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ABSTRACT 
In this paper we have presented a novel algorithm for camera 

calibrat.ion which is a significant improvement in mathematical 
simplici.ty, accuracy and computational efficiency in the solution 
of all extrinsic (external camera geometric) and intrinsic 
(internal camera geometric and camera optics) pararnete:rs. The 
method involves a direct transformation from the three- 
dimensional (3D) object world to the two-dimensional (:2D) image 
or sensor plane in terms of "homogeneous vector forms" for the 
solution of 12 extrinsic and a number of intrinsic parameters for 
both coplanar and non-coplanar distributions of object points. 
Furthermore, we have demonstrated a strong robust property of the 
proposed algorithm by proving (with experimental corroboration) 
that if the camera is calibrated with image data not compensated 
for image center displacement and scale factor, the proposed 
algorithm yields parameters that cause no errors in the 
computation of both image and world coordinates. In addition, we 
have dislcussed a new method of parameter computation under a 
complete lens distortion effect (including both radial and 
tangential distortions) by the method of constrained least 
squares. Analytical proofs of convergence are also given. 
Moreover, we have provided a new complete algorithm for the 
solution of all calibration parameters. Finally, we have proposed 
a new In~cremental Model for the correspondence of tolerances 
between the 3D object world and the 2D image plane with and 
without intrinsic parameter effects. Experimental results on a 
coplanar set of object points have been provided to support our models. 

Chanchal Chatterjee is also Project Manager of Vision 
Systems   at Phoenix Software Development Co., Sterling Heights, MI. 
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1.0 Introduction 

Camera Calibration is an important task in the field of 
machine vision applications that require: 
(1) conversion of real-world coordinates of object points into 

pixel coordinates of the corresponding points in an image, 
(2) conversion of pixel coordinates of image points into real- 

world coordinates of the corresponding object features, 
(3) calculation of various extrinsic (external camera geometric) 

and intrinsic (internal camera geometric or camera optics) 
parameters, 

( 4 )  conversion between real-world tolerances and pixel 
distances. 

In most state of the art models and algorithms[6,8-10,15,21-281 
for camera calibration, we can find discussions on the first 
three tasks above. In this paper we shall establish new methods 
for fast, robust and accurate solutions to these tasks, and also 
present new models for efficient computation of the fourth. 

In classical image processing applications such as part 
dimensional measurement[l9,20], robot calibration[3,7,12,21], and 
automatic assembly of mechanical or electronics components[2,11], 
camera calibration is usually performed at the learn or teach 
phases where the speed of the calibration method is not very 
critical. However, in many real-time applications such as object 
tracking and trajectory analysis, the speed of the camera 
calibration method is important for efficient run-time 
performance. It is generally agreed[10,13,23,28] that any 
technique involving non-linear optimization[9,21,26,27] that 
require computer-intensive full-scale search is too complex for 
these real-time applications. For these applications and others, 
we shall focus on novel algorithms for high speed perflormance 
with a high degree of accuracy. 

1.1 Brief Review of State of the Art: 

A well-known model for calibration of extrinsic camera 
parameters to obtain three-dimensional (3D) measurements from a 
stereo plair of cameras has been developed by Yakimovsky and 
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Cunningham[28] for the JPL Robotics Research Laboratory. A direct 
transformation from the 3D world coordinates to the two- 
dimensional (2D) image coordinates has been established in this 
approach resulting in linear equations whose solutions yield the 
unknown camera parameters. A direct advantage of this method is 
that a closed form solution is obtained for all extrinsic 
parameters and focal length. However, due to a narrow field of 
view and large object distances they used a linear lens model and 
ignored distortions caused by non-linearities in the lens 
systems. All intrinsic parameters except focal length are 
ignored. The basic camera geometry in this model has been used to 
build our analyses and algorithms. However, as discussed in 
Section 1.2, we have significantly improved several aspects of 
this basic model. 

An alternative exhaustive approach to camera calibration has 
been presented by Tsai[13,23] which first transforms the 3D 
object coordinates to a 3D space and subsequently projects it to 
the 2D i.mage or sensor plane. The advantages of this method are 
as follows: (a) by the two-step coordinate transformation Tsai 
has successfully reduced the computational complexity of the 
calibration algorithm, because most of the parameters are 
computed by a single step least squares approach, and (b) some 
intrinsic parameters such as image center displacement, scale 
factor and radial lens distortion are considered for higher 
accuracy. The disadvantages of the method are as follows: (a) the 
method considers only radial lens distortion and cannot be 
extended to any other types of distortion, and (b) the method 
tends to ignore constraints which the extrinsic and in,trinsic 
parameters must obey. It has been argued in [25] that ,this 
"solution is not optimal because the information provi~ded by the 
calibration points has not been fully utilized". 

Grosky and Tamburino[lO] have presented a method of camera 
calibration that uses a linear affine transformation as a map 
between the camera coordinates and the geometrically projected 
coordinates on the image plane of known reference points. The 
advantages of this method are as follows: (a) all parameters are 
solved within the specified constraints, and (b) many intrinsic 
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parameters such as scaling, aspect ratio, displacement of image 
center and skew angle are considered. The disadvantages of the 
method are as follows: (a) lens distortion is solved 
geometrically by transforming the distorted image to a 
rectangular camera grid; lens distortion is, therefore, not 
considered as a camera parameter that is calibrated with the 
remaining intrinsic parameters and (b) as the computational 
complexity of the method is simplified, in some cases, simpler 
solutions can be obtained at the price of lower accuracy. 

A method of 3D position sensing using a calibration scheme 
that relates depth to focus blur has been presented by Cardillo 
and Ahmed[6]. The main advantage of this method is the 
computational efficiency. The disadvantages of this method are as 
follows: (a) the method assumes sharp scene edges when measuring 
blur; noise and lighting intensity variations adversel~y affect 
the performance of this method, and (b) the method ign'ores 
effects of lens distortion in the measurement of blur ledges. 

Wang and Tsai[24] have presented a method of camera 
calibration that demonstrates that vanishing lines include useful 
geometrilc hints about the camera extrinsic parameters and the 
focal length, from which these parameters can be solved easily 
and ana1:ytically. This technique uses multiple steps o:f efficient 
least squares method for parameter computation. No intrinsic 
paramete.r is solved by this method except for focal length. 

A method of camera calibration with a complete lens 
distortion model is presented by Weng, et al[25]. This method 
proposes multiple steps of iterative linear and non-linear 
optimization schemes to solve all extrinsic and intrinsic camera 
parameters. The advantages of this method are as follows: (a) the 
method solves all calibration parameters, and (b) the parameters 
are solved within specified constraints. The disadvantages are as 
follows: (a) the method uses multiple iterative algorithms at the 
cost of computational efficiency, and (b) in its iterative 
procedurle, the method decouples the lens distortion parameters 
from the remaining extrinsic and intrinsic parameters in order to 
solve one while the other is kept fixed; this assumes that the 
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lens distortion parameters can be de-coupled from the :remaining 
paramete.rs without giving false minima in parameter computation. 

1.2 Comparison with State of the Art: 

In this paper, we have developed new algorithms for camera 
calibration that has the following enhanced features: 

(1) Computational Efficiency and Mathematical Simplicity: 

As mentioned before, alternative efficient methods for camera 
calibration have been presented by many recent 
researchers[l0,13,23,28]. Our new proposed algorithm (Section 2) 
improves the mathematical simplicity of the steps involved in the 
computat.ion of calibration parameters, while enhancing the 
computat.iona1 efficiency when compared to current methods. The 
enhanced simplicity is due to the direct transformation between 
the 3D object world and the 2D image plane. 

In other words, while enhancing the mathematical s~mplicity 
of the p:roposed algorithm, we have attained the computational 
efficiency of the most efficient current technique[l3,23]. 
Moreover, our approach leads to several desirable properties such 
as robustness (Section 3) and appropriate framework for the 
solution of all extrinsic and intrinsic parameters (Sections 4 
and 5). 

(2) Robustness of Calibration Algorithm: 

In most state of the art calibration methods, it is important 
to compute the intrinsic parameters such as image center 
displacement and scale factor[10,13,18,23,24] for accurate 
calibration results. In this paper, we have analyzed the 
influence of both image center displacement and scale factor on 
the extrinsic parameters computed by the proposed algorithm, and 
also on the computation of image and world coordinates (refer 
Section 3). We have demonstrated the following results: 

(i) Our analysis shows that both image center displacement and 
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scale factor have no effect (in the coplanar and non- 
coplanar calibration cases) on the computation of both image 
and world coordinates, if the camera is calibrated with the 
uncompensated image data using our proposed algorithm. This 
result allows us to perform accurate camera calibration 
without extensive computation of intrinsic parameters such 
as image center displacement and scale factor. 

(ii) We further demonstrate the influence of these intrinsic 
parameters on the extrinsic parameters computed by our 
algorithm. This analysis allows us to adjust the extrinsic 
parameters based on these intrinsic parameter values, and 
reduces the task of extensive re-computation of the 
extrinsic parameters when the image center or scale factor 
changes. 

Some researchers[l3,23] have observed, through experimental 
studies, that image center displacement has minimal effect on 
camera calibration for the non-coplanar case. For example, in 
[23] the following observation is made: "To see the consequence 
of having a wrongly guessed image center when doing calibration, 
we intentionally altered the apparent image center by ten pixels. 
The results of 3D measurement still is about as accurate". We 
have confirmed this fact by analytical means and also extended it 
to the coplanar distribution of object points. Furthermore, we 
have extended this result to include the scale factor parameter. 
This appears to be the first known analvtical result of its kind 
in a calibration algorithm. 

(3) Complete Lens Distortion: 

In most camera calibration methods commonly used in 
applications, the effects of image distortion due to non-linear 
lens systems are ignored. However, many researchers[l2,15] have 
observed that ignoring lens distortion is unacceptable in doing 
3D measurements. Many recent studies[10,13,18,23] have considered 
new methods for correcting lens distortion. These methods, 
although very accurate, mostly consider radial distortions of 
lenses. When complete lens distortion is considered[25,26], 
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computationally intensive iterative linear and non-linear 
optimiza.tion schemes are used. 

We have presented a new algorithm to solve the complete lens 
distortion problem with both radial and tangential distortions of 
lenses bly extending the least squares solution of linear 
equations to a constrained least squares solution by the use of 
Lagrange multipliers[l4]. We have also included analytical proofs 
and experimental results for the convergence of the proposed 
iterative algorithm. While other researchers have previously 
presented iterative algorithms, our analysis appears to be the 
onlv one that shows an analytical proof of convergence of this 
algorithm. 

( 4 )  Complete Algorithm for the Solution of All Parameters: 

A direct outcome of the robustness and the lens distortion 
algorithms is a complete algorithm for the solution of all 
calibration parameters. Although state of the art procedures[25] 
exist for such solutions, we have discussed the robust:ness of our 
approach in comparison with these procedures. We have partitioned 
the parameter space into two subsets for the solution (of all 
extrinsic and intrinsic parameters, and have argued that our new 
procedur'e is more robust and less sensitive to noise and starting 
values i:n iteration. 

(5) Incremental Model: 

In this paper we have also studied an aspect of camera 
calibration that commonly occur in machine vision applications 
involvinlg measurements and tolerance computations such as defect 
measurement and robotic part placement. In such applications it 
may be sufficient to compute the correspondence between distances 
(or tolerances) in 3D to distances in pixels. For these 
situatio:ns, we have developed a special correspondence model 
called tlhe Incremental Model. We shall present the Incremental 
Model both with and without the influence of intrinsic parameters 
(such as lens distortion) for coplanar and non-coplanar 
distributions of object points. 
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(6) Geometrical Interpretation of Parameters: 

We have established a direct transformation between the 3D 
object world and the 2D image or sensor plane in terms; of 
"homogeneous vector forms". In most state of the art nlodels, the 
homogene!ous transformation is between the 3D object world and a 
3D camera space, which is subsequently projected to th~e image or 
sensor plane. This is a two-step transformation. The proposed 
one-step homogeneous transformation yields a simple set of 
mathematical steps for the solution of all calibration 
parameters, and demonstrates a geometrical significanc!e of the 
calibration parameters in the physical camera setup. Furthermore, 
we have carried the analysis for both coplanar and nonl-coplanar 
distributions of object points, and have provided exhaustive 
solutions for both. 

In summary, our approach to camera calibration is a 
signif ic:ant improvement in mathematical simplicity, ac!curacy, and 
computat.iona1 efficiency in the solution of all extrin~sic and 
intrinsic parameters. Furthermore, this method leads to a robust 
solution of calibration parameters, where the image center 
displacement and scale factor have no effect on the co~mputation 
of image! or world coordinates. Also we have demonstrat.ed 
analytic:ally, the effects of image center displacement and scale 
factor cbn the extrinsic parameters. In addition, we ha.ve 
considered complete lens distortion, and added the newf aspect of 
the Incremental Model. A new iterative constrained least squares 
approachi to compute lens distortion parameters with an analytical 
proof of convergence is also studied. Finally, a new complete 
algorithm for the solution of all calibration parameters, as 
shown in. Table 1, is presented. 

Page 8 



TABLE 1. Camera Calibration Parameters Discussed in this Study. 

Params 

Extrinsic 

Intrinsic 

Intrinsic 

Intrinsic 

Description 

Horizontal camera vector. 
Vertical camera vector. 
Axial camera vector. 
Position of camera center. 
New efficient computational methods are 
presented. 

Focal Length. 
New efficient computational methods are 
presented. Pertains to the phys'ical 
camera optics. 

Image Center Displacement. 
Scale Factor. 
Effects on extrinsic parameters and 
coordinate computation have been 
demonstrated analytically. 

Lens Distortion. 
Complete lens distortion is considered. 
Efficient constrained least squares 
solution is proposed. Analytic

a

l proof 
of convergence provided. 

1.3 Outline of the Paper: 

In Section 2 we shall present the camera calibration model 
and represent the correspondence between the world and image 
coordinates in a "homogeneous vector form". A novel algorithm for 
extrinsic parameter (and focal length) computation will be 
presented for both coplanar and non-coplanar distributions of 
object points. In Section 3 the influence of image cen,ter 
disp1ace:ment and scale factor on the extrinsic paramet~ers and, on 
coordinate computation will be discussed. The robustness of the 
proposed algorithm will also be analyzed. In Section 4, we shall 
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propose a new algorithm for complete corrections of lens 
distortion effects for enhanced calibration accuracy. Analytical 
proof of convergence of this algorithm will be shown. 

In Section 5 a complete algorithm for the solution of all 
calibratiion parameters will be presented. Robustness of the 
complete algorithm in comparison with state of the art methods 
will be discussed. Section 6 will contain an error analysis of 
the calibration parameters. The effects of measurement. errors of 
image coordinates on the calibration parameters will be analyzed. 
Section 7 will discuss the new Incremental Model with and without 
the infl.uence of intrinsic parameters for both cop1ana.r and non- 
coplanar cases. Section 8 will contain experimental results on a 
coplanar set of object points. Section 9 will have con.cluding 
remarks. 

2.0 Camera Calibration Model 

This section of the paper deals with the geometrical aspects 
of the calibration problem. The geometry assumes that the camera 
and lens system behave like a pinhole camera system without any 
distortion. The effects of image distortions due to lens 
configuration have been added to this geometrical system for 
improved. accuracy in the next sections (Section 3 and 4). The 
geometry involves essentially three coordinate systems (refer 
Figure 1 ) : 

(1) a 3D world coordinate system ( X , Y , Z )  centered around a point 
W and including a point P(x,y,z) in 3D, 

(2) a 2D image or sensor array system (1,J) centered at a point 
S in the sensor plane, and describing the "horizontal" and 
"vertical" positions of image pixels, 

(3) an intermediate 3D coordinate system (H,V,A)  with origin at 
optical center C of the lens system, and describing the 
"horizontaln, "vertical" and "axial" directions of the 
camera system. 
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The world coordinate system is arbitrary and is often 
dictated by the application. However, it is assumed in our 
discussions that the coordinate systems are right-handed, and 
that the axes are mutually orthogonal. The intermediate 
coordinate system is often referred to as the camera coordinate 
system. The H-V plane of the camera coordinate system is viewed 
as being parallel to the sensor array plane, with the H and V 
axes aligned respectively to the I and J axes of the sensor 
coordina.te system. In a purely geometrical model, the third axis 
A of the camera coordinate system lies on the optical axis of the 
lens package. The sensor coordinate system (1,J) is centered at a 
point S on the sensor plane lying on the optical axis of the lens 
package, i.e. along camera axis A. 

Establishing a relationship among these three coordinate 
systems is the central issue within the camera calibration 
problem. Let (fi,V,A) be unit vectors for the camera coordinate 
system (H,V,A). A point P in 3D with world coordinates (x,y,z) is 
projected through the optical center C onto the sensor array at a 
point (i,j) in the sensor (image) coordinates (refer Figure 1). 
Let f be the distance from optical center C to the sensor plane. 
By similar triangles: 

Dividing equation ( 1 ) by equation (2 ) , and assumin.g C,=C . B ,  
C,=C .V a:nd C,=C .A, we create the following matrix equation: 
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In equation (3) (i,j) are measured pixel coordinates of a point P 
in 3D with known coordinates (x,y, z) . The camera parameters fix, 

A 

fiyl Hz, vxr Vy, V,, Ch, Cv are unknown extrinsic calibration 
c0nstant.s. 

Thus; every point P for which both 3D and image coordinates 
can be established, provides a linear equation involvi.ng 7 camera 
parameters (assuming Ch=l). A minimum of 7 points with known 
coordina.tes are, therefore, needed to solve for the system 
parameters. In reality, more than 7 points are used to1 
overdetermine the problem and then solved by the least squares 
method. The remaining calibration parameters are solved by simple 
mathemat.ica1 steps (refer Section 2.2). This solution of the 
calibration parameters for a non-coplanar distribution. of object 
points i.n 3D is called 3D calibration. 

One of the main reasons that the least squares solution may 
not exisit for the system of linear equations in (3) above, is 
that the points used for calibration actually lie in a plane with 
respect to the world coordinate system. In this case, the 
calibrat-ion parameters are solved in two steps: 
(1) First a basic set of parameters are solved by the least 

squares method from equation (4) below. 
(2) Next the remaining parameters are solved by a set of simple 

mat.hematica1 steps as shown in Section 2.3. 
This sol.ution of the calibration parameters for a coplanar 
distribu~tion of object points is referred to as 2D calibration. 
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In this study we have assumed that it is the z-coordinate that is 
unimportant for 2D calibration. Equation (3) can be written 
without the z components as follows: 

[jx jy --ix -iy i] 

If t.he least squares solution does not exist in th~is case, it 
is then recommended that another set of points with mclre x-y 
spread be selected for calibration purposes. 

2.1 Hon~oqeneous Form for Coordinate Conversion: 

In t.his section we shall present a one-step transformation 
between the world and image coordinates. Although equa.tions (1) 
and (2) are non-linear, it is possible to represent th.em in a 
condensed matrix linear transformation form by use of homogeneous 
coordinates. Within this context, the world to image coordinate 
transfo~mation for 3D calibration case can be expressed as: 

Likewise the coordinate conversion for 2D calibration case 
can be ~!xpressed in matrix form as: 
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I n  g e n e r a l ,  t h e  3x4 ma t r ix  i n  3D case (equa t ion  5 )  and 3x3 
m a t r i x  i.n 2D case (equa t ion  6 )  t h a t  relate t h e  homogenleous forms 
of t h e  image and world coo rd ina t e s  are c a l l e d  t h e  camera 
mat r iceq .  A 3x3 orthonormal ma t r ix  R ( r e f e r  equa t ion  2:9) can  be 
ob ta ined  from t h e  camera ma t r ix  i n  t h e  3D case. The 
correspondence between world and image coo rd ina t e s  i s  obta ined  by 
a comple!te s o l u t i o n  of a l l  e n t r i e s  of t h e  camera matrices as 
shown i n  S e c t i o n s  2.2 and 2.3. 

2.2 Computation of t h e  C a l i b r a t i o n  Parameters - 3D C a s e :  

For t h e  3D c a l i b r a t i o n  case, assuming C,=l, w e  can compute 
camera garameters  fix, fi,, fi,, Gx, vy, 0, and C, from equa t ion  ( 3 )  . 
The remaining e n t r i e s  of t h e  camera mat r ix  ( r e f e r  equa t ion  5 )  C,, 

&/f , &If, &/f  and C,/f can  be  computed by t h e  fo l lowing  s t e p s :  

(1) From t h e  p rope r ty  I = 1 = 1 of t h e  camera c o o r d i n a t e  
v e c t o r s  fi and v, w e  can compute parameter C, by t h e  
f 01-lowing equa t ions  : 

( 2 )   ASH&^^ t h e  s i g n  of C, as +1, update va lues  of &, a,, fi,, 
vxf v y r  v,, and C, by mul t ip ly ing  them by C,. The s i g n  of 
parameter  C, can  be ob ta ined  (from equa t ions  1 and 2 )  from 
any o b j e c t  p o i n t  Po (xo,yo, z,) whose measured image 
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coo'rdinates are (i,, j,) such that both i, and j, are not 
zeros : 

sign (~~k,+~~k,+zok,-ca) 
sign(C,) = 

sign (i,) 

sign ( x o t x + ~ o t y + ~ o ~ , - ~ v ~  
sign(C,) = 

sign (j,) 

The remaining parameters (&,%,&,~,,f) can be solved by any 
one of the following two methods: 

Method IL 

(1) Parameters (&,%,Ae) can be obtained from the rig:ht-handed 
property of the camera coordinate system (H,V,A) as the 
cross product of vectors (fix,fiy,fie) and (Qx,Qy,Q,) . 

(2) Camera parameters f and C, can be obtained from the 
following matrix equation derived from equations (1) and 

(2): 

The above equation is solved from several calibration points 
P wrhose image points (i,j) are measured and object points 
(x,y,z) are known. 

Method I= 

(1) Solve for parameters &/f, h/f, &/f and C,/f as follows 
from known values of a, GI C, and C, computed before. 
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(2) The focal length f can be computed from the property I d = l  
as shown below: 

i x i y i z - i  
x j y j z - A  

The parameters computed by the above algorithm without 
imposing any constraint on the least squares solution may not 
lead to an orthonormal rotation matrix R. In order to obtain an 
orthono~mal solution for R in the 3D case, the least squares 
solution can be modified as shown in Appendix I. 

2.3 Computation of the Calibration Parameters - 2D C a m  

A Z  
f 

A, A - 
f 

The parameter computation in the 2D case (refer camera matrix 
in equation 6) is more complex due to the fact that we can solve 
a smaller subset of camera parameters from the linear equation 
(4). We need to compute the remaining camera para met ex:^, namely 
&/f, %,If, C,/f and C, in the following steps: 

( X ; ~ + Y ~ + ~ ~ ~ - C , )  

= [ (xirx+~tY+ztz-~,) I 

(1) Assuming C,=l, compute parameters &/f, %/f and C,/f from 
the following matrix equation derived from equations (1) and 

(2): 
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Equat ion ( 8 )  i s  so lved  from s e v e r a l  p o i n t s  P  whose image 
p o i n t s  ( i , j )  are measured and o b j e c t  p o i n t s  ( x , y )  are known. 

( 2 )  Assuming C,=l, t h e  f o c a l  l e n g t h  f  can  be ob ta ined  from t h e  
or thonormal  p rope r ty  of t h e  r o t a t i o n  mat r ix  R ( equa t ion  29)  
by t h e  equa t ion  below. An exp lana t ion  f o r  t h e  d e r i v a t i o n  of 
parameter  f  i s  given i n  Appendix 11. 

( 3 )  Parameter  C, can  be ob ta ined  from t h e  orthonormal p rope r ty  
of r o t a t i o n  ma t r ix  R by t h e  fol lowing equa t ions .  .A 
d e r i v a t i o n  of t h e s e  equa t ions  is  shown i n  Appendix 11. 

( 4 )  Assuming t h e  s i g n  of C, as +I, update  v a l u e s  of &:, a,, vx, 
vy, q, & / f ,  h / f  and C,/f by mu l t i p ly ing  them w i t h  C,. 
Compute t h e  s i g n  of C, from any o b j e c t  p o i n t  Po(x,,yo) i n  3D 
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whose measured image coordinates are (i,,j,) such that both 
i, and j, are not zeros: 

sign (xoBx+y0~,,-~') 
sign(C,) = 

sign(io) 

sign ( xo Gx+y0 Gy- c,) 
sign(C,) = 

sign (j,) 

( 5 )  with the correct sign of C,, update values of &, fi,, V,, GY, 
C,, &if, %if and calf for the camera matrix in equation 

( 6 )  

3.0 Robustness of the Calibration Algorithm 

The final goal of most camera calibration algorithms is the 
robust and accurate computation of image and world coordinates. 
In most state of the art calibration methods, some intrinsic 
parameters such as image center displacement and scale! factor 
have significant influence on these computations. In t.his 
section, we shall analyze the effects of these intrinsic 
parameters on the extrinsic parameters computed by our algorithm, 
and also on the computation of image and world coordinates. A 
strong 1:obustness of our parameter computation procedure will be 
demonst1:ated in this section. 

In most camera calibration methods, the center of the image 
or sensor plane is chosen as the image center S (refer Figure 1). 
The actual center of the image plane is the intersection of the 
optical axis of the camera-lens system with the image plane. Due 
to scanning and sampling errors or due to inaccuracies; in the 
lens system, the actual image center can be different from the 
center S of the image coordinate system(1-J). Another intrinsic 
parameter commonly considered in camera calibration is; the scale 
factor (sit 8,). The scale factor parameter is caused by the 
dimension, spacing and number of sensor elements in th~e camera 
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sensor, and also by the scanning and sampling properties of the 
analog-t.0-digital converter of the image processor. In. [13,18] 
different methods of computing these parameters have bleen 
discussed. 

Let us consider a point in 3D whose image coordinates are 
(i,,j,) with respect to the center S (refer Figure 1) of the 
image cobordinate system (I-J). Let the actual center of the image 
plane be at location (io,jo) with respect to S. Let (i,j) be the 
true location of the point in the image plane with respect to its 
actual image center. If the scale factor is (s,,sj) we can obtain 
the following expressions[13,18,23]: 

If the camera is calibrated with image coordinates (i,,j,), 
we shall obtain extrinsic parameters f i ' ,  G', A', C,', C,' , and C,'. 
Let G, c ,  A, C,, C,, and C, be the calibration parameters with no 
lens distortion, no image center displacement and scale factor. 
From equations (1) and (2) the combined effects of these 
intrinsic parameters on the extrinsic parameters as follows: 

In Method I of the 3D case, the axial vector A is expressed 
(refer Section 2.2) as follows: 
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This error in the axial vector A' from its ideal value A will 
produce an error in the computation of image or world coordinates 
in a 3D stereo setup. 

For Method I1 of the 3D case, and for the 2D calikbration 
case, from equations (7) and (8) respectively, we shal.1 obtain 
the foil-owing expressions. 

From these expressions (equations 12 and 14) we obtain1 the 
following theorems: 

Theorem 1: 
In Method I1 of the 3D case and the 2D calibration case, 

there is; no error in the computation of image coordina-tes (if,jf) 
from world coordinates (x,y,z) if the parameters used for 
computat.ion are @', v', A', C,', C,', and C,'. 

Theorem 2: 
In Methods I1 of the 3D case and the 2D calibration case, 

there is1 no error in the computation of world coordina.tes (x,y,z) 
from unc!ompensated image coordinates (if, j,) with parameters a' ,  
v' , A', C,' , Cv' , and C,'. 

Proofs of Theorems 1 and 2 are given in Appendix 1111. These 
theorems prove a stronq robust uropertv of the proposed 
calibration algorithm which implies that we can obtain accurate 
image and world coordinates without extensive computat.ion of 
image center displacement and scale factor. In cases wrhere 
accurate calibration parameters are needed, equations (12)-(14) 
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can be used to update the extrinsic parameters for different 
values of image center displacements and scale factors. 
Experimental results (Section 8) are provided to verify the 
analysis presented in this section. 

4.0 Calibration Model With Complete Lens Distortion 

In this section, we shall consider the effects of lens 
distortion on the proposed calibration model for both 3D and 2D 
cases. Figure 1 shows the ideal image pixel coordinates (i,j) of 
a point P in 3D. However, due to lens distortions, the actual 
coordina~tes of the image point may be at (i,,j,). This change in 
the pixel coordinates due to lens distortion leads to a variation 
of the sicale of an image as a function of position in the image 
plane. Cllearly, for accurate calibration of the camera., it is 
importank to correct for distortions in the lens. When image 
center dlisplacement and scale factor are added to the calibration 
model, the expressions of (i,j) in equation (11) are used for 

(ipf jp) 

Two types of lens distortions commonly seen in image 
processing applications are radial[5,16] and tangential[4,16] 
distortions. Two types of common radial distortions in image 
processing are pincushion and barrel distortions shown in Figure 
2. In the simplest case, as for third order or Siedel 
distortion[l6], an outward displacement of a given image point 
from its desired location on a mean image plane is referred to as 
pincushion distortion. An inward displacement, on the other hand, 
is called barrel distortion. Besides these, there can be 
tangential distortions usually caused by: (a) decentering of the 
lens (Decentering Distortion), or (b) imperfections in lens 
manufacturing or tilt in camera sensor or lens (Thin Prism 
Distortion). 

One commonly used model for correcting lens distortion is 
that developed by Brown[4,5,16]. Let D, and D, be the corrections 
for geometric lens distortions present in the image coordinates 
i, and j,, respectively of an object point P(x,y,z). With 
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r=(ip2+ jt)1'2, Di and D, are expressed by the following infinite 
series: 

The coefficients l,, l,, l,, p,, p, and p, may be determined as 
a part of the camera calibration process. The model accounts for 
both spunetric radial and asymmetric tangential distortions. The 
terms including coefficients l,, 1, and 1, represent radial 
distortion, and the terms which include p,, p, and p, represent 
tangential distortions. The image coordinates are corrected for 
lens dis,tortion by the following expression: 

The calibration equations under lens distortion can be 
obtained. by substituting (ip+Di) for i and (jp+Dj) for :j in 
equation. (3) for the 3D case and equation (4) for the 2D case. 
The solution for the unknown camera parameters 
( f i x , f i y , ~ z , ~ ~ , ~ y , ~ ~ r ~ , , ~ v )  and the lens distortion parameters 

(Il8 l,, l,, p, ,p, ,p3) are obtained by using the method of ILagrange 
multipliers[l4] for a constrained least squares solution. The 
remaining camera parameters (4,h,ii,,~,, f ) can be obtaj~ned by the 
steps mentioned before in Sections 2.2 and 2.3. 

In the following two sections we shall discuss a new improved 
calibration algorithm under (a) radial and (b) both radial and 
tangential lens distortions by a constrained least squares 
solution with Lagrange multipliers. 

4.1 Calibration Under Radial Lens  ist tort ion 

Let us consider a vector B for the unknown extrinsic 
calibration parameters in the 3D calibration case as follows: 
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Let U and W be two vectors with known image and world coordinate 
values defined below: 

UaT = [j,xn jny, jnzn -inxn -idn -inzn in] 
WaT = ra2UnT 

where r,Z = (i,2+j,2). 

Also define variable a, = -jnr,2. Subscript n represents the nth 
calibration point (n=l,..,N) used for this algorithm. 

Assuming C,=l, we can represent the linear equation under 
radial lens distortion as follows: 

The constraint is: CT = l1BT. 

Solving the above linear equation by least squares we shall 
obtain the following expressions for B and 1,. 

Iterative Alqorithm For Accurate Solution of B and 1 , ~  

This one-step solution for the extrinsic parameters in vector 
B and the radial lens distortion parameter 1, can be further 
improved by an iterative procedure described in Steps 1-4 below: 

Step 1: Choose an initial "reasonable" value of 1, (say 0.1). 
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Step 2: Compute extrinsic parameter vector B by equation (18). 
Step 3: Compute radial distortion parameter 1, by equation (19) 

with the value of vector B obtained in Step 2. 
Step 4: Repeat steps 2 and 3 till a maximum number of 

iterations. 

The number of iterations required for this computation 
depends on the starting value of 1,. However, we have :proven 
ana1ytic:ally that the above algorithm converges towards a correct 
solutiorl of 1, in consecutive steps of iteration. 

Proof of Conversence of the Iterative Solution of B and 1,: 

We shall use the symbols e,, B,, and 1, for the values of 
least squared error, extrinsic parameter vector B, andl radial 
distortion parameter 1, respectively in the kth step of iteration. 
Following these notations: 
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Conside: r ing  t h e  terms w i t h i n  t h e  s q u a r e  b r a c k e t s  as a f u n c t i o n  o f  
lk+,, t h i s  f u n c t i o n  r e a c h e s  a minimum a t  

The r e s u l t i n g  v a l u e  o f  t h e  f u n c t i o n  a t  t h e  minimum i s  

which cinnnot be p o s i t i v e .  

From t h i s  we c a n  i n f e r  

The e x p e r i m e n t a l  a n a l y s i s  i n  S e c t i o n  8 f o r  parameter  1, 
s u p p o r t  t h e  f a s t  convergence o f  t h e  above a lgor i thm.  For  o u r  
experimcsntal s e t u p ,  s t a r t i n g  from 1,=0.1, we converged a t  1,- 
0.000052 i n  j u s t  one i t e r a t i o n .  F u r t h e r  i t e r a t i o n s  d o  n o t  change 
t h e  v a l u e  o f  1, s i g n i f i c a n t l y  (less t h a n  1%). 
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4.2 Calibration Under Radial and Tansential Lens Distortions 

The analysis for the radial distortion can be extended to 
both radlial and tangential lens distortions. For this we shall 
consider vectors Q and S as follows: 

Also define variables b and c as follows: 

As before, subscript n is for the nth calibration point 
(n=lI...IN). 

The linear equation under both radial and tangential lens 
distortions can be expressed as below: 

where the constraints are: 

Solving the above linear equation by least squares we shall 
obtain the following expressions for vector B and variables 111 

Pl I and 1?2' 

Page 26 



where 2, = (U,+l,W,+p,Q,+p,S, ) 

These f i r s t  estimates f o r  t h e s e  parameters  can  be  f u r t h e r  
improvedl by ex tending  t h e  i t e r a t i v e  procedure d i scussed  i n  
S e c t i o n  4 . 1  t o  t h e  r a d i a l  and t a n g e n t i a l  case. Extensi .ve 
experimemts were conducted f o r  t h i s  case. Our exper imental  
r e s u l t s  sugges t  t h a t  t h e  convergence of t h i s  algorithm1 depends 
ve ry  much on t h e  s t a r t i n g  va lues  of l,, p,, and p,. Unlike t h e  
r a d i a l  d . i s t o r t i o n  case, improper cho ices  of t h e  s t a r t i n g  v a l u e s  
l e a d  t o  s o l u t i o n s  a t  l o c a l  minima and do no t  produce t h e  c o r r e c t  
estimates f o r  t h e  e x t r i n s i c  parameters  i n  v e c t o r  B. The d e t a i l s  
of t h e  exper imenta l  r e s u l t s  are i n  Sec t ion  8. 
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5.0 Complete Calibration Algorithm 

In this section, we shall extend the robust property of our 
calibration method and the new solution for the lens distortion 
parameters, to create a new algorithm for the solution of all 
calibration parameters. This algorithm has the combined strengths 
of all the procedures discussed before. An outline of this 
algorithm is shown in Figure 3. 

The proposed complete algorithm partitions the parameters 
into two subsets: 
(1) image center displacement and scale factor, and 
(2) lens distortion, focal length and the extrinsic parameters. 
The first step of the algorithm solves the first subset of 
parameters by state of the art procedures[l3,23] assuming the 
second subset of parameters as constant. 

In the second step of the algorithm, the second subset of 
parameters are computed by the procedure in Section 4. In this 
step, th.e image center displacement and scale factor are assumed 
constant. Since only a subset of the extrinsic parameters are 
solved first, the remaining extrinsic parameters are computed by 
the steps outlined in Sections 2.2 and 2.3. The orthonormality of 
the rota.tion matrix R is determined by the procedure in Appendix 
I. 

The two-step procedure to determine a complete solution of 
all calibration parameters leads to a robust solution. In this 
algorithm, we have partitioned the parameter space in a way that 
is different from state of the art methods[25] for the solution 
of all calibration parameters. We submit that our algorithm leads 
to a more robust solution. The reasons for this robustness are as 
follows : 

(1) We have demonstrated in Section 3, the effects of image 
center displacement and scale factor on the extrinsic 
parameters (equations 12-14). These effects are mostly 
linear (equation 12) or no effect at all (equation 14). The 
effect of lens distortion parameters, on the other hand, is 
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more complex and can not be determined in a closed form like 
equations (12)-(14). 

(2) The effects of image center displacement and scale factor is 
same for all pixels in an image, whereas, the lens 
distortion effect is different for different pixels. 

The state of the art procedure in [25] partitions the 
parameter space with the lens distortion parameters as a separate 
subset from the remaining parameters. We submit that due to the 
close and complex link between the lens distortion parameters and 
the extrinsic parameters, the algorithm in [25] may converge to a 
local minimum leading to inaccurate results. Also any analytical 
proof of convergence of this algorithm has not been provided. In 
our algorithm, on the other hand, we have computed the lens 
distortion and extrinsic parameters in a single step. 

6.0 Error Analysis 

In this section we shall consider the effects of measurement 
errors in image coordinates (i,j) on the computation of the 
camera calibration parameters. Let us consider errors (el and e, 
in the measurement of image coordinates i and j respectively. 
Ignoring effects of second order error terms, the erro:rs in 
extrinsic parameters are proportional to the following terms: 

elC:ix, elC jy, elC jz, elC j, e,Cix, e,Ciy, e,Ciz, 
e2C:jx, e,Cjy, e,Cjz, e2Ci 

where C is for all calibration points. 

This result shows us that the errors in the calibration 
parameters are proportional to the x-y-z spread of the 
calibration points, and the i-j spread of the image coordinates 
of the calibration points. The errors also decrease as the origin 
W (refer Figure 1) of the world coordinate system is closer to 
the centler of the field of view. Thus the errors in the 
calibration parameters are less when the camera is calibrated 
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over a narrow field of view. 

It clear from equation (1) that errors in parameters fi and 
C, have ]most effect on the computation of image coordinate i. 
From equation (2) we can determine that errors in parameters 9 
and C, h,ave most effects on the computation of the image 
coordina.te j. Errors in the computation of world coord.inates is a 
complex function of errors in all the calibration parameters. 

7.0 Incremental Model 

In many machine vision applications, such as defect 
inspection and part size measurement, it is not necessary to use 
the calibration model and the parameter computation algorithms 
for complete solution of all camera parameters discussed before. 
In such applications, we may only need to calibrate distances in 
the image plane to distances or tolerances in the object world. 
For such applications, we frequently need to check if an image 
feature such as a defect or a part edge is within a tolerance or 
not. These tolerances are usually specified in real-world units 
whereas the measurements are performed in the image domain. It is 
therefore sufficient to establish a correspondence between 
tolerances in 3D to distances in image (or sensor) plane. 

The equations describing the correspondence between the 
tolerances can be obtained from the homogeneous expressions in 
equations (5) and (6). Let (x,,y,, 2,) and (x2,y2, 2,) be two points 
in 3D with corresponding image coordinates (i,, j,) and (i,, j,) 
respectively. Let ( Ax=x,-x,, Ay=y,-y,, Az=z,-2,) be tole~rances in 
3D and (Ai=i,-i,, Aj=jl-j,) be tolerances in the image 
coordinates. The correspondence equations between tolerances for 
the 3D case are as follows: 
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where 

Similarly for the 2D calibration case, the correspondence 
between the two tolerances can be represented as below: 

where 
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The incremental models in equations (25) and (26) can be used 
in appli.cations where we need to convert tolerances in the object 
world to tolerances in the image plane or vice-versa. The 2D 
solution in equation (26) can be used in its entirety in many 
applicat.ions such as defect size measurement, where we! can covert 
the size! exactly to real-world dimensions by using equation (26) 
if the location of the defect in the image is known. 

We can further simplify the correspondence equatiolns, in both 
2D and 3D cases, by considering a "nominal" value (io,:jo) for the 
image cclordinates (i,, j,) or (i,, j,) . An example of such a 
"nominal" value is the center of the image or sensor plane. By 
this assumption, the entries of the transformation matrices in 
equatio

n

s (25) and (26) are constants that can be computed by the 
least squares approach from several (at least 3) known values of 
object tolerances ((Ax,Ay,Az) in 3D case and (Ax,Ay) in 2D case) 
and measured values of image tolerances (Ai,Aj). 

When lens distortion, displacement of image center and scale 
factor a,re added to the calibration model, equations (25) and 
(26) can be extended by using the expression for i and j in 
 equation,^ (11) and (16). An example of these correspondence 
equations with image center displacement only is provided below. 
Let (io,jo) be the image center displacements for image points 
(i,, j,) alnd (i,, j,) . The correspondence equations for the 3D case 
are as follows: 
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.... (27) 
k,, k, are defined before in equation (25). 

i 0  ) f - i - i  ] f ( A  H -  i 0  ] f 
(jl-jo) L] f [6,,- ( jl-jo) 2 A f ] [kZ- (jl-jo) . 1 

For the 2D case the corresponding equations are as follows: 

AX ka 

k,, k, are defined before in equation (26). 
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8.0 Experimental Results 

In this section we shall apply the proposed algorithms on a 
test setup and analyze the results of these experiments. The 
experiments were conducted for a coplanar set of object points 
and the calibration parameters were obtained. 

8.1 Experimental Setup: 

The test calibration points were created by accurately 
placing a set of 100 holes one inch apart on a precisely polished 
metal plate in a square grid of 10 dots horizontally and 10 dots 
vertically. The image of the test calibration points was acquired 
by a NEC TI-23A camera[l7] manufactured by NEC Corporation and a 
Fujinon 50mm focal length TV lens. The camera was positioned at 
an angle of approximately 20 degrees from vertical with the 
calibration plate placed on a horizontal surface. The images were 
processed by an image processing hardware manufactured by Applied 
Intelligent Systems Inc[l]. The image resolution was 512x480 
pixels. The centroid pixel of each dot was obtained to extract 
the pixel coordinates of the object points. Figure 4 shows a 
picture of the calibration setup. 

8.2 Test Results for Extrinsic Parameters: 

In the test setup, the image coordinates of the calibration 
points, with known world coordinates, were measured from the 
acquired image. The 2D calibration algorithm (refer Section 2) 
was applied to the coplanar set of test points to obtain the 
extrinsic calibration parameters. The accuracy of the calibration 
algorithm is presented in two steps: 

(1) The difference between the actual world coordinates and the 
computed world coordinates of the test points. 

(2) The difference between the measured image coordinates and 
the computed image coordinates of the test points. 

In the first step, the extrinsic parameters were obtained 
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(Sectio11 2.3) from known world coordinates and measured image 
coordinates of the test calibration points. A new image was 
acquired and the world coordinates of the calibration points were 
computed from the measured image coordinates and the estimated 
calibration parameters. The computed and actual world coordinates 
of the test calibration points are reported in Table 2!. The 
experiment was repeated for all 100 test points. 

In the second step, the image coordinates of the t.est points 
were obtained from the estimated calibration parameters and the 
actual world coordinates. The measured and the computed image 
coordinartes are reported in Table 3. This experiment was also 
repeated for all 100 test points. 

TABLE 2. True and Computed World Coordinates of the Clalibration 
Points. 
($  = 0.780698, fiy = 0.153695, Ch = 3.320078, 
Cx =-0.287919, vy = 0.994583, C, =-0.651146, 
&/f=-0.000166, h/f=-0.000040, C,/f=-0 -053424) 

Test 
Points 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

True Coords 
X Y 
0 0 
0 1 
0 2 
0 3 
0 4 
1 0  
1 1  
1 2  
1 3  
1 4  
2 0 
2 1 
2 2 
2 3 
2 4 
3 0 
3 1 

Computed Coords 
X Y 

0.0115 -0.0068 
0.0189 1.0146 
0.0263 2.0343 
0.0436 3.0018 
-0.0145 4.0004 
0.9774 0.0031 
0.9940 0.9708 
1.0006 1.9875 
1.0071 3.0027 
1.0236 3.9657 
2.0123 -0.0188 
2.0181 0.9963 
1.9591 1.9914 
1.9649 3.0035 
1.9707 4.0140 
2.9662 -0.0089 
2 -9614 1.0534 

Errors 
X Y 

0.0115 0.0068 
0.0189 0.0146 
0.0263 0.0343 
0.0436 0.0018 
0.0145 0.0004 
0.0226 0.0031 
0.0060 0.0292 
0.0006 0.0125 
0.0071 0.0027 
0.0236 0.0343 
0.0123 0.0188 
0.0181 0.0037 
0.0409 0.0086 
0.0351 0.0035 
0.0293 0.0140 
0.0338 0.0089 
0.0386 0.0534 
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18  3 2 2.9763 
19  3 3 2.9813 
20 3 4 2.9961 
2 1  4 0 3.9785 
22  4 1 3.9827 
23 4 2 3.9869 
24 4 3 3.9911 
25 4 4 4.0052 
26 5 0 4.9942 
27 5 1 4.9878 
28 5 2 5.0010 
29 5 3 5.0044 
30 5 4 5.0078 
3 1  6 0 6.0034 
32 6 1 6.0061 
33 6 2 6.0087 
34 6 3 6.0113 
35  6 4 6.0139 
36  7 0 7.0063 
37 7 1 6.9983 
38 7 2 7.0002 
39 7 3 7.0118 
40  7 4 7.0038 
Average 
Standard Deviation 

TABLE 3. Measured and Computed Image Coordinates of the 
Calibration Points. 

(fix, fi,, Ch1 Qxl Qyl Cvr &/f, %/f, C,/f same as 
Table 2 )  

Test Meas Coords Computed Coords Errors 
Points I J I J I J 

1 -62 12  -62.1460 12.1883 0.1460 0.1883 
2 - 59 3 1  -59.3138 30.8283 0.3138 0.1717 
3 - 56 50  -56.4772 49.4965 0.4772 0.5035 
4 - 53 68 -53.6364 68.1927 0.6364 0.1927 
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5 - 5 1  87  - 50.7913 
6 - 48 7 - 47.6809 
7 - 45 25 - 44 - 8 2 8 8  
8 - 42 44 - 41.9725 
9 - 39 63 - 39.1118 

1 0  - 36 8 1  - 36.2468 
11 - 33 1 - 33.1252 
12 - 30  2 0  - 30.2533 
1 3  - 28 39  - 27.3769 
14 - 25 5 8  - 24 - 4 9 6 2  
1 5  - 22 77 - 21 .6111  
1 6  - 19 - 4 - 18.4784 
17  - 16 16 - 15.5862 
1 8  - 13 34 - 12 -6897  
1 9  - 10 5 3  - 9.7888 
2 0  - 7 7 1  - 6.8834 
2 1 -4 - 9 - 3.7393 
22  -1 10  - 0.8269 
2 3  2 2 9  2 .0900 
24 5 4 8  5.0114 
25  8 66  7.9372 
26  11 - 15 11.0927 
27 14 5 14 - 0 2 5 7  
2 8  17 2 3  16.9632 
2 9  2 0  42 19  -9052  
3 0  2 3  6 1  22.8517 
3 1  26  - 2 1  26.0186 
32 2 9  - 2 28.9723 
33  32 17 31.9306 
34 35 3 6  34.8934 
3 5  38  55 37.8608 
3 6  4 1  - 27 41.0393 
37 44 - 7 44.0140 
38  47 12 46.9933 
3 9  5 0  3 0  49 - 9 7 7 1  
4 0  5 3  5 0  52.9656 
Average 
Standard Deviation 
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We can see from Table 2 that the average errors in both X and 
Y coordinates are less than 2% of the unit distance between two 
adjacent test points. From Table 3 we see that the average error 
between the measured and computed pixel coordinates is less than 
0.5 pixel. This error not only includes errors due to the 
calibration algorithm but also includes measurement and 
quantization errors. Both these results demonstrate the high 
accuracy of the calibration algorithm in Section 2. 

8.3 Test Results for Imase Center Displacement 

In this experiment the center S (refer Figure 1) of the image 
coordinate system is displaced by a range of values and the 
extrinsic parameters computed by the 2D algorithm. For io = j, = 
0, the center S of the image coordinate system is at the center 
of the digitized image i.e. at (256,240) for a 512x480 resolution 
image. A.11 subsequent values of (i,, j,) are displacemenits of S 
from this position. Also in this experiment we have assumed scale 
factor s,=sj=l and lens distortion Di=Dj=O . 

Table 4 shows many different values of extrinsic parameters 
&'/fO, k,'/fO and Ca0/f' (refer equation 14) for different 
displacements (io,jo) of the center S. It is clear from Table 4 
that for several displacements of Sf the parameters &'/f ', %'/f' 
and Ca0/f' have not changed much. This small variation .in these 
parameters support equation (14). 

TABLE 4. Values of Parameters &/f, %/f and C,/f for IDif ferent 
Displacements of Center S of the Image coordinate 
System. 
(&/f = -0.000158, h / f  = -0.000124, Ca/f = -10.052898) 

Page 38 



Tab1.e 5 summarizes the computed and adjusted values of 
parametekrs $', fi,', and C,' for the same experiment. The adjusted 
values of these parameters are obtained from equation (12). 
fiad j , fipd j , and Cad j represent the adjusted value of parameters 
fix', Q',  and C,' respectively. For example, for io=40 and jo=40, C,' 
= 5.158965 and Cadj = C, + i,(C,/f) = 3.027859 + (-40) (-.0530109) 
= 5.148;!95. The adjusted value has an error C,Err=0.01067 from 
the computed value. The adjusted values of these parameters are 
very close to their experimental values, thus supporti-ng equation 

20 

0 

2 (11 

3 0 

0 

3 0 

4 0 
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Std. Dev. 0.000032 0.000031 0.000269 

0 

20 

20 

0 

30 

30 

0 

-0.000141 

-0.000178 

-0.000172 

-0.000139 

-0.000172 

-0.000178 

-0.000141 

-0.000115 

-0.000110 

-0.000136 

-0.000099 

-0.000112 

-0.000141 

-0.000079 

-10.052732 

-0.053151 

-0.053129 

-0.052673 

-0.053181 

-0.053173 

-0.052637 



(12). Table 6 shows the computed and adjusted values of 
parameters G,, Gy, and C,. These results also support equation 

(12) 

TABLE 5. Computed and Adjusted Values of Parameters a,, a,, C, 
for Different Displacements of the Center S of the 
Image Coordinate System. 
(8, = 0.7623, =0.1912, C, =3.0279, 
&/f=-0.000174, h/f=-0.000106, C,/f=-0.053011) 

i, j, 8,' d k ~ r r  8,' a$dj e r r  C,' C,Adj C,Err 

10 0 0.7632 0.7640 0.0008 0.1906 0.1923 0.0017 3.547 3.558 0.011 
0 10 0.7641 0.7623 0.0018 0.1952 0.1912 0.0039 3.047 3.028 0.020 
10 10 0.7650 0.7640 0.0010 0.1947 0.1923 0.0024 3.568 3.558 0.010 
20 0 0.7644 0.7658 0.0014 0.1904 0.1933 0.0030 4.067 4.088 0.021 
0 20 0.7656 0.7623 0.0033 0.1973 0.1912 0.0061 3.058 3.028 0.031 

20 20 0.7676 0.7658 0.0018 0.1975 0.1933 0.0041 4.105 4.088 0.017 
30 0 0.7659 0.7675 0.0016 0.1908 0.1944 0.0036 4.591 4.618 0.027 
0 30 0.7663 0.7623 0.0040 0.1975 0.1912 0.0063 3.059 3.028 0.031 

30 30 0.7694 0.7675 0.0019 0.1991 0.1944 0.0047 4.637 4.618 0.019 
40 0 0.7676 0.7692 0.0016 0.1915 0.1955 0.0040 5.118 5.148 0.030 
0 40 0.7668 0.7623 0.0045 0.1977 0.1912 0.0064 3.058 3.028 0.030 

40 40 0.7699 0.7692 0.0007 0.1977 0.1955 0.0023 5.159 5.148 0.011 
50 0 0.7692 0.7710 0.0018 0.1915 0.1965 0.0050 5.643 5.678 0.036 
0 50 0.7675 0.7623 0.0052 0.1987 0.1912 0.0075 3.058 3.028 0.031 

50 50 0.7698 0.7710 0.0012 0.1927 0.1965 0.0038 5.673 5.678 0.005 
60 0 0.7699 0.7727 0.0028 0.1899 0.1976 0.0077 6.159 6.209 0.050 
0 60 0.7683 0.7623 0.0061 0.2005 0.1912 0.0093 3.060 3.028 0.033 

60 60 0.7728 0.7727 0.0000 0.1944 0.1976 0.0032 6.209 6.209 0.000 
70 70 0.7760 0.7745 0.0015 0.1980 0.1986 0.0006 6.749 6.739 0.011 
Average 0.0021 0.0043 0.021 
Standard Deviation 0.0017 0.0024 0.013 
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TABLE 6. Computed and Adjusted values of Parameters it, vy, Cv 
for Different Displacements of the Center S of the 
Image Coordinate System. 
( =-0.3454, Oy = 0.9575, Cv =-1.2592, 
&/f=-0.000174, h/f=-0.000106, C,/f=-0.053011) 

10 0 -.'3448 -0.3454 
0 10 -.,3445 -0.3437 
10 10 -. 3440 -0.3437 
20 0 -.3444 -0.3454 
0 20 -.3429 -0.3419 
20 20 -.3422 -0.3419 
30 0 -.3439 -0.3454 
0 30 -.3410 -0.3402 

30 30 -.3403 -0.3402 
40 0 -.3432 -0.3454 
0 40 -.3392 -0.3385 

40 40 -.3376 -0.3385 
50 0 -.3420 -0.3454 
0 50 -.3377 -0.3367 

50 50 -.3337 -0.3367 
60 0 -.3406 -0.3454 
0 60 -.3365 -0.3350 

60 60 -.3314 -0.3350 
70 70 -.3298 -0.3333 
Average 
Standard. Deviation 

8.4 Test. Results for Lens Distortion 

In order to generate reasonable distortions of the lens, we 
chose a 8xm lens for our imaging setup. We used state of the art 
methods[l3] for the computation of image center displacement and 
assumed that there is no scale factor distortion in the image. We 
then computed the calibration parameters without compensating for 
lens distortion and computed the errors in the image and world 

Page 41 



coordinate computations (shown by iterations-0 in Tables 7 and 

8). Next we repeated this experiment with compensation for radial 
and tanglential lens distortions by the proposed algorithm in 
Section ,4.2. The average and standard deviation of errors in the 
image and world coordinate computations for various iterations of 
this alglorithm are shown in Tables 7 and 8. 

TABLE 7. Errors in the Computation of Image Coordinates for 
Different Iteration of the Lens Distortion A.lgorithm. 
Iteration-0 is for No Lens Distortion Compensation. 
Image Center Displacements are io=6, jo=4. 

TABLE 8. Errors in the Computation of World Coordinates for 
Different Iteration of the Lens Distortion Algorithm. 
Iteration=O is for No Lens Distortion Compensation. 

Image Center Displacements are io=6, jo=4. 

Iterations 

0 

1 

2 

3 

4 

5 
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]Iterations 

0 

1 

2 

Errors (Average) Errors (Std. De,v.) 

I 

0.6530 

0.4218 

0.3574 

0.3559 

0.3547 

0.3533 

I 

0.6096 

0.3482 

0.2812 

0.2617 

0.2613 

0.2608 

J 

0.4498 

0.4496 

0.4315 

0.4167 

0.4158 

0.4156 

Errors (Average) 

J 

0.3274 

0.3592 

0 34:94 

0.3393 

0.3449 

0.3414 

X 

0.0264 

0.0170 

0.0145 

Errors (Std. Dev.) 

Y 

0.0147 

0.0144 

0.0138 

X 

0.0242 

0.0138 

0.0112 

0.01.08 



It is clear from Tables 7 and 8 that the proposed algorithm 
for lens distortion compensation improves the calibration 
accuracy in the first two steps of iteration. Subsequent steps of 
iteration causes less than 1% improvement in accuracy. As 
mentioned before in Section 4, the accuracy of this al.gorithm for 
both radial and tangential cases depend on the proper selection 
of the starting values of l,, p,, and p,. In the radial case, 
however, the algorithm converges (within 3 iterations) to within 
1% of the final value for different starting values of parameter 

11. 

9.0 Conclusions 

In this paper we have presented a new and simple a.lgorithm 
for camera calibration based on state of the art geometrical 
models[22,28]. We have established a direct transforma.tion 
between the 3D object world and the 2D image plane in terms of 
homogeneous vectors, and have computed the extrinsic camera 
parameters in simple steps by fast and accurate algori,thms. 

Next we have demonstrated a strong robust property of the 
proposed: method, that if the camera is calibrated with, image data 
(not compensated for image center displacement and sca.le factor), 
our calibration algorithm yields parameters that produce no 
errors i.n the computation of image and world coordinates. This 
robust property of the proposed algorithm has been shown by both 
analyticla1 and experimental means. This appears to be the first 
known an-alytical proof of its kind for robustness in a. 
calibration algorithm. 

Furt+hermore, we have presented a new algorithm for the 
solution, of (a) radial and, (b) both radial and tangential lens 
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distortions by a constrained least squares approach. Rn 
analytical proof for the convergence of this algorithm is also 
shown. Experimental results to support the algorithm a:nd its 
convergence are presented. While other procedures exis,t for the 
solution of lens distortion parameters, we appear to h'ave shown 
the only analytical proof of convergence for this algorithm. 

Next, a complete algorithm for the solution of all 
calibration parameters is shown. The improved robustness of this 
new algorithm is discussed in light of state of the art 
procedures for the solution of all calibration parameters. 

We have also presented the new Incremental Model for 
tolerances between the 3D world coordinates and the 2D sensor 
coordinates. All these analyses have been discussed for both 
coplanar and non-coplanar distributions of object points in 3D. 
Experimental results have been presented to support the 
calibration model and parameter computation algorithms. 

All discussions on camera calibration presented in this paper 
can be extended to a multi-camera stereo setup. 
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Appendix I 

Algorithm for Parameters with Orthonormal R 
in the 3D (Non-Coplanar) Case 

The extrinsic calibration parameters computed in Section 2.2 
can be improved to produce an orthonormal rotation matrix R 
(equation 29) by the algorithm below obtained from a constrained 
least squares solution with Lagrange multipliers. 

Step 1: Solve parameters &, %, ii,, Ox, Oy, O,, &/f, &/f, &/f, 
C,, q, and C,/f by the proposed algorithm in Section 
2.2. 

Step 2: Compute coordinates (xc,,y,,,zc,) obtained by 
transforming calibration point (x,,y,,z,) to the camera 
coordinate system (6,*,A) with center C in Figure 1: 

where subscript n stands for the nth calibration point 
(n=l,...,N). 

Step 3: Obtain a 3x3 matrix G from matrix G, for the! nth 
calibration point as follows: 

-- 
where (Ec,Fc,5,) and (E,y,z) are the respective 
averages. 

Step 4: Compute the singular value decomposition of G as 
G = UDV where U and V are orthonormal and D is a 
diagonal matrix. 
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Step 5: Compute orthonormal R = W. 
Step 6: From the new extrinsic parameters (obtained from R) 

compute focal length f by Step 2 of Method I in Section 
2.2. 

Step 7: Repeat steps 2-6 for a maximum number of iterations. 

Proof of Derivation of Camera Parameter f in Equation (9) 

The orthonormal rotation matrix R obtained from th.e camera 
matrix equation (5) is as follows: 

The parameters computed from the matrix equation (4) are B,, 
fi,, G,, Zy and C,. The parameters computed from equation (8) are 
&/f, &/'f and C,/f. From these known parameters, we can rearrange 
equation (30) above to obtain equation (9). 

(1 0) 
Proof of Derivation of Camera Parameter C, in Equation (J-2) 

. . . .  (29) R = 

Since the first two columns of the rotation matrix R in 
equation (29) above are unit vectors, we can obtain the following 
equations: 

By the normal properties of the first two columns of the rotation 
matrix R., we obtain the following equation: 

- 
i?y k, 

ti, ty t, 
A, A, A, 
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- 
S i n c e  p a r a m e t e r s  $, $, Vx, Oy, &/f  and %/f o b t a i n e d  from 
e q u a t i o r l s  ( 4 )  and  ( 8 )  assume t h a t  Ch = 1, we c a n  o b t a i n  t h e  v a l u e  
of Ch f r o m  e q u a t i o n  ( 3 1 )  as shown i n  e q u a t i o n  ( 1 0 ) .  

P r o o f s  of Theorems 1 and 2 

L e t  M b e  t h e  camera m a t r i x ,  w i t h  no  image c e n t e r  d i s p l a c e m e n t  
and  scal le  f a c t o r ,  i n  e q u a t i o n  ( 5 )  f o r  t h e  3D c a l i b r a t i o n  case. 
L e t  Mi, ( l s i , j s 3 )  b e  t h e  e n t r i e s  o f  t h e  m a t r i x  M. I n c l u d i n g  image 
c e n t e r  d i s p l a c e m e n t  (i,, j,) and scale f a c t o r  (si,s,) t h e  new 
camera nnatrix M' w i t h  e n t r i e s  M'ij ( l s i ,  j s 3 )  c a n  b e  exp. ressed  i n  
terms of  Mi, f rom e q u a t i o n s  ( 1 2 )  and ( 1 4 )  as fo l lows :  

L e t  (if, j,) b e  t h e  image c o o r d i n a t e s  ( n o t  c o r r e c t e d  f o r  image 
c e n t e r  d i s p l a c e m e n t  and scale f a c t o r )  of  a wor ld  point:  ( x , y , z ) .  
L e t  (i', j') b e  t h e  computed image c o o r d i n a t e s  from worlld 
coord ine i t e s  ( x , y , z )  w i t h  camera m a t r i x  M'. From e q u a t i o n s  ( 6 )  and  
(11) , (i', j ') c a n  b e  e x p r e s s e d  as fo l lows :  
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where (i,j) are the image coordinates corrected for center 
displacement and scale factor of world point (x,y,z). 

The above expressions show that the computed image 
coordinates (i',j') are same as the uncompensated image! 
coordinates (i,,j,) of world point (x,y,z). This proves; Theorem 
1. This result can be extended to the 2D calibration case by 
starting from the camera matrix M in equation (6). 

For the 2D calibration case, let N = M'~ where M is; the 
camera matrix in equation (6). Let Nij (lsi, js3) be the! entries 
of matrix N. Let N' = (M')'l where N'ij (lsi, js3) are entries of 
matrix N'. From equation (32) we obtain the following 
expressions: 
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Let; (iff j,) be the image coordinates (not compensated for 
image center displacement and scale factor) of an world point 
(x,y). Let (xofy') be the computed world coordinates from image 
coordirlates (iff j,) with camera matrix No. From equations (6), 
(33) and (11) we obtain the following expressions: 

The above equations show that the computed world coordinates 
(xofy') are same as the true world coordinates (xfy) for the 2D 
~alibra~tion case. This proves Theorem 2. This result for the 2D 
case cam be extended to include Method I1 of the 3D calibration 
case for a stereo setup. 
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BEGIN Q 
1 COMPUTE 10, JCl, SI, S J  

BY STATE OF THE 
ART METHODS 

I t 
1 COMPUTE Ll, Pl, P2, 

fix. Ay, A 4  Ox, Fy, Oz, cv I I BY AL[iOI?ITHM I N  SECTION 4.2 

COMPUTE REMAINING EXTRINSIC 
PARAMETERS AND f BY ALGDRITHM 

I N  SECTIONS 2.2 & 2.3 

STEP 1 

I I ORTHONORMAL R 

1 STEP 2 

I 

FIGURE 3. FLDWCHART FDR THE COMPLETE ALIGORITHM 
FUR THE COMPUTATION OF ALL CAL.IBRAT1ON 
PARAMETERS. 
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FIGURE 4. SETUP FOR CAMERA CALIBRATION 
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