma 3 we will show that I Iza-zl I has a finite bound for 
all t. 

T,cmma (Asymptotic stability of the perturbed system). 

Assume that  the perturbed system (31) is an asymptotically autonomous system. Then 
the limit solution set of (31) is the limit solution set of (32). If the positive limit set of (32) 

is bounded, then 1 1z6-z1 1 is bounded as t+w. 0 

Proof: 

Let V be a continuous Lyapunov function defined on the set G c IRn. We define E to be 

the set of all points in the closure [21] of G, ( the closure of G will be denoted by q, where 

v(z)=o, that  is, E={z I V(Z)=O,Z E 5) . Let ME be the largest invariant set in E. Then 

LaSalle's invariance theorem [14] asserts that every solution of (32) approaches ME as 
t-oo. Thus the result of lemma 1 yields that the positive limit set of (31) is the positive 
limit set of (32), hence za tends to  some limit points of the unperturbed system in (32). 
Moreover, if the positive limit set of (32) is bounded, then I (26-zl I is bounded as t+oo. . 

From lemma 2, we can deduce that if Ah is the diameter of a ball which contains the 
limit set of (32) (i.e., 1 Iz6(t)-z(t)J I<Ah a8 t +oo), then given any number h > Ah, we can 
always find a time th, such that for t > th we have 1 Iza(t)-z(t)l l<h. The next lemma 

enables us to  show that the trajectory of (31) for t E (O,th] is bounded. 

Lemma (Boundedness of the perturbed system). 

Consider the perturbed differential equation (31) and suppose that  the mapping 
j : IRn+IRn has a Lipschitz constant CL > 0 for 1 121 1<m, and suppose that the 

perturbation 6,(zs,t) along the trajectory has bounded L' norm, i.e., 
03 

1 16.1 1 L I  = I I 1 6,(z6, U) I I du <Ba, where B6 is a positive constant. Then the trajectory z6(t) is 
0 

bounded up to  a given time th if the original differential equation (32) is stable. 0 

Proof : It is sufficient to show that I Izb-zI ( is bounded for all t E [O,oo), since z(t) is 
bounded by the assumption of the stability of (32). The solution curve of (31) can be 

i i 

written as zb(t)-zO= I j(z6)du + I 6(z6,u)du. Similarly for the unperturbed system (32), we 
u 4  u 4  

i i 

have z(t) - z0 = I j (z)du. Combining these two equations, we get z6(t)-z(t)= I 6(zg,u)du 
a 4  .-I 

i 

+ I ( /(z6)-j(z) ) du. Here the function f(.) is Lipschitz by assumption, hence, I lz6-zI 15 

B6+ I CLl (Z6-ZI (du. As the vector norm of the solutions of (31) and (32) are continuous 
I4 

and non-negative functions, therefore from the Bellman Gronwall lemma ([Q] p. 168) we 
have, 
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I Izb-zJ ) 5 ~ b e ~ ~ ~ ~  , (33) 

for t = t ~ .  As the stability of the unperturbed system (32) ensures the boundedness of a, 

then 26 is bounded for t E (0, th] and therefore for any given th E [O,oo). 

Using lemma 2 and lemma 3 to solve the asymptotic redundancy resolution problem, 
we arrive a t  the following propositions. 

l 5 q m d h d  (The boundedness of q and i) 
If we assume that the function v(q) in (11) is Lipschitz, then we can find a set R,o (the set 
of the initial joint positions) such that the solutions of the adaptive control system (i.e., 

the parameter estimates and the joint positions) are bounded for any time. Therefore 
with the adaptive control law given by (18) and (22), the solution of (12) is bounded for 

any time t ,  if the solution of the unperturbed system 

~ d = i ~ + r c ,  and h ' ? d = ~ ~ ? v H  (34) 

is bounded in R,o. 0 

Proof : The adaptive system given by (12), (18) and (22) is an asymptotically 

autonomous system, as we have shown in corollary 1 that the perturbation term is a 

uniformly bounded time decreasing function. The set {q ( I li-v(q)l l<Bp) can be taken as 
the compact set R in lemma 1. Thus lemma 2 and lemma 3 guarantee the boundedness of 
the adaptive system for all t if q the solution of (34) is bounded. 

The boundedness of the unperturbed system will be studied in the next section. To 
obtain the boundedness of the control torque, we require the following assumptions. 

(Al) The desired paths zd(t), i d ( t )  and Y d ( t )  are bounded for all time t. 

(A2) The Jacobian J(q) is a full rank continuously differentiable function matrix, that is, 

J (q)  is of class Cr, r 2 2  (i.e., a t  least twice differentiable). 

(A3) The objective function H(q) given in (6) is a twice differentiable real valued function. 

In assumption (A2) the full rank restriction of J(q) requires that all possible joint 
motions q(t), solution of (34), do not pass through any joint configuration resulting in the 

singularity of J(q). If J(q) is continuous and full rank in a compact subset GJ c IRn, then 

J+=JT(JJT)-' , PJ=I,-J+J and NJ are continuous in G,. The matrices J, J'+, PI and NJ are 
(shift varying) linear operators. It is easy to show that any continuous linear operator is 
bounded [21], hence J, J+, PJ and Nj  are bounded in Gj, i.e., the induced norm of J, J+, PJ 

dJ+ and NJ are finite on GJ. Furthermore, if j(*) is continuous in Gj, then - 
dl 

T -+ 
= - J + ~ J + + P ~ ~  (JJT-', P~=-J J-J+j are continuous on any path with continuous i in 

GJ. 
. . &qmshd2 (The boundedness of i ). 
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Based on assumptions (Al), (A2) and (A3), the boundedness of the joint position q ensures 

the boundedness of the joint velocity i. 0 

Proof : The reference velocity v given by (28) is a function of zd, id and q. By 

assumption (Al), the boundedness of q yields the boundedness of id-re. By assumptions 
(A2) and (A3), the boundedness of q yields the boundedness of J+(q), Pj(q) and VH(q), 

hence v(q) is bounded for all bounded q. Therefore the boundedness of ( 1  4-v(q)ll in the 

adaptive system leads us to  the boundedness of i, provided that q is bounded. 
. . ProDosltlon (The boundedness of the control torque 1). 

Based on assumptions (Al) and (A2), if q and i are bounded then the adaptive control 

torque defined by (18) is bounded. 0 

Proof : Based on assumptions (Al), (A2) and (A3), and the boundedness of q and i ,  
the reference velocity, u, and the reference acceleration, a, given by (28) and (29) 

respectively are bounded. Therefore the control torque is bounded. 

5. The Stability of the Unperturbed System 

In the below, we will examine the boundedness of the unperturbed system by using a 

homeomorphic transformation of the coordinates. Recall that a homeomorphismt maps a 

continuous function to  another continuous function, and a homeomorphism preserves the 

topological properties such as the openness, connectedness, and the convergence of a set 

1211. We will find a homeomorphism which transforms the joint coordinates q into a 
decomposable coordinates < and c. Therefore the unperturbed system i=u(q) will be 

transformed into a cascade dynamic system, j=ur(c,<), and i=v(((). It will be shown that 
( is homeomorphic t o  the workspace coordinates z. The variable c will be used to 

represent the dynamics on the self-motion manifold. The boundedness of q will be 

deduced from the boundedness of < and q. To find the homeomorphism, we will adopt the 

method used to  prove the sufficiency of the Frobenius' theorem [13]. We will construct a 

diffeomorphism which is based on the self-motion manifold. For any given z, all the joint 
positions q such that z=K(q), lie on the leaf of the self-motion manifold. (The leaf of the 

self-motion manifold, a sub-manifold, will be denoted by QP), this sub-manifold QfO N 1s ' a 

connected region. By assumption Nj(q) is nonsingular, thus the distribution 
A=ker (J)= span (Nj) is nonsingular. The null space of a regular Jacobian matrix is 
always completely integrable, hence A is involutive. The distribution A has an 
annihilator A' which is spanned by J, and J is the exact differentials of the kinematic map 

K. The integrability of A allows us to  construct the integral manifold by piecewise 

integration of every column of Nj. 

t A homeomorphiem is a continuous mapping between two topological spacea and its inveree 
mapping is also continuous. 
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Let 91 denote the flow of the vector field f, such that  q(t)=@{(qo) is the solution of 

the ordinary differential equation q=f(q) with the initial condition q(0) = go. The 
transition mapping 9{ which maps go to  q(t) is a diffeomorphism, and has the property 

-- ao'[qo)-f(q(t)) [9, 131. The flow of each vector field, represented by a column of at 
Nj=[Nj,, . . . , Nj,], is the solution of the following differential equations, 

i=Nji(q) with q(0)=qo, for i = I ,  ..., r ; (35) 

*?[*Dl - and can be written as, q(t=Ci)=@?(qo) Thus we have - N J ~ ( ~ ) .  

Lemma (The parameterized equation of the self-motion manifold). 

Given a kinematic mapping z=K(q). The composite mapping Q,:IRr+ QN : 

(11, . Ar)+ q(t) = a 3  . . .O@:~(qo) with t=q I+  +qr . (36) 

is a locally parametrized equation of the manifold Qp - { q ~ C ( q ~ )  I zo-K(q)-K(qo)), which 
passes through go. Here C(qo) is used to denote the connected regions of the self-motion 

manifold and C(qo) passes through the initial joint configuration qo. 0 

Proof : We shall show that  for t=qr+ . +qr, K(q(t))=K(qo). Since z=K(q), i t  
--0 for i= l ,  . ,r. suffices t o  show that  z is unchanged whenever q varies locally, i.e., :i - 

First, consider the rightmost integral 0:' in (36). Let q , ,=b~ l (q0 ) ,  then, 

a z 
Hence qr,~QfrO when q o ~ Q ? .  Similarly, we have -=O for i=2, . . ,r. Then for the ith 

a ~ i  
transition we have q ( t = q l +  +qi)= @?(q(t=~,+ . + ~ i - ~ ) )  and hence 

q( t  = q l +  . . +c,)EQ: Moreover these q'a are connected since (;=I, . , r)  are 

continuous mapping with respect to  qi. Therefore (36) maps q to  q ( t ) ~ ~ ? .  Furthermore, 

this mapping is a diffeomorphism because i t  is a composition of the diffeomorphisms b?. 

Hence this mapping satisfies t o  be a parameterization of the manifold. 

T,emma (Decomposition of the coordinates). 

Given a kinematic mapping z=K(q), let U be the image of the joint space Q. At  any point 

QEQ c IRn, there exists a diffeomorphism F-':&+UC IRn which decomposes q into q€IRr 

and &IRm, such that  [B]=~-l(q). The mapping q(q) maps a point q on the self-motion 

manifold QN into q. 0 

Proof : We will construct the desired diffeomorphism on the given leaf of the self- 

motion manifold. Recall that  N j  is the orthogonal complement of the matrix J+. 

Assuming that  the matrix J is of full rank and has the right inverse J+, J+ = Jr(JJr)-l, 

then the range space of J+ and the range space of Jr are equal. As the domain space of 
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any matrix is the direct-sum of its row space and its null space, then the domain of J is 

IRn, thus we have, rank([NJ, J+])  = n. Consider the composite mapping F:U + Q such 

that,  

fio@N~'o . . . (SI ~ ~ ~ ~ l ~ r l C ~ l ~ ~ ~ ~ C m ) + ~ ( O ~ @ ~ ~ ~ ~ ~ ~ @ ~ ~  I, o @ ~ ( q d  (37) 

The mapping F is a diffeomorphism because the composition of diffeomorphisms is a 

diffeomorphism. Hence F-I, the inverse of F, exists and is a smooth mapping. Thus, 

where ~ = [ c , ,  . . , s , ] ~  and ,<,Ir are real functions which are defined on U. m 

We have, (f,<)=F-' o F(s,<), then the Jacobian matrices of F-' and F should satisfy 
the following equation, 

In the next lemma we will determine the relationships between the derivatives of (s,€) and 
that of the joint position q. 

As the distribution A=ker (J) is involutive, the diffeomorphism F has the property, 

(see [13], p.27) that for every ~ E Q ,  the r columns of the Jacobian matrix .= are linearly af 
independent vectors in the distribution A. 0 

Lemma (The time derivatives of the transformed coordinates). 

The transformation F given in lemma 5 allows us to  write, 

i = ~ ,  J 4 

;=hiN-' NT i . 
Proof : 8F We can always find a nonsingular r x r  matrix MN, which expresses - as a af 
linear combination of the columns of Nj, thus, 

--  " - Nj MN . 
af (42) 

From (39) we have 3 ?= 0, thus, 3 Nj MN = O€IRmXr . Hence Nj annihilates 3. 
aq a( aq 81 

Recall that  JNj=o, thus each row of % must be a linear combination of the rows of J. 
aq 

Hence, 

a( -M -- 
aq 

J J .  (43) 

Here Mj is a nonsingular m x m  matrix. Therefore, <=xi =Mj J i yields equation (40). 
aq 

From (39) we have, $ Combining this equation with (43) yields, 
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because the nonsingular matrix J has a unique pseudo-inverse J+ such that JJ+=I,. 

a~ aF We can write, q=- c + ~  ( . Thus we have, 
ar 

To obtain (41), we substitute (42) into the above equation and premultiply both sides by 
Nj'. Recall that N~'N~=I,, as each column of NJ is a normalized basis vector. m 

l h u r k 3  : Equation (40) implies that and $=MI. From the implicit mapping 

theorem, the nonsingularity of MJ ensures that < is homeomorphic to z. 

Lcmma (The decomposition of the unperturbed system). 

Using the transformation F given by lemma 5, we can write the unperturbed system i = v  

( v  is expressed by (28)) as a cascade system in the following form, 

The notation used in (45) means that NJ' and OH are functions of (c,e) through 
dependency on the joint variable q. 0 

Proof : The unperturbed system, equation (28), is given by, 

4=J+(id-ye)+xPJVH (47) 

Equation (46) is obtained by premultiplying both sides of (47) by J and recalling JPJ=O. 

Similarly, equation (45) is obtained by premultiplying both sides of (47) by wN1Nj' and 
recalling that N$J+=o. Recall that q can be decomposed into (c,<) by F--' given by (38) 
and < is homeomorphic to  z. Thus ( is homeomorphic to  e because there is one to one 
mapping between z and e. Then e is independent of c, so q can be decomposed into (c,e). 

v of the Zero Dvnamlcs 

I,emma (The stability of a cascade system). 

Consider the unperturbed system (45) and (46) in hierarchical form, i=f(!;,<) and, i=g((). 

If the functions f and g are continuously differentiable, then (~,<)=(0,0) is a locally 

asymptotically stable equilibrium of the system, if and only if (=o is a locally 

asymptotically stable equilibrium of g (() and ~ = 0  is a locally asymptotically stable 
equilibrium of f(<,O). 0 

The proof of this lemma can be found in Vidyasagar [27]. m 

.The equilibrium point of the cascade system given in lemma 7 is e=O, c=(*. Where 

is the coordinates such that (N,TVH)(~(~*,O))=O. The equilibrium joint position q *  is then 

given by q *=F(c*,o). 
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Remark : Setting c=O in (45) gives us the zero dynamics [6,13], (assuming that the 
output of the system is e), 

i=~rn' (N,r vH) (q(~,o)) (48) 

of the unperturbed system. The zero dynamics is defined on the manifold IRr. Equations 

(41) and (48) lead to, 

Notice that  q(r,O) E QN, also notice that  PJi represents the motion of q E QN without any 

change in z. Furthermore, equation (49) is defined on the manifold of 

{q=F(r,<) ( r€IRr, e=O). This zero dynamics manifold is also expressed by 

QN={~EQ I zd=K(q) and J ~ = o )  , (50) 

and is indeed the self-motion manifold over zd=K(qo). We observe that the identity 

i= ( J+J  + PJ)i  is satisfied for any ~ E Q .  However on the self-motion manifold i = J ( q ) i = ~ ,  

thus i=PJi. Equation (49) can be rewritten as, 

Equation (51) will in fact express the "equivalent zero dynamics" in the joint space and i t  

is defined on the manifold QN. 

. . ProDosltlon (The boundedness of the unperturbed system). 

The equilibrium point q *  of the unperturbed system is asymptotically stable if the 
equilibrium point ( r * , ~ )  of the zero-dynamics (51) is asymptotically stable.. The trajectory 
q(t) of the unperturbed system starting from any finite initial configuration go is bounded 

if the solution trajectory of the zero dynamics defined on the self-motion manifold Q p  

= { q ~ C ( q ~ )  ( K(q)=K(qo)=zo) is bounded. 0 

Proof : Lemma 7 asserts that  the unperturbed system given by (47) can be 
decomposed into a cascade system. Then the asymptotic stability results are obtained 

immediately from lemma 8. 
. . (Boundedness of q E QN is guaranteed for a choice of H). 

Let the objective function H(q) be a quadratic of the form : 

where qc is fixed, and M is a symmetric positive definite matrix. Further let qc be given 

in a set of isolated points. Consider the zero-dynamics, 

The vector q E QN is bounded and q-tq* as t-too for every fixed qc. Where q* is the 
optimal solution of the problem given by (6). 0 

Proof : Let the Lyapunov function candidate V be, ~ = + ( q - q c ) * ~ ( q - q ~ )  (q€QN). 

The derivative of V with respect t o  time is, V = X ( ~ - ~ ~ ) ' M P ~ M ( ~ - ~ ~ )  
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= A I  (PJM(q-qc)l J 2  50 ,  for x<O, because the matrix PI is a projector. Hence q-q&LDO , in 

addition, because of the boundedness of qc we have  EL". Notice that the set E=(q€QN 
1 ?=o} is the the set of equilibrium points of (53), and is therefore an invariant set. From 
LaSalle's extension of Lyapunov direct method (141, q(t)-q* as t-oo because q is in a 
bounded set. 8 

Therefore if we choose the objective function H to be of quadratic form, then the 
trajectory of the unperturbed system is always bounded. If qc is not on the self-motion 
manifold, then q '  may not be equal to qc. The solution vector q '  must be in the feasible 

region of the constraints of the optimization problem, in this case the feasible region is 

QK". 

Remark 5 The quadratic performance function defined in (52) ensures that the function 
v in (11) is locally Lipschitz. 0 

J -1 ( i d - y e )  ( i d - " I )  v ( ~ ) = [ ~ J I  [iNJvkI =[J+ I N J ~ I ~ ~ ~ ~ ~ - ~ ~ )  ] = J+(id-re)+~PjM(q-qc) (54) 

Matrices J+ and PJ are differentiable because of assumption (A2) and the fact that Mis  a 
constant matrix. Recall that a continuously differentiable function is locally Lipschitz, 

hence the function given in (54) is differentiable with respect to  q, and is t,herefore locally 

Lipschitz. 

6. Example  

In this section we will apply the proposed adaptive control law to a three degree of 
freedom RPR robot with one prismatic joint followed by two revolute joints (see Fig. 2). 
The structural parameters of the robot are given in the below table. 

Variable (1 Value Definition 

Mass of first link 
Mass of second link 
Mass of carried load 
Maximum length of the radial link 
Length of second link 

Table 1. Redundant Robot Link Parameters 

The structure of the dynamical equation of the RPR robot is as given in (12). The 

manipulator consists of a revolute joint with angle dl followed by a prismatic link of 
length r, and another revolute joint angle d2. We will denote by Sl=sindl, S2=sind2, 

S12=sin(d1 +d2), and C1 =cosd,, C2=cosq52, and C12=cos(d1 +&). For converiience the joint 
vector will be denoted as q = ( r l ,  d l ,  d2). We will also define the parameter vector fl which 
is related to  the manipulator structural parameters as follows, 81=ml+m2+mL, 
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m2 mo 1 
B2=(-+mL)r2, 8,=(-+mL) ra, B4=m111, and B6=amlR. Then the inertia matrix D(@) 

2 3 

and the Coriolis matrix C(q,i;O) are given as (71, 

Given that the reference velocity vector v = ( v l ,  v? ,  v3 ) ,  and the reference acceleration vector 
a=(al  ,a,, a,), then the regressor matrix Y ( . ) E I R ~ ~ '  for this robot is given as, 

. . . . 
where, we have set y = -(a2+a3)S12-(61+O2)(v2+v3)Cl2, y22 = 2 i I  v?C1? - r l  (241+42)~3S1? 

-alS12+2rl a2C12+r1 a3C1?, and y3' = 2$,v1 C12 + r l ~ l v 2 ~ 1 2  -alS12+r1 a2C12. 

The robot end-effector positions z1 and z, in the Cartesian space are given as, 

z l = r l  C1 +r2 C12 and z2=r1 S1 +r2S12. The Jacobian is then expressed as 

C1 -r S r ' -  2S12 -r2S12 . Further the singular configurations are characterized by, S, r l C ~ + r ? C , o  r?Clo 

det[JJT]=ry(rz$+l) +2r2C?(r2C2+r1)=0. Thus the singularity occurs when rl=O and 

d2=(f2k+1)1;/2, where k is any integer. In order to  avoid singularity, we selected the 

objective function to  keep link r ,  away from 0. The objective function was selected as, 

The basis vector of the null space of J is, 

The self-motion manifold for this manipulator can be computed for the specified 

zo=K(qO)=K(g) by solving the differential equation given by (35). In this example the 
self-motion manifold will be represented by a curve in the three dimensional joint space 

for specified zo. 

The end-effector of the manipulator was used to  trace a circle of radius 0.2 m 
passing through (0.83, 0.19) with initial joint configuration q(0)=(0.3, 0.7, -0.7). The circle 
was traced in a period of 5 seconds. For the adaptive control simulations, the initial 

estimates of the parameters were set a t  ;(o)= (0, 0 ,  0, 0, 0). The actual values of the 
parameters of the manipulator are O,,,= ( 5.8, 3.09, 1.84, 0.5, 0.17), and the load mass 

mL=5. 
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We will show that  r1m0.6 is the asymptotic optimal point and the zero dynamics is 

indeed stable. In order to  do that, we computed the curve for the zero dynamics manifold 

given by the equation (35). In this example we used zo=(0.83,0.19) and 

q(0)=(0.3, 0.7, -0.7). The coordinates of the self-motion manifold, which is a connected 
curve in the three dimensional q coordinates, is obtained from the integration of the 

components of N,. The arc length of the self-motion manifold traversed a t  time t is 
1 

a= J I (NJI I du. Therefore the arc length s is homeomorphic to  time t. Fig. 3 shows the 
u=io 

coordinates of q versus s, here q=(r,,#,,#z). Recall from the discussion in eections 2 and 5 
that  N j  is the tangent map of the self-motion manifold and from (51) the zero dynamics is 

given by i=XPJVH = N~(xNJVH), where xNJVH is a scalar. Therefore the magnitude of 
the zero dynamics vector field on the self-motion manifold is represented by the scalar 

v,=<Nj, XPjVH> = xNJVH. We constructed the phase portrait of the zero dynamics 
with the plot of v, versus 8, for the initial values of zo==(0.83,0.19) and q(0)=(0.3,0.7,-0.7). 
The scalar XN~'VH is depicted by a solid line in Fig. 3. The attractive configurations are 

dv, 
those joint configurations q=q,(s,), where v,(q,)=O and -<O in the neighborhood of a=a,. 

ds 
From Fig. 3, we see that  the points A, , A2 , A3 are attractive equilibrium points, and the 

points B, , B:, are repelling equilibrium points. At  points A, , Az and A3 we do indeed 

find that  rlm0.6. If we s tar t  from the initial condition q(0)=(0.3,0.7,-0.7), then the motion 

of the joints will approach and stay a t  the point A:, (as Az is the first attractive 

equilibrium point on the self-motion manifold). Thus, we have shown numerically that r, 

approaches 0.6, and from proposition 5 this is also the point a t  which the function H(q) is 

optimized locally as the projected gradient of H i s  zero a t  A:,. Notice that  if we have two 
dv, 

different H functions (with different weighting on the quadratic) the slopes (i.e., -) of 
da 

the phase portraits will be different, and faster convergence to A2 will result for the one 

with the larger slope. 

The above numerical demonstration of the stability can be verified from the 

equilibrium points of the zero-dynamics, equation (51), or, 4 = A(  IOOr, r2S2(rl - 0.6) 

-r2 CZ+, +(r1+r2C:,)+2 ) Nj  =O. This equation was numerically solved because analytical 
solutions are not easily obtained. 

8.4 f i t i v e  Version of our - 
In order to  provide a basis for comparison and to  demonstrate the need for adaptive 

control, we simulated the control law given by (18) with the adaptation mechanism 

switched off and q=l. In the simulation the values of the parameters ~=(1,1,1,1,1) are 

used in the control law calculations. These parameter values were held constant 

throughout the simulation. Notice that  these parameters were different from the actual 

values. The responses of the manipulator joints are shown in Fig. 4. The tracking error 

c=(cl,cz) is shown in Fig. 5. We see that  there is a steady state tracking error for the 
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simulated trajectory. This steady state error would disappear if the actual parameters 
are used in the control law calculations. 

We will compare the performance of our adaptive control law with that of Niemeyer and 

Slotine's adaptive scheme [19]. In their redundant robot adaptive scheme the joint 

reference velocity, q,, and the joint reference acceleration, h', are computed from the 

desired end-effector position, zd, and the actual position, z. Given &=id--A(zd-Z) (A is a 

positive definite matrix), then the end-effector reference acceleration is &=Zd-h(id-i). 
These signals are used to  compute the joint reference acceleration (see [19], section 3.2 ) 

.. . T 
as, qr=~+(i;-&r)+ P , ( ~ + J  (J+)~(&-Q)) and the joint reference velocity as i r=J+ir+PJ 3. 

The function JI is the gradient of the objective function f (see [19], section 3.2 ) and is 
described as JI=-X,Vf, (where X, is a positive constant). Further the objective function f 

is given as f = l q T q .  The sliding vector s=i-ir  is used in the control law (see [19], 
2 

equation 4) r= Y(q,i,d.,,&)i-Koe , the parameter estimates ~ E I R *  are calculated from 

equation 6 in [19] as i=-PyTe. Here the matrix Y€IRnX* is the regressor matrix as 

described in our paper, and P€IRVX' is a positive definite gain matrix. Niemeyer and 
Slotine implemented their control scheme on a four-link redundant robot. They showed 
that the adaptive scheme had superior performance over a PD control scheme (see [19], 

Fig. 5 ) ,  when the initial parameter estimates were set to  zero, i(0)=0. 'We applied the 
scheme of Niemeyer and Slotine to  the example described earlier in this section in order 
to  compare i t  with our adaptive scheme. The following gains were used in their control 
scheme, KD=5015, P=515, and X,=50. 

Case: The parameter estimates (;(o), (or in this paper i(0)) are set to  zero. In this case, 

the end-effector tracking error shown in Fig. 6 remains bounded and does not converge. 

The parameters which are shown in Fig. 7 do not appear to converge to  any value for the 
period of time shown or for a larger period of time. The torques which are shown in Fig. 

8 are acceptable. Therefore for this set of gains the controller given in [19] appears to  

behave much like our non-adaptive scheme. 

Case: The controller given in [I91 is simulated with the parameter update gain 

significantly increased, such that P=20015. The tracking error appears t o  converge to  zero 

but the rate of convergence is slow, see Fig. 9. The parameters appear to get closer to 

their actual values, see Fig. 10. 

tive 

The full adaptive control law (18) was applied to the redundant robot given earlier. 
The reference vectors u and a are given by (28) and (29) respectively. The weighting 
function w, was selected as w,-'=O.lexp(- bt)+0.02(t+l)-c, (with b=2 and c =1.1). Notice 

that w,' E L'. The exponential term in w, is used to improve the transient tracking error, 
the bigger the constant b, the faster the transient response becomes. The constant c is 

used to  slow down the rate of increase of wt, the smaller the constant c, the slower the 
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rate of increase of cut becomes. In the simulation, we selected a bound on such as ;=7 

and u0=20. We noticed that, I I;( I never reaches its maximum value of 7. The controller 
works well without the u term. As external disturbances result in parameter drift, the o 

term was initially added to prevent this drift. The controller gain K,=5013, the matrix 

1'-'=515, the constant A=-1, and the initial condition ;(o)= (0, 0, 0, 0, 0) were used in the 

simulation for the described trajectory. The manipulator joint responses are shown in 
Fig. 11. The end-effector tracking errors are shown in Fig. 12. The parameter estimates 

; ( t )  are shown in Fig. 13a, Fig. 13b and Fig. 13c. The control torques are shown in Fig. 
14. We can see that the end-effector tracking errors tend to  zero as t -+ oo. The 

parameter estimates are also seen to  remain bounded. The simulations also show that 
the joint position responses remained bounded. The joint variable r, was initially set a t  
0.3 m and we see that r, converges to 0.6 almost immediately. From the analysis of the 
zero dynamics in sections 5 and 6.3, we know that rl*0.6 is a stable equilibrium point, 
this was verified through the simulation. The objective function H(q)  iis optimized a t  
point A2.  We can see that a control input is applied to  the prismatic joint rl to maintain 
its position, and effectively the revolute joints are used to trace t,he end-effector 
trajectory. Notice that the system has selected this condition through the prescribed 
control law. Only the desired end-effector position and its derivatives are specified as the 
input t o  the system. 

In comparison to  the scheme of Niemeyer and Slotine which yielded bounded 
tracking error response for P = 5 1 5 ,  (our r is the same as their P-'), our controller yields 
fast convergence of the end-effector tracking error e. Also the parameters and joints 
errors remained bounded for the same gain. Much larger gains are in fact needed for 
Niemeyer and Slotine's scheme to obtain parameters and error convergence. 

Computationally our controller appears to be more complex from an implementation 
stand point. However, we gave clear theoretical justification as to  why our controller 

works well. We should also note that our non-adaptive scheme produced bounded 

tracking error for the specified trajectory when the parameters were unknown. The 
tracking errors was similar to  that of Niemeyer and Slotine's adaptive scheme for low 

adaptation gain. 

In this paper we developed an adaptive control law for rigid joint redundant robots. 

The control scheme achieved redundancy resolution a t  the joint velocity level. Given an 

end-effector trajectory, the control scheme determined the joint velocity which ensured 

the end-effector trajectory was tracked. I t  was shown through the use of a scalar 

weighting function that the velocity tracking was asymptotic and that the estimated 

parameters were bounded. The boundedness of the joint motion, was established through 

the analysis of a perturbed dynamical system. This dynamical system was transformed 

into a cascade system where one of the transformed system variables was shown to be 
homeomorphic to the end-effector error, while the other one was shown to be 
homeomorphic to the self-motion variable. The equations of motion on the self-motion 
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manifold were first determined and then directly linked to  the zero dynamics. The 
stability of the zero dynamics was then linked to the boundedness of the joint motions. 

To  our knowledge past work on the adaptive control of redundant robots did not 

rigorously address the stability of the motion on the self-motion manifold or 

systematically develop an adaptive control strategy as was given in this paper. 

Simulations were also performed for a planar redundant robot to  illustrate the 

effectiveness of the proposed adaptive controller. Comparisons with another existing 

adaptive scheme was also given. 

Future research in this area should address the effects of joint flexibility, unmodeled 

actuator dynamics and strategies for multiple redundant robots control. 

0 
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Fig 2. RPR Redundant Robot Tracing a Circle on the XY Plane 
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Fig. 3 Phase Portrait of the Zero Dynamics 
and the Joint Positions on the Self-Motion Manifold 

time 
Fig. 4 Motion of the States 
for the Non-Adaptive case 
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Fig. 5 Tracking Error 

for the Non-Adaptive case 
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Fig. 6 Tracking Errors 

For the scheme in [18] with P=515 

time 
Fig. 8 Torques T , ,  T ? ,  73 

For the scheme in [18] with P=515 
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Fig. 9 Tracking Errors 

For the scheme in [18] with P=20015 
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Fig. 7 Parameter Estimates 

For the scheme in 1181 with P=515 
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Fig. 10 Parameter Estimates 

For the scheme in [18] with P=20015 
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