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Abstract

Thesalection d an embedding schemeis an important step in the modding and prediction o
chaotic dynamical systems. Theoretica work in embedding selection aboundsin the literature.
However in neural network research, mostly compute intensive methodsfor embedding selection
exist. In this paper, we propose a novel embedding selection scheme based on cluster analysis.
A neural network implementing this method is described and demonstrated on the Mackey-
Glass chaotic time series. The result o the method agrees with the embedding schemes used
by researchersin neural networks. In addition, other new embedding schemes have been Foud
and they a so enable this chaotic time series to be predicted accurately.

Keywor ds: Embedding Selection, Chaotic Time Series Prediction.

1 Introduction

The choice of an embedding scheme is an important step in the modeling and prediction of any
chaotic dynamical systems. The modeling and prediction of chaotic systems has attracted much
recent attention due to the discovery of the presence of chaos in many interesting phenomenal
previously thought to be random. Examples are these systems include the economic systems[1, 2],
weather[3] and a number of physiological processes[4].

The two step to chaotic timeseries prediction are the feature extraction and the pattern learning
steps. When the chaotic time series assumption can be made, thefeatureextraction step is equivalent
to specifying an embedding scheme.

Specifying an embedding scheme isequivalent to identifying the set of features necessary to char-
acterize the system. In physics, this process is sometimes referred to as state-space reconstruction.
A large body of theoretical work has been done in this area. A comprehensive summary can be
found in [5]. The most cited work among neural network researchers dealing with chaotic dynamical
system is perhaps the work by Takens[6]. Takens showed that a chaotic time series z(t) can be
predicted T step in the future by using only m number of equally spaced past samples of the chaotic
time series itself as follows :

2t tT) = Fle(t),z(t— A), z(t — 24),...,z(t - (m— 1)A)} (1)

where 3is nonlinear but continuous under the suitable assumptions[6]. Taken's theorem does not,
however, provide a way of constructing 3. An embedding scheme for a chaotic time series is given
by the 3-tuple

0 =[m,A,T]. (2)

Equation 1 says that a chaotic time series (t) can be predicted T time step in advance: using only
m past samples of z(t) spaced A distance apart.




For a specific embedding scheme, the chaotic time series prediction problem becomes that of
associating the following pairs of X and Y asfollows:

X1 —+Y1; X —+ Y9 .. X, - Y,.

X's are called the state vectorsand Y'’s the desired predictions. The process of associating the above
isreferred to as the pattern learning step.

Most of the neural network research on the prediction of chaotic time series are focused on
developing pattern learning algorithms. However, the embedding scheme chosen is crucia to the
accuracy of the prediction task. A handful of researchers have suggested methods for finding an
embedding scheme empirically. Unfortunately, many of these approaches are computational inten-
sive. For example, Casdagli[7] and Mead[8] computed the actual prediction error of their neural
networks resulting from an enumeration of different embedding schemes and the enumeration which
resulted in the smallest actual prediction error is selected as the embedding scheme for the chaotic
timeseries. Other researchers have proposed different computational approaches to this problem(9].
In this paper, we propose a novel embedding selection procedure that can be use to obtain an ini-
tial embedding scheme for a chaotic time series. We demonstrate the proposed algorithm on the
Mackey-Glass chaotic time series.

The rest of the paper isorganized as follows: The set of a number of past samples of the chaotic
time series is caled the delayed vectors a. The embedding scheme for a chaotic time series selects
a subset of z as the state vector X described earlier. Section 2 describes how the delayed vectors z
is computed from a chaotic time series. The SupNet architecture as wdl as itslearning algorithms
are also presented in this section. Section 2 defines the notion of data inconsistencies as a criterion
and how it can be computed with SupNet. Section 3 explains the search procedure for finding an
embedding scheme corresponding to local minimal in the criterion surface. Section 4 applies the
procedure to the Mackey-Glass chaotic time series and shows that the embedding schemes used in
the literature do coincide with the points of minimum data inconsistency. Section 5 explores new
embedding schemes correspond to other regionsof minimal datainconsistency and shows that these
newly found embedding schemes do result in accurate prediction of the chaotic time series.

2 The Supervised Clustering Network (SupNet)

Given a specific embedding scheme II;, the chaotic time series prediction problem can be reformu-
lated as a learning problem associating the following pairs of state vectors X and its corresponding
prediction Y. Each pair (X,Y) iscaled a training pattern.

The Supervised Clustering Network or SupNet performs clustering in a hierarchical fashion.
During the first stage, the training patterns are clustered with respect to Y’s. These clusters are
then subsequently further subdivided by clustering each of the training patterns within each of these
clusters with respect to their X's.

The item to be discussed next is the computation of the delayed vectors z from which the
embedding scheme selects the appropriate features.

21 Thelnput Vector

Given a chaotic time series
L1203 T4, 0 (3)

The following steps are taken to construct a set of delayed vectors z.

1. Determine the region of interest by assigning the maximum vaues to Tmgz, A,  and Mmaz
where these are the range of valuesfor each of the three parameters rn,A and T respectively.
Then the length L of the delayed vectors z is

L = mmaz Amaz + Trnaz- (4)



Cluster-Layer
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Figure 1: The SupNet Architecture.

2. Let the number of training patterns be n.

3. Compute z from the chaotic time series z(t) as follows:

(2} 23 ... zk w) = (z1 =2 ... zL zr41)
(212 Z% . z% yg) = (:!:2 I3 o TL4l :CL+2)
(2 28 ... 2L w) = (3 Tpar o TLap-r TL4p)
(2 28 ... 2} w) = (Tn Tn41 .- ZTLin-1 TL4n)

4. The delayed vectors zP augmented with their corresponding values y, are then used as inputs
to SupNet described next.

2.2 Network Architecture

The SupNet architecture is shown in Figure 1.

The network consists of 2 layers. The first layer is the input layer. It consists of L + 1 nodes.
Thefirst L nodes represent the components of the delayed vector z. The last node represents the
value of y.

The second layer isthe cluster layer. Itssize isdetermined dynamically by thelearning algorithm
described in the next subsection. The number of nodes corresponds to the number of clusters needed
to classify the values of y to within a given accuracy e,.

The weights connecting a given cluster node c to the input nodes form the components of the
weight vector W*, The values of these weight vectors are determined by the learning algorithm
which will be described in the next subsection.

When input vector [z?, y,] is presented, the activation at node c is defined as

Ac=(yp — W£+1)2' (5)

2.3 The Learning Algorithm

Learning proceeds in the following two stages. During the first stage, the state vector 2 istaken to
be the zero vector and only the value of y, is presented. We follow the algorithm used in ClusNet




[10] to determine the (L + 1)-th component of the weight vectors for all the clusters. The first L
components of W remain at zero.

During the second stage, the n input vectors are presented one at a time. Assuming that when
input vector [2°, yp] is presented, the c-th cluster node has the lowest activation among other cluster
nodes. We say that the c-th node is the winning node and the first L components of its weight
vector is updated to:

W= .- DWetsf)), 1<i<L (6)
where n. isthe number of vectors belonging to cluster c, after the new vector zP has been added.

When all the n input vectors have been presented, the weight vectors W are all known.

3 Definition of Data I nconsistency

Using SupNet, the training patterns
(27, yp]

are clustered with respect the values of y,. These clusters are called supervised clusters.
We expect better prediction results using SupN et if the training patterns are clustered around
their respective supervised cluster centers. This condition can be approximately enforced if

Criterion A The average root-mean-square distance between delayed vectors and their respective
cluster centers, Distv, isat a minimumand

Criterion B The average root-mean-square distance between centers of clusters, Distc > 2Distv.

When both the above criteria are satisfied, a vector belonging to a cluster c is unlikely to be mis-
clustered into a different cluster d. In this case, it isless likely for input patterns to be predicted to
bein a"wrong” class and thus the resulting prediction is more accurate. When this occurs, we say
that the values of z are consistent with the values of y.

3.1 Criterion A
We define a quantity €} for the j-th component of the delayed vector:

N n.

% =33 W) - =y @)

c=1p=1

For the complete vector, we can define an average value:

Q'—ILQ' 8
=129 ®)

j=1

If we choose a training set of size n, it is clear that

Distv = t/n—ﬁ (9)

where nisthesizeof thetraining set. Enforcing Criterion A isequivalent to minimizingthe quantity
O.

Q' can be reduced by an appropriate choice of embedding scheme, II. The latter allows us to
discard offending components and keeping components which are consistent with the values of y.




3.2 Criterion B
For the j-th component of the delayed vector, we define a quantity ¥; such that:

N N
¥=) > (Wi -wh? (10)
e=1 d=c+1
1 L
¥= DA 72 (11)
j=1

The quantity isrelated to Distc asfollows:

Distc =

NN (12)

where ﬂﬂ;’—ll is the number of inter-cluster-centers distances computed in Equation 10.
We interpret Criterion B as saying that if the following condition is true for a component j,

1
Distv; > EDistcj (13)

then component j should be excluded from the embedding scheme by assigning a large number
MAXFLOAT to Q. This action signals to the subsequent search algorithm that component j is

undesirable and should not be selected.
33 Computation of the State Vector

Thestate vectors which are used for prediction aresubsets of the delay vectors z using the embedding
IT found by the procedure described above. The components of the state vectors are chosen to
minimize the quantity R. The state vector X isextracted from z asfollows :

Xi =z (14)

where j = L+(i-m)A-T and 1 < i < m. With thisdefinition, we can define the data inconsistency
in X with respect to these k clusters as:

Nk

m N
R=—3 33 Wi -xpy (15)

i=1 k=1p=1
Similarly, we define a consistency measure for each component of the state vector:

N Tk

Q=) > (Wf-X)? (16)
k=1p=1
In terms of these, we can write:
1 m
- = . 17
) —~ Xz;n (17)
1 m
= m ZQIL+(i—m)A—T (18)

i=1




3.4 The Embedding Selection Procedure
The procedure for choosing an embedding scheme is as follows:
1. Clusters the training patterns with respect to their Y’s to form supervised clusters.

2. Compute$2; and ¥; for all components of the delayed vector. Note that these are independent
of any embedding scheme.

3. For each valueof j for which Equation 13 is true, assign a large number MAXFLOAT to ;.
4. For each value of IT =[m, A, T}, compute 2 according to Equation 18

5. Look for IT with a corresponding minimum valueof R.

4 Study of Existing Embedding Schemes

The above is applied to the Mackey-Glass chaotic time series[4] with parameter 7 = 17. We choose
the region to be explored by setting mya: = 6, Trma: = 100and A, = 10. Thesizeof the training
set is chosen to be n = 500.

Following the ClusNet algorithm as described in [10], the predictions are computed and recorded.
ClusNet algorithm proceeds by clustering the state vectors and prediction for input X is given by
the cluster node which is most similar to X. Using ClusNet, State Vectors that are made up of
components with the least inconsistencies as defined in the previous section are less likely to be
predicted incorrectly. The prediction results are reported in normalized root mean square vaues
which is defined as follows. If the true Y valuesof the prediction set is

Y j=t:n (19)
and let
L=[Y j=t:n] (20)
and the predicted Y is
Y j=t:n (21)
and let
L' = [Yij=t:n] (22)

then the nrmse of the predicted Y with respect tothetrueY is

cenl(L = L) (29)

nrmse(L,L’) =

where o(L) denotes the standard deviation of the vector L. The mean operation in Equation 23
makes the measure independent of the length of vector L. The normalization of the quantity in
Equation 23 removes the dependence on the dynamic range of the data. From Equation 23, if the
mean of L isused asthe prediction for L, i.e., L’ = mean(L), then,

nrmse(L’, L) = 1.0. (24)

The next two subsections examine two commonly used embedding schemes.

4.1 Embedding characterized by TI = [4, 6, 85]

This embedding scheme have been used in [11] among others. We calculate the value of €2 in the
vicinity of IT = [4,6,85). The result isshown in Table 1.
A minimum value of 2 does occur in the vicinity of 11 = [4,6, 85].




Table 1: The value of Q in the vicinity of IT = [4,6,85]. This embedding is a popular choice for

recent neural network researchers.

A |4 [5 6 7 | 8
m|T
3 | 83 | 21.1596 | 20.2701 | 18.7856 | 17.0718 | 15.5826
84 || 21.6966 | 20.3681 | 18.6171 | 16.8678 | 15.5747
85 || 21.8409 | 20.1556 | 18.2574 | 16.6065 | 15.6092
86 || 21.5660 | 19.6304 | 17.7195 | 16.2932 | 15.6593
87 || 20.8799 | 18.8201 | 17.0359 | 15.9399 | 15.6991
4 | 83 || 19.7044 | 17.3807 | 15.6253 | 15.1748 | 15.6834
84 || 19.5063 | 17.0828 | 15.6248 | 15.5339 | 16.1956
85 || 19.0480 | 16.7026 | 15.6432 | 15.8947 | 16.6714
86 || 18.3527 | 16.2590 | 15.6606 | 16.2163 | 17.0690
87 || 17.4666 | 15.7771 | 15.6600 | 16.4694 | 17.3530
5 | 83 | 17.2089 | 15.4647 | 15.6974 | 16.6028 | 16.8898
84 || 16.8737 | 15.5630 | 16.1115 | 17.0005 | 17.0619
85 || 16.4674 | 15.6685 | 16.4862 | 17.3036 | 17.1528
86 || 16.0117 | 15.7591 | 16.7880 | 17.4815 | 17.1552
87 || 15.5334 | 15.8188 | 16.9909 | 17.5187 | 17.0698

4.2 Embedding characterized by II = [4,6, 6]

The second most commonly used embedding is perhaps II = [4,6,6]. This embedding scheme has
been used in [12] among others. The value of © in thisvicinity isshown in Table 2.

It can be seen that the point is not at a minimum. Instead a nearby minimum occurs at
Il = [4,8,1]. Using this value of M, predictions were made using ClusNet. The results are shown
in Table 4. The prediction obtained by ClusNet at the traditional T = 6 is not as good as those
obtained at the nearby minimal located by our method. (See Table 3).

5 New Embedding Schemes

The same method is used to explore other regions and the following embedding were found. In
Table 4, a new minimal is located at II = [4,6,T = 63]. Good prediction were obtained with
ClusNet with this embedding as shown in Table 5.

In Table 6, we located a new minimal at II = [3,8,63]. This particular embedding has not
been used in the literature. We show that with this particular embedding, good prediction can be
obtained with ClusNetin Table7.

6 Conclusions

In this paper, we propose a novel embedding scheme selection procedure for chaotic time series based
on the criterion of data inconsistencies computed from the supervised clusters. This systematic
procedure can be used in practice to provide an initial embedding scheme because of its simplicity.
The proposed procedure was demonstrated on the Mackey-Glass chaotic time series. Experiments
show that the embedding schemes used by neural network researchers are identified by the proposed
algorithm. Furthermore, two new embedding schemes for the Mackey-Glass chaotic time series are
found using this procedure. These embedding schemes also allow accurate prediction of the Mackey-
Glass chaotic time series. We are currently exploring the use of this technique on severa other
chaotic time series.




Table 2. The value of  in the vicinity of I = [4,6,6]. This embedding scheme has been widely
used by neural network researchers working on the prediction problem.

A 4 5 6 7 8 9

m|T

3 | 1| 10.7241 | 12.3068 | 13.1095 | 13.2283 | 12.8139 | 12.1065
2 | 12.6054 | 13.7345 | 14.0986 | 13.8299 | 13.1343 | 12.3010
3 | 14.4674 | 15.1181 | 15.0490 | 14.4362 | 13.5386 | 12.6709
4 | 16.1844 | 16.3606 | 15.8936 | 15.0077 | 14.0013 | 13.1827
5 | 17.6466 | 17.3791 | 16.5761 | 15.5054 | 14.4845 | 13.7778
6 | 18.7696 | 18.1124 | 17.0534 | 15.8938 | 14.9419 | 14.3850
7 | 19.5001 | 18.5240 | 17.3001 | 16.1459 | 15.3272 | 14.9371
8 | 19.8180 | 18.6057 | 17.3128 | 16.2489 | 15.6045 | 15.3866

4 |1 13.5018 | 13.8512 | 13.2420 | 12.4536 | 12.0856 | 12.2120
2 | 14.7115 | 14.5273 | 13.6189 | 12.7893 | 12.4820 | 12.6728
3 | 15.8226 | 15.1519 | 14.0322 | 13.2272 | 13.0090 | 13.2885
4 | 16.7594 | 15.6803 | 14.4526 | 13.7310 | 13.6331 | 14.0209
5 | 17.4614 | 16.0793 | 14.8489 | 14.2603 | 14.3105 | 14.8156
6 | 17.8905| 16.3298 | 15.1901 | 14.7754 | 14.9917 | 15.6103
7 | 18.0349 | 16.4254 | 15.4503 | 15.2415| 15.6292 | 16.3443
8 | 17.9084 | 16.3711 | 15.6159 | 15.6338 | 16.1857 | 16.9690

5 |1 | 141826 | 13.2773 | 125738 | 12.7206 | 13.5257 | 14.4462
2 | 14.8198| 13.6477 | 13.0001 | 13.2597 | 14.0988 | 14.8947
3 | 15.3860 | 14.0550 | 13.5098 | 13.8888 | 14.7505 | 15.3977
4 | 15.8435 | 14.4642 | 14.0677 | 145706 | 154417 | 15.9214
5 | 16.1655 | 14.8436 | 14.6368 | 15.2655 | 16.1250 | 16.4249
6 | 16.3383 | 15.1688 | 15.1803 | 15.9335 | 16.7498 | 16.8669
7 | 16.3614 | 154243 | 15.6673 | 16.5365 | 17.2702 | 17.2130
8 | 16.2467 | 15.6026 | 16.0785 | 17.0423 | 17.6532 | 17.4418

Table 3: Prediction Performance of ClusNet in the vicinity of II = [4, 6, 6]. The Prediction Accuracy
isreported in nrmse. Num Cluster refers to the number of clusters that are allocated by ClusNet.
m T A Prediction Num Cluster
4 6 6 0.05600 54

4 1 8 0.04900 54




Table 4. The value of © in the vicinity of T = [4,6,64]. This embedding scheme has not been
suggested in the literature.

A 4 5 6 7 8
m|T
3 |62 21.0946 | 19.7294 | 18.3066 | 17.1004 | 16.3822
63 || 20.5122 | 19.0346 | 17.6432 16.6170 | 16.2077
64 || 19.7012 | 18.1897 | 16.9146 16.1504 | 16.1006
65 || 18.6960 | 17.2357 | 16.1634 15.7348 | 16.0662
66 || 17.5462 | 16.2251 | 15.4416 15.4030 | 16.1002
4 | 62| 18.7258 | 16.9818 | 16.2883 | 16.8698 | 17.9399
63 || 17.9596 | 16.4438 | 16.1917 17.0997 | 18.1453
64 || 17.1034 | 15.9335 | 16.1540 | 17.3028 | 18.2528
65 || 16.2067 | 15.4851 | 16.1671 17.4544 | 18.2596
66 || 15.3275 | 15.1281 | 16.2182 17.5417 | 18.1671
5 | 62| 16.7149 | 16.3599 | 17.5533 18.3695 | 17.8953
63 | 16.2006 | 16.3906 | 17.7449 18.3483 | 17.5840
64 || 15.7295 | 16.4563 | 17.8651 18.2088 | 17.1893
65 || 15.3328 | 16.5401 | 17.9016 17.9481 | 16.7416
66 || 15.0364 | 16.6251 | 17.8482 | 17.5768 | 16.2762

Table5: Prediction Performanceof ClusNetin the vicinity of II = [4, 6, 64]. The Prediction Accuracy
is reported in nrmse. Num Cluster refers to the number of clusters that are allocated by ClusNet.
m T A Prediction Num Cluster
4 8 6 0.2000 65

4 64 6 0.1200 60

Table 6: The value of 2 in the vicinity of I = [3,8,65]. This embedding has not been suggested in
the literature.

A 6 7 8 9 10
m|T
2 | 63 || 21.3140 | 20.5560 | 19.7292 | 18.8734 | 18.0343
64 || 20.7168 | 19.8900 | 19.0342 | 18.1951 | 17.4214
65 || 19.8757 | 19.0200 | 18.1808 | 17.4072 | 16.7482
66 || 18.8268 | 17.9877 | 17.2141 16.5551 | 16.0593
67 || 17.6226 | 16.8490 | .16.1900 | 15.6942 | 15.4085
3 | 63 || 17.6432 | 16.6170 | 16.2077 | 16.5279 | 17.4155
64 || 16.9146 | 16.1504 | 16.1006 | 16.7542 | 17.7969
65 || 16.1634 | 15.7348 | 16.0662 | 16.9975 | 18.0854
66 || 15.4416 | 15.4030 | 16.1002 | 17.2194 | 18.2439
67 || 14.8033 | 15.1783 | 16.1860 | 17.3827 | 18.2584
4 | 63 || 16.1917 | 17.0997 | 18.1453 | 18.4880 | 18.0424
64 || 16.1540 | 17.3028 | 18.2528 | 18.4013 | 17.7769
65 || 16.1671 | 17.4544 | 18.2596 | 18.2063 | 17.3988
66 || 16.2182 | 17.5417 | 18.1671 | 17.8953 | 16.9167
67 || 16.2924 | 17.5610 | 17.9752 | 17.4663 | 16.3611




Table 7: Prediction Performance of ClusNetin the vicinity of II = [3, 8,65]. The Prediction Accuracy
isreported in nrmse. Num Cluster refers to the number of clusters that are allocated by ClusNet.
m T A Prediction Num Cluster
3 65 8 0.1068 43
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