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ABSTRACT 

A forward-backward training algorithm for parallel, self-organizing 
hierachical neural networks (PSHNN's) is described. Using linear algebra, it is 
shown that the forward-backward training of an n-stage PSHNN until 
convergence is equivalent to the pseudo-inverse solution for a single, total network 
designed in the leastsquares sense with the total input vector consisting of the 
actual input vector and its additional nonlinear transformations. These results are 
also valid when a single long input vector is partitioned into smaller length 
vectors. A number of advantages achieved are small modules for easy and fast 
learning, parallel implementation of small modules during testing, faster 
convergence rate, better numerical error-reduction, and suitability for learning 
input nonlinear transformations by other neural networks. The backpropagation 
(BP) algorithm is proposed for learning input nonlinearities. Better performance 
in terms of deeper minimum of the error function and faster convergence rate is 
achieved when a single BP network is replaced by a PSHNN of equal complexity 
in which each stage is a BP network of smaller complexity than the single BP 
network. 



1. INTRODUCTION 

Parallel, self-organizing, hierarchical neural networks (PSHNN's) are 
multistage networks in which stages operate in parallel rather than in series 
during testing [I], [2]. The PSHNN is self-organizing in the sense of number of 
stages. Each stage is a particular neural network, referred to as the stage neural 
network(SNN). The PSHNN's as discussed in [I]  and [2] assume quantized or 
continuous-valued inputs and quantized, say, binary outputs. At the output of 
each SNN, there is an error detection scheme which allows acceptance or rejection 
of input vectors. If an input vector is rejected, it goes through a nonlinear 
tra~lsformation (NLT) befor being inputted to the next stage. Only those input 
vect,ors which are rejected by the present stage are fed into the next stage after 
the nonlinear transformation. 

In a recent paper, we discussed the generalization of parallel, self-organizing, 
hierarchical neural networks (PSHNN's) to continuous inputs as well as 

continuous outputs 131. The block diagram for such a 3-stage PSHNN is shown in 
Fig. 1. It  was shown that stages are generated by nonlinearly transforming input 
vectors, and each new stage attempts to correct the errors of the previous stage. It 
was also discussed that further error reduction in an n-stage network is possible 
by circularly transmitting the remaining error through the stages a number of 
times until convergence. Running through all the stages once can be called one 
sweep. At  each successive sweep, the desired output of each stage is modified as 
the previous output of the stage plus the remaining error from the previous stage. 
The first stage receives the error from the last stage. Both in Ref. [3] and in this 
paper, the output nodes are assumed to be linear. 

In this paper, forward-backward training of n-stage PSHNN's are introduced 
and discussed on a rigorous mathematical basis, in addition to providing 
experimental results. The results are actually valid for all linear leastsquares 
problems if we consider the input vector and vectors generated from it by 
nonlinear transformations as the decomposition of a single, long vector. In this 
sense, the techniques discussed represent the decomposition of a large problem 
into smaller problems which are related through wrrors and forward-backward 
training. Generation of additional nodes a t  the input is common to a number of 
techniques such as generalized discriminant functions [4], higher order networks 
[5], and function-link networks (61. After this is done, a single total network can 
be trained by the delta rule [7]. At convergence, the result is approximately the 
same as the pseudeinverse solution, disregarding any possible numerical problems 
[8]. The PSHNN's are different because the single total network are rplaced by a 
number of subnetworks. 

The main result in this paper is that forward-backward training of an n- 
stage network until convergence is equivalent to the pseudeinverse solution for a 



single total network with the total number of input nodes if each stage is 
optimized in the sense of least-squares. There are a number of advantages in 
achieving the pseudeinverse solution in this fashion. The most obvious advantage 
is that-each stage is much easier to implement as a module to be trained than the 
whole network. Ln addition, all stages can be processed in parallel during testing. 
If the complexity of implementation without parallel stages is denoted by f(N) 
where N is the length of input vectors, the parallel complexity of the forward- 
backward training algorithm during testing is f(K) where K equals N/M with M 
equal to the number of stages. 

The paper consists of eight sections. In Sec. 2, the forward-backward training 
algorithm is described in detail. In Sec. 3, the asymptotic properties with a t w e  
stage network are discussed. These properties are extended to n-stage networks in 
Sec. 4. The suboptimal asymptotic properties due to the use of the delta rule 
during training are proved in Sec. 5. Experimental results are provided in Sec. 6. 
Another advantage of PSHNN is that input nonlinear transformations (NLT's) 
can be learned. In Sec. 7, we illustrate a technique which uses backpropagation 
(BP) algorithm with forward-backward training to learn input nonlinear 
transformations. Simulation results of this section indicate that the total network 
consisting of small BP stages usually converges faster and to a deeper minimum 
of the error function than a single BP network of the same total siee. Conclusions 
are given in Sec. 8. 



2. PSHNN WITH FORWARD-BACKWARD TRAINING 

The system model is shown in Fig.1. In this section, a single output is 
assumed. In Fig.1, SNN(i) represents the i-th stage neural network. In this paper, 
the stage neural network is assumed to be trained by the delta rule [Q]. The 
output nodes are assumed to be linear. X(n) is the input vector sequence; d(n) is 
the desired output sequence; X(n ) ,  Y(n) and Z(n) are obtained by different 
nonlinear transformations NLT1, NLT2 and NLT3. 

We first consider a tw-stage PSHNN, and then generalize the properties to 
n stages. Assuming m training vectors of length p and NLTl in Fig. 1 to be the 
identity operator (X(n)=X(n)), we define 

X and Y are m X p matrices. Each row of X or Y represents an input vector 
of SNNl or SNN2, respectively. D! is the desired output vector of length m. 
Using the delta rule to train SNNl corresponds ideally to finding the least-squares 
solution for XW1 = D ; .  The output of SNNl is o;  which can be expressed as [lo] 

where X +  is the generalized inverse of X, and the projection operator A is XXS, 
which is positive semidefinite [4]. 
The error vector of SNNl is 



We use e i  as the desired output for SNN2, to be also trained by the delta rule. 
The output of SNN2 after training can be expressed as 

O ; = Y Y + ~ ;  =Be;, (3 )  

where we define YY+&B, which is also positive and semidefinite. Then, 

With two stages, oi +o: is the output, and the system error el is 

The above results can be considered to be the first sweep in a number of sweeps 
of forward-backward training. In the second sweep, the desired vector for SNNl is 
set equal to 

D: =oi  + e ;  . 
The new output of SNNl is 

because A is the projection operator, oi  is in the space spanned by A, and 
Aoi =o;.  
The new error signal for SNNl is 

After a straightforward derivation, we get 

If we terminate the training at  this point, the system output is o: + o i .  Therefore 
e: is just the error of the system. If we continue to train SNN2, the new desired 
signal for SNN2 is 

The output of SNN2 becomes 

since o: is in the space spanned by B. 
The error vector for SNN2, is 

e$ =D: -0: =(I-B)e:.  

Using the same derivation leading to Eq.(9), we get 

e: =D: 30: +of ), 

where ef is the error signal of the system a t  the end of the second sweep. 

At the n-th sweep, the desired output signal for SNNl is 



D! =or-' +e;-'. 

After training, the output of S N N l  is 

=AD!=o!-~ + ~ e ; - l .  

The error vector is 

e r  =Dl" -0; =(I-A)~,"-'. 

The error vector can also be written as 

ef=D: -(of+o;-I). 

At the n-th sweep, the desired signal for SNN2 is 

D L o " - l  2 -  2 +el". 

The output is 

o;=BD;=o;-I + ~ e f .  

The error is 

e;=Dn 2 - 0"- 2 -(I-B)ef. 

Again, we note that  

e: =D: - ( o f  SO;), 

where e; is the system error after the nth sweep. 

From Eq.(2) and Eq.(4), we get 

I I e: 1 I2=(D: ) t ( ~ - ~ ) ( ~ :  1, 

I I e: I I"=: ) t ( ~ - ~ ) ( e :  )<I  I e: I I Z .  (23) 

From Eq.(8) and Eq.(12), we get 

I l e i  I 1 2 = ( 4  I t ( ~ - ~ ) ( e :  )I1 I e: I 1 2 ,  (24) 

I 14 I 12=(e: Y(I-B)(~: 151 I e: I 1 2 .  (25) 

From Eq.(16) and Eq.(20). we conclude that 

1 1 el" 1 12=(e;-I ) t ( ~ - ~ ) ( e ; - l  )<I 1 e;-l 1 1 2 ,  (26) 

I l e i  l 1 2 = ( e l " ) t ( ~ - ~ ) ( e f ) I l  le! 1 1 2 .  (27) 

Therefore, 

I Ie; 1 1 2 < 1  Ie! 1 I2Il 14-l  1 I2I - < I  1,: 1 1 2 < 1  lef 1 I2Il Ie: 1 1 2 .  (28) 



We will see in the next section that 

where ( ( e  1 l2  is the square error sum of the function-link network which has the 
same input NLT's as used in the PSHNN. 



3. ASYMPTOTIC PROPERTIES OF A TWO-STAGE PSHNN WITH 
FORWARD-BACKWARD TRAINING 

Consider a function-link network as shown in Fig. 2. Let X denote an input 
vector, Y be a nonlinear transformation of X and D be the desired output vector. 
X and Y are mXn matrices, D is an mX1 vector, and W is a 2nX1 weight 
matrix. 

Using the delta rule to train W corresponds approximately to finding the 
least square solution for 

where (X,Y) denotes the concatenation of X and Y. The least square solution is 

E=(x, Y)+ D, 

where (X, Y)' is the pseudo-inverse of (X,Y). 
The output vector is 

Therefore, the error vector is 

If we use PSHNN with forward-backward training, Eqs. (2), (4), (8), (13) and D: 
= D in this case lead to 



We will need the following properties to prove the main theorem of this 
section: 

Property 1 The null space N(XX'+YY') is equivalent to the intersection of 
the null space N(XX') and the null space N( YY'). 

Proof: 

(i) For any vector ~ E N ( x x ' ) ~ N ( Y Y ~ )  
it is obvious that y ~ ~ ( ~ ~ t + ~ ~ t ) .  
(ii) For any vector ~EN(XX'+ YY') 
(xx'+ Y Y ' ) ~ = ~  
=> X X ' ~ = - Y Y ' ~  
Therefore, y ' XX' y =-y ' Y Y' y 
Since XX' and YY' are positive semidefinite 
~EN(XX') and ~ E N ( Y Y ' )  

In addition, the following properties are needed: 

Property 2 The projection operators PN(XXt) and PN( yy ' )  satisfy 

lim (PN(xx') PN( YY') ) " = P N ( X P ) ~ ) N (  YY') 9 
n+m 

(39) 

which can be found in Nakano [ll]. This property tells us that the projection not 
in the intersection of N(XX') and N(YY') will gradually vanish as n goes to 
infinity. The projection in the intersection of N(XX') and N(YY') will be 
preserved. 

Property 8 

PN(xx ' )PN(xx ' )~N(  YY')  = P ~ ( ~ ~ ) r ) ~ (  YY') 

which can be found in Hartwing and Drazin [12] and Nakano [ll]. 

Next, we will state and prove the main theorem: 

Theorem 1 

lim el"+' = lim c; =e, 
n-+m n+oo 

lim c t = e .  
n-+oo 



Proof: 

The projection matrices are 

(I-xx+)C\P~(XX'), 

(I- Y Y + ) ~ P ~ (  

Cornparing Eqs. (31), (37) and (38), sufficient conditions for Eq. (41) and Eq. (42) 
to hold are 

lim (I-XX+)[(I-YY+)(I-XX+)] "=[I-(x, Y)(X, Y)+], 
n-tm 

(43) 

lim [(I-YY+)(I-XX+)In=[I-(X, Y)(X, Y)+]. 
n - t w  

(44) 

Using the projection operators, we get 

[(I-Yy+)(I-XX+)] n = ( P ~ (  YY')PN(xx') ) " a  

From Property 1, we have 

N(xx')~N(YY')=N(xx'+ YY')=N((x, Y)(X, Y)'). 

Therefore, 

We know that 

PN((x, Y)(X, Y)') =[I-(X, Y)(X, Y)+ I 
From Eqs. (39), (45), (46) and (47), we conclude that 

lim [(I-YY+)(I-XX+)]"=[I-(x, Y)(X, Y)+]. 
n - t w  

Eq. (44) to be proved follows directly from Property 3: 

lim (I-XX+)[(I- YY+)(I-XX+)In=[I-(X, Y)(X, Y)+] CI 
n-tm 

The theorem proved above means that, as n grows larger, the error vectors 
e r  and e; approach the error vector e for the pseudoinverse solution if a single 
total network was built without stages with the total input vector. 



4. ASYMPTOTIC PROPERTIES FOR AN N-STAGE NETWORK 

When the number of stages is 2, forward-backward training is the same as 
circular training discussed in Ref. (101. In the circular training algorithm with n 
stages, after training SNN(n), we train SNN(1). In forward-backward training, we 
will train SNN(n-1) after training SNN(n), followed by SNN(n-2) and so on. 
From the first stage to the last stage, we have a forward path training, and then 
from the last stage to the first stage, we have a backward path training. One 
sweep training consists of a forward path and a backward path training. We will 
call this training procedure the forward-backward traing algorithm. 

For the sake of brevity , we will discuss the 3-stage PSHNN. All the 
properties of the 3-stage network can be derived for the n-stage network in the 
same way. Referring to Fig.1 and supposing X=X, we define N[xx']=A, 
N[YY']=B, and N[ZZ']=C to represent the null space of (xx'), (YY') and (zz'), 
respectively. After the first stage is trained, the error vector is 

where PA is the projection matrix of A, and D is the desired output vector. The 
superscript of the error vector denotes the number of sweeps, the arabic number 
on the subscript denotes the number of stages, and the letter "f" on the subscript 
means forward path training. Following the same procedure as in Section 3, we 
have 

After training three stages in the forward path, we transmit the error of the third 
stage to the second stage and modify the desired output of the second stage in 
order to train the second stage, and get the error vector 

where the letter "b" in the subscript means backward training path. After 
training the second stage, we train the first stage and get the error vector 

Now, the first sweep is over, and the second sweep starts. 

Following the same procedure as above, we get the following error vectors in 
the second sweep: 



(54) 2 -pB PA [ P A  pBpcpBPA I D' 
e2f- 

After the nth sweep training, the error vector of the first stage becomes 

erb=e;T1=[pA P ~ P ~ P ~ P ~ ] ~ D .  (58) 

Similar to the derivation of Eq.(31), the error vector for a 3-stage function- 
link network is 

e =[I-(X, Y, Z)(X, Y, 2)' ] D 

=[PN(xxI+ yr+zzl) ID, (59) 

where N(XX'+YY'+ZZ') denotes the null apace of (xx'+YY'+zz'). 

We also need the following properties: 

Property 1.a The null space N(XX~+YY'+ZZ') is equivalent to the 
intersection of the null space N(xx'), the null space N(YYi) and the null space 
~(23") .  

Proof: 

(i) For any vector ~ E N ( X X ' ) ~ N ( Y Y ' ) ~ N ( Z Z ' ) ,  
it is obvious that ~€N(XX'+YY~+ZZ'). 
(ii) For any vector a€N(XXt +YYt +zz'), 
then (xx'+YY'+zz')~=o. 
Therefore, ~'(xx'+YY'+zz')~=O, 
=>* a i ~ ~ t a + a ' ~ ~ i a + a ~ ~ i a ~ .  
Because (xx'), ( Y Y ~ ) ,  and (ZZt) are positive semidefinite, 
we have a i x x t a 4 ,  a t  YYia=0 and aiZZ'a=O. 
These imply a€N(Xxt),  a€N(YYi), and a€N(ZZt). 

Property 2.a 



which was proved by Pyle (131. 

From Eq.(59) and property l.a, we get 

By using Property 2.a, Eq.(58) and Eq.(61), we obtain the main theorem of this 
section: 

Theorem 2 

lim e r b = e .  
n-+w 

Since Property 2.a still holds for the intersection of n projection matrices, the 
generalization of Theorem 2 to the n-stage PSHNN with forward-backward 
training is obvious. 

The results of Theorem 1 of Sec. 3 is based on the twestage PSHNN. For 
the two-stage PSHNN, circular training is the same as the forward-backward 
training. An interesting question is whether circular training gives the same 
results as forward-backward training for the n-stage networks. This is conjectured 
to be true since many experiments show that [13] 

lim (PcPBPA)"=PAWnc. 
n-+w 

Experimentally, we have also observed that circular training gives the same 
results as forward-backward training. 



6. ASYMPTOTIC PROPERTIES FOR THE SUBOPTIMAL 
SOLUTIONS 

In Sec. 4, we discussed the asympotic property of PSHNN with forward- 
backward training when each stage gives the exact least-squares solution. In this 
section, we generalize the asympotic property to the suboptimal leastsquares 
solution due to the use of the delta rule. We discuss the case of the two-stage 
PSHNN, and the results can be easily extended to the n-stage PSHNN. 

Assuming a two-stage network, the square error sum 1 1  e i  ( I 2  in Eq. (23) is 
based on the optimal least-squares solution for the second stage. The least- 
squares error vector e i  is in the null space of [ YY']. Defining ~411 c i  I 1 2 ,  Eq. 
(23) can be written as 

+ 1 G=I I(I-YY )el 1 1 2 = 1  I P N ( Y P ) ~ ;  1 1 2 ,  (64) 

where PN( yyi) is the projection matrix to the null space of YY'. 

In reality, the square error sum we get by using the delta rule is based on a 
suboptimal leastsquares solution. The suboptimal square error sum denoted as 

tld can be expressed as 1141 

where m denotes the number of input vectors. emin is the minimun mean square 
error (MSE) by solving the normal equation 

where YN(n)=[ y (n), y (n -l), . . , (n  - ~ + 1 ) ] ~ ,  and N denotes the number of 
weights of SNN2 of Fig.1; c,,, is due to the actual LMS weights jitter, and is 
sometimes referred to as the excess MSE. If we assume the sequence ~ ( n )  is 
stationary and ergodic, then merni, in Eq. (65) gradually approaches the optimal 
square error sum el, as m grows. Thus, approximating mernin by eld, Eq. (65) can 
be written as 

ceXc is proportional to gain q used in training. Choosing smaller q achieves better 

suboptimal square error sum tl,, but then the learning rate is slower. So, there is 
a trade-off involved in choosing the value of q. 

We show below that the error reduction properties derived in Sec. 2 still hold 
in practise with the square error sum t18 based on a suboptimal leastsquares 
solution. 

For the sake of brevity, we consider a two-stage PSHNN with NLTl being 
the identity operator. D: is the desired vector for the first stage network in the 
first sweep. The output vector of the first stage based on the optimal leastsquares 
solution is 



0 f 'PC., [xx~] D t (68) 

The output vector 6 :  based on the suboptimal least-squares solutions W1 is 
written as 

1 
6 1 = X W l  . (69) 

This shows that 6: ECO~[XX~] .  6:  can be written as 

6: =PC., lxx'l D: +bf 7 (70) 

where the vector 6: also belongs to the column space of [xx']. This is graphically 
shown in Fig. 3. The magnitude of 6: can be written as 

I la: I I=.: I I P ~ . I ~ X X ~ ~ D ~  I I , (71) 

where c: satisfies 0<c: <1 in practise. Thus the error vector of SNNl in the first 
sweep is 

i: is also the desired vector for the second stage network in the first sweep. 
Referring to Fig. 4, and using the same procedure as above, we get the 

suboptimal output vector 6: of SNN2 in the first sweep as 

where the vector 6: belongs to the column space of [ Y Y ~ ] ,  and the magnitude of 
6: is 

I lb; 1 1=4 1 ~ P ~ ~ ~ ~ Y Y ~ ~  4 I I , (74) 

where c; also satisfies 0<c; <1 in practise. The error vector of SNN2 in the first 
sweep is 

,1 
i: =PN\ yp]  el -6: . (75) 

Since PN[yy'] i: and b; are orthogonal to each other, we get 

11;; I 1 2 = 1  IPN~YY'] i: 1 1 2 + 1  lb: 1 l 2  
,1 51 I P N ~ Y Y ~ ~ ~ ~  I 1 2 + 1  I P ~ O ~ ~ Y Y ~ ~ ~ ~  I 1 2 = 1  1;: I I* (76) 

1 
Thus, 1 1 i2 1 1' is less than 1 16: 1 1 as long as c; is less than 1, which is definitely 
ture in practise. 

-1 ,1 
On the second sweep, the desired vector of SNNl is e2+ol. Following the 

same procedure as above, the suboptimal output vector 5: of SNNl in the second 
sweep is found as 

-2 -1 ,1 
01 =Pcol[xx'](e2 +0l )+b: 

=o: +Pcol[xxg 2: +b: , (77) 



and 

1 
where B 1  ECO~[XX'], b : € c o l [ ~ ~ ' ]  and O<C: <l. The error vector i: of SNNl  in 
the second sweep is 

-2 - 1  
The desired vector of SNN2 in the second sweep is e l  +02. The suboptimal output 

vector 6; of SNN2 in the second sweep is 

and 
,2 ,1 

I l b f  ll=cf I I P C O , [ Y Y ' ] ( ~ ~ + ~ ~ ) ~ I  
1 

(81) 

where B2 €col[ YY'], bf Ecol [YY'], and 0<cf < l .  The error vector i: of SNN2 in 
the second sweep is 

Using Eq. (72) and Eq. (75), and letting A P N ( X X ' ] , B ~ N [ Y Y ~ ] ;  the 
suboptimal error vector ii of the first stage in the first sweep becomes 

The suboptimal error vector 2: of the second stage in the first sweep becomes 

Using Eq. (79) and Eq. (84), the suboptimal error vector 2: of the first stage in 
the second sweep becomes 

where 6: ~ c o l  [xx']. The suboptimal error vector i: of the second stage in the 
second sweep becomes 

2: = ( P ~ P ~ ) ~ D :  -(pBpA)pBbf -(pBpA)b: -pBb: --b: , (86) 

where 6: Ecol [YY']. 

Following the same procedure, the suboptimal error vector 2; of the first 
stage in the n-th sweep becomes 



The suboptimal error vector i; of the second stage in the n-th sweep becomes 

where b ! E c o l [ ~ ~ ~ ] ,  and b i E e o l [ ~ ~ ~ ]  for any positive integer i. Since the 
directions of 6: and 6; are random, the magnitudes of the summation terms in 
Eq. (87) and Eq. (88) are small in the mean sense. Therefore, the first term on the 
right hand side of Eq. (87) or Eq. (88) can be considered as the dominant term in 
real-world applications. Then, the error reduction property of Eq. (28) in Sec. 2 
still holds for this suboptimal case. 

In pratise, if n is large enough such that (PBPA)"=PAnB, and m>n, we can 

rewrite Eq. (87) and Eq. (88) as follows: 

and 

The error vector e in Eq. (89) and Eq. (90) is the vector in Eq. (31), which is the 
optimal leastsquares error vector of the function-link network as shown in Fig. 2. 
We also see that no matter how big m is, there are at most n vectors in each 
summation term of Eq. (89) and Eq. (90). 



6. EXPERlMl3NTAL RESULTS 

The theoretical results discussed above were tested with a speech signal 
sampled a t  10 khz. 100 Samples were used to train the network by the delta rule. 
Thle gain factor we used in the experiments was 0.001. No momentum term was 
used. The input pointwise nonlinear transformations used in the experiments are 
the following: 

(A) SIGMOID 1 (Sig. I) : ( O < y < l )  

(B)I SIGMOID 2 (Sig. 11) : (-l<y<l) 
y = 2 X sigmoid (x) - 1 

(C)  THRESHOLD 1 (Th. I): 
y =  1 i f x > O  
y = O  i f x  < O  

(D) THRESHOLD 2 (Th. 11): 
y = - 1  i f x L 0  
y =  1 i f x < O  

(E) SQUARE : 
y = z  2 

In the experiments, we first normalieed the input data in the range {-l,l}. 
Five weights were used for each stage of a two-stage PSHNN. Ten weights were 
usfed for the function-link network. The initial matrix of the network was set 
equal to the covariance matrix of the input data. 

Table 1 are the results of the function-link network with the ten weights 
listed as a function of the five types of NLT's. 

Tables 2 thru 6 are the results of the two-stage PSHNN with forward- 
ba.ckward training. Table 2 is for Sig.1, Table 3 for Sig.II, Table 4 for Th.1 , Table 
5 for Th.II, and Table 6 for the square NLT. 

Tables 2 and 3 for Sig.1 and Sig.II cases show that the PSHNN with 
forward-backward training has more error reduction and faster convergence rate 
than the function-link network. With Th.11 and square NLT's, the PSHNN and 
the function-link network are about the same both in error reduction and 
convergence rate. With Sig.11 NLT, there is negligible error reduction both in the 
PSHNN and the function-link network. This is because the input data was 



normalized in the range {-1,1), and this causes x and y to be almost the same in 
this range. 

'Fables 7 and Table 8 are the results of the function-link network with 
three-stage input vectors of length 5 concatenated as a total input vector to the 
network. Tables 9 thru 11 show the error reduction performance of the 
corresponding three-stage PSHNN with forward-backward training. In the first 
stage, 100 iterations were used during the first sweep, and 300 iterations were 
used during the succeeding sweeps. The number of iterations of the second and 
the third stages were 500, and 900, respectively. In Tables 9, 10 and 11, the 
notai.ions used mean errlf = 1 1 1 1 2 ,  err2f = I 1 e$l 1 2 ,  €!113f = 1 1 c i f  1 I*, and 
errat, = I 1 c i b  1 12.  The  superscript "i" denotes the number of sweeps as in Section 
2. From Tables 7 and 8, we see that  the convergence rate is rather slow for the 
function-link networks. Comparing Tables 7 and 8 to  Tables 9, 10 and 11, we 
observe that  PSHNN with forward-backward training is superior to  the function- 
link network in terms of both convergence rate and error reduction. 



7. LEARNING INPUT NLT BY BACKPROPAGATION WITH 
FORWARD-BACKWARD TRAINING 

The input NLT's of previous sections are all point-wise nonlinear 
transformations. Any input NLT is guaranteed to achieve error reduction [3], but 
it is important to learn which input NLT is optimal in error reduction. We can 
use backpropagation (BP) algorithm to learn the input NLT's. The BP algorithm 
involves a multi-layer system (91. The goal of the BP algorithm is the same as the 
delta rule, namely, minimizing the square error sum. In this system, a nonlinear 
activation function is usually used a t  each layer. The activation function should 
be differentiable and usually monotone nondecreasing. The actual output of the 
jth node in the kth layer is 

where Nkdl is the number of output nodes of the (k-1)th layer, and Okdl is the 
output vector of the (k-1)th layer. f(.) is the nonlinear activation function. 

Each stage of PSHNN can be any type of neural network. In this section, BP 
str~ges are utilized together with forward-backward training discussed in the 
previous sections. In other words, we modify the PSHNN architecture by using a 
multi-layer neural network trained by the BP algorithm at  each stage instead of 
each stage of PSHNN being a two-layer network trained by the delta rule. With 
respect to Fig. 1, the first layer of the network is the input layer, and the input 
vector X is fed into each stage of the network. The outputs of the second layer 
are vectors (X', Y, and Z) of Fig. 1 which can be considered as the results of 
nonlinear transformations of each stage network (NLTI, NLT2, and NLT3 
respectively). In order to comply with the error reduction properties discussed in 
the previous sections, we use linear activation function in the output layer. 

The computer experiments discussed below indicate that the error reduction 
properties of forward-backward training hold in this case as well. The results are 
shown in Tables 12 thru 15. The same speech data of the previous sections is 
used. The length of the input layer a t  each stage is five, and a gain factor of 0.5 is 
used throughout. 

Table 12 shows how error was reduced as a function of the number of 
iterations with a single BP network having 12 hidden units. The corresponding 
PSHNN's with the same number of interconnection weights were chosen as 2- 
stage, %stage and 4-stage networks in which each stage had 6, 4, and 3 hidden 
nodes, respectively, and their training was based on backpropagation. Tables 13, 
14 and 15 show how error was reduced stage by stage and sweep by sweep of 
forward-backward training. 1000 forward-backward sweeps with the 2-stage 
network, 750 forward-backward sweeps with the t s tage  network and 666 



forwz~rd-backward sweeps with the 4-stage network are equivalent to 50000 
iteralions of the corresponding total BP network without stages since 50 
itera1,ions were used to train each stage of the PSHNN's. It is observed that the 
error reduction properties of the PSHNN1s with two stages and three stages are 
better than those of the single BP network. The PSHNN's achieve the same error 
perfclrmance a t  about 600 sweeps with 2 stages and a t  423 sweeps with 3 stages 
PSHNN as the single BP network achieves with 50000 iterations. Both the 2-stage 
and the 3-stage PSHNN's had a reduction of learning time by about 40%. It also 
appears tha t  both the 2-stage and the 3-stage PSHNN's converge towards a 
deeper minimum than the single stage BP network, but  this is not true with the 
4-stage PSHNN. The 3-stage PSHNN performs best in term of deeper minimum 
and faster convergence rate. More experiments with different sets of data are 
needed to substantiate these properties. However, we think that this is the case 
since the same properties were observed in other applications with systems having 
nonlinearities [15], [16]. 



8. CONCLUSIONS 

We showed theoretically that PSHNN's with forward-backward training of 
n-stage networks will achieve the same error reduction as the function-link 
networks with the pseudoinverse solutions. In practice , experimental results 
show that PSHNN's in many cases have faster convergence rate and better 
numerical error reduction than function-link networks. The property that 
PS:HNN's can divide a large size network into several smaller size networks which 
cart learn faster and more easily in training and operate in para.lle1 in testing is 
believed t o  be significant for real-time implementation. 

We proved in Ref. [3] that the PSHNN with any input nonlinear 
transformation have better performance than one-stage networks. By using 
additional neural networks, one can learn input NLT's a t  every parallel stage of 
PSHNN's. The PSHNN with BP stages and forward-backward training is one 
effective solution to this problem. When backpropagation is to  be used, 
experiments indicate that better performance in terms of a deeper minimum and 
convergence rate is achieved when a single BP network is replaced by a PSHNN 
of equal complexity in which each stage is a BP network of smaller complexity 
th:m the single BP network. 

With these properties, P SHNN's with continuous inputs and outputs and 
forward-backward training are expected to  be useful in various applications of 
neural networks, adaptive signal processing, system identification and adaptive 
control. 
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Table 1. Performance of the Function-Link Network in Speech Prediction 
(err=llell 1. 

Table 2. Performance of PSHNN with NLT Sig.1 in Speech Prediction 
(err l=~(ei )12,err %(lei 112). 

number of 
iterations 

loo0 
loo0 
loo0 
600 

loo0 

type 
of NTL 

Sig.1 
Th .I1 
Sig.11 
Th.1 
Sqre. 

Table 3. Performance of PSHNN with NLT Sig.II in Speech Prediction 
(err l=((ei (12,err 2=(le$ 112). 

err 

2.1344 
2.027 
2.1291 
2.0459 
1.8862 

I n-th I I 1 # of iterations I 

n-th 

sweep 

n= 1 
n=2 
n=3 

err 1 

2.1353 
1.8718 
1.8460 

err2 

1.9336 
1.8524 
1.8416 

sweep 

# of iterations 

stage1 

100 
900 
900 

en1 

stage2 

loo0 
100 
100 

en2 



Table 4. Performance of PSHNN with NLT Th.1 in Speech Prediction 
(err l=l(ei 11',err2=lle$ 11'). 

Table 5. Performance of PSHNN with NLT Th.II in Speech Prediction 
(err l=((ef 112,err2=l(ei 11'). 

n-th 

sweep 

n=l 
n=2 
n=3 
n=4 

Table 6. Performance of PSHNN with NLT Square in Speech Prediction 
(err l=~lef 1l2,err 2=~(e$11'). 

err2 

2.0925 
2.0585 
2.0481 
2.0448 

err1 

2.1352 
2.0699 
2.0514 
2.0457 

n-th 

sweep 

n= 1 
n=2 
n=3 

# of iterations 

err2 

2.0282 
2.0250 

- 

err1 

2.1353 
2.0312 
2.0034 

stage1 

100 
900 
900 
900 

stage2 

200 
200 
200 
200 

# of iterations 

stage1 

100 
500 
600 

stage2 

100 
100 

- 



Table 7. 3-Stage Function-Link Network as a Function of Input Nonlinearity with 
900 Iterations (err= 1lell2). 

Table 8. 3-Stage Function-Link Network as a Function of Input Nonlinearity with 
2900 Iterations (err= Ile 112). 

Stage 11 Stage I11 F I 

err 

2.0167 
1.9980 
1.8818 

Type of NTL 

Stage 11 Stage 111 

Sig.1 
Th.1 
Square 

Th.11 
Sig.1 
Sig.1 

Sig.1 
Th.1 
Square 

Th.11 
Sig.1 
Sig.1 

2.0149 
1.9966 
1.8811 



Table 9. Performance of PSHNN with NLTl Sig.1 & NLT2 Th.II 
in Speech Prediction. 

Square Error Sum 

Training 

Table 10. Performance of PSHNN with NTLl Th.1 & NLT2 Sig.1 
in Speech Prediction. 

Table 11. Performance of PSHNN with NLTl Square & NL,T2 Sig.1 
in Speech Prediction. 

n-th 
Sweep 

Training 

n= 1 
n=2 

Square Error Sum 

n-th 
Sweep 

Training 

n= 1 
n=2 

err 1 f 

2.1353 
1.8750 

Square Error Sum 

err2b 

1.8957 
- 

err2f 

2.0924 
1.8592 

err3f 

1.6973 
1.6399 

err 1 f 

2.1353 
1.6705 

err3f 

1.9210 
1.8264 

err2f 

1.9330 
1.663 1 



Table 12. Error Reduction with a Single Stage Network with 12 Hidden Units 
Trained by BP (err1 =lie 1 )12 ). 

Table 13. Error Reduction with a Two-Stage PSHNN with 6 Hidden Units per SNN 
Trained by Forward-Backward BP (err l=lle 1 112 ,err 2=lle 211'). 

# of 
iterations 

1000 
2000 
5000 
10000 
20000 
30000 
40000 
50000 

err 

1.1454 
0.8413 
0.6822 
0.4464 
0.2424 
0.2506 
0.2205 
0.1962 

- 
# of 

sweeps 

20 
40 
100 
200 
300 
400 
500 
600 
700 
800 
900 
1000 

err 1 

1.0528 
0.8962 
0.6031 
0.4374 
0.3367 
0.2714 
0.2133 
0.1927 
0.1895 
0.1771 
0.1731 
0.1658 

err2 

1.0473 
0.8945 
0.6023 
0.4368 
0.3364 
0.2711 
0.2133 
0.1925 
0.1962 
0.1816 
0.1859 
0.1708 



Ta'ble 14. Error Reduction with a Three-Stage PSHNN with 4 Hidden Units per 
SNN Trained by Forward-Backward BP. 

Table 15. Error Reduction with a Four-Stage PSHNN with 3 Hidden Units per SNN 
Trained by Forward-Backward BP. 

err2b 

1.1982 
0.6447 
0.5235 
0.4484 
0.28 17 
0.1962 
0.1703 
0.1603 
0.1551 
0.1529 1 

# of 
sweep 

10 
50 
100 
200 
300 
423 
500 
600 
700 
750 

errlf 

1.2380 
0.6486 
0.5240 
0.4488 
0.2825 
0.1965 
0.1705 
0.1604 
0.1551 
0.1529 

err2f 

1.3561 
0.6707 
0.5119 
0.4136 
0.3540 
0.3093 
0.2619 
0.2306 
0.2209 

# of 
sweep 

10 
50 
100 
200 
300 
400 
500 
600 
666 

err2f 

1.2157 
0.6464 
0.5236 
0.4487 
0.2823 
0.1965 
0.1704 
0.1604 
0.1551 
0.1529 

err2b 

1.2914 
0.6662 
0.5114 
0.4132 
0.3537 

err3f 

1.3238 
0.6682 
0.5116 
0.4134 
0.3539 

errlf 

1.3594 
0.67 16 
0.5121 
0.4136 
0.3540 
0.3093 
0.2620 
0.2306 
0.2210 

err3f 

1.2138 
0.6462 
0.5236 
0.4483 
0.28 19 
0.1962 
0.1704 
0.1604 
0.1551 
0.1529 

0.3092 
0.2618 
0.2305 
0.2209 

err4f 

1.3195 
0.6682 
0.5116 
0.4134 
0.3538 
0.3091 
0.2618 
0.2304 
0.2208 

err3b 

1.2963 
0.6662 
0.5115 
0.4134 
0.3538 



Figure 1 .  Block Diagram of  a Three-Stage PSHNN. 
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Figure 2. Block Diagram of a Function-Link Network. 
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Figure 3. Graphical Representation of Suboptimal Solution for SNN1. 

Figure 4. Graphical Representation of Suboptimal Solution for SNN2. 
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