Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

1-1-1992

Hierarchical Neural Networks with Forward-
Backward Training

S-W.Deng
Purdue University School of Electrical Engineering

O.K. Ersoy
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Deng, S-W. and Ersoy, O. K., "Hierarchical Neural Networks with Forward-Backward Training" (1992). ECE Technical Reports. Paper

279.
http://docs.lib.purdue.edu/ecetr/279

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F279&utm_medium=PDF&utm_campaign=PDFCoverPages

pu

eI
\?I LIBO‘

N

s

Paralld, Self-Organizing,
Hierarchical Neural Networks
with Forwar d-Backward
Training

S-W. Deng
O. K. Ersoy

TR-EE 92-3
January 1992

PARALLEL, SELF-ORGANIZING,
HIERARCHICAL NEURAL NETWORKS
WITH FORWARD-BACKWARD TRAINING

SW Deng, O. K. Ersoy

Purdue University
School of Electrical Engineering
W. Lafayette, IN 47907

ABSTRACT

A forward-backward training algorithm for parallel, self-organizing
hierachical neural networks (PSHNN’s) is described. Using linear algebra, it is
shown that the forward-backward training of an n-stage PSHNN until
convergence is equivalent to the pseudo-inverse solution for a single, total network
designed in the least-squares sense with the total input vector consisting of the
actual input vector and its additional nonlinear transformations. These results are
alse valid when a single long input vector is partitioned into smaller length
vectors. A number of advantages achieved are small modules for easy and fast
learning, parallel implementation of small modules during testing, faster
convergence rate, better numerical error-reduction, and suitability for learning
input nonlinear transformations by other neural networks. The backpropagation
(BP) algorithm is proposed for learning input nonlinearities. Better performance
in terms of deeper minimum of the error function and faster convergence rate is
achieved when a single BP network is replaced by a PSHNN of equal complexity
in which each stage is a BP network of smaller complexity than the single BP
network.

1. INTRODUCTION

Parallel, self-organizing, hierarchical neural networks (PSHNN's) are
multistage networks in which stages operate in paralel rather than in series
during testing [1], (2]. The PSHNN is self-organizing in the sense of number of
stages. Each stage is a particular neural network, referred to as the stage neural
network(SNN). The PSHNN's as discussed in [1] and [2] assume quantized or
continuous-valued inputs and quantized, say, binary outputs. At the output of
each SNN, there isan error detection scheme which allows acceptance or rejection
of input vectors. If an input vector is rejected, it goes through a nonlinear
transformation (NLT) befor being inputted to the next stage. Only those input
vectors which are rejected by the present stage are fed into the next stage after
the nonlinear transformation.

In a recent paper, we discussed the generalization of parallel, self-organizing,
hierarchical neural networks (PSHNN's) to continuous inputs as wel as
continuous outputs [3]. The block diagram for such a 3-stage PSHNN is shown in
Fig. L. It was shown that stages are generated by nonlinearly transforming input
vectors, and each new stage attempts to correct the errors of the previous stage. It
was also discussed that further error reduction in an n-stage network is possible
by circularly transmitting the remaining error through the stages a number of
times until convergence. Running through all the stages once can be caled one
sweep. At each successive sweep, the desired output of each stage is modified as
the previous output of the stage plus the remaining error from the previous stage.
The first stage receives the error from the last stage. Both in Ref. [3] and in this
paper, the output nodes are assumed to be linear.

In this paper, forward-backward training of n-stage PSHNN’s are introduced
and discussed on a rigorous mathematical basis, in addition to providing
experimental results. The results are actually valid for all linear least-squares
problems if we consider the input vector and vectors generated from it by
nonlinear transformations as the decomposition of a single, long vector. In this
sense, the techniques discussed represent the decomposition of a large problem
into smaller problems which are related through wrrors and forward-backward
training. Generation of additional nodes at the input is common to a number of
techniques such as generalized discriminant functions (4], higher order networks
[6], and function-link networks {6]. After this is done, a single total network can
be trained by the delta rule [7]. At convergence, the result is approximately the
same as the pseudo-inverse solution, disregarding any possible numerical problems
[8). The PSHNN's are different because the single total network are rplaced by a
number of subnetworks.

The main result in this paper is that forward-backward training of an n-
stage network until convergence is equivalent to the pseudo-inverse solution for a

single total network with the total number of input nodes if each stage is
optimized in the sense o least-squares. There are a number of advantages in
achieving the pseudo-inverse solution in this fashion. The most obvious advantage
is that-each stage is much easier to implement as a module to be trained than the
whole network. In addition, al stages can be processed in parallel during testing.
If the complexity of implementation without parallel stages is denoted by f(N)
where N is the length of input vectors, the parallel complexity of the forward-
backward training algorithm during testing is f(K) where K equals N/M with M
equal to the number of stages.

The paper consists of eight sections. In Sec. 2, the forward-backward training
algorithm is described in detail. In Sec. 3, the asymptotic properties with a two-
stage network are discussed. These properties are extended to n-stage networks in
Sec. 4. The suboptimal asymptotic properties due to the use of the delta rule
during training are proved in Sec. 5. Experimental results are provided in Sec. 6.
Another advantage of PSHNN is that input nonlinear transformations (NLT’s)
can be learned. In Sec. 7, we illustrate a technique which uses backpropagation
(BP) algorithm with forward-backward training to learn input nonlinear
transformations. Simulation results of this section indicate that the total network
consisting of small BP stages usually converges faster and to a deeper minimum
of the error function than a single BP network of the same total siee. Conclusions
are given in Sec. 8.

2. PSHNN WITH FORWARD-BACKWARD TRAINING

The system model is shown in Fig.1. In this section, a single output is
assumed. In Fig.1, SNN(i) represents the i-th stage neural network. In this paper,
the stage neural network is assumed to be trained by the delta rule [8]. The
output nodes are assumed to be linear. X(n) is the input vector sequence; d(n) is
the desired output sequence; X'(n), Y(n) and Z(n) are obtained by different
nonlinear transformations NLT1, NLT2 and NLT3.

We first consider a two-stage PSHNN, and then generalize the properties to
n stages. Assuming m training vectors of length p and NLT1 in Fig. 1 to be the
identity operator (X (n)=X"(n)), we define

t
W1=[a1 as ap],

t
W2=[bl by - bp]-

X and Y are m X p matrices. Each row of X or Y represents an input vector
of SNN1 or SNN2, respectively. D! is the desired output vector of length m.
Using the delta rule to train SNNI corresponds ideally to finding the least-squares
solution for XW;=D}. The output of SNNI is e} which can be expressed as [10]

ol=XX*D!=AD!}, (1)

where Xt is the generalized inverse of X, and the projection operator A is XX,
which is positive semidefinite [4].
Theerror vector of SNNI is

e} =D} —ol =(I—A)D!. (2)

We use e] as the desired output for SNN2, to be also trained by the delta rule.
The output of SNN2 after training can be expressed as

0y =YY" e} =Bel, (3)
where we define YY* 2B, which isalso positive and semidefinite. Then,
el =el —0} =(I—B)el. (4)
With two stages, o} +o3 is the output, and the system error ¢; is
e;=D] —(o] +0})=¢;. (5)

The above results can be considered to be the first sweep in a number of sweeps
o forward-backward training. In the second sweep, the desired vector for SNNI is
set equal to

D}=o] +e;. (8)
The new output of SNNI is
of =A (o] +e3)=01 +Ae3, (7)

because A is the projection operator, ol is in the space spanned by A, and
Ao} =ol.
The new error signal for SNNI is

e3 =D —o?=(I—A)e}. (8)
After a straightforward derivation, we get
e =Di—(0}+o3). (9)

If we terminate the training at this point, the system output is o? +ei. Therefore
2

ei isjust the error of the system. If we continue to train SNN2, the new desired
signal for SNN2 is

D} =0} +el. (10)
The output of SNN2 becomes
0} =BD%} =0} +Be?, (11)

since o} isin the space spanned by B.
The error vector for SNN2, is

e§ =D% —o} =(I—B)el. (12)
Using the same derivation leading to Eq.(9), we get
e§ =Di —(of +0}), (13)

where e is theerror signa of the system at the end of the second sweep.
At the n-th sweep, the desired output signal for SNNI is

After training, the output of SNN1 is
ol =AD} =0} "1 4+Ael.
Theerror vector is
el=D}—oP=(I—A)el™!
The error vector can also be written as
el =Di —(of +057").
At the n-th sweep, the desired signal for SNN2 is
D=0~ Fei-
The output is
o8 =BDj=03"1+4Be?.
Theerror is
ef =D - of =(I—B)ef.
Again, we note that
e§ =Di—(of +0}),
where e is the system error after the nth sweep.
From Eq.(2) and Eq.(4), we get
[led |I*=(D1)'(I-A)(D1),

b [P=(el)!(r-B)(eD<Ilel |]*.

From Eq.(8) and Eq.(12), we get
[led 11?=(e2) (T—A)(ez)<I| ez | I,

[1ef 112=(e3) (1—B)(ez)<I| ez [I*.

From Eq.(16) and Eq.(20). we conclude that

[lef 117 =(eg 1) (T—A)(e3 ™)<I|e2 7' I?,

ez [12=(er)(7—B)(et)<I T 1.

Therefore,

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

Hegl2<l ez [P<Ile IP< - - - <Iled [P<I[e}1*<llex]1®. (28)

We will see in the next section that

lim [[ef|]*=]]e|[?, (20)
n— 00
lim [|eg |1*=|]e]]?, (30)
n-—00

where {|e||? is the square error sum of the function-link network which has the
same input NLT’s as used in the PSHNN.

3. ASYMPTOTIC PROPERTIES OF A TWO-STAGE PSHNN WITH
FORWARD-BACKWARD TRAINING

Consider a function-link network as shown in Fig. 2. Let X denote an input
vector, Y be a nonlinear transformation of X and D be the desired output vector.
X and Y are mXn matrices, D is an mX1 vector, and W is a 2nX1 weight
matrix.

Using the delta rule to train W corresponds approximately to finding the
least square solution for

(X, Y)W=D,
where (X,Y) denotes the concatenation of X and Y. The least square solution is

W=(X, Y)*D,
where (X, Y)* isthe pseudo-inverse of (X,Y).
The output vector is

o=(X, Y)(X,Y)" D,
Therefore, the error vector is
e=D—o=(I—(X,Y)(X, Y)")D. (31)

If we use PSHNN with forward-backward training, Egs. (2), (4), (8), (13) and Di
= D in thiscase lead to

el =(I-XX*)D, (32)

el =(I-YY*)(I-XX")D, (33)

e} =(I-XX1)[(I-YY*)I-XX")|D, (34)
e =[(I-YY*)(I-XX")*D, (35)

e =(I-XX)[(I-YY*)(I-XX)]""! D, (38)

e ={(I-YY*)I-XX")]"D, (37)

el T =(I-XX")[(I-YY*)(I—XX")|"D. (38)

We will need the following properties to prove the main theorem of this
section:

Property 1 The null space N(XX'+YY') is equivalent to the intersection of
the null space N(XX") and the null space N(YY?).

Proof:

(i) For any vector yeN(XX*)qN(YY?)

it is obvious that yEN(XX'+YY").

(ii) For any vector yeN(XX'+YY')
(XX'+YY!)y=0

=> XX'y=—YY'y

Therefore, y!XX'y=—y'YY'y

Since XX*! and YY' are positive semidefinite
yEN(XX') and yeN(YY!) O

In addition, the following properties are needed:

Property 2 The projection operators Py(xxt and Py(yy+ satisfy

lim (Pwpexy Pagvy) J*=Prooey(vy), (39)
which can be found in Nakano [11]. This property tells us that the projection not
in the intersection of N{(XX!) and N(YY") will gradually vanish as n goes to
infinity. The projection in the intersection of N(XX!) and N(YY*) will be
preserved.
Property 8

Pnxx) PN(xxy (YY) =PN(xx) N (YY) (40)
which can be found in Hartwing and Drazin [12] and Nakano [11].

Next, we will state and prove the main theorem:

Theorem 1
lim ef+1=lim ef=e, (41)
N—=>0 n—00
lim e3=e. (42)

n -+ 00

10

Proof:

The projection matrices are
(I—XX*)LPn(xx,
(1-YYH)2Py(yyy.

Comparing Egs. (31), (37) and (38), sufficient conditions for Eq. (41) and Eq. (42)

to hold are

lim (I=XX*)|[(I-YY*)I-XX*)"=[I—(X, Y)(X, V)],

n—oo

lim (=YY)(I=XX*))"=[I~(X, Y)(X, ¥)*].

n-tw

Using the projection operators, we get
[(I=YY*)I—XX")"=(Pn(yy) Pnxxy))"-

From Property 1, we have

N(XX')AN(YYH=N(XX'+YY")=N((X, Y)(X, V)").

Therefore,
Prooeymw(rry=Prix, nix, v
We know that
Pyx, vyx, v =I—(X, Y)(X, Y)|
From Egs. (39), (45), (46) and (47), we conclude that
lim (1= YY) I=XX) ==X, V)% YY),

EqQ. (44) to be proved follows directly from Property 3:
lim (I—XX+)[(I— Yy*)(I— X+)]n=[1_(xv Y)(X: Y)+]

n— 0o

a

(43)

(44)

(45)

(46)

(47)

The theorem proved above means that, as n grows larger, the error vectors
el and e3 approach the error vector ¢ for the pseudoinverse solution if a single

total network was built without stages with the total input vector.

4. ASYMPTOTIC PROPERTIES FOR AN N-STAGE NETWORK

When the number of stages is 2, forward-backward training is the same as
circular training discussed in Ref. [10]. In the circular training algorithm with n
stages, after training SNN(n), we train SNN(1). In forward-backward training, we
will train SNN(n-1) after training SNN(n), followed by SNN(n-2) and so on.
From the first stage to the last stage, we have a forward path training, and then
from the last stage to the first stage, we have a backward path training. One
sweep training consists o a forward path and a backward path training. We will
call this training procedure the forward-backward traing algorithm.

For the sake o brevity , we will discuss the 3-stage PSHNN. All the
properties of the 3-stage network can be derived for the n-stage network in the
same way. Referring to Fig.1 and supposing X=X, we define N[XX']=A,
N|YY! =B, and N|ZZ'|=C to represent the null space of (xx), (YY') and (22),
respectively. After the first stage is trained, the error vector is

ely=[Pa|D, (48)

where P, is the projection matrix of A, and D is the desired output vector. The
superscript of the error vector denotes the number of sweeps, the arabic number
on the subscript denotes the number of stages, and the letter "f"’ on the subscript
means forward path training. Following the same procedure as in Section 3, we
have

e3y=[PpP4|D, (49)
e3y=[PcPpP4|D. (50)

After training three stages in the forward path, we transmit the error of the third
stage to the second stage and modify the desired output of the second stage in
order to train the second stage, and get the error vector

e3y=[PpPcPpP4|D, (51)

where the letter "b" in the subscript means backward training path. After
training the second stage, we train the first stage and get the error vector

e1s=(P4PgPcPpP|D. (52)
Now, the first sweep is over, and the second sweep starts.

Following the same procedure as above, we get the following error vectorsin
the second sweep:

e}y=P4[PoPgPcPpP4|D
=[P,PgP,PgP4|D
‘—"Ch, (53)

D,
PBP(;PBPA]

e%,EPBPA [PA (54)
e3y/=PcPgP4 [P, PgPcPpP4|D, (55)
e3s=PpPcPpP4|PsPpPcPpP4D, (56)

els=[P4PgPcPpP4* D
=ef;. (57)

After the nth sweep training, the error vector o thefirst stage becomes
efy=elf! =[P4 PpPcPgP4]"D. (58)

Similar to the derivation o Eq.(31), the error vector for a 3-stage function-
link network is

e=[I—(X,Y,2)(X, Y,2)*|D
=[Pn(xx'+ yv'+ 22| D, (59)
where N(XX*+YY!+22") denotes the null apace of (XX'+YY!'+22%).
We dso need the following properties:

Property 1.a The null space N(XX'+YY'4+2Z') is equivdent to the
intersection of the null space N(XX*), the null space N(YY?*) and the null space
N(z2").

Proof:

(i) For any vector s€N(XX)\N(YY)\N(22"),

it is obvious that aEN(XX*+YY!+2Z%).

(i) For any vector a€N(XX'4+YY!+22"),

then (XX*'+YY'+22")a=0.

Therefore, a'(XX*'+YY'+22')a=0,

=> a'XX'a+a'YY'a+aZZ'a=0.

Because (XXY), (YY?), and (22") are positive semidefinite,
we have ¢! XX*a=0, a'YY*a=0 and a'2Z'a=0.

These imply aEN(XX?), a€N(YY?), and aEN(ZZ'). O

Property 2a
lim (PAPBPcngA)n=PAanc (60)
n—o0

13

which was proved by Pyle [13].
From Eq.(59) and property 1.a, we get

e =(PNnxx'+yyt+229)D=(P4 B c)D- (61)

By using Property 2.a, Eq.(58) and Eq.(61), we obtain the main theorem o this
section:

Theorem 2

lim efy=e. (62)
n—+00
Since Property 2.a still holds for the intersection of n projection matrices, the
generalization of Theorem 2 to the n-stage PSHNN with forward-backward
training is obvious.

The results of Theorem 1 of Sec. 3 is based on the two-stage PSHNN. For
the two-stage PSHNN, circular training is the same as the forward-backward
training. An interesting question is whether circular training gives the same
results as forward-backward training for the n-stage networks. This is conjectured
to be true since many experiments show that [13]

nILmoo(PCPBPA)"_—-PAanC. (63)

Experimentally, we have also observed that circular training gives the same
results as forward-backward training.

14

6. ASYMPTOTIC PROPERTIES FOR THE SUBOPTIMAL
SOLUTIONS

In Sec. 4, we discussed the asympotic property of PSHNN with forward-
backward training when each stage gives the exact least-squares solution. In this
section, we generalize the asympotic property to the suboptimal leastsquares
solution due to the use of the delta rule. We discuss the case of the two-stage
PSHNN, and the results can be easily extended to the n-stage PSHNN.

Assuming a two-stage network, the square error sum ||e} ||* in Eq. (23) is
based on the optimal least-squares solution for the second stage. The least-
squares error vector e3 isin the null space of [YY']. Defining £,2||e ||?, Eq.
(23) can be written as

+
En=l{T=YY)el |12 =||PNn(yryei |12, (64)
where Py(yy is the projection matrix to the null space of YY:
In reality, the square error sum we get by using the delta rule is based on a

suboptimal leastsquares solution. The suboptimal square error sum denoted as
&, can be expressed as [14]

gla=m (€min +Eezc)7 (65)

where m denotes the number of input vectors. &gy is the minimun mean sguare
error (MSE) by solving the normal equation

E|YN(n)YN(n) | WN=E [e] (n) Yn(n)), (66)

where Yn(n)=[y(n),y(n—1), .. ,y(n—N+1))}, and N denotes the number of
weights of SNN2 of Fig.1; £,,. is due to the actual LMS weights jitter, and is
sometimes referred to as the excess MSE. If we assume the sequence y(n) is
stationary and ergodic, then még,;, in Eq. (65) gradually approaches the optimal
square error sum &, as m grows. Thus, approximating m&ni, by &, Eq. (65) can
be written as

gla=€ll +mé,zc (67)

&.zc is proportional to gain 7 used in training. Choosing smaller n achieves better
suboptimal square error sum E,,, but then the learning rate is slower. So, there is
a trade-off involved in choosing the value of 7.

We show below that the error reduction properties derived in Sec. 2 still hold
in practise with the square error sum &, based on a suboptimal leastsquares
solution.

For the sake of brevity, we consider a two-stage PSHNN with NLT1 being
the identity operator. D} is the desired vector for the first stage network in the
first sweep. The output vector of thefirst stage based on the optimal leastsquares
solution is

15

Oi =Pcol[XX‘]D{ . (68)

1 . . .
The output vector 6, based on the suboptimal least-squares solutions W', is
written as
1
1=XW1 . (69)

o

can be written as

>

This shows that 4, €col[XX"]. &;
R
0 =Pcol[XX'] D{ +bi 1 (70)

where the vector b} also belongs to the column space of [XX!]. This is graphically
shown in Fig. 3. The magnitude of b} can be written as

116} [|=cl [| Peorjxxy DY |1 | (71)
where ¢} satisfies 0<el <1 in practise. Thus the error vector of SNNI in the first
sweep is

A

é1=PnxxyDi —b] . (72)
E: is adso the desired vector for the second stage network in the first sweep.
Referring to Fig. 4, and using the same procedure as above, we get the

: .1 . :

suboptimal output vector 6, of SNN2 in the first sweep as

.1 N

02 =Pcol[YY']cl +b} , (73)
where the vector b} belongs to the column space of [YY?], and the magnitude of
b} is

.1

[[631]=c2 || Peatjyrérl] (74)
where ¢} aso satisfies 0<el <1 in practise. The error vector of SNN2 in the first
sweep is

.1 A1
c2=PN|yyi]c1—b% . (75)
Since PN[ych“: and b} are orthogonal to each other, we get
R 1
[é 1PP=I|Priyyq e 1P+ (03|12
R Wl R
<UPwyyyés [P+ Peapyyyén [1P=[&1 || . (76)
Thus, ||e§||2 is less than IIE: ||? as long as e} is less than 1, which is definitely
turein practise.

On the second sweep, the desired vector of SNNI i2s E; +6:. Following the
same procedure as above, the suboptimal output vector 6; of SNNI in the second
sweep isfound as

2 RER
81 =Peoixxt) (€2 +61)+b

N A
=61 +Peo[xx 82 +01 (77)

16

and

2 1
163 1=} || Peotpxy (e1 +81)11 (78)

where 6; Ecol[XX"], b2 Ecol[XX!] and 0<e? <I. The error vector & o SNNI in
the second sweep is

A2 A1 a2

€, =(€3 +0,)—0;

.1

=Pyxx €2 —b} . (79)
The desired vector of SNN2 in the second sweep is Ef +6;. The suboptimal output
vector 8, of SNN2 in the second sweep is

2 2 1
02 =Pcol[YY'](cl +0,)+b§
R 2
=0y +P.o[vy &1 +b3 (80)
and
2 .1
”b.g“:c%”Pcol[YY‘](‘l"Lo‘l)” ’ (81)

where 6;€col[YY‘], b} Ecol[YY!], and 0<cf<|. The error vector Ez of SNN2 in
the second sweep is

2 2 .1 2
€y =(81 +02)—‘02

=Py[yy Ef —b3 . (82)
Using Eq. (72) and Eq. (75), and letting A2N[XX'|,BAN([YY?!]; the
suboptimal error vector €, of the first stage in the first sweep becomes
& =P,D}—b} . (83)
The suboptimal error vector E; of the second stage in the first sweep becomes
£y =Ppé; —b?
=PpP D} —Pgbl —b} . (84)

Using Eq. (79) and Eq. (84), the suboptimal error vector Ef d the first stage in
the second sweep becomes

2
é€1=(P4Pp)P4 D] —P4Ppbi—P4b} —b] , (85)

where b} €col[XX"]. The suboptimal error vector é&; o the second stage in the
second sweep becomes

2
éa=(PpP,)? D1 —(PpP,)Pgbi —(PpP4)b; —Ppb —b3 , (86)
where b3 Ecol [YY?).

Following the same procedure, the suboptimal error vector 2'; of the first
stage in the n-th sweep becomes

17

. _ n _ n-1 o
€ =(P4Pp)" 1 P,D} — S (P, Pg)" kbt — 2 (P4 Pp)" 1P, b} . (87)
k=1 k=1

The suboptimal error vector 2; of the second stage in the n-th sweep becomes

n n n
€, =(PgP4)"D}— %) (PgP4)" *Ppbt —kg (PgPy)"*b} | (88)
k=1 =1
where b} €col[XX!|, and bhE€col[YY!] for any positive integer i. Since the
directions of b} and b5 are random, the magnitudes of the summation terms in
Eq. (87) and Eq. (88) are small in the mean sense. Therefore, the first term on the
right hand side of Eq. (87) or Eg. (88) can be considered as the dominant term in
real-world applications. Then, the error reduction property of Eq. (28) in Sec. 2
still holds for this suboptimal case.

In pratise, if n is large enough such that (PBPA)"=PAﬂB, and m>n, we can
rewrite Eq. (87) and Eqg. (88) as follows:

m m-—1
& =e— %) (PaPp)™Fbi— S (PuPp)™1hP, b (89)
k=m—-n+1 k=m-n+1
and
iy =e— %) (PpPA)™tPpbk— %) (PpPs)™tbk 90
£g =e Y. (PgPy) pbi S (PgPa) 2 s (90)
k=m-n+1 k=m-n+1

The error vector e in Eq. (89) and Eqg. (90) is the vector in Eq. (31), which is the
optimal least-squares error vector of the function-link network as shown in Fig. 2
We dso see that no matter how big m is, there are at most n vectors in each
summation term of Eq. (89) and Eq. (90).

18

6. EXPERIMENTAL RESULTS

The theoretical results discussed above were tested with a speech signa
sampled at 10 khz. 100 Samples were used to train the network by the delta rule.
The gain factor we used in the experiments was 0.001. No momentum term was
used. The input pointwise nonlinear transformations used in the experiments are
the following:

(A) SIGMOID 1 (Sig. 1) :(0<y<1)
1
y=——"7
1+e
(B) SIGMOID 2 (Sig. I} : (-1<y<1)
y = 2 X sigmoid (x) - 1

(C) THRESHOLD 1 (Th. I):
y=1ifx>0
y=0 ifx <0

(D) THRESHOLD 2 (Th. 1I):
y=-1ifx>0
y=1ifx<0

(E) SQUARE :
y=z°

In the experiments, we first normalieed the input data in the range {-1,1}.
Five weights were used for each stage of a two-stage PSHNN. Ten weights were
used for the function-link network. The initial matrix of the network was set
equal to the covariance matrix of the input data.

Table 1 are the results of the function-link network with the ten weights
listed as afunction of the five types of NLT's.

Tables 2 thru 6 are the results of the two-stage PSHNN with forward-
backward training. Table 2 isfor Sig.I, Table 3for Sig.II, Table 4 for Th.I , Table
5 for Th.II, and Table 6 for the square NLT.

Tables 2 and 3 for Sig.I and Sig.HI cases show that the PSHNN with
forward-backward training has more error reduction and faster convergence rate
than the function-link network. With Th.II and square NLT’s, the PSHNN and
the function-link network are about the same both in error reduction and
convergence rate. With Sig.II NLT, there is negligible error reduction both in the
PSHNN and the function-link network. This is because the input data was

19

normalized in the range {-1,1}, and this causes x and y to be almost the same in
this range.

Tables 7 and Table 8 are the results of the function-link network with
three-stage input vectors of length 5 concatenated as a total input vector to the
network. Tables 9 thru 11 show the error reduction performance of the
corresponding three-stage PSHNN with forward-backward training. In the first
stage, 100 iterations were used during the first sweep, and 300 iterations were
used during the succeeding sweeps. The number of iterations of the second and
the third stages were 500, and 900, respectively. In Tables 9, 10 and 11, the
notations used mean errlf = ||e{/||2, err2f = He;/“z, err3f = ||e§/||2, and
err2b = |[eb;]|%. The superscript "i" denotes the number of sweeps as in Section
2. From Tables 7 and 8, we see that the convergence rate is rather slow for the
function-link networks. Comparing Tables 7 and 8 to Tables 9, 10 and 11, we
observe that PSHNN with forward-backward training is superior to the function-
link network in termsof both convergence rate and error reduction.

20

7. LEARNING INPUT NLT BY BACKPROPAGATION WITH
FORWARD-BACKWARD TRAINING

The input NLT's of previous sections are al point-wise nonlinear
transformations. Any input NLT is guaranteed to achieve error reduction (3], but
it isimportant to learn which input NLT is optimal in error reduction. We can
use backpropagation (BP) algorithm to learn the input NLT’s. The BP algorithm
involves a multi-layer system [9]. The goal of the BP algorithm is the same as the
delta rule, namely, minimizing the square error sum. In this system, a nonlinear
activation function is usually used at each layer. The activation function should
be differentiable and usually monotone nondecreasing. The actual output o the
jth node in the kth layer is

N,
Ox)=f (¥ W(5,1)0s1(v)
i=1
where N;_; is the number of output nodes of the (k-1)th layer, and O;_, is the
output vector of the (k-1)th layer. f(.) is the nonlinear activation function.

Each stage of PSHNN can be any type of neural network. In this section, BP
stages are utilized together with forward-backward training discussed in the
previous sections. In other words, we modify the PSHNN architecture by using a
multi-layer neural network trained by the BP algorithm at each stage instead of
each stage of PSHNN being a two-layer network trained by the delta rule. With
respect to Fig. 1, the first layer of the network is the input layer, and the input
vector X is fed into each stage of the network. The outputs of the second layer
are vectors (X', Y, and Z) of Fig. 1 which can be considered as the results of
nonlinear transformations of each stage network (NLT1, NLT2, and NLT3
respectively). In order to comply with the error reduction properties discussed in
the previous sections, we use linear activation function in the output layer.

The computer experiments discussed below indicate that the error reduction
properties of forward-backward training hold in this case as well. The results are
shown in Tables 12 thru 15. The same speech data of the previous sections is
used. The length of the input layer at each stage isfive, and a gain factor of 0.5 is
used throughout.

Table 12 shows how error was reduced as a function of the number of
iterations with a single BP network having 12 hidden units. The corresponding
PSHNN's with the same number of interconnection weights were chosen as 2-
stage, 3-stage and 4-stage networks in which each stage had 6, 4, and 3 hidden
nodes, respectively, and their training was based on backpropagation. Tables 13,
14 and 15 show how error was reduced stage by stage and sweep by sweep of
forward-backward training. 1000 forward-backward sweeps with the 2-stage
network, 750 forward-backward sweeps with the 3-stage network and 666

T T

21

forward-backward sweeps with the 4-stage network are equivalent to 50000
iterations of the corresponding total BP network without stages since 50
iterations were used to train each stage of the PSHNN's. It is observed that the
error reduction properties of the PSHNN's with two stages and three stages are
better than those of the single BP network. The PSHNN's achieve the same error
performance at about 600 sweeps with 2 stages and at 423 sweeps with 3 stages
PSHNN as the single BP network achieves with 50000 iterations. Both the 2-stage
and the 3-stage PSHNN's had a reduction of learning time by about 40%. It also
appears that both the 2-stage and the 3-stage PSHNN's converge towards a
deeper minimum than the single stage BP network, but this is not true with the
4-stage PSHNN. The 3-stage PSHNN performs best in term of deeper minimum
and faster convergence rate. More experiments with different sets of data are
needed to substantiate these properties. However, we think that this is the case
since the same properties were observed in other applications with systems having
nonlinearities (15}, [16].

22

8. CONCLUSIONS

We showed theoretically that PSHNN's with forward-backward training of
n-stage networks will achieve the same error reduction as the function-link
networks with the pseudoinverse solutions. In practice , experimental results
show that PSHNN's in many cases have faster convergence rate and better
numerical error reduction than function-link networks. The property that
PSHNN'’s can divide a large size network into several smaller size networks which
car: learn faster and more easily in training and operate in parallel in testing is
believed to be significant for real-time implementation.

We proved in Ref. [3] that the PSHNN with any input nonlinear
transformation have better performance than one-stage networks. By using
additional neural networks, one can learn input NLT’s at every parallel stage of
PSHNN's. The PSHNN with BP stages and forward-backward training is one
effective solution to this problem. When backpropagation is to be used,
experiments indicate that better performance in terms of a deeper minimum and
convergence rate is achieved when a single BP network is replaced by a PSHNN
of equal complexity in which each stage is a BP network of smaller complexity
than the single BP network.

With these properties, PSHNN’s with continuous inputs and outputs and
forward-backward training are expected to be useful in various applications of
neural networks, adaptive signal processing, system identification and adaptive
control.

10.

11.

12.

13.

23

REFERENCES

O. K. Ersoy, D. Hong, 'Parallel, Self-Organizing, Hierachical Neural
Networks", |EEE Tran. Neural Networks, Vol. 1, No. 2, pp. 167-
178, June 1990.

O. K. Ersoy, D. Hong, 'Parallel, Self-Organizing, Hierachical Neural
Networks 11", to appear in |EEE Tran. Industrial Electronics,
Special Issue on Neural Networks.

0. K. Ersoy and S-W. Deng, 'Parallel, Self-Organizing, Hierarchical
Neural Networks with Continuous Inputs and Outputs”, Proc.
Hawaii Int. Conf. System Sciences, HICCS-24, pp. 486-492, Kauai,
January 1991.

R. O. Duda, P.E. Hart, "Pattern Classification and Scene Analysis”,
John Wiley & Sons Inc. , pp. 159-162, 1973.

C.L. Giles, T. Maxwell, "Learning, Invariance and Generalization in
Higher Order Networks," Applies Optics, Vol. 26, No.23, pp.
4972-4978, December 1987.

Y-M. Pao, "Adaptive Pattern Recognition and Neural Networks',
Addison-Wesley Pub. Company, Inc., 1989.

G.Widrow, M.E. Hoff, "Adaptive Switching Circuits,” Inst. Radio
Engineers Western Electronic Show and Convention Record, Part 4,
pp- 96-104, 1960.

0. K. Ersoy and S'W. Deng, "Farallel, Self-Organizing, Hierachical
Neural Networks, with Continuous Inputs and Outputs’, Purdue
University Tech. Report, No. TR-EE-91-51, December 1991, and
submitted to IEEE Tran. Neural Networks, December 1991.

D. E. Rumelhart, "Parallel Distributed Processing”, The MIT Press,
Cambridge Mass. , 1988.

SW. Deng, O. K. Ersoy, "Faralel, Self-Organizing, Hierachical
Neural Networks with Circular Training", Purdue University Tech.
Report No. TR-EE-91-16, April 1991.

H. Nakano, "Spectral Theory in the Hilbert Jpace”, Japan Society
for the Promotion of Science, 1953.

R.E. Hartwing and M.P. Drazin, "Lattice Properties of the *-Order
for Complex Matrices”, J of Math. Analysis and Applications ,
Academic Press, Inc., 1982.

L. D. Pyle, "A Generalized Inverse e-Algorithm for Constructing
Intersection Projection Matrices with Applications”, Numerische
Mathematik 10, pp 86-102, 1967.

14.

15.

16.

24

S. T. Alexander, "Adaptive Signal Processing, Theory and
Applications", Springer-Verlag, New York, pp. 68-85, 1986.

S. Aghagolzadgh, O. K. Ersoy, "Optimal Multistage Transform
Image Coding, IEEE Tran. Circuits and Systems for Video
Technology, December 1991.

0. K. Ersoy, J. Y. Zhuang, J. Brede, "An Iterative Interlacing
Approach to the Synthesis of Computer-Generated Holograms,
Purdue University Tech. Report, No. TR-EE-90-59, November
1990, and submitted to Applied Optics.

25

Table 1. Performance o the Function-Link Network in Speech Prediction

(err=llelP).

type err number of
o NTL iterations
Sig.I 2.1344 1000
Th.II 2.027 1000
Sig.Il 2.1291 1000
Th.1 2.0459 600
Sore. 1.8862 1000

Table 2. Performanceof PSHNN with NLT Sig.I in Speech Prediction
(err 1=liel 12, err 2=lle5 ||*).

n-th # o iterations

errl err2 sagel | stage?
sweep
n=1 21353 | 1.9336 100 1000
n=2 18718 | 1.8524 900 100
n= 18460 | 1.8416 | 900 100

Table 3. Performanced PSHNN with NLT Sig.IT in Speech Prediction
(err 1=lle} %, err 2=lle} I).

n-th # of iterations
errl en2 stagel | stage2
sweep
n=1 2.1353 | 2.1396 100 1000
n= 2.1343 | 2.1365 900 100
n= 2.1336 - 900 -

26

(err 1=|le} |12, err 2=ll€4 {1%).

Table 4. Performance o PSHNN with NLT Th.I in Speech Prediction

n-th # of iterations
errl ernr2 stagel | stage?
sweep
n=I 21352 | 2.0925 100 200
=2 20699 | 20585 900 200
n=3 20514 | 2.0481 900 200
n=4 20457 | 2.0448 900 200

(err 1=]lel |12, err2=]leb %)

Table5. Performance of PSHNN with NLT Th.II in Speech Prediction

nth # of iterations
errl err2 dagel | stage?
sweep
n=1 21353 | 2.0282 100 100
n=2 20312 | 20250 500 100
n=3 2.0034 - 600 -

i 2 H
(err 1=led |12, err 2=l |2).

Table 6. Performance of PSHNN with NLT Squarein Speech Prediction

n-th # of iterations
errl err2 stagel | stage2
sweep
n=1 2.1353 | 1.9326 100 600
n=2 1.8973 | 1.8896 900 600
n=3 1.8872 | 1.8867 900 600
n=4 1.8864 | 1.8863 900 600

Table 7.

Table 8.

3-Stage Function-Link Network as a Function of Input Nonlinearity with

27

900 Iterations (err= [le||).

3-Stage Function-Link Network as a Function of Input Nonlinearity with

Typeof NTL ar
Stagell Stagelll

Sig.I Th.II 2.0167
Th.I Sig.I 1.9980
Square | Sigl 1.8818

2900 Iterations (err= lel?).

Type of NTL
Stage I Stage III
Sig.1 Th.II
Th.l Sig.1
Square | Sigl

err

2.0149
1.9966
18811

Table 9. Performance of PSHNN with NLTI Sig.I & NLT2 Th.II

in Speech Prediction.
n-th Square Error Sum
Sweep
Training | errlf err2f err3f err2b
n=1 2.1353 | 1.9377 | 1.8393 | 1.8758
n=2 1.8122 | 1.7584 | 1.7543 -

Table 10. Parformance of PSHNN with NTL1 Th.I & NLT2 Sig.1

in Speech Prediction.
nth Square Error Sum
Sweep
Traning | erlf err2f err3f err2b
n=1 21353 | 20924 | 19210 | 1.8957
n=2 18750 | 1.8592 | 1.8264 -

Table11. Performanceof PSHNN with NLTI Square & NL'T2 Sig.I

in Speech Prediction.
nth Square Error Sum
Sweep
Traning | erlf err2f err3f err2b
n=1 21353 | 19330 | 1.6973 | 1.6812
n=2 16705 | 16631 | 1.6399 -

29

Table 12. Error Reduction with a Single Stage Network with 12 Hidden Units
Trained by BP (errl=]le4 |).

of ar
iterations
1000 1.1454
2000 0.8413
5000 0.6822

10000 0.4464
20000 0.2424
30000 0.2506
40000 0.2205
50000 0.1962

Table 13. Error Reduction with a Two-Stage PSHNN with 6 Hidden Units per SNN
Trained by Forward-Backward BP (err 1=lle ; I, err 2=]le 5 |?).

of arl
ernr2

SWeeps

20 10528 | 1.0473
40 0.8962 | 0.8945
100 0.6031 | 0.6023
200 04374 | 0.4368
300 0.3367 | 0.3364
400 02714 | 0.2711
500 0.2133 | 0.2133
600 0.1927 | 0.1925
700 0.1895 | 0.1962
800 0.1771 | 0.1816
900 0.1731 | 0.1859
1000 0.1658 | 0.1708

30

Table 14. Error Reduction with a Three-Stage PSHNN with 4 Hidden Units per
SNN Trained by Forward-Backward BP.
of errlf err2f err3f
err2b

Sveep

10 12380 | 1.2157 | 12138 | 1.1982

50 06486 | 0.6464 | 0.6462 | 0.6447

100 05240 | 05236 | 05236 | 05235

200 04488 | 04487 | 04483 | 04484

300 02825 | 02823 | 02819 | 02817

423 01965 | 01965 | 01962 | 0.1962

500 01705 | 01704 | 01704 | 0.1703

600 0.1604 | 01604 | 0.1604 | 0.1603

700 01551 | 01551 | 0.1551 | 0.1551

750 01529 | 0.1529 | 01529 | 0.1529

Table 15. Error Reduction with a Four-Stage PSHNN with 3 Hidden Units per SNN
Trained by Forward-Backward BP.
of errlf err2f err3f errdf err3b
err2b

sveep
10 13594 | 1.3561 | 1.3238 | 13195 | 12963 | 1.2914
50 06716 | 06707 | 0.6682 | 0.6682 | 0.6662 | 0.6662
100 05121 | 05119 | 05116 | 05116 | 05115 | 05114
200 04136 | 04136 | 04134 | 04134 | 04134 | 04132
300 03540 | 03540 | 03539 | 03538 | 03538 | 0.3537
400 03093 | 03093 | 0.3092 | 03091 | 0.3090 | 0.3090
500 02620 | 0.2619 | 02618 | 0.2618 | 0.2618 | 0.2617
600 02306 | 0.2306 | 0.2305 | 0.2304 | 0.2303 { 0.2304
666 02210 | 02209 | 02209 | 0.2208 | 0.2208 | 0.2208

X(n)

31

Figure 1. Block Diagram of a Three-Stage PSHNN.

d(n)
[1 X (n)
NLT1 > SNNI 2 -
L | q(n)
f\l)@
cl(n)
Y(n)
— ‘ NLT2 H@ 0,(n) ><5
J4R)
ez(n)
Z(n) | o(n)
31 NLT3 > SNN3
e3(n)

32

/

Figure 2. Block Diagram of a Function-Link Network.

33

o} col [XX*]

Figure 3. Graphical Representation of Suboptimal Solution for SNN1.

L)

Figure 4. Graphical Representation of Suboptimal Solution for SNN2.

	Purdue University
	Purdue e-Pubs
	1-1-1992

	Hierarchical Neural Networks with Forward-Backward Training
	S-W. Deng
	O. K. Ersoy

