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Abstract 

The selection of an embedding scheme is an important step in the modeling and prediction of 
chaotic dynamical systems. Theoretical work in embedding selection abounds in the literature. 
However in neural network research, mostly compute intensive methods for embedding selection 
exist. In this paper, we propose a novel embedding selection scheme based on cluster analysis. 
A neural network implementing this method is described and demonstrated on the Mackey- 
Glass chaotic time series. The result of the method agrees with the embedding schemes used 
by researchers in neural networks. In addition, other new embedding schemes have been Found 
and they also enable this chaotic time series to be predicted accurately. 

Keywords: Embedding Selection, Chaotic Time Series Prediction. 

1 Introduction 

The choice of an embedding scheme is an important step in the modeling and prediction of any 
chaotic dynamical systems. The modeling and prediction of chaotic systems has attracted much 
recent attention due to  the discovery of the presence of chaos in many interesting phenomenal 
previously thought to be random. Examples are these systems include the economic systems[l, 21, 
weather[3] and a number of physiological processes[4]. 

The two step to  chaotic time series prediction are the feature extraction and the pattern learning 
steps. When the chaotic time series assumption can be made, the feature extraction step is; equivalent 
to  specifying an embedding scheme. 

Specifying an embedding scheme is equivalent to  identifying the set of features necessary to  char- 
acterize the system. In physics, this process is sometimes referred to as state-space reconstruction. 
A large body of theoretical work has been done in this area. A comprehensive summary can be 
found in [5 ] .  The most cited work among neural network researchers dealing with chaotic dynamical 
system is perhaps the work by Takens[6]. Takens showed that a chaotic time series ;c(t) can be 
predicted T step in the future by using only m number of equally spaced past samples of the chaotic 
time series itself as follows : 

x(t + T) = 3{x(t),  x(t - A), x(t - 2A), . . . , x(t - (m - 1)A)) (1) 

where 3 is nonlinear but continuous under the suitable assumptions[6]. Taken's theorem does not, 
however, provide a way of constructing 3 .  An embedding scheme for a chaotic time series is given 
by the f t u p l e  

n = [m,A,T]. (2) 

Equation 1 says that a chaotic time series x(t) can be predicted T time step in advance: using only 
m past samples of x(t) spaced A distance apart. 



For a specific embedding scheme, the chaotic time series prediction problem becomes that of 
associating the following pairs of X and Y as follows : 

X's are called the state vectors and Y's the desired predictions. The process of associating the above 
is referred to as the pattern learning step. 

Most of the neural network research on the prediction of chaotic time series are focused on 
developing pattern learning algorithms. However, the embedding scheme chosen is crucial to the 
accuracy of the prediction task. A handful of researchers have suggested methods for finding an 
embedding scheme empirically. Unfortunately, many of these approaches are computational inten- 
sive. For example, Casdagli[q and Mead[8] computed the actual prediction error of their neural 
networks resulting from an enumeration of different embedding schemes and the enumeration which 
resulted in the smallest actual prediction error is selected as the embedding scheme for the chaotic 
time series. Other researchers have proposed different computational approaches to this problem[9]. 
In this paper, we propose a novel embedding selection procedure that can be use to obtain an ini- 
tial embedding scheme for a chaotic time series. We demonstrate the proposed algorithm on the 
Mackey-Glass chaotic time series. 

The rest of the paper is organized as follows: The set of a number of past samples of the chaotic 
time series is called the delayed vectors a. The embedding scheme for a chaotic time series selects 
a subset of a as the state vector X described earlier. Section 2 describes how the delayed vectors z 
is computed from a chaotic time series. The SupNet architecture as well as its learning algorithms 
are also presented in this section. Section 2 defines the notion of data inconsistencies as a criterion 
and how it can be computed with SupNet. Section,3 explains the search procedure for finding an 
embedding scheme corresponding to local minimal in the criterion surface. Section 4 applies the 
procedure to the Mackey-Glass chaotic time series and shows that the embedding schemes used in 
the literature do coincide with the points of minimum data inconsistency. Section 5 explores new 
embedding schemes correspond to other regions of minimal data inconsistency and shows that these 
newly found embedding schemes do result in accurate prediction of the chaotic time series. 

2 The Supervised Clustering Network (SupNet) 
Given a specific embedding scheme lIi, the chaotic time series prediction problem can be reformu- 
lated a s  a learning problem associating the following pairs of state vectors X and its corresponding 
prediction Y .  Each pair (X, Y )  is called a training pattern. 

The Supervised Clustering Network or SupNet performs clustering in a hierarchical fashion. 
During the first stage, the training patterns are clustered with respect to Y's. These clusters are 
then subsequently further subdivided by clustering each of the training patterns within each of these 
clusters with respect to their X's. 

The item to be discussed next is the computation of the delayed vectors z from which the 
embedding scheme selects the appropriate features. 

2.1 The Input Vector 

Given a chaotic time series 
Xl,X2,. . , , x i , .  . . 

The following steps are taken to construct a set of delayed vectors z. 

1. Determine the region of interest by assigning the maximum values to T,,, , A,,,, and mma, 
where these are the range of values for each of the three parameters rn, A and T respectively. 
Then the length L of the delayed vectors z is 
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Figure 1: The SupNet Architecture. 

2. Let the number of training patterns be n. 

3. Compute z from the chaotic time series z(t)  as follows : 

4. The delayed vectors zP augmented with their corresponding values yp are then used as inputs 
to  SupNet described next. 

2.2 Network Architecture 

The SupNet architecture is shown in Figure 1. 
The network consists of 2 layers. The first layer is the input layer. I t  consists of L + 1 nodes. 

The first L nodes represent the components of the delayed vector z. The last node represents the 
value of y. 

The second layer is the cluster layer. Its size is determined dynamically by the learning algorithm 
described in the next subsection. The number of nodes corresponds to the number of clusters needed 
t o  classify the values of y to within a given accuracy cy.  

The weights connecting a given cluster node c to the input nodes form the components of the 
weight vector We. The values of these weight vectors are determined by the learning algorithm 
which will be described in the next subsection. 

When input vector [zP, yp] is presented, the activation a t  node c is defined as 

2.3 The Learning Algorithm 

Learning proceeds in the following two stages. During the first stage, the state vector zP is taken to 
be the zero vector and only the value of yp is presented. We follow the algorithm used in ClusNet 



[lo] t o  determine the (L + 1)-th component of the weight vectors for all the clusters. The first L 
components of W remain a t  zero. 

During the second stage, the n input vectors are presented one a t  a time. Assuming that when 
input vector [9, gp] is presented, the c-th cluster node has the lowest activation among other cluster 
nodes. We say that  the c-th node is the winning node and the first L components of its weight 
vector is updated to: 

w: = ${(nc - l)(w: + z ; ) ) ,  1 _< i 5 L (6) 

where nc is the number of vectors belonging to cluster c, after the new vector zP has been added. 
When all the n input vectors have been presented, the weight vectors W are all known. 

3 Definition of Data Inconsistency 
Using S u p N e t ,  the training patterns 

[zP, YPI 

are clustered with respect the values of yp. These clusters are called supervised clusters. 
We expect better prediction results using S u p N e t  if the training patterns are clustered around 

their respective supervised duster centers. This condition can be approximately enforced if 

C r i t e r i on  A The average root-mean-square distance between delayed vectors and their respective 
cluster centers, Distv, is a t  a minimum and 

Cr i t e r i on  B The average root-mean-square distance between centers of clusters, Distc > 2Distv. 

When both the above criteria are satisfied, a vector belonging to a cluster c is unlikely t o  be m i s  
clustered into a different cluster d. In this case, it is less likely for input patterns to be predicted t o  
be in a "wrongn class and thus the resulting prediction is more accurate. When this occurs, we say 
that the values of z are consistent with the values of y. 

3.1 Criterion A 
We define a quantity 0; for the j-th component of the delayed vector: 

For the complete vector, we can define an average value: 

If we choose a training set of size n, i t  is clear that 

m Distv = - 

where n is the size of the training set. Enforcing Criterion A is equivalent t o  minimizing the quantity 
0'. 

0' can be reduced by an appropriate choice of embedding scheme, 11. The latter allows us to  
discard offending components and keeping components which are consistent with the values of y. 



3.2 Criterion B 
For the j-th component of the delayed vector, we define a quantity qj  such that: 

The quantity is related to  Distc as follows : 

fi Distc = - N ( N - 1 )  
2 

where is the number of inter-cluster-centers distances computed in Equation 10. 
We interpret Criterion B as saying that if the following condition is true for a component j, 

1 
Distvj > - Distcj 

2 (13) 

then component j should be excluded from the embedding scheme by assigning a large number 
MAXFLOAT t o  q. This action signals to  the subsequent search algorithm that component j is 
undesirable and should not be selected. 

3.3 Computation of the State Vector 

The state vectors which are used for prediction are subsets of the delay vectors z using the embedding 
ll found by the procedure described above. The components of the state vectors are chosen t o  
minimize the quantity R. The state vector X is extracted from z as follows : 

where j = L+ ( i -  m)A - T and 1 < i < m. With this definition, we can define the data inconsistency 
in X with respect to  these k clusters as: 

Similarly, we define a consistency measure for each component of the state vector: 

In terms of these, we can write: 



3.4 The Embedding Selection Procedure 
The procedure for choosing an embedding scheme is as follows: 

1. Clusters the training patterns with respect to their Y's to form supervised clusters. 

2. Compute i-2; and \Irj for all components of the delayed vector. Note that these are independent 
of any embedding scheme. 

3. For each value of j for which Equation 13 is true, assign a large number MAXFLOAT to R; . 

4. For each value of IT = [m, A,  T], compute R according to  Equation 18 

5. Look for IT with a corresponding minimum value of R. 

4 Study of Existing Embedding Schemes 
The above is applied to  the Mackey-Glass chaotic time series[4] with parameter r = 17. We choose 
the region to  be explored by setting m,,, = 6, T,,, = 100 and A,,, = 10. The size of the training 
set is chosen t o  be n = 500. 

Following the ClnsNei algorithm as described in [lo], the predictions are computed and recorded. 
C lusNe t  algorithm proceeds by clustering the state vectors and prediction for input X is given by 
the cluster node which is most similar to X. Using ClusNet ,  State Vectors that are made up of 
components with the least inconsistencies as defined in the previous section are less likely to be 
predicted incorrectly. The prediction results are reported in normalized root mean square values 
which is defined as follows. If the true Y values of the prediction set is 

and let 

and the predicted Y is 

and let 

then the nrmse of the predicted Y with respect to  the true Y is 

where u(L) denotes the standard deviation of the vector L. The mean operation in Equation 23 
makes the measure independent of the length of vector L.  The normalization of the quantity in 
Equation 23 removes the dependence on the dynamic range of the data. From Equation 23, if the 
mean of L is used as the prediction for L, i.e., L'  = mean(L), then, 

The next two subsections examine two commonly used embedding schemes. 

4.1 Embedding characterized by ll = [4,6,85] 

This embedding scheme have been used in [ l l ]  among others. We calculate the value of R in the 
vicinity of IT = [4,6,85]. The result is shown in Table 1. 

A minimum value of R does occur in the vicinity of ll = [4,6,85]. 



Table 1: The value of Q in the vicinity of II = [ 4 , 6 , 8 5 ] .  This embedding is a popular choice for 
recent neural network researchers. 

A 1 4  1 5  I 6  1 7  I 8  

4.2 Embedding characterized by II = [4,6,6] 

The second most commonly used embedding is perhaps II = [ 4 , 6 , 6 ] .  This embedding scheme has 
been used in [12] among others. The value of R in this vicinity is shown in Table 2 .  

It can be seen that the point is not a t  a minimum. Instead a nearby minimum occurs at 
II = [ 4 , 8 , 1 ] .  Using this value of I I ,  predictions were made using ClusNet. The results are shown 
in Table 4 .  The prediction obtained by ClusNet a t  the traditional T = 6  is not as good as those 
obtained a t  the nearby minimal located by our method. (See Table 3). 

5 New Embedding Schemes 
The same method is used to explore other regions and the following embedding were found. In 
Table 4 ,  a new minimal is located a t  II = [ 4 , 6 , T  = 631. Good prediction were obtained with 
ClusNet with this embedding as shown in Table 5. 

In Table 6 ,  we located a new minimal a t  II = [ 3 , 8 , 6 3 ] .  This particular embedding has not 
been used in the literature. We show that with this particular embedding, good prediction can be 
obtained with ClusNei in Table 7 .  

6 Conclusions 
In this paper, we propose a novel embedding scheme selection procedure for chaotic time series based 
on the criterion of data inconsistencies computed from the supervised clusters. This systematic 
procedure can be used in practice to provide an initial embedding scheme because of its simplicity. 
The proposed procedure was demonstrated on the Mackey-Glass chaotic time series. Experiments 
show that the embedding schemes used by neural network researchers are identified by the proposed 
algorithm. Furthermore, two new embedding schemes for the Mackey-Glass chaotic time series are 
found using this procedure. These embedding schemes also allow accurate prediction of the Mackey- 
Glass chaotic time series. We are currently exploring the use of this technique on several other 
chaotic time series. 



Table 3: Prediction Performance of CIusNet in the vicinity of II = [4,6,6]. The Prediction Accuracy 

Table 2: The value of R in the vicinity of II = [4,6,6]. This embedding scheme has been widely 
used by neu 

is reported in nrmse. Num Cluster refers to the number of clusters that are allocated by ClusNet. 
m T A Prediction Num Cluster 
4 6 6 0.05600 54 

5 

6 
7 
8 
1 
2 
3 
4 
5 
6 
7 
8 

17.8905 
18.0349 
17.9084 
14.1826 
14.8198 
15.3860 
15.8435 
16.1655 
16.3383 
16.3614 
16.2467 

16.3298 
16.4254 
16.3711 
13.2773 
13.6477 
14.0550 
14.4642 
14.8436 
15.1688 
15.4243 
15.6026 

15.1901 
15.4503 
15.6159 
12.5738 
13.0001 
13.5098 
14.0677 
14.6368 
15.1803 
15.6673 
16.0785 

14.7754 
15.2415 
15.6338 
12.7206 
13.2597 
13.8888 
14.5706 
15.2655 
15.9335 
16.5365 
17.0423 

14.9917 
15.6292 
16.1857 
13.5257 
14.0988 
14.7505 
15.4417 
16.1250 
16.7498 
17.2702 
17.6532 

15.6103 
16.3443 
16.9690 
14.4462 
14.8947 
15.3977 
15.9214 
16.4249 
16.8669 
17.2130 
17.4418 



Table 4: The value of R in the vicinity of II = [4,6,64]. This embedding scheme has not been 
suggested in the literature. 

1 1 66 1 1  15.0364 1 16.6251 1 17.8482 1 17.5768 ( 16.2762 1 

Table 5: Prediction Performance of ClusNet in the vicinity of ll = [4,6,64]. The Prediction Accuracy 
is reported in nrmse. Num Cluster refers to the number of clusters that are allocated by ClusNet. 

m T A Prediction Num Cluster 
4 85 6 0.2000 65 
4 64 6 0.1200 60 

Table 6: The value of R in the vicinity of II = [3,8,65]. This embedding has not been suggested in 
the literature. 



Table 7: Prediction Performance of ClusNet in the vicinity of ll = [3,8,65]. The Prediction Accuracy 
is reported in nrmse. Num Cluster refers to  the number of clusters that are allocated by ClusNet. 

m T A Prediction Num Cluster 
3 65 8 0.1068 43 
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