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Abstract 

A detailed analysis of convergence rate is presented for an iterative path formulated 

optimal routing algorithm. The primary objective is to quantify, analytically, how the 

convergence rate changes as the number of nodes in the underlying graph increases. 

The analysis is motivated by a particular path formulated gradient projection algorithm 

that has demonstrated excellent convergence rate -. properties through extensive numerical 

studies. In particular, the empirical data suggests that the number of iterations required 

for convergence to within a small fraction of the optimal cost is relatively independent of 

the number of nodes. Deriving a correspondingly tight analytical bound for the number 

of iterations required for convergence, as a function of problem size, proves to be a 

formidable task, primarily because the dimension of the underlying optimization problem 

(i.e., the total number of paths connecting all origin-destination pairs) generically grows 

with a super-polynomial function of the number of nodes. The main result of this paper 

is that the number of iterations for convergence depends on the number of nodes only 

through the network diameter. 



I .  INTRODUCTION AND PROBLEM FORMULATION 

A.  Basics 

The primary objective of virtually all routing algorithms is to select routes for those 

origin destination (OD) pairs that request data communication. A secondary objective 

is to insure that messages transmitted along the selected routes are delivered to the 

correct destinations. This latter objective is accomplished by using standard techniques 

involving protocols and routing tables. In this p q e r  the focus is on the former objective- 

the route selection problem. It is known that route selection has a substantial impact 

on the performance of data networks [l-9,12,13,15,16]. Roughly speaking, an optimal 

routing is a set of routes that yields the "bestn network performance-based on some 

quantitative measure. The types of performance measures employed by most optimal 

routing formulations, estimate, in some sense, the average delay associated with sending 

a packet of data to a typical destination node. 

An important issue to consider when implementing a routing algorithm in a large 

distributed data network is the question of whether the computation should be done 

in a centralized or distributed manner. Centralized implementations are fairly straight- 

forward: a designated "central" node is sent data (which characterizes the state of the 

network) from the other network nodes; then, based on this information, the central node 

solves the optimal routing problem and broadcasts the solution back out to the network. 

One of the obvious problems with this type of scheme is the associated communication 

overhead (i.e., bottleneck). In contrast, certain distributed implementations can reduce 

this communication overhead, by requiring, for example, only nearest neighbor communi- 

cation. Due to the potentidy high degree of fault tolerance, fast convergence rates, low 

communication overhead, and other reasons, distributed implementations have received 

a great deal of attention in the literature over the past decade or so. 

One fundamental question associated with distributed routing algorithms is that of 

convergence. Namely, because the order of events in distributed algorithms occur asyn- 

chronously (to one degree or another), the question of whether the algorithm will converge 

becomes a non-trivial one. In references [5] and [6], convergence of a class of distributed 

optimd routing algorithms is proven under very mild assumptions. The present authors 

have proven convergence of a class of distributed iterative aggregation algorithms [15], 

which have applications in optimal routing. 



While the question of distributed asynchronous convergence has been addressed in the 

above cited works (and others), the goal in the present paper is to determine the amount 

of time required for a class of iterative path formulated optimal routing algorithms to 

converge. The time complexity of routing algorithms is an important practical as well as 

theoretical issue. In practice, it is imperative that the routing algorithm converge within 

a certain amount of time, otherwise the eventually arrived upon solution may be of little 

or no value. In the present paper it is shown how network parameters such as maximum 

link utilization factors, traffic demand values, link capacity values, and the number of 

network nodes affect the time required for convergence. In order to achieve meaningful 

bounds for the convergence rate, a certain price was paid in that the assumed model 

for computation is essentially synchronous (in terms of the order in which iterations are 

executed). However, it is believed that the ground-work laid out in this paper should serve 

well as a guide for future work under more relaxed (i.e., asynchronous) assumptions. The 

main time complexity results are for a class of path-formulated gradient projection-based 

algorithms. 

B. Fornulation of the Optimal Routing Problem 

The following formulation uses the same notation and is based on the same approximating 

assumptions as set forth by Bertsekas and Gallager in reference [2]. 

Delay Models 

Queuing theory is the primary methodological framework for analyzing network perfor- 

mance. Oftentimes its use requires simplifying assumptions for the sake of mathematical 

tractability. Due to the complexity of realistic networks, it is typically impossible to 

obtain accurate quantitative delay predictions, however, the models used often provide 

valuable qualitative results and insights [2]. 

Perhaps the simplest queuing model is the so-called M/M/l  queuing system that 

consists of a single queuing station and a single server. It is assumed that customers (i.e., 

packets of data) arrive according to a Poisson process with rate F ,  and the probability 

distribution of the service rate is exponential with mean C. By applying Little's Theorem, 

the average delay for a packet to traverse link (i, j) is given by 



where Cij and Fij denote the service rate and arrival rate respectively, associated with 

link (i, j). 

Jackson's Theorem states that in a network of single server queues in which customers 

arrive from outside the network at each queue according to independent Poisson processes, 

the average number of outstanding packets in the (steady-state) system can be derived 

as if each queue in the network is an M/M/l queue. So, for the purpose of measuring 

network performance, modeling the entire network with simple M/M/ 1 queues is justified. 

Based on Jackson's Theorem and Equatioa -. (I), the cost function is defined as a 

weighted sum of all link delays: 

where & is the set of all links and links having more traffic flow are given higher relative 

weightings, i.e., Equation (1) is multipled by F;;. Note that each term in the sum 

represents the average size of the queue associated with link (i, j). Therefore, D(F)  is an 

estimate of the total number of outstanding packets in the network. For the purposes of 

this paper, determining routes that minimize D(F),  for a given set of OD traffic demands, 

will constitute the notion of an optimal routing. 

Preliminary Notation 

The following notation is needed in order to formally state the optimal routing problem. 

Throughout the paper, script fonts such as W and P are used exclusively to denote sets. 

W : The set of OD pairs requesting communication. 

w : A generic OD pair in W. 

r, : The arrival rate (tr&c demand) measured in packets/sec, for the OD pair w. 

Pw : For the OD pair w, this is the set of all logical paths connecting the origin node 

to the destination node. 

p : A generic path in P,. 

x, : The flow rate on the logical path p. 



Constraint Equations 

The following constraint equations arise naturally due to conservation of flow. 

and 

all pashs p 
containing (i J )  

C xp = r ,  for all w E W 

Note that the cost function being minimized, see Equation (2), can be expressed in 

terms of the path vector x, defined as  x = [ x ~ J ~ ~ P ~ .  By combining constraint Equation 
w E W 

(3) with the definition of the path vector, the cost function of (2) can be written as 

where Kij is a row vector with components equal to either zero or one. Specifically, the 

pth component of K;j is one if link ( 2 ,  j) is on path p, otherwise, the pt" component of 

Kij is zero. 

The Path-Formulated Optimal Routing Problem 

Given r,, for each w E W, 

minimize {D(x)) , 

such that Equations (4) and (5) are satisfied. 

11. THE PATH FORMULATED GRADIENT PROJECTION ( P F G P )  ALGORITHM 

It can be shown that the path-formulated optimal routing problem can be transformed 

into an equivalent box-constrained problem, see [15J for more details. Also, the func- 

tion D(x) is a differentiable convex function of the path vector x. Therefore, the path- 

formulated optimal routing problem can be solved numerically by using well established 

techniques from nonlinear programming; the focus here is on the gradient projection 

method. The main idea of the gradient projection technique is that after a step is made 



in the direction of the negative gradient, the result is orthogonally projected onto the 

positive orthant. 

The iteration equation that results from applying the gradient projection method 

to the path-formulated optimal routing problem necessitates the definition of the first 

derivative length (FDL) of a path. The FDL of path p, denoted dp, is defined by 

where 

. - 
on path p .- - - 

Next, the minimum FDL (MFDL) paths, denoted as p, for each w E W, are defined by 

dFw = min {d,) , for all w E W. 
PEP, 

(11) 

Note that for any particular w, there may be more than one MFDL path. In case of such 

an event, 25, is an arbitrarily chosen MDFL path. 

The iteration equation associated with the PFGP algorithm [5,20] can now be stated: 

(*+I) = rnax{O, X r )  - a(') ('1 -1 ('1 - 
x~ (Hpp ) (d, q)}, for all w E W ,  P E Pw, P # Pw, 

(12) 
where k is the iteration count. The term a(') denotes the step size and the term H;:) 

is a scaling factor that is related to the second derivative length of path p. It is easy to 

verify that the term a(')(~$:))-l (df) - 4:) 2 0, for all p E Pw, and therefore, the above 

iteration equation need not be applied to those paths for which xg) = 0. Thus, the set 

of active paths at iteration k, denoted by @ik), is defined as as 

So, a more efficient version of the PFGP algorithm (as described originally in [20]) is the 

following: 

('+I) = max{O, 2:) - a(*)(H('))-'(dr) - 4))) for all w E W, p E pik), p # pw, x~ PP W ' 
(13) 



(k+l) = rw - x- 
PW C xf), for all w E W, (14) 

P E * ~ , P # F ,  

PLk+l) = { p  E 1 xf) - a (k ) (~ (k ) ) - l (d (k )  P P  
P - 4;) > 0) LJ {A} , for all w E W. 

(15) 
The PFGP algorithm of Equations (13) through (15) has been efficiently implemented 

as a serial FORTRAN code, see reference [I]. This code uses a constant step size and 

the value of H:!) is an approximation of the pth diagonal element of the Hessian matrix. 

The set of active paths for each w E W are iniwized with a single (randomly selected) 

shortest hop path. 

A.  Basics 

The overall time complexity of the PFGP algorithm is given by the product of the 

complexity of each iteration and the complexity of the number of iterations required 

for convergence to an acceptably small neighborhood of the optimal solution. 

From Equations (13) through (15), the complexity of each iteration is clearly depen- 

dent on the following three quantities: ( i )  the number of active paths: 1 pLk)l; (ii) the 

number of OD pairs: 1 WI; and (iii) the number of nodes in the network: n. The depen- 

dence on \Pkk)l is due to the fact that the flow on each (non-MFDL) active path must be 

updated according to Equation (13). The dependence on I W (  comes from the fact that a 

MFDL path must be determined for each w E W. Finally, the dependence on the num- 

ber of nodes, denoted by n, is due to the fact that solving shortest path problems (i.e., 

finding the MFDL paths) generically depends on the size of the graph. The complexity 

of each iteration (El) is therefore denoted as TEI(k, I W 1, n), where k actually denotes 

the dependence on l@ik)(. TEI(k, 1 W 1, n) is fairly straightforward to e s t ima te the  only 

difficulty comes in estimating the maximum number of active paths used in any single 

iteration. The following is an obvious upper bound for I Pik)(: 

because at each iteration at most one new active path is added to each set pik). 

In contrast to the fairly straightforward task associated with estimating the complex- 

ity of each iteration (described above), the main concern in this paper is to estimate the 



complexity associated with the number of iterations, say Nr, required for the PFGP algo- 

rithm to converge. Most of the classical results related to convergence rates of numerical 

optimization algorithms depend on the values of the largest and smallest eigenvalues of 

the Hessian. For example, it is shown in [lo, p. 338-3401 that by using a special step size 

rule, the convergence rate for gradient projection algorithms is bounded by 

.- 

where D(*) denotes the value of the cost function at iteration k,  and B and b are, re- 

spectively, the largest and smallest eigenvalues (in magnitude) of the Hessian. From 

Equation (17) it is easy to see that if the difference B - b is large (or b -+ 0), then 

[(B - b)/(B + b)I2 -, 1. On the other hand, if b -+ B, then [(B - b)/(B + b)12 -t 0. 

Clearly, the smaller the value of [(B - b)/(B + b)12, the faster the convergence rate, which 

implies fewer iterations are required for convergence to within a fixed neighborhood of the 

optimal solution. Unfortunately, the convergence rate of Equation (17) has some practi- 

cal problems when considering the application of the gradient projection technique to the 

optimal routing problem. First, the assumed step size rule used to derive Equation (17) 

is based on a type of line minimization technique which would be difficult to implement 

in a large distributed network-in practice a constant (or simple) step size rule is used. 

Second, it is difficult to determine a meaningful lower bound for b, primarily because the 

number of active paths can (potentially) grow according to a super-polynomial function 

of n. In particular, lpLk)l is bounded above by (P,$')l, where ( P ~ ) J  denotes the total 

number of (potential) paths that interconnect the OD pair w. For all but the sparsest 

of graphs, I P?) 1 grows as a super-polynomial function of n. (Consider, for example, the 

fact that there exists O(2") distinct paths that interconnect various OD pairs in a simple 

n-node planar mesh.) 

In estimating the number of iterations for convergence for the PFGP algorithm, one 

of the most crucial issues is the assumed bound for 1 ~ ~ ~ 1 .  If one uses the fact that 

(PL~) (  5 I P ~ ) ( ,  then the resulting analysis indicates that the number of iterations for 

convergence is bounded by a function that depends on IP,$ ')( ,  which can result in an 

overall bound that grows with a super-polynomial function of n. This assumption and 

the resulting convergence rate result are apparently too loose because the empirical data 

suggests that the number of iterations for convergence actually grows (at most) slowly 

as the number of nodes in the graph is increased. 



In the paper [19], it is shown that if one assumes that Ipt)( 5 lK,,J, where (%,,I is 

a constant (independent of both k and n), then the number of iterations for convergence 

is indeed bounded by a slowly increasing function of n. In [19], the assumption that 

1@kk)( < IP,axJ is argued to be reasonable because numerous simulation studies indicated 

that ) P L ~ ) ~  rarely exceeded ten, regardless of the size of the network. Also, the main 

thrust in [19] is not in getting a necessarily tight bound for the convergence rate but 

rather in showing that the convergence rate assuming a Jacobi-type updating rule is the 

roughly the same as the convergence rate assoc&ted with a Gauss-Seidel updating rule. 

In the present paper, we allow J@Lk)l to grow according to k + J P ~ ) I  (i.e., no uni- 

form bound is assumed) and show that the number of iterations for convergence is still 

bounded by (at most) a slowly increasing function of n (and thus, from this result, we 

confirm indeed that only a small number of active paths are required to achieve conver- 

gence). Because no uniform bound is assumed for (pLk)l in the present paper, the analysis 

techniques are significantly different from those used in reference [19]. 

B. Serial Versus Distributed Time Complexities 

Thus far a distinction has not been made between the time complexity of the PFGP 

algorithm relative to serial and distributed implementations. In a serial (single processor) 

implementation, the value for TEl(k, 1 W 1 ,  n)  is the sum of the time required to solve the 

shortest path problem for each w E W and the time required to update all active path 

flows in @ik). In a distributed implementation, a distributed shortest path algorithm 

could be employed (such as the distributed Bellman-Ford algorithm [2,14]) and each 

node i could assume the responsibility of updating all active path flows originating at 

node i. Of course one of the main difficulties associated with distributed algorithms (in 

general) is the asynchronous nature of the communication overhead. 

For the purposes of this paper it shall be assumed that iteration k + 1 is executed 

only after iteration k is completed. Under this simplifying assumption, the complexity for 

the number of iterations is the same for both the serial and distributed implementations 

of the PFGP algorithm. In terms of the distributed implementation, this assumption 

implicitly assumes the existence of a uniform upper bound for the communication time 

complexity of each iteration. This type of assumption results in what is typically called 

a partially asynchronous distributed algorithm. It has been proven that the distributed 

PFGP algorithm will actually converge (eventually) in a virtually totally asynchronous 



computing environment, see [5,6]. However, with such mild restrictions on the ordering 

of events it becomes very difficult to tightly bound the rate of convergence. 

The analysis technique introduced in the present paper for estimating the convergence 

rate (for the partially asynchronous case) serves a twofold purpose. First, the resulting 

bound may serve as a nominal estimate of the convergence rates associated with a more 

asynchronous model. Second, the analysis techniques developed in deriving the bound 

for the partially asynchronous case may serve as a guide for deriving similar results under 

more relaxed assumptions. .- -. 

IV. THE COMPLEXITY OF THE CONVERGENCE RATE 

In this section upper bound results for the convergence rate of the PFGP algorithm are 

derived. First, all necessary notation for stating the main results is introduced. 

A .  Notation 

From this point on, the superscript "(n)" is placed on those variables or sets that are 

explicitly dependent on the number of nodes in the network. Likewise, the superscript 

"(k)" is used to indicate dependence on the iteration count, k. Variables with neither a 

"(n)" nor a "(k)" superscript are assumed to be constants, independent of both n and k. 

One particularly important yet subtle point is that the set of all logical paths associated 

with the OD pair w is denoted by PC) ,  while the set of active paths at iteration k 

associated with OD pair w is denoted by @ik). 

w(") : The set of OD pairs requesting communication. 

w : A generic OD pair in ~ ( " 1 .  

r, : The arrival rate for the OD pair w E ~ ( " 1 .  

r- : The minimum arrival rate, for all w E ~ ( " 1 :  

min {r , } .  
w€W(")  

PC) : For the OD pair w, this is the set of all logical paths that connect the origin 

node to the destination node. 

p : A generic path in PC). 



x  : The flow rate on path p at iteration k. 

$ik) : This is the set of active paths in 7':) at iteration k: 

pik) = {(p E 7'p I x ~  > 01. 

1 P C ~ )  : The maximum number of initially active paths associated with any single OD 

pair: 

8 )  : The flow rate on link (i, j) at iteration k. 

Cij : The capacity of link (i, j ) .  

C- : The minimum value of Cij, for all ( 2 ,  j )  E L. 

C,, : The maximum value of Cij, for all (i, j )  E L. 

: The utilization factor of link (i, j )  at iteration k: 

pm, : The maximum link utilization factor for all (i, j )  E L, and all k: 

kjo 

D ( ~ )  : The value of the cost function at iteration k: 

D* : The optimal value of the cost function. 

E ( ~ )  : The relative error: 

h t )  : The minimum hop distance between the origin and destination of each OD pair 

w E ~ ( " 1 .  



h c L  : The maximum value of hk ) ,  for all w E w("): 

hEL = max {hp)}. 
w€W(") 

hz; : The minimum value of hk) ,  for all w E ~ ( " 1 :  

("1 h,, = min {h?)} . 
w€W(") 

.- 

h : The average value of hk) ,  for all w E ~ ( " 1 :  

1 h g  = - C h". 
IW(")I w E ~ ( n )  

B. Assumptions: 

(Al)  Iteration k is completed before iteration k + 1 begins. 

(A3) There exists constants id, and fma, such that dk) (the stepsize at iteration k) 

satisfies 

(fdn)dk) < a(k) < (c,=)z(~), 

where 

and 

The need for assumption (Al)  was mentioned previously. Namely, without assuming 

this type of synchronization (with respect to the execution of the iterations) the analysis 

of convergence rates becomes extremely difficult. (Note: In a more relaxed asynchronous 

computing environment the question of interest is not typically one of "How fast does 

the algorithm converge?" but more fundamentally "Does the algorithm converge?") 

Assumption (A2) (i.e., 0 < pma < 1) implies that the routings produced by each 

iteration of the PFGP algorithm be "valid" routings, i.e., F:) < Cij, for all (i, j) E L 
and all k 2 0. However, by the descent property of the gradient projection method 



and the convexity of the optimization problem at  hand, it can be established that if the 

initial routing is valid, i.e., if F:) < C;,, for all (i, j )  E L ,  then all routings produced by 

subsequent iterations will also be valid. Therefore, a question is raised as to how to handle 

initial routings that are not valid, i.e., those for which F$) > Cij, for some (i,  j )  E L. In 

the implementation of the algorithm in [I], this potential problem is handled by cleverly 

redefining the penalty function for each link as follows: 

where the coefficients a ,  b, and c are chosen so that D;, (Fij) and its first two derivatives 

(with respect to Fij) are all smooth at  the point F;, = 0.95C. The advantage in using 

Equation (18) to define the link penalty function (instead of the strict M/M/l-based 

penalty function) is the fact that the functions Du(F;,), D:~(F;~), and D;(F;~) are all 

well-defined for all Fjj 2 0 (instead of just 0 5 Fij < C;,). Also note that D:;(F,,) 5 a ,  

for all Fj ;  >_ 0. Therefore, the size of each element in the associated Hessian is bounded 

above by the constant a, regardless of the values of link flows F;j. Thus, the convergence 

rate associated with the penalty function of Equation (18) is the same as the convergence 

rate associated with the strict M/M/l-based penalty function under the assumption that 

p,, < 0.95. Therefore, under the practical assumption that the utilization of all links 

will eventually be below 0.95 (e.g., at  the optimal solution), using Equation (18) enables 

us to (effectively) bound p,, by 0.95. Clearly, the factor of 0.95 can be further lowered in 

Equation (18) if lower optimal (i-e., eventual) utilization factors are expected. However, 

lowering this factor below what turns out to be the actual optimal utilization factor can 

result in a suboptimal routing, with respect to the M/M/l-based cost function. 

Assumption (A3) requires the stepsize to lie within a specified interval. (Note: It is 

well-known-for general gradient-type algorithms-that if the stepsize is too large, then 

the algorithm may not converge. On the other hand, if the stepsize is too small, then 

the convergence rate may be arbitrarily slow.) 

C. The Dynamics of E(k) 

The main convergence results hinge around the derivation of a closed form bound for 

a nonlinear recurrence involving E(k). This recurrence equation, which captures the 

dynamic response of ~ ( ~ 1 ,  is stated in Lemma 1. The derivation of Lemma 1 involves 



a string of preliminary results which are included in detail in the Appendix. A general 

closed form bound for the recurrence is proven in Lemma 2. 

Lemma 1:  Given that assumptions (Al) through (A3) are satisfied, the following holds 

for all k > 0: 

where 

Lemma 2: Given that assumptions (Al) through (A3) are satisfied, the following holds 

for all k > 0: 

where Kl,  f ("1 and g(k)  are defined by Equations (Ll. 1) through (L1.3) and 

Proof: Obviously, E ( ~ )  > 0 for all k 2 0. Also, from Equation (Ll)  note that E ( ~ + + ' )  5 -- 
E ( ~ ) .  T:herefore, an alternate expression for E ( ~ + ' )  is obtained by bounding the right hand 

side of :Equation (Ll) ,  yielding 

Now the following bound for E ( ~ + ' )  is obtained: 



A closed form bound is then found for all k 2 0: 

, g o )  
E ( ~ )  5 k- 1 ( i )  . 

1 + ~ ( O ) l { l f  ("1 xi=, 9 

Finally, from Proposition 4 (see Appendix), E(O) is bounded as follows: 

D. The Main Results 

In order to determine a bound for the number of iterations required to reduce the relative 

error to a small value, the right hand side of Equation (L2) is set equal to the desired 

small value and solved. The following theorem states this fundamental result. 

Theorem 1: Given that assumptions (Al) through (A3) are satisfied, then for any 

constant c > 0, the number of iterations, N I ,  required to achieve ~ ( ~ 1 )  5 E is bounded 

where P I ( - )  is the inverse mapping of ~ ( ~ 1 :  

and 

G-'(r) = min 
i=O 

Proof: Set the right hand side of Equation (L2) equal to c and solve. 

Bounding G(k) and f (n) 

Because 1 < I P ~ ~ ) (  5 k + l p z I ,  for all w E W('), g(k) (refer to Equation (L1.3)) can be 

bounded as follows: 



Therefore, based on Equation (T1.l) the following bounds for G ( ~ )  are obtained: 

So, without making any assumptions on the rate at  which the important quantity g(k )  

grows, it must generically be assumed that the mapping G-' is exponential, in spite of 

the fact that it could be as small as the square-root function. In the following lemma, 

however, it is shown that if there exists a constant 0 < y 5 1 such that ( P L ~ ) ~  < (k+l)'-7, 

for all w, then the mapping G-' is polynomial. Thus, there is reason to believe that in 

practice, G-' may rarely be exponential. 

Lemma 3: If there exists a constant 0 < y 5 1 such that I P L ~ ) (  < (k  + l)l-7, for all 

w E w("). then 

Proof: Applying the assumption to Equation (L1.3), note that 

Therefore, applying the definition of G(k) (Equation (T1.l)) yields 

Now, by bounding the above sum using a standard integral approximation technique, 

The next task involves upper bounding the quantity 7f;T. 
Because 1 < h k )  5 d(n) ,  for all w (where d(") denotes the hop diameter of the 

network), an upper bound (refer to Equation (L1.2)) is as follows: 

Fortunately, it turns out that under very mild assumptions, the diameters of large 

random graphs increase (in the worst case) proportional to log n, with probability one. 

In particular, in reference [18, pp. 233-2361? it is proven that if the probability of any link 



being in the graph is p, then with probability one (as n -, oo) the diameter of the graph 

will equal either d  or d + I ,  where d satisfies the following equation 

The following lemmas result from Equation (19). 

Lemma 4: Provided that P[(i, j) E L] 2 a ,  for all i # j, then with probability one, 

the diameter of the graph is bounded by a logarithmic function of n. In particular 
.- 
-. 

d(n) < 2(logn + 1).  

Proof: Set p = % in Equation (19) and solve for the desired bound on d. 
a 

Lemma 5: For any constant 0 < 6 5 1, provided that P[(i ,  j) E L] 1 +, for all 

i # j ,  then with probability one, the diameter of the graph is bounded by a constant. In 

particular, 

Proof: By setting p = -&, note that 

Now, apply the logarithm to both sides of above Equation and solve for d - 1 

log (nl-') + log (log n) 
d - l =  

I + 6logn 

Now by noting that log (nl-') = (1 - 6 )  log n and by replacing the denominator by 6 log n, 

(after letting n -+ oo) 

1 
d l -  

6 ' 

Finally, recalling that the diameter is bounded by d + 1, the result is proven. 

E. Summary of the Results 

The main results are summarized below as corollaries. The corollaries come by applying 

the various conditions and results of Lemmas 3 through 5 to Theorem 1. Assumptions 



(Al)  through (A3) are assumed for all three corollaries. Also, it is assumed that $ > K2 
(otherwise, NI = 0). 

Corollary 1: For any three constants 0 < E, 0 < 6 5 1 and 0 < 7 5 1, provided that 

P[( i ,  j )  E 4 > +, for all i # j ,  and provided that 1pik)l 5 (k + l)'-7, for all k, then 

with probability one, the number of iterations for convergence to ~ ( ~ 1 )  5 E is bounded 

by the following constant 

Corollary 2: For any two constants 0 < E and-0 < 6 5 1, provided that P[(i ,  j )  E C] 2 
$, for all i # j, then with probability one, the number of iterations for convergence to 

EtNx) < 6 is bounded by the following constant 

Corollary 3: For any two constants 0 < E and 0 < 7 5 1, provided that P[(i, j )  E C] 3 
2 n 7 for all i # j, and provided that lpLk)l 5 (k + for all k, then with probability 

one, the number of iterations for convergence to E(Nr) 5 6 is bounded by the following 

poly-logarithmic function of n 

V. COMPARISON WITH PREVIOUS RESULTS AND CONCLUSIONS 

A. Comparison with Previous Results 

The main results are not incowistent with the only other known convergence rate results 

for the algorithm under consideration. In reference [13] it is proven that for any fixed 

number of nodes there exists a parameter p < 1 such that I(ztk) - zfl( 5 I<pk, where 

K and p are constants, xtk)  is the vector of path flow variables at iteration k and x* is 

an optimal vector of path flows. One fundamental issue not addressed in [13], however, 

is the rate with which the parameter P approaches unity as the number of nodes n is 

increased. Furthermore, because the result in [13] characterizes the convergence rate of 

the quantity ( ( x ( ~ )  - za((  while the results of the present paper bound the convergence 
D ( ~ ) - D *  rate of the quantity Etk) = 7, it is difficult to make a fair comparison as to which 

convergence rate estimate is tighter. This difficulty is highlighted by the construction of 

a simple example network, see Fig. 1. In the example network, for any given 0 < 6 5 i, 



x: = 1 - &  .- -. 

If x ' : ' = 1 - 2 ~ + & ~  and x ~ ' = 1 - ~ 2 , t h e n  

1 Il dk)- x * l l  < 2E and E'~'  > - 
4€ 

Fig. 1. A simple example network that shows closeness in the sense of the measure 

1 1 x ( ~ )  - z*II does not necessarily imply closeness according to the measure ~ ( ~ 1 .  

define a, set of path flows, call them x ( ~ ) ,  for which ( I x ( ~ )  - x8((  < 26, while, on the 

other hand, the relative error of the cost function for the same flows satisfies E ( ~ )  > h. 
Thus, the example shows that being "close" in the sense of the measure I ~ x ( ~ )  - x*ll does 

not necfessarily imply closeness in the sense of the relative error of the cost function. 

Admittedly, the example in Fig. 1 is somewhat pathological because the path flow values 

depend on the convergence parameter E. Nevertheless, it demonstrates the ezistence of 

sets of path flow values (perhaps initial path flows) for which the error measure I ( x ( ~ ) - x * ( (  
does not provide a reasonable estimate of the relative error of the cost function. 

It is noted that if the number of nodes were assumed to be fixed (i.e., a constant) in the 

present paper, then f ( n )  and g ( k )  could be bounded by constants. Therefore, for E ( ~ )  > 1 

(refer to  Equation (L l ) )  E(k) < E(0)pk, where p = (1 - Ktf i j ) ,  and f and ij are constant 

upper bounds for f t n )  and g ( k ) ,  respectively. Likewise, for E(') < 1, E(*) < l+kkln.  
In the paper [19], the results indicate that if one assumes the number of active paths 

for each OD pair is bounded by a constant, then the number of iterations for convergence 

increases slowly as the number of nodes in the graph is increased. In the present paper, 

no bound is placed on the the number of active paths for each OD pair (i.e., each OD 

pair is allowed to increase its set of active paths by one at each iteration). Our analysis 

shows that even under this relaxed condition, the number of iterations for convergence 



still increases (at most) slowly as the number of nodes is increased. 

B. Conclusions 

Bounds have been derived for the number of iterations required for a class of path- 

formulated gradient projection-based algorithms to converge. The bounds confirm obser- 

vations made through experimentation and experience, and (more importantly) also offer 

new insights. First, under relatively mild assumptions on the denseness of the network 

graph, it was proven that the number of iteratians for convergence is independent of the 

size of the network (with probability one). Second, with essentially no restrictions on 

the graph density, it is proven that the number of iterations for convergence is bounded 

by a poly-logarithmic (i-e., sub-linear) function of the number of nodes, provided that 

the nurnber of active paths for each OD pair (at iteration k) is bounded by a strictly 

sub-linear function of k. Also, the results show that the number of iterations required 

for convergence increases as the maximum link utilization factor increases, a fact that 

has been well established through experimentation. The goal of this paper has been to 

study how the convergence rate changes as the number of nodes in the graph is increased. 

Therefore, in the "bound-findingn analysis, the size of the constants were sacrificed in 

order to get tight asymptotic bounds in n. The constants associated with the bounds 

are probably overly conservative, and it is not claimed that they are the tightest by any 

means. Nevertheless, the results appear to be new and insightful. 

Two directions of future work are planned. First, a similar derivation of bounds for 

a competing link-formulated optimal routing algorithm [17] shall be attempted. Second, 

an extension of the results of the present paper to include the class of iterative aggre- 

gationldisaggregation algorithms described in [15]. It seems possible to show that by 

aggregating paths associated with appropriately chosen groups of OD pairs, the number 

of iterations for convergence may decrease. 

The purpose of this appendix is to prove Lemma 1 of Section IV. A string of eight initial 

propositions is given followed by a restatement and proof of Lemma 1. In addition to 

the notation introduced in Section IV, the following notation is used. 

Additional Notation: 



lp : The number of links along the active path p. 

v , D ( ~ ) :  The gradient of the cost function with respect to the path variables, at 

iteration k: 

V 2 D ( k ) :  The Hessian of the cost function with respect to the path variables, at iteration 

@ ( k )  : The set of all active paths at iteration k: 

: The set of all paths that are active at iteration k or k + 1 :  

- 
VZD(k,k+l): The Hessian of the cost function restricted to the subspace of active paths 

p E @(k9k+'). 

Next, the eight preliminary propositions and Lemma 1 are stated and proven. As- 

sumpt ions (Al) through (A3) are implicitly assumed. 

Proposition 1: For all (i, j) E L and for all k; the following inequalities hold. 

( k )  (i) 0 5 Dij 5 P- 
(1 - P-I 

where 



(i) Due to the convexity of D$), the lower and upper bounds are obtained by simply 
(k) evaluating Dg at  F::) = 0 and F]:) = (pma)(C;,), respectively, which gives the desired 

result. 

(ii) Note that the first derivative length of link (i, j )  is given by 

.- 

As in the previous part, the convexity of enables us to find lower and upper bounds 

by evaluating at &Y:I*) = 0 and F$) = (pmaX)(Cij), which yields 

1 a~i;)  - <- < 1 
- for all (i, j )  E L, k. 

Cij al?, - (Cij)(l - Pmax)2' 

Now, because & 5 & 5 $-, for all (i, j) t L, the result is proven. 
,J mm 

al~i*) 
(iii) Again, due to the convexity of the bounds are determined in the same 

manner as the previous part. 

Proposition 2: The number of links along the active path p, defined as jp, is bounded 

by: 

h f )  5 ip 5 w 7 
for all p E pik) ,  w E ~ ( ~ 1 ,  k. 

( G i n )  (1 - pmax) 

Proof: The lower bound is obvious. (By definition of h t ) ,  every path associated with 

the OD pair w has at  least hk)  hops.) To prove the upper bound, note first that for 

every active path p E @ik) there exists at  least one iteration count, say kp 5 k, for which 

the flows on the network links (i.e., F:?)) were such that path p was a minimum first 

derivative length (MFDL) path at  iteration kp. In other words, in order for a path to be 

active a t  iteration k, it must have been a MFDL at  a previous (or the current) iteration. 

Now, because the first derivative of each link is strictly greater than zero, we have that 

where 



and 

Substituting the result of Proposition 1-part (ii) into Equation (A.l), the proof is com- 

plete. 

Proposition 3: The maximum eigenvalue of ~ ~ D ( * ~ ~ + ' ) ,  denoted as ;\cL, satisfies the 

following inequality: .- 

-. 

;\(*I m a  - < ( 6(Cmax) (maxwew(n) {lpkk)l}) 
(Cmin)3(1 - ~ m a x ) ~  

(IW("'I) (hkb) , for all k. 

Proof: Let V:D(*) = [H;;)]. So for any two paths p and q we have 

dl common links (i.j) ("";I) 
on paths p and q 

In order to bound ;\gk, we apply the Gerschgorin Theorem (111. In particular, we shall 

determine an upper bound for the sum of elements in each row of the restricted Hessian 

(i.e., restricted to the set of active paths in ?(*tk+')). First, note that if we consider the 

sum of elements for each row of the Hessian which is restricted to the set of paths in 

p(*),  we have that 

C H;:) 5 C H;:), for each p E p(*), 
q~P(k)  q~P(k)  

because H;;) 5 Hit) ,  for all p and q. Similarly, if we consider the sum of elements for 

each row of the Hessian which is restricted to the set of paths in ?(k+'), we have 

C H )  5 C Hi;), for each p E P(k+'). 
qeP(k+') qeP(k+l) 

Therefore, we have that 

C H::' 5 C Hi:' + C H$), for each p E p(k*k+l). 
q~P(h,k+') q€P(k) qeP(k+') 

Since Hi:) is the summation of all second derivative link lengths along path q, we have 

by Proposition 1-part (iii) that 

A ( ~ ) ,  fo ra l lq ,  



where 

So we can write 

(By Proposition 2) 

Gnu - 
(Cmin)(l - ~ m a x ) ~  

(Since I < max {l$ik)I}) 
w€w(") 

Proposition 4: 

(i) D* 2 (F) mu ( l ~ ( ~ ) l ) ( h k L ) ,  



Proof-Part (i): For any Ic ,  we have that 

(By linearity and constraint Equation (3)) 

w e  w'"' pEpg) 

(By Proposition 2) 

(By constraint Equation (4) and the definition of @ik)) 

2 

Now, because D* 5 D(k) (by definition of D*) the result of part (i) is proven. 

Proof-Part (ii): Let I Z ( O ) )  denote the number of active links at iteration 0, i.e., 

l Z ( O ) l  %f l{(i, j )  : J'j;) > 0, (i, j )  E L}l. 



(Since the initial paths are chosen to be shortest hop paths) 

= C h c )  C 1 
w€w(") 

< - 1 6 ( O )  max 1 C h c )  
w€w(") 

= (I@!i%I)(Iwcn)I)(hkb) 

Next, by applying the above bound to the fact~that 

the result of part (ii) is proven. 

Proposition 5: 

where dk) is the stepsize, (1 . I (  denotes the standard Euclidean norm: 

and 

w ~ d n )  

Proof: This proposition is proven by applying the result of Lemma 4.3 of reference 

[12] and Proposition 1-part (iii) of the present paper. In [12], it is shown that 

where 

and 

O < T,I < min {IPC)l}. 
w€w(") 



For any active path p, Hi!) is the sum of at least hz!., second derivative link lengths 
z(h(7) ) (Proposition 2); so by Proposition 1-part (iii) we can choose 6 = (c ml;2 _< minpCg~k){H~~) ) .  

mar  

Proposition 6: 

V~D(*)(X(*+~) - y)  5 2(cmar) ) (g) 11 
- x(k) 11, for all k, 

(cmin)3(1 - ~ m a x ) ~  

where ( 1  . 11 denotes the standard Euclidean norpl, x(*) = [xf)] P E P ,  (.) , and y = [y,] 
w€W(")  wend")  

is any nonnegative vector that satisfies 

C YP = ru17 for all w E ~ ( ~ 1 .  
PC pin,"' 

Proof: This proposition is proven by applying the result of Lemma 4.4 of reference 

[12] along with Proposition 1-part (iii) and Proposition 2 of the present paper. In [12], 

it is shown that 

A V,D(*)(~(*+~) - y) < (-) 11 x(k+l) - x(k) 
a ( k )  II 7 

where 

A 2 mgx {H::)}. 
PE'P(~)  

C Since Hi:) is the sum of at most ((cmi , ) (~pma, . . . )2)  hkix second derivative link lengths (by 

Proposition 2), then we can apply Proposition 1-part (iii) in order to choose 

A =  ( 2 ~ n a . x )  h z  2 max {H::)}. 
(CminI3(1 - ~ m a x ) ~  p~P(k) 



Proof: By convexity we have that 

(By Proposition 6) 

W E d " )  

(By Proposition 1 - part (ii) and Proposition 2) 

(Where I (  x(*) 111%' lxr)l) 
P 

cmax 

(Cmin)'(l - ~ m , ) ~  
) \/( max {JW)l} + rnax {~@i~+')l}) ( I W ( ~ )  1 )  

w € w ( " )  w € w ( " )  

(Since the vector ( x ( ~ )  - x ( ~ + ' ) )  has at most 

( max {lPLk)l} + rnax {I ~ ~ ~ + l ) : f ' ) ( } )  (lw(41) nonzero elements) 
w € w ( " )  WE W(") 



2 + a(k)(Cmin)(l - pmax) J3   ma^,,^(^, {l*Lk) I}) (I  w(") I) 

= i ~ ( ~ ) ( C m i n ) ( l  - pmax) 

c m a x  ) (h") 1, x(~+ ' )  - x ( ~ )  1 1  . 
(Cmin)2(1 - ~ m a x ) ~  

Proof: Apply the definition of E ( ~ )  to the inequality of Proposition 7 and solve for the 

desired bound. 

Lemma 1: Given that assumptions (A1 ) through (A3) are satisfied, the following holds 

for all k > 0: 

where 

and 

Proof: Start with the Taylor's series expansion, 

~ ( * + l )  - D* < - ~ ( k )  - D* + v , ~ ( k ) ( ~ ( * + l )  - x(k)) + (x(k+l) - x ( k ) ) T ~ 2 ~ ( k ) ( x ( * + 1 )  - x(k))7  



which implies 

~ ( * + l )  - D* - < ~ ( ~ 1  - D* + v ~ D ( ~ ) ( ~ ( ~ + ~ )  -x(*)) + (x(*+l) - x ( k ) ) T ~ ~ ~ ( k v * + l )  (kf 1) - x(k)). (x 

(A.2) 
Dividing Equation (A.2) by D* and applying Propositions 3 and 5, we have 

where 

and 

By substituting a(*) = (C~=)E(') (i.e., the largest assumed value of a(*)) into Equation 

(A.3), we have 

In a similar fashion, by substituting = (chn)dk) (i.e., the smallest assumed value for 

d k ) )  into the bound given in Proposition 8, it is straightforward (and tedious) to show 

that 

(A.5) 
By applying Proposition 4-part (i) to Equation (A.5), we get 

(A-6) 
Finally, by substituting the bound given in Equation (A.6) into Equation (A.4), we get 
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