On-State Characteristics of SiC Power UMOSFETs on 115- m Drift Layers

Y. SUI
School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue University, sui@purdue.edu

T. Tsuji
School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue University

J. A. Cooper Jr.
School of Electrical and Computer Engineering, Birck Nanotechnology Center, Purdue University, james.a.cooper.1@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub

http://docs.lib.purdue.edu/nanopub/258

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
On-State Characteristics of SiC Power UMOSFETs on 115-μm Drift Layers

Y. Sui, T. Tsuji, and J. A. Cooper, Jr.

Abstract—We describe the on-state performance of trench oxide-protected SiC UMOSFETs on 115-μm-thick n-type 4H-SiC epilayers designed for blocking voltages up to 14 kV. An on-state current density of 137 A/cm² and specific on-resistance of 228 mΩ·cm² are achieved at a gate bias of 40 V (oxide field of 2.67 MV/cm). The effect of current spreading on the specific on-resistance for finite-dimension devices is investigated, and appropriate corrections are made.

Index Terms—High voltage, power transistors, silicon carbide, wide bandgap.

I. INTRODUCTION

In recent years, 4H-SiC power MOSFETs have been recognized as attractive devices for high-voltage switching applications because of the low specific on-resistance and high breakdown electrical field of 4H-SiC [1]. Recently, Ryu et al. reported 10 kV DMOSFETs with specific on-resistance of 236 mΩ·cm² on 115-μm-thick n-type epilayers [2]. In this letter, we report the first UMOSFETs built on 115-μm-thick 4H-SiC epilayers. These UMOSFETs exhibit specific on-resistance of 228 mΩ·cm², demonstrating that vertical channel UMOS devices can provide on-state performance comparable or superior to that of DMOSFETs.

II. EXPERIMENTAL

A schematic cross section of the experimental device is shown in Fig. 1. A 115-μm-thick, 7.5 × 10¹⁴ cm⁻³ n-type epilayer is first grown on a (0001) n+-4H-SiC substrate, cut 8° off-axis, followed by a 0.4 μm 2 × 10¹⁷ cm⁻³ n-type current spreading epilayer [3] and a 1.5 μm 2 × 10¹⁷ cm⁻³ p-type epilayer to form the base region of the UMOSFET. Source contacts are formed by implanting 4 × 10¹⁵ cm⁻² nitrogen at 650 °C using a Ti–Au mask. A three-zone junction termination extension (JTE) [4] edge termination is formed by Al implantation, with widths/doses of 100 μm/2.4 × 10¹⁰ cm⁻², 100 μm/1.6 × 10¹⁰ cm⁻², and 100 μm/8 × 10¹² cm⁻², respectively.

Gate trenches approximately 2 μm deep are formed by reactive ion etching (RIE) in SF₆ using a Ni mask. Sacrificial oxidations are performed to smooth the trench sidewalls. Aluminum (1.8 × 10¹⁴ cm⁻², 650 °C) is implanted into the trench bottom to protect the trench oxide from high electrical fields in the blocking state [5]. It is important to implement the n-type current spreading layer together with the trench bottom implant to minimize the JFET effect at the top of the n-drift layer. Without a current spreading layer, the portion of the n-drift layer between the p+ trench implant and the p+ base epilayer is depleted at high gate voltage, blocking the current path to the drain, which results in very high on-resistance. An additional JFET is formed between adjacent p+ trench implants, but the separation between p+ implants is sufficiently large (11 μm in this case) that the added resistance is negligible, as verified by computer simulations. All implants are annealed at 1600 °C in SiH₄ for 40 min.

To avoid anisotropic thermal oxidation of SiC, polycrystalline Si is deposited by low pressure chemical vapor deposition (LPCVD) at 600 °C and oxidized at 950 °C in wet O₂ for 2 h to produce a uniform oxide of 150-nm thickness on the sidewalls and bottom of the trench. A nitric oxide (NO) anneal is performed at 1100 °C after gate oxidation to improve the channel mobility and reduce interface state density [6], [7]. N-type source contacts are formed by depositing 100-nm

Fig. 1. Schematic cross section of the 4H-SiC UMOSFET. Doping levels and dimensions (in micrometers) are given in the figure. P+ implants and Ti-Al contacts to p+ implants are discrete islands along each source finger. Ni contacts to the n+ implants lie between the Ti/Al contacts. The cell pitch is 14 μm. JTE edge terminations, contacts to the polysilicon gate and contacts to the p+ trench implants are not shown.
Ni, and p-type base contacts are formed by depositing 33-nm Ti/167-nm Al. Contact to the drain is made by depositing 100-nm Ni on the back side of the wafer. All contacts are annealed at 900°C in vacuum for 4 min. Finally, 900 nm of Al top metal is deposited and patterned, such that source and p-base are connected together.

The room-temperature linear region \(I_d\) versus \(V_{gs}\) characteristic of a UMOSFET with area of 7.74 \(\times 10^{-3}\) cm\(^2\) is shown in Fig. 2(a), measured at a drain voltage of 50 mV. A threshold voltage of 4.5 V is extracted from the linear portion of the curve. Fig. 2(b) shows the specific on-resistance \(R_{on,sp}\) as a function of gate bias or oxide electric field. The on-resistance is calculated from the slope of the \(I_d - V_{ds}\) characteristic in the linear region (c.f. Fig. 3). As the gate bias increases, the channel resistance is reduced, and the total specific on-resistance saturates for gate bias greater than 40 V. Because of the lightly doped thick drift layer, at this point the drift region resistance is dominant.

Fig. 3 shows the room temperature on-state \(I_d - V_{ds}\) characteristics of a 4H-SiC UMOSFET with an active area of 0.0179 cm\(^2\). This device carries a current of 2.5 A (137 A/cm\(^2\)) at a forward voltage of 30 V. From the slope of the \(I-V\) characteristics in the linear region, the specific on-resistance is measured to be 206 m\(\Omega\) \(\cdot\) cm\(^2\) (uncorrected for current spreading in the drift layer). \(E_{ox}\) is maintained below 3 MV/cm \((V_{gs} = 45 V)\), although it has been reported that oxide layers in 4H-SiC MOSFETs are reliable for \(E_{ox}\) up to 4 MV/cm [8].

To obtain the true specific on-resistance, we have to account for the fact that current spreading in the drift region artificially lowers the specific on-resistance of a finite-dimension device. The current spreading effect can be modeled using a trapezoidal structure, as shown in Fig. 4. Consider the total specific on-resistance consisting of the drift region resistance \(R_{d,sp}\) and the source/channel/contact resistance \(R_{on,sp}\). Assume \(R_{on,sp}\) is the specific on-resistance for an infinitely large device, where the current spreading effect is negligible, and \(R_{on,sp}\) is the measured (apparent) specific on-resistance for a finite dimension device. The \(R_{on,sp}\) components of the two specific on-resistances are the same, but the drift region resistances are different. By comparing the two specific on-resistances, we can eliminate \(R_{on,sp}\) and write

\[
R_{on,sp} = R_{on,sp}^{on} + R_{d,sp}(1-\alpha)
\]

where \(\alpha\) is the ratio of \(R_{d,sp}^{on}/R_{d,sp}\). For an n-type doping of 7.5 \(\times 10^{14}\) cm\(^{-3}\), the mobility \(\mu_N\) in the bulk drift layer is 937 cm\(^2\)/Vs [9]. This allows us to calculate \(R_{d,sp}\) to be 102 m\(\Omega\) \(\cdot\) cm\(^2\). With the geometry of the actual UMOSFETs, \(\alpha\) is calculated to be 0.78 [10], [11]. For the measured \(R_{on,sp}^{on} = 206\) m\(\Omega\) \(\cdot\) cm\(^2\), the specific on-resistance after correction for current spreading is \(R_{on,sp} = 206 + 102\times (1 - 0.78) = 228\) m\(\Omega\) \(\cdot\) cm\(^2\). The 228 m\(\Omega\) \(\cdot\) cm\(^2\)
specific on-resistance is the lowest reported value for 4H-SiC MOSFETs with 115-μm blocking epilayers.

As mentioned earlier, blocking layers of the doping and thickness used here are theoretically capable of blocking 14 kV, and have actually been demonstrated to block 10 kV [2]. However, problems with the edge terminations in the present devices limited our blocking voltage to just over 5 kV.

III. CONCLUSION

On-state characteristics of 228 mΩ·cm² 4H-SiC power UMOSFETs built on 115 μm blocking epilayer are demonstrated. The specific on-resistance is comparable to the best reported values for 4H-SiC DMOSFETs on a similar epilayer. Drift layer current spreading has been removed from calculations of specific on-resistance.

REFERENCES