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ABSTRACT

In this paper we have presented a novel algorithmfor canera
calibration which is a significant inprovenent in nathematica
simplicity, accuracy and conputational efficiency in the solution
of all extrinsic (external canmera geonetric) and intrinsic
(internal canmera geonetric and canera optics) parameters. The
nmet hod i nvolves a direct transformation fromthe three-
di mensi onal (3D) object world to the two-dinmensional (2D) inage
or sensor plane in ternms of "honogeneous vector forns" for the
solution of 12 extrinsic and a nunber of intrinsic paraneters for
bot h copl anar and non-copl anar distributions of object points.
Furthernore, we have denonstrated a strong robust property of the
proposed al gorithmby proving (W th experinmental corroboration)
that if the camera is calibrated with i mage data not conpensated
for image center displacenent and scale factor, the proposed
algorithmyields parameters that cause no errors in the
conput ati on of both inage and world coordinates. In addition, we
have discussed a new net hod of parameter conputation under a
conpl ete lens distortion effect (including both radial and
tangential distortions) by the nmethod of constrained | east
squares. Anal ytical proofs of convergence are al so given
Moreover, we have provided a new conpl ete al gorithm for t he
solution of all calibration paraneters. Finally, we have proposed
a new Incremental Mdel for the correspondence of tol erances
bet ween the 3D object world and the 2D i mage plane with and
w thout intrinsic paraneter effects. Experinental results on a
copl anar set of object points have been provided to support our nodels.

& Chanchal Chatterjee is also Project Mnager of Vision
Systens at Phoeni x Software Devel opnent ., Sterling Heights, M.
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10 Introduction

Canera Calibration is an inportant task in the field of
machi ne vi sion applications that require:

(1) conversion of real-world coordinates of object points into
pi xel coordi nates of the corresponding points in an image,

(2) conversion of pixel coordinates of image points into real -
wor |l d coordi nates of the correspondi ng object features,

(3) «calculation of various extrinsic (external camera geometric)
and intrinsic (internal camera geonetric or canera optics)
par amet ers,

(4) conversion between real-world tolerances and pixe
di st ances.

In nost state of the art nodels and algorithms[6,8-10,15,21-28]

for camera calibration, we can find di scussions on the first

t hree tasks above. In this paper we shall establish new nethods

for fast, robust and accurate solutions to these tasks, and al so

present new nodels for efficient conputation of the fourth

I n classical inmage processing applications such as part
dimensional measurement[19,20], robot calibration[3,7,12,21], and
automati ¢ assembly of mechanical or el ectronics components[2,11],
canera calibration is usually perforned at the | earn or teach
phases where the speed of the calibration nethod is not very
critical. However, in many real-time applications such as object
tracking and trajectory analysis, the speed of the canera
calibration method is inportant for efficient run-tinme
performance. It is generally agreed[10,13,23,28] that any
t echni que invol ving non-linear optimization[9,21,26,27] that
require conputer-intensive full-scale search is too conplex for
t hese real -tinme applications. For these applications and others,
we shall focus on novel algorithms for high speed performance
with a high degree of accuracy.

11 Brief Reviewof State of the Art:

A wel | - known nodel for calibration of extrinsic canera
parameters to obtain three-dinensional (3D) nmeasurenents from a
stereo pair of cameras has been devel oped by Yakimovsky and
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Cunningham[28] for the JPL Robotics Research Laboratory. A direct
transformation fromthe 3D world coordinates to the two-

di nensi onal (2D) inmage coordi nates has been established in this
approach resulting in linear equations whose solutions yield the
unknown camera paranmeters. A direct advantage of this nethod is
that a closed form solution is obtained for all extrinsic
paraneters and focal |ength. However, due to a narrow field of
view and | arge object distances they used a |linear |ens nodel and
i gnored distortions caused by non-linearities in the lens
systems. All intrinsic paranmeters except focal length are
ignored. The basic camera geonetry in this nmodel has been used to
buil d our anal yses and algorithnms. However, as discussed in
Section 1.2, we have significantly inproved several aspects of

t hi s basic nodel.

An alternative exhaustive approach to canera calibration has
been presented by Tsai[13,23] which first transforns the 3D
obj ect coordinates to a 3D space and subsequently projects it to
the 2D image or sensor plane. The advantages of this method are
as follows: (a) by the two-step coordinate transformation Tsai
has successfully reduced the conputational conplexity of the
calibration algorithm because nost of the paraneters are
conputed by a single step | east squares approach, and (b) some
intrinsic paranmeters such as imge center displacenent, scale
factor and radial lens distortion are considered for higher
accuracy. The disadvantages of the method are as follows: (a) the
met hod considers only radial |ens distortion and cannot be
extended to any other types of distortion, and (b) the nethod
tends to ignore constraints which the extrinsic and intrinsic
paraneters nust obey. It has been argued in [25] that this
"solution is not optiml because the information provided by the
calibration points has not been fully utilized".

G osky and Tamburino[10] have presented a nmethod of canera
calibration that uses a linear affine transformation as a map
bet ween t he canera coordi nates and the geonetrically projected
coordi nates on the inmage plane of known reference points. The
advantages of this nethod are as follows: (a) all paraneters are
solved within the specified constraints, and (b) many intrinsic
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paraneters such as scaling, aspect ratio, displacenent of inmage
center and skew angle are considered. The di sadvantages of the
met hod are as follows: (a) lens distortion is solved
geonetrically by transform ng the distorted image to a
rectangul ar camera grid; lens distortion is, therefore, not
considered as a canera paraneter that is calibrated with the
remai ning intrinsic parameters and (b) as the conputational
conpl exity of the method is sinplified, in sone cases, sinpler
solutions can be obtained at the price of |ower accuracy.

A met hod of 3D position sensing using a calibration schene
that relates depth to focus blur has been presented by Cardillo
and Ahmed[6]. The main advantage of this method is the
conput ati onal efficiency. The disadvantages of this nethod are as
follows: (a) the nethod assunes sharp scene edges when neasuring
blur; noise and lighting intensity variations adversely affect
t he performance of this nmethod, and (b) the method ignores
effects of lens distortion in the measurenent of bl ur |edges.

Wang and Tsai[24] have presented a nmethod of camera
calibration that denonstrates that vanishing lines include useful
geometric hints about the camera extrinsic parameters and the
focal length, fromwhich these paraneters can be solved easily
and analytically. This technique uses nmultiple steps of efficient
| east squares nethod for paranmeter conputation. No intrinsic
parameter i s solved by this method except for focal length.

A met hod of camera calibration with a conplete |ens
distortion nodel is presented by Weng, et alf25). This method
proposes nultiple steps of iterative |inear and non-Iinear
optim zation schenes to solve all extrinsic and intrinsic canera
parameters. The advantages of this nmethod are as follows: (a) the
met hod solves all calibration paraneters, and (b) the paraneters
are solved within specified constraints. The di sadvantages are as
follows: (a) the method uses nultiple iterative algorithnms at the
cost of conputational efficiency, and (b) inits iterative
procedure, the nethod decouples the lens distortion paranmeters
fromthe remaining extrinsic and intrinsic parameters in order to
solve one while the other is kept fixed; this assumes that the
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| ens distortion parameters can be de-coupled fromthe :renaining
parameters Wi thout giving false mninma in paranmeter conputation.

12 Comparison with State of the Art:

In this paper, we have devel oped new al gorithnms for canera
calibration that has the follow ng enhanced features:

(1) Computational Efficiency and Mathematical Sinplicity:

As nmentioned before, alternative efficient methods for camera
cal i bration have been presented by many recent
researchers[10,13,23,28]. Qur new proposed al gorithm (Section 2)

i nproves the mathematical sinplicity of the steps involved in the
computation of calibration parameters, while enhancing the
computational efficiency when conpared to current nethods. The
enhanced sinplicity is due to the direct transformation between

t he 3D object world and the 2D i mage plane

In other words, while enhancing the mat hematical simplicity
of the proposed algorithm we have attained the conputationa
efficiency of the nost efficient current technique[13,23].
Moreover, our approach leads to several desirable properties such
as robustness (Section 3) and appropriate framework for the
solution of all extrinsic and intrinsic paraneters (Sections 4
and 5).

(2) Robustmness of Calibration A gorithm

In nost state of the art calibration nmethods, it is inportant
to conpute the intrinsic paranmeters such as imge center
di spl acenent and scal e factor[10,13,18,23,24] for accurate
calibration results. In this paper, we have anal yzed the
i nfl uence of both inmage center displacenent and scale factor on
t he extrinsic paraneters conputed by the proposed algorithm and
al so on the conputation of inmage and world coordinates (refer
Section 3). We have denonstrated the following results:

(i) CQur analysis shows that both image center displacenent and
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scale factor have no effect (in the coplanar and non-

copl anar calibration cases) on the conputation of both inage
and world coordinates, if the canerais calibrated with the
unconpensat ed i nage data using our proposed algorithm This
result allows us to performaccurate canera calibration

W t hout extensive conmputation of intrinsic paraneters such
as inmage center displacenent and scal e factor

(ii) We further denonstrate the influence of these intrinsic
paraneters on the extrinsic paraneters conputed by our
algorithm This analysis allows us to adjust the extrinsic
paraneters based on these intrinsic parameter val ues, and
reduces the task of extensive re-conputation of the
extrinsic paranmeters when the imge center or scale factor
changes.

Sone researchers[13,23] have observed, through experinental
studi es, that inmage center displacenment has mnimal effect on
canera calibration for the non-coplanar case. For exanple, in
[23] the foll owi ng observation is nmade: "To see the consequence
of having a wongly guessed i nage center when doing calibration,
we intentionally altered the apparent image center by ten pixels.
The results of 3D neasurenent still is about as accurate". W
have confirmed this fact by anal ytical neans and al so extended it
to the coplanar distribution of object points. Furthernore, we
have extended this result to include the scale factor paraneter
This appears to be the first known analvtical result of its kind
in a calibration algorithm

(3) Complete Lens D stortion:

| n most canera calibration nmethods commonly used in
applications, the effects of inmage distortion due to non-I|inear
| ens systens are ignored. However, many researchers[12,15] have
observed that ignoring |l ens distortion is unacceptable in doing
3D neasurenents. Many recent studies[10,13,18,23] have consi dered
new net hods for correcting | ens distortion. These nethods,
al t hough very accurate, nostly consider radial distortions of
| enses. When conplete Il ens distortion is considered[25,26],
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conputationally intensive iterative |linear and non-1|inear
optimization schenes are used.

We have presented a new algorithmto solve the conplete |ens
distortion problemw th both radial and tangential distortions of
| enses by extending the | east squares solution of |inear
equations to a constrained |east squares solution by the use of
Lagrange multipliers[14]. W& have al so included anal ytical proofs
and experinental results for the convergence of the proposed
iterative algorithm While other researchers have previously
presented iterative algorithnms, our analysis appears to be the
onlv one that shows an anal ytical proof of convergence of this
al gorithm

(4) Complete Algorithmfor the Solution of Al Paraneters

A direct outcome of the robustness and the lens distortion
algorithms is a conplete algorithmfor the solution of all
calibration paraneters. Although state of the art procedures|25]
exi st for such solutions, we have discussed the robustness of our
approach in conparison with these procedures. W have partitioned
t he paraneter space into two subsets for the solution of all
extrinsic and intrinsic paranmeters, and have argued that our new
procedure i S nore robust and | ess sensitive to noise and starting
values in iteration

(5) Increnmental Model:

In this paper we have al so studied an aspect of canera
calibration that comonly occur in machine vision applications
involving neasurenents and tol erance conputations such as defect
measur ement and robotic part placenment. In such applications it
may be sufficient to conpute the correspondence between di stances
(or tolerances) in 3Dto distances in pixels. For these
situations, we have devel oped a special correspondence nodel
called tlhe I ncrenental Mdel. We shall present the Increnental
Model both with and w thout the influence of intrinsic paranmeters
(such as lens distortion) for coplanar and non-copl anar
di stributions of object points.
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(6) GCeonetrical Interpretation of Paraneters:

We have established a direct transformation between the 3D
obj ect world and the 2D image or sensor plane in terms; of
"homogeneous vector forns". In nost state of the art models, the
homogeneous transformation is between the 3D object world and a
3D canera space, which i s subsequently projected to the i mage or
sensor plane. This is a two-step transformation. The proposed
one- step honogeneous transformation yields a sinple set of
mat hematical steps for the solution of all calibration
paraneters, and denonstrates a geonetrical significance of the
calibration paranmeters in the physical canera setup. Furthernore,
we have carried the analysis for both coplanar and non~coplanar
di stributions of object points, and have provided exhaustive
solutions for both.

In summary, our approach to camera calibrationis a
significant i nprovenent in mathematical sinplicity, accuracy, and
computational efficiency in the solution of all extrinsic and
intrinsic paraneters. Furthernore, this method | eads to a robust
solution of calibration paranmeters, where the i mage center
di spl acement and scal e factor have no effect on the computation
of 1mage! or world coordinates. Al so we have demonstrated
analytically, the effects of image center displacenent and scale
factor on the extrinsic paranmeters. In addition, we have
consi dered conplete lens distortion, and added the new aspect of
the Incremental Mdel. A newiterative constrained |east squares
approach t o conpute lens distortion paraneters with an anal yti cal
proof of convergence is also studied. Finally, a new conplete
algorithm for the solution of all calibration parameters, as
shown in. Table 1, is presented.
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TABLE 1  Canera Calibration Paraneters Discussed in this Study.

Params Type Description

Extrinsic Hori zontal canera vector

Vertical canera vector.

Axi al camera vector

Position of camera center.

New efficient conputati onal methods are
present ed.

-~
n

:P »P ’ x<’ xm’
<n ? >‘<<>JII>

Qo n<> fas ]}

f Intrinsic | Focal Length.

New efficient conputati onal methods are
presented. Pertains to the physical
camera optics.

i,,73, Intrinsic |lmage Center Displacenent.

S;,8; Scal e Factor.

Ef fects on extrinsic paraneters and
coordi nate conputati on have been
denonstrated anal ytically.

1,,p:/P: Intrinsic |Lens Distortion.

Conplete lens distortion i s considered.
Efficient constrained | east squares
solution is proposed. Analytic | proof
of convergence provided.

13 CQutline of the Paper

In Section 2 we shall present the camera calibration node
and represent the correspondence between the world and i mage
coordinates in a "homogeneous vector fornf. A novel algorithm for
extrinsic paranmeter (and focal |ength) conmputation will be
presented for both coplanar and non-copl anar distributions of
obj ect points. In Section 3 the influence of inmge center
displacement and scal e factor on the extrinsic parameters and, on
coordinate conputation will be discussed. The robustness of the
proposed algorithmw Il also be analyzed. In Section 4, we shal
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propose a new al gorithmfor conplete corrections of |ens
distortion effects for enhanced calibration accuracy. Analyti cal
proof of convergence of this algorithmw Il be shown.

In Section 5 a conplete algorithmfor the solution of all
calibration paraneters will be presented. Robustness of the
conplete algorithmin conparison with state of the art methods
wi || be discussed. Section 6 will contain an error anal ysis of
the calibration parameters. The effects of measurenent. errors of
image coordinates on the calibration parameters will be anal yzed.
Section 7 will discuss the new Increnmental Mdel with and w t hout
t he influence of intrinsic paraneters for both coplanar and non-
copl anar cases. Section 8 will contain experimental results on a
copl anar set of object points. Section 9 will have concluding
remar ks

20 Canera Calibration Mdel

This section of the paper deals wth the geonetrical aspects
of the calibration problem The geonmetry assunes that the camera
and | ens system behave |ike a pinhole camera system w t hout any
distortion. The effects of inmage distortions due to |ens
configuration have been added to this geonetrical system for
I nproved. accuracy in the next sections (Section 3 and 4). The
geonetry involves essentially three coordinate systens (refer
Figure 1):

(1) a 3D world coordinate system (X,Y,2) centered around a point
W and including a point P(x,y,z) in 3D,

(2) a 2D image or sensor array system (I,J) centered at a point
S in the sensor plane, and describing the "horizontal" and
"vertical" positions of image pixels,

(3) an intermediate 3D coordi nate system (H,V,A) with origin at
optical center C of the |l ens system and describing the
*horizontal®, "vertical" and "axial" directions of the
camera System
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The worl d coordinate systemis arbitrary and is often
dictated by the application. However, it is assuned in our
di scussi ons that the coordinate systens are right-handed, and
that the axes are nutually orthogonal. The internediate
coordinate systemis often referred to as the canera coordi nate
system The HV plane of the camera coordi nate systemis viewed
as being parallel to the sensor array plane, with the Hand V
axes aligned respectively tothe | and J axes of the sensor
coordinate system |In a purely geonetrical nodel, the third axis
A of the camera coordinate systemlies on the optical axis of the
| ens package. The sensor coordi nate system (I,J) is centered at a
point S on the sensor plane Iying on the optical axis of the |ens
package, i.e. along canera axis A

Establishing a relationship anong these three coordinate
systems is the central issue within the canera calibration
problem Let (#,V,A) be unit vectors for the canmera coordinate
system (H,V,A). A point Pin 3Dwth world coordi nates (x,y,2z) is
proj ected through the optical center C onto the sensor array at a
point (i,3j) in the sensor (image) coordinates (refer Figure 1).
Let f be the distance fromoptical center Cto the sensor plane
By simlar triangles:

(P-C) TH _ 1 (1)
(P-C).a £
(P-O).v i
—_ Y = cees (2
(P-0).2 £ (2)

Dividing equation (1) by equation (2), and assuming C,=C.H,
c,=C.V and C,=C.A, we create the following matrix equation:
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n:t :n» :u»‘

[Fx jy jz -ix -iy -iz i] Cp, [F] ceee (3)

qb
%
|

>

,-:Q Nq»

I n equation (3) (i,3j) are neasured pixel coordinates of a point P
in 3D with known coordinates (x,y,z). The canera parameters f,,
&, 8, V., ¥, ¥, ¢, C, are unknown extrinsic calibration
constants.

Thus; every point P for which both 3D and image coordi nates
can be established, provides a |linear equation involving 7 canera
paraneters (assumng Cy,=1). A mninmumof 7 points with known
coordinates are, therefore, needed to solve for the system
parameters. In reality, nore than 7 points are used to
overdeterm ne the problem and then solved by the | east squares
nmethod. The remaining calibration paraneters are solved by sinple
mathematical steps (refer Section 2.2). This solution of the
cal i bration paraneters for a non-coplanar distribution. of object
points in 3Dis called 3D calibration

One of the main reasons that the |east squares sol ution may
not exist for the systemof linear equations in (3) above, is
that the points used for calibration actually lie in a plane with
respect to the world coordinate system In this case, the
calibration paraneters are solved in two steps:

(1) First a basic set of paraneters are solved by the |east
squares method from equation (4) bel ow

(2) Next the remmining paraneters are solved by a set of sinple
mathematical steps as shown in Section 23

Thi s solution of the calibration parameters for a copl anar

distribution of object points is referred to as 2D calibration.
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In this study we have assuned that it is the z-coordinate that is
uni mportant for 2D calibration. Equation (3) can be witten
w t hout the z conponents as foll ows:

[Fx jy ~ix -iy i] || = €, [J] ce.. (4)

If the | east squares solution does not exist in this case, it
IS then recommended that another set of points with more X-y
spread be selected for calibration purposes.

2.1 Homogeneous Form for Coordi nate Conversion:

In this section we shall present a one-step transformation
bet ween t he world and i mage coordi nates. Although equations (1)
and (2) are non-linear, it is possible to represent them in a
condensed matrix linear transformation form by use of honpgeneous
coordinates. Wthin this context, the world to i mage coordi nate
transformation for 3D calibration case can be expressed as:

' H, H, H, ~Cp|ry
l A A A
kij| = x Vy Vz —CV § (5)
1 Ax Ay A G|y
f f f £

Li kewi se the coordi nate conversion for 2D cali bration case
can be expressed in matrix form as:
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] H, Hy ~Cy
1 a a c X
k|7 = [V Yy T&|ly . (6)
a3, alb
f £ £,

In general, the 3Xx4 matrix in 3 case (equation 5) and 3X3
matrix in 2D case (equation 6) that relate the homogeneous forms
of the image and world coordinates are called the camera
matrices. A 3X3 orthonormal matrix R (refer equation 29) can be
obtained from the camera matrix in the I case. The
correspondence between world and image coordinates i s obtained by
a complete solution of all entries of the camera matrices as
shown in Sections 2.2 and 2.3.

2.2 Computation of the Calibration Parameters = 3P Case:

For the 3 calibration case, assuming Cc,=1, we can compute
camera garameters f,, 8, 8, V,, ¥,, ¥, and ¢, from equation (3).
The remaining entries of the camera matrix (refer equation 5) C,,
A/t A /f, A,/f and C,/f can be computed by the following steps:

(1) From the property I8 =1 = 1 of the camera coordinate
vectors i and V¥, we can compute parameter C, by the
following equations:

1
ol - | m
x y z
or
|Cal =

1
T

(2) Assummg the sign of C, as +1, update values of §,, H,, §,,
Ve V,, V., and C, by multiplying them by C,. The sign of
parameter C, can be obtained (from equations 1 and 2) from
any object point Py(%,,Y0r2Z,) Whose measured image
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coordinates are (i,,j,) such that both i, and j, are not

Zeros:
sign(Cy) = 51 gn (i)
or
sign(Cy,) = shgn (X°Vx+y°vy+z°vz_c")

si gn(J,)

The remaining paraneters (&,,4,4,,.¢c,,£f) can be solved by any
one of the follow ng two nethods:

Method I:

(1) Paraneters (&,,A,,4,) can be obtained fromthe right-handed
property of the canmera coordi nate system (H,V,A) as the
cross product of vectors (H,,8,8) and (V,¥,V,).

(2) Canera paraneters f and C can be obtained fromthe
followng matri x equation derived fromequations (1) and
(2):

(xi 4V +2H -Cy) 1 [f] i kA rva rzA)
(xV, +y¥ +2¥7,-C,) J|[Ce J (%A, *vA +2ZA,)

The above equation is solved from several calibration points
P whose i nmage points (i,j) are neasured and object points

(x,y,z) are known.
Method II:

(1) Solve for paraneters A,/f, A,/f, A,/f and c,/f as follows
from known val ues of &, ¥, ¢, and ¢, conputed before.
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X

f

AJ A A A C
l'jx iy iz -i P (XHX"'YH_V"'ZHZ- b) 7)

a,| |y v -c)

T
C&
£

ix jy jz -J

(2) The focal length f can be conputed fromthe property | al =1
as shown bel ow

The paraneters conputed by the above al gorithmwi thout
i mposi ng any constraint on the |east squares solution may not
lead to an orthonormal rotation matrix R In order to obtain an
orthonormal solution for Rin the 3D case, the | east squares
sol ution can be nodified as shown in Appendix I.

23 Conputation of the Calibration Paraneters = 2D Case:

The parameter conputation in the 2D case (refer canera matrix
in equation 6) is nore conplex due to the fact that we can sol ve
a smal |l er subset of camera paraneters fromthe |inear equation
(4). W need to conpute the renaining canera parameters, nanely
A/f, A/f, Cc,/f and C, in the fol |l owi ng steps:

(1) Assumng C,=1, conpute paraneters A,/f, A/f and c,/f from
the followi ng matri x equation derived fromequations (1) and
(2):
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(X +yH,~1) (8)

[.;'x iy —i]
jx jy -3 (x{/x+yf/y-Cv)

e el

Equation (8) is solved from several points P whose image
points (i,j) are measured and object points (x,y) are known.

(2) Assuming C,=1, the focal length f can be obtained from the
orthonormal property of the rotation matrix R (equation 29)
by the equation below. An explanation for the derivation of
parameter f is given in Appendix II.

2 = - [ EHVEYy et (9)

<>

N

—x
f

(3) Parameter €, can be obtained from the orthonormal property
of rotation matrix R by the following equations. A
derivation of these equations is shown in Appendix II.

_ 1
|Cul = —
A Y A
Her x*[?") £
or
lc,| = 1A . ... (10)
A
- Lt Y 2
Ify"'sz"'[—f]f

(4) Assuming the sign of ¢, as +1, update values of #,, H, V,,
V,, C,, A /f, A/f and C,/f by multiplying them with C,.
Compute the sign of C, from any object point P,(x,,Y¥,) in 3D
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whose neasured inmage coordinates are (ig,j,) such that both
i, and j, are not zeros:

sign (xoz}x+y°1}y-ch)

sign(Cy) = sign(i,)
or
si gn (X%, V_+Y,V ~C,)

si gn{J,)

(5) With the correct sign of ¢, update values of &, 8, v,, ¥,
C., A,/f, A,/f and C,/f for the camera matrix in eqguation

(6).

30 Robustness of the Calibration Al gorithm

The final goal of nost canera calibration algorithms is the
robust and accurate conputation of inmage and worl d coordi nates.
I n nost state of the art calibration nmethods, sone intrinsic
parameters such as image center displacenent and scal e! factor
have significant influence on these conputations. In this
section, we shall analyze the effects of these intrinsic
paraneters on the extrinsic parameters conputed by our algorithm
and al so on the conputation of inmage and world coordinates. A
strong robustness of our paraneter conputation procedure will be
demonstrated in this section.

| n nost camera calibration nethods, the center of the inmage
or sensor plane is chosen as the inage center S (refer Figure 1).
The actual center of the image plane is the intersection of the
optical axis of the canera-lens systemw th the i mage plane. Due
t o scanning and sanpling errors or due to inaccuracies;in the
| ens system the actual inmage center can be different fromthe
center & of the imge coordi nate system(I-J). Another intrinsic
parameter commonly considered in canmera calibration is the scale
factor (s;,sy). The scale factor parameter is caused by the
di mensi on, spacing and nunber of sensor elenments in the canera

Page 18




sensor, and also by the scanning and sanpling properties of the
analog-to-digital converter of the inmage processor. In [13,18]
di fferent nethods of computing these paraneters have been

di scussed.

Let us consider a point in 3D whose i mage coordi nates are
(i;,3¢) with respect to the center S (refer Figure 1) of the
| mge ccoordinate system (l-J). Let the actual center of the image
pl ane be at |ocation (i,,3j,) Wwth respect to S Let (i,3j) be the
true location of the point inthe inmage plane with respect to its
actual inmage center. If the scale factor is (s;,sy) we can obtain
the foll owi ng expressions[13,18,23]:

i= 8;7"(i,~1,)
3 = 8,7 (3 d0) eees (11)

If the canera is calibrated with inmage coordinates (ig,J¢),
we shall obtain extrinsic paraneters &, ¥/, &, ¢, ¢,, and C.
Let &, ¥, &, ¢,, C,, and G be the calibration paraneters with no
| ens distortion, no image center displacenent and scal e factor
From equations (1) and (2) the conbined effects of these
intrinsic paraneters on the extrinsic paraneters as follows:

m»
l
0

™
b, 14
+
.
|

Ch' = Si'Ch + io?‘
' ., C
C, = 84C, + Jo—f" ceee (12)

In Method | of the 3D case, the axial vector & is expressed
(refer Section 2.2) as follows:
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A A

A .V . H
= SiSjA - Sijo-f - Sjlo—f

A= xvV (13)

This error in the axial vector A" fromits ideal value A will
produce an error in the conputation of inmage or world coordinates
in a 3D stereo setup

For Method II of the 3D case, and for the 2D calibration
case, fromequations (7) and (8) respectively, we shall obtain
the foil-ow ng expressions.

¥4
' r
C. C,
—= =2 cee. (14
7 7 (14)

From these expressions (equations 12 and 14) we obtain the
foll ow ng theorens:

Theorem 1:

In Method II of the 3D case and the 2D cali bration case,
there is no error in the conputation of inage coordinates (ig, j¢)
fromworld coordinates (x,y,z) if the paraneters used for

-~

computation are &, V', 4, ¢, C,, and C,’.

Theorem 2:

In Methods II of the 3D case and the 2D calibration case,
there is no error in the conputation of world coordinates (x,y,z)
f rom uncompensated i nage coordi nates (is,j¢) With paraneters ',
v, &, ¢, ¢, and ¢c,’.

Proofs of Theorens 1 and 2 are given in Appendi x III. These
t heorens prove a strong robust property of the proposed
calibration algorithmwhich inplies that we can obtain accurate
i mge and world coordi nates w t hout extensive computation of
i mge center displ acenent and scale factor. In cases where
accurate calibration parameters are needed, equations (12)-(14)
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can be used to update the extrinsic paraneters for different
val ues of image center displacenments and scale factors.
Experinmental results (Section 8) are provided to verify the
anal ysis presented in this section

4.0 Calibration Model Wth Conplete Lens Distortion

In this section, we shall consider the effects of |ens
di stortion on the proposed calibration nmodel for both 3D and 2D
cases. Figure 1 shows the ideal image pixel coordinates (i,3j) of
a point Pin 3D However, due to lens distortions, the actual
coordinates of the inmmge point may be at (i,,j,). This change in
t he pixel coordinates due to lens distortion leads to a variation
of the scale of an inmmge as a function of positionin the inmage
pl ane. Clearly, for accurate calibration of the canera., it is
important to correct for distortions in the [ens. When inage
center displacement and scale factor are added to the calibration
nmodel , the expressions of (i,j) in equation (11) are used for
(1p03p) -

Two types of lens distortions conmonly seen in image
processing applications are radial[5,16] and tangential[4,16]
distortions. Two types of common radial distortions in inmage
processing are pincushion and barrel distortions show in Figure
2. Inthe sinplest case, as for third order or Siedel
distortion[16], an outward displacenent of a given i mage point
fromits desired location on a nmean image plane is referred to as
pi ncushi on distortion. An inward di splacenent, on the other hand,
is called barrel distortion. Besides these, there can be
tangential distortions usually caused by: (a) decentering of the
| ens (Decentering Distortion), or (b) inperfections in |lens
manufacturing or tilt in canera sensor or lens (Thin Prism
Di stortion).

One commonly used nodel for correcting lens distortionis
t hat devel oped by Brown[4,5,16]. Let D, and Dy be the corrections
for geonetric lens distortions present in the i mage coordi nates
ip and j, respectively of an object point P(x,y,z). Wth
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r=(i+j.?)*?, b, and D; are expressed by the following infinite
series:

Dy = i (l,r?+l,r*+1,r*+..) + (p,(r*+2i?)+2p,i j,) (1+p,;r’+..)

D

3 Jp(lar?+1l,ré+1,xrf+..) + (2P, i, Jp+pa (X?+423.%) ) (14pr?+..) .... (15)

The coefficients 1,, 1,, 1;, p, p; and p; may be determined as
a part of the canera calibration process. The nodel accounts for
both symmetric radial and asymmetric tangential distortions. The
terms including coefficients 1,, 1, and 1, represent radial
distortion, and the terms which include p, p, and p, represent
tangential distortions. The inmage coordi nates are corrected for
| ens distortion by the follow ng expression:

= ip + D,
jp + Dj ® ® 8 0 (16)

i
3

The calibration equations under |ens distortion can be
obt ai ned. by substituting (ig+D;) for i and (j,+Dy) for 3j in
equation. (3) for the 3D case and equation (4) for the 2D case.
The solution for the unknown canera paraneters
(4,,8,,8,,9,9,9,c,,C,) and the lens distortion paraneters
(1,,1,,1,,p ,p.,p;) are obtained by using the nethod of Lagrange
multipliers[14] for a constrained | east squares solution. The
remei ning canmera paraneters (A,,A3,4,,C,f) can be obtained by the
steps nmentioned before in Sections 22 and 23

In the followi ng two sections we shall discuss a new i nproved
calibration algorithmunder (a) radial and (b) both radial and
tangential lens distortions by a constrained | east squares
solution with Lagrange mnultipliers.

41 Calibration Under Radial Lens Distortion

Let us consider a vector B for the unknown extrinsic
calibration paranmeters in the 3D calibration case as foll ows:
B* = (A, B 8, 7,0, ¥

x y €

Gl
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Let U and Wbe two vectors with known i mage and worl d coordinate
val ues as defined bel ow

UHT = [jnxn ann jnzn -inxn —iDYD —inzn in]
WT = 120"

where r? = (i,2+3,?).

Al so define variable g = -j,r,2. Subscript n represents the n®*
calibration point (n=1,..,N) used for this algorithm

Assum ng C,=1, we can represent the linear equation under

radial | ens distortion as foll ows:

BT ¢T L||Wo| = Jo» mn=1,...,N cee. (17)

The constraint is: C' = 1,B%.

Sol ving t he above |inear equation by |east squares we shall
obtain the foll ow ng expressions for B and 1.

N TN
B =Y (U+1,W,) (U+1,W,) T] Y (Fa-lia,) (U,+1,W,) ce.. (18)

n=1l n=l

N
E (jn-B TUn) (B TWn"'an)
1, = 22— cee (19)
Y 1B H,+a,) P

n=1

l[terative Algorithm For Accurat lution of B and 1,

This one-step solution for the extrinsic parameters in vector
B and the radial lens distortion paraneter 1 can be further
I nproved by an iterative procedure described in Steps 1-4 bel ow

Step 1 Choose an initial "reasonable" value of 1 (say 0.1).
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Step 2 Conput e extrinsic parameter vector B by equation (18).
Step 3 Conpute radial distortion paraneter 1, by equation (19)
with the value of vector B obtained in Step 2
Step 4 Repeat steps 2 and 3 till a maxi mum nunber of

Iterations.

The nunber of iterations required for this conputation
depends on the starting value of 1. However, we have proven
analytically that the above al gorithm converges towards a correct
solution of 1, in consecutive steps of iteration

Proof of Conversence of the Iterative Solution of B and 1,:

W shall use the synbols e, B,, and 1 for the val ues of
| east squared error, extrinsic paraneter vector B and radial
di stortion paraneter 1, respectively in the ki" step of iteration.
Fol | ow ng t hese notati ons:

N
ezk+1 = :2 (F,-B Tk+1 (Up* 1y Wy) =1 2,) z

n=1

< ‘E: (jn'BkT(Un*'lqun) -lk+1an) :

=18
L]
fry

f
4=

( (jn_BkT(Un+lkWn) -lkan) + (lk—lk+1) (BkTWn+an) )2

]
L]
oy

N N
= }; 1(G,-B, T(U+1,W,) -1,a,) I + 21 (1,-1,.,) 21 (BIw,+a,) IP
n= n=

N
+ 2Y° (1p-14,,) (F,=Bg (U+1,W,) ~1,a,) (BW +ay,)

n=1
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N
= e: + E[Z (lk—lkol) (jn-BkTUn) (BkTWn+an) + (1k2+1_1§) IBkTWn+anI2]

n=1

N . T T

-B,U,) (By W,+a

= of + Y IB W2, |1 + 2(1,r L) TuPa T Butatay) g
a=1 IBk “,n"‘anl2

N
2 T, 2
=e; + Y IBW +a,)

n=1

T 2
IBk Wn+ann

2
(7,-BSU,) (BSW, +a,)
1y, - -

2
1, - (7,-BLU,) (B{W, +a,)
IB W +a |2

Considering the terms within the square brackets as a function of
1,.,, this function reaches a minimum at

(7,-BSU,) (BW,+a,)
1B W, +a, I

1k¢1 =

The resulting value of the function at the minimum i s

2
(7,-BSU,) (B W, +a,)
1B, Wy+a,l?

1, -

which cannot be positive.
From this we can infer
e’ s e’
The experimental analysis in Section 8 for parameter 1,
support the fast convergence of the above algorithm. For our
experimental setup, starting from 1,=0.1, we converged at 1,=-

0.000052 in just one iteration. Further iterations do not change
the value of 1, significantly (lessthan 196).
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4.2 Calibration Under Radial and Tangential Lens Di stortions

The analysis for the radial distortion can be extended to
both radial and tangential lens distortions. For this we shall
consi der vectors Q and S as foll ows:

Q, = [2i,Jn%, 28,3,¥n 24,002, (5 7424,7) %, -(r,2+21i%)y,
-(r+2i%) z, (r,2+24.%)]
8o = [(r+23,.)%, (r,+23,°)¥n (L +23.7) 20 =2i,30X, —21,30Yn
=2i,3a2, 2i4]a]

Al so define variables b and ¢ as foll ows:

b, = -2i,j,
cll -(r112+2jl12)

As before, subscript nis for the n* calibration point
(n=1,ll.'N)l

The |inear equation under both radial and tangential |ens
di stortions can be expressed as bel ow

W2 8 nS nq,

[BT CT DT ET 1, p; b, =Jp, n=1,...,N con. (20)

[\
]

b

i)

where the constraints are:
CT = 1,B*, D* = p,B*, ET = p,B%.
Sol ving the above |inear equation by |east squares we shall

obtain the follow ng expressions for vector B and variables 1,,
p. and p,.
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-1
N
Y (Fo-(1,a,+0:b,+p,C0) ) 2, Cel (21)

n=1

N

Y z.zs

n=1

B =

where 2, = (U,+1,W,+p;Q.+P,S,)

N
Y ((F,=BT(U,+p,0,+P,S,) - (Db, +p,C,) ) (B TW,+a,)
1, = 2% - cee. (22)
Y 187w, +a, 1
n=1
N
ZT ((Fa=BT(Uy+1,W,+D,S,) - (1,8,+D,Cp) ) (BT0,+bp)
p, = == 5 .. (23)
Y. 1870, +b,F
n=1
N
Y ((F~BT(U+1,W,*+p10p) - (1,2,+D1by) ) (BTS,*Cy)
p, = 2= coee (24)

N
Y 1875+,

n=1

These first estimates for these parameters can be further
improved by extending the iterative procedure discussed in
Section 4.1 to the radial and tangential case. Extensive
experiments were conducted for this case. Our experimental
results suggest that the convergence of this algorithm depends
very much on the starting values of 1,, p,, and p,. Unlike the
radial distortion case, improper choices of the starting values
lead t o solutions at local minima and do not produce the correct
estimates for the extrinsic parameters in vector B. The details
of the experimental results are in Section 8.
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50 Conplete Calibration Al gorithm

In this section, we shall extend the robust property of our
calibration method and the new solution for the lens distortion
parameters, to create a new algorithmfor the solution of al
cal i bration parameters. This algorithm has the conbined strengths
of all the procedures discussed before. An outline of this
algorithmis shown in Figure 3

The proposed conplete algorithm partitions the paraneters
into two subsets:
(1) 1image center displacenent and scale factor, and
(2) lens distortion, focal length and the extrinsic paraneters.
The first step of the algorithmsolves the first subset of
parameters by state of the art procedures[13,23] assum ng the
second subset of paraneters as constant.

In the second step of the algorithm the second subset of
parameters are conputed by the procedure in Section 4 Inthis
step, the imge center displacenent and scale factor are assuned
constant. Since only a subset of the extrinsic paraneters are
solved first, the remaining extrinsic parameters are conputed by
the steps outlined in Sections 22 and 23 The orthonormality of
the rotation matrix Ris determned by the procedure in Appendi x
l.

The two-step procedure to determ ne a conplete solution of
all calibration paraneters leads to a robust solution. Inthis
algorithm we have partitioned the paranmeter space in a way that
is different fromstate of the art methods[25] for the solution
of all calibration paraneters. We submt that our algorithm | eads
to a nore robust solution. The reasons for this robustness are as
follows:

(1) We have denonstrated in Section 3, the effects of image
center displacenent and scale factor on the extrinsic
parameters (equations 12-14). These effects are nostly
i near (equation 12) or no effect at all (equation 14). The
effect of lens distortion paraneters, on the other hand, is
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nore conpl ex and can not be determined in a closed formlike
equations (12)-(14).

(2) The effects of image center displacenment and scale factor is
same for all pixels in an inmage, whereas, the |ens
distortion effect is different for different pixels.

The state of the art procedure in [25] partitions the
paraneter space with the lens distortion paraneters as a separate
subset fromthe remaining paraneters. W submt that due to the
cl ose and conplex Iink between the | ens distortion paraneters and
the extrinsic parameters, the algorithmin [25] may converge to a
|l ocal mninumleading to inaccurate results. Al so any anal yti cal
proof of convergence of this algorithm has not been provided. In
our algorithm on the other hand, we have conputed the | ens
distortion and extrinsic parameters in a single step.

60 Error Analysis

In this section we shall consider the effects of measurenent
errors in inmage coordinates (i,j) on the conputation of the
canera calibration paranmeters. Let us consider errors e, and e,
In the nmeasurenent of inmage coordinates i and j respectively.

I gnoring effects of second order error terns, the errors in
extrinsic paraneters are proportional to the follow ng ternmns:

e,Lix, eljy, eljz, elj, elix, eliy, eliz,
e.lix, eljy, eljz, eli

where L is for all calibration points.

This result shows us that the errors in the calibration
paraneters are proportional to the x-y-z spread of the
cal i bration points, and the i-j spread of the inmage coordi nates
of the calibration points. The errors al so decrease as the origin
W(refer Figure 1) of the world coordinate systemis closer to
t he center of the field of view Thus the errors in the
calibration paraneters are | ess when the canera i s calibrated
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over a narrow field of view

It is clear fromequation (1) that errors in paranmeters & and
C, have most effect on the conputation of image coordinate i.
From equation (2) we can deternine that errors in paraneters V
and C, have nost effects on the conputation of the inage
coordinate j. Errors in the conputation of world coordinates is a
conpl ex function of errors in all the calibration paraneters.

7.0 | ncrenment al Mbde

| n many nmachi ne vi sion applications, such as defect
i nspection and part size neasurenent, it is not necessary to use
t he calibration nodel and the paraneter conputation al gorithns
for conplete solution of all camera paraneters di scussed before
I n such applications, we nay only need to calibrate di stances in
t he i mage plane to distances or tol erances in the object world.
For such applications, we frequently need to check if an inmage
feature such as a defect or a part edge is within a tol erance or
not. These tol erances are usually specified in real-world units
wher eas the neasurenents are perfornmed in the i mage donain. It is
therefore sufficient to establish a correspondence between
tolerances in 3D to distances in image (or sensor) plane.

The equati ons describing the correspondence between t he
t ol erances can be obtained fromthe honbgeneous expressions in
equations (5) and (6). Let (x,,¥.,2,) and (x,,Y.,2,) be two points
in 3D with correspondi ng i mage coordi nates (i,, j,) and (i,, j,)
respectively. Let (Ax=x,-x,, Ay=y,~y,, Az=2z,-2z,) be tolerances in
3D and (Ai=i,-i,, Aj=j,-j,) be tolerances in the image
coordi nates. The correspondence equati ons between tol erances for
the 3D case are as foll ows:
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or

oA ). A,
] [ y'lz—f"] ( z‘127J o

(X,A,+Y A *+Z.4,-C,)

£

A Yy
A,] Az

y

. . A,||llAz
V.l TE

P 1<ts2

(25)

Simlarly for the 2D calibration case, the correspondence
bet ween t he two tol erances can be represented as bel ow

or

wher e

a

A

a

)l

[f‘fx‘izT

A
y-12—2¥]

o)

(26)

Page 31




():tgx+ytgy—c,)

k, = 7 ' 1gts2
or
b C+V C+a C
kt == Az .h Az .v Az - ‘ 1$t$2
H 1.4V Je+A [~

The increnental nodels in equations (25) and (26) can be used
i n applications where we need to convert tolerances in the object
world to tolerances in the inage plane or vice-versa. The 2D
solution in equation (26) can be used inits entirety in many
applications such as defect size nmeasurenment, where we! can covert
t he size! exactly to real-world di nensions by using equation (26)
if the location of the defect in the inmge i s known.

We can further sinmplify the correspondence equations, in both
2D and 3D cases, by considering a "nominal" val ue (i,,j,) for the
| mge ccordinates (i,, j,;) or (i,, j;)= An exanple of such a
"nom nal" value is the center of the inmage or sensor plane. By
this assunption, the entries of the transformation matrices in
equatio s (25) and (26) are constants that can be conputed by the
| east squares approach fromseveral (at |east 3) known val ues of
obj ect tol erances ((Ax,Ay,Az) in 3D case and (Ax,Ay) in 2D case)
and neasured val ues of image tolerances (Ai,Aj).

When lens distortion, displacenment of image center and scale
factor are added to the calibration nodel, equations (25) and
(26) can be extended by using the expression for i and j in
equations (11) and (16). An exanple of these correspondence
equations with inmage center displacenent only is provided bel ow.
Let (i,,3,) be the imge center displacenents for inmage points
(i,,3,) and (i,,j,). The correspondence equations for the 3D case
are as follows:
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af]

or

[I‘{x_ (iz—io)

L)

£

a

y

(IA{Y— (iz—io)

All. . .. A4,
TR,

[v}-<j2-jo>

[‘ H,™(4,-1,)

«~ (J1-Jo)

3

All. . .. A

%)

¥

> H'H)‘m’

:h'

i
a

- (dy=1) -g) [

-(F,=Jq) —f”

IC

Y
z_ (Jz-Jo) T]

-(i,~-1,) —f]

|

=(Jy=Jo)

k,, k, are defined before in equation (25).

For the 2D case the correspondi ng equati ons are as foll ows:

Ai
AvE

or

[IA{X— (iz-io)

[v,—<j2-jo)

o~ (Fi=To

[

All.
T] [HY
Ax [y
_f_] [VY

all. .
[ -(11-10)7] [Hy-(ll-lo)

)Ax .
=z ) \Vy

~(1,-1,)

]
f

]

£ )

- (jz—jo)

ﬁ]
f

., A

k,, k, are defined before in equation (26).
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80 Experimental Results

In this section we shall apply the proposed algorithnms on a
test setup and analyze the results of these experinments. The
experinments were conducted for a coplanar set of object points
and the calibration paraneters were obtained.

8.1 Experinental Setup

The test calibration points were created by accurately
placing a set of 100 holes one inch apart on a precisely polished
metal plate in a square grid of 10 dots horizontally and 10 dots
vertically. The image of the test calibration points was acquired
by a NEC Tl-23A camera[17] nanufactured by NEC Corporation and a
Fujinon 50mm focal length Tv lens. The canmera was positioned at
an angl e of approximately 20 degrees fromvertical with the
calibration plate placed on a horizontal surface. The imges were
processed by an image processing hardware manufactured by Applied
Intelligent Systens Inc[l]. The inage resol ution was 512X480
pi xel s. The centroid pixel of each dot was obtained t o extract
t he pixel coordinates of the object points. Figure 4 shows a
picture of the calibration setup.

8.2 Test Results for Extrinsic Paraneters:

In the test setup, the image coordinates of the calibration
points, wth known world coordinates, were neasured fromthe
acquired image. The 2D calibration algorithm(refer Section 2)
was applied to the coplanar set of test points to obtain the
extrinsic calibration parameters. The accuracy of the calibration
algorithmis presented in two steps:

(1) The difference between the actual world coordinates and the
conmput ed worl d coordinates of the test points.

(2) The difference between the measured image coordi nates and
t he conputed i mage coordi nates of the test points.

In the first step, the extrinsic parameters were obtained
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(Section 2.3) from known world coordinates and neasured image
coordinates of the test calibration points. A newinage was
acquired and the world coordinates of the calibration points were
conputed fromthe nmeasured i mage coordi nates and the esti nated
cal i bration paranmeters. The conputed and actual world coordi nates
of the test calibration points are reported in Table 2. The
experinment was repeated for all 100 test points.

In the second step, the inmage coordi nates of the test points
wer e obtained fromthe estimated calibration paraneters and the
actual world coordi nates. The measured and the conputed image
coordinates are reported in Table 3 This experinment was al so
repeated for all 100 test points.

TABLE 22 True and Conputed World Coordi nates of the Calibration
Poi nt s.
(B, = 0.780698, #, = 0.153695, €, = 3.320078,
Vv, =-0.287919, ¥, = 0.994583, €, =-0.651146,
A,/£=-0.000166, A,/f=-0.000040, C,/f=-0.053424)

Test True Coords Conputed Coords Errors
Points X Y X Y X Y
1 0 O 0.0115 -0.0068 0. 0115 0. 0068
2 0o 1 0. 0189 1. 0146 0. 0189 0. 0146
3 0o 2 0. 0263 2.0343 0. 0263 0. 0343
4 0 3 0. 0436 3.0018 0. 0436 0. 0018
5 0 4 -0.0145 4. 0004 0. 0145 0. 0004
6 1 0 0.9774 0. 0031 0. 0226 0. 0031
7 1 1 0. 9940 0. 9708 0. 0060 0. 0292
8 1 2 1. 0006 1. 9875 0. 0006 0. 0125
9 1 3 1. 0071 3. 0027 0. 0071 0. 0027
10 1 4 1. 0236 3. 9657 0. 0236 0. 0343
11 2 0 2.0123 -0.0188 0. 0123 0. 0188
12 2 1 2.0181 0. 9963 0. 0181 0. 0037
13 2 2 1. 9591 1.9914 0. 0409 0. 0086
14 2 3 1. 9649 3. 0035 0. 0351 0. 0035
15 2 4 1. 9707 4. 0140 0. 0293 0. 0140
16 3 0 2.9662 -0.0089 0. 0338 0. 0089
17 3 1 2.9614  1.0534 0. 0386 0. 0534
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18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Aver age
St andard Devi ati on

TABLE 3.

Test
Poi nt s

1
2
3
4

N ~N~N~NNooo oo 0101 ogooh~MADMDMDMDMNWW®

B ONROMNWNROPMNWNRORNWNRODNWN

2.9763
2.9813
2.9961
3.9785
3.9827
3.9869
3.9911
4.0052
4.9942
4.9878
5.0010
5.0044
5.0078
6.0034
6.0061
6.0087
6.0113
6.0139
7.0063
6.9983
7.0002
7.0118
7.0038

2.0136
3.0224
3.9795
0.0196
1.0283
2.0355
3.0411
3.9952
-0.0022
1.0534
2.0074
3.0099
4.0108
~-0.0238
0.9786
1.9795
2.9788
3.9765
-0.0452
1.0037
2.0014
2.9479
3.9921

0.0237
0.0187
0.0039
0.0215
0.0173
0.0131
0.0089
0.0052
0.0058
0.0122
0.0010
0.0044
0.0078
0.0034
0.0061
0.0087
0.0113
0.0139
0.0063
0.0017
0.0002
0.0118
0.0038
0.0157
0.0115

0.0136
0.0224
0.0205
0.0196
0.0283
0.0355
0.0411
0.0048
0.0022
0.0534
0.0074
0.0099
0.0108
0.0238
0.0214
0.0205
0.0212
0.0235
0.0452
0.0037
0.0014
0.0521
0.0079
0.0187
0.0146

Measured and Conputed | mage Coordi nates of the
Cal i bration Points.

(ﬁxl ﬁyl Chl
Tabl e 2)

Meas Coords

I
-62
-59
-56
-53

J
12
31
50
68

v

Conput ed Coor ds

I
-62.1460
-59.3138
-56.4772
-53.6364

J
12.1883
30.8283
49.4965
68.1927

« V,, C,, A/E, A/f, C,/f sane as

Errors
I J
0.1460 0.1883
0.3138 0.1717
0.4772 0.5035
0.6364 0.1927
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5

6

7

8 -
9 -
0 -
11 -
12 -
13 -
14 -
15 -
16 -
17 -
18 -
19 -

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Aver age

St andard Devi ati on

51
48
45
42
39
36
33
30
28
25
22
19
16
13
10
-7
-4
-1
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
50
53

87
.
25
44
63
81
1
20
39
58
77
—4
16
34
53
71
-9
10
29
48
66
~15
5
23
42
61
- 21
-2
17
36
55
- 27
-7
12
30
50

-50.7913
-47.6809
-44,8288
-41.9725
-39.1118
-36.2468
-33.1252
-30.2533
-27.3769
-24.4962
-21.6111
-18.4784
-15.5862
-12.6897
-9.7888
-6.8834
-3.7393
-0.8269
2.0900
5.0114
7.9372
11.0927
14.0257
16.9632
19.9052
22.8517
26.0186
28.9723
31.9306
34.8934
37.8608
41.0393
44.0140
46.9933
49.9771
52.9656

86.9172
6.8202
25.5143
44.2366
62.9873
81.5663
1.4184
20.1669
38.9438
57.7492
76.5832
-4.0171
15.6860
33.6178
52.4783
71.3674
-9.4869
9.3713
28.2583
47.1741
66.1188
-14.9912
4.7223
22.8648
41.8363
60.8369
-20.5303
-1.5611
17.4372
36.4647
55.5214
-26.1046
-7.0795
11.9750
30.0589
50.1722

0.2087
0.3191
0.1712
0.0275
0.1118
0.2468
0.1252
0.2533
0.6231
0.5038
0.3889
0.5216
0.4138
0.3103
0.2112
0.1166
0.2607
0.1731
0.0900
0.0114
0.0628
0.0927
0.0257
0.0368
0.0948
0.1483
0.0186
0.0277
0.0694
0.1066
0.1392
0.0393
0.0140
0.0067
0.0229
0.0344
0.2140
0.1811

0.0828
0.1798
0.5143
0.2366
0.0127
0.5663
0.4184
0.1669
0.0562
0.2508
0.4168
0.0171
0.3140
0.3822
0.5217
0.3674
0.4869
0.6287
0.7417
0.8259
0.1188
0.0088
0.2777
0.1352
0.1637
0.1631
0.4697
0.4389
0.4372
0.4647
0.5214
0.8954
0.0795
0.0250
0.0589
0.1722
0.3271
0.2270
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We can see fromTable 2 that the average errors in both X and
Y coordinates are less than 2% of the unit distance between two
adj acent test points. From Table 3 we see that the average error
bet ween t he neasured and conputed pixel coordinates is |ess than
0.5 pixel. This error not only includes errors due to the
calibration algorithm but also includes neasurenent and
quantization errors. Both these results denonstrate the high
accuracy of the calibration algorithmin Section 2

83 Test Results for Imase Center Displacenent

In this experiment the center S (refer Figure 1) of the inmage
coordinate systemis displaced by a range of values and the
extrinsic paranmeters conputed by the 2D algorithm For i, = j, =
0, the center S of the image coordinate systemis at the center
of the digitized imge i.e. at (256,240) for a 512X480 resol ution
i mage. All subsequent val ues of (i,,j,) are displacements of S
fromthis position. Also in this experinment we have assuned scal e
factor s;=s;=1 and |ens distortion D;=D;=0.

Tabl e 4 shows many different values of extrinsic paraneters
A /£, A//f and c,/f (refer equation 14) for different
di spl acenents (ie,3o) of the center S It is clear from Table 4
that for several displacenents of s, the paraneters A, /f", &, /f’
and C,'/f’ have not changed nuch. This small variation .inthese
paraneters support equation (14).

TABLE 4. Values of Paraneters A,/f, A,/f and C,/f for Different
Di spl acenents of Center S of the |Image coordinate
System
(A,/f = -0.000158, A,/f = -0.000124, c,/f = -0.052898)

i, o A /£ A /f C./f ||
10 0 -0.000148 -0.000125 -0.052819
0 10 -0,000174 -0.000116 -0.053063
10 10 -0.000167 -0.000129 -0.053031 ]
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20 0 - 0. 000141 - 0. 000115 - 10. 052732
0 20 - 0. 000178 - 0. 000110 - 0. 053151
20 20 - 0. 000172 - 0. 000136 - 0. 053129
30 0 - 0. 000139 - 0. 000099 - 0. 052673
0 30 - 0. 000172 - 0. 000112 - 0. 053181
30 30 - 0. 000178 - 0. 000141 - 0. 053173
40 0 - 0. 000141 - 0. 000079 - 0. 052637
0 40 -0.000167 -0.000113 -0.053226
40 40 -0.000200 -0.000131 -0.053172
50 0 -0.000145 -0.000051 -0.052581
0 50 -0.000165 -0.000103 -0.053296
50 50 -0.000236 -0.000096 -0.053137
60 0 -0.000149 -0.000013 -0.052463
0 60 -0.000165 -0.000076 -0.053384
60 60 -0.000242 -0.000110 -0.053200
70 70 -0.000239 -0.000137 -0.053272
Average -0.000174 -0.000106 -0.053011
Std. Dev. 0. 000032 0. 000031 0. 000269

Table 5 summari zes the conputed and adj usted val ues of

parameters 8., H', and C

for the sane experinent.

The adj usted

val ues of these paraneters are obtained fromequation (12).

H,Adj, 8,Adj, and C,Adj represent the adjusted val ue of paraneters
B, B, and C,’ respectively. For exanple, for i,=40 and j,=40, C
= 5.158965 and C,Adj = C, + i,(C,/£) = 3.027859 + (-40)(-.0530109)
= 5.148295. The adjusted value has an error C.Err=0.01067 from
t he conputed value. The adjusted val ues of these paraneters are
very close to their experinental values, thus supporting equation
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(12). Table 6 shows the conputed and adj usted val ues of
paraneters V,, V,, and C These results al so support equation
(12).
TABLE 5 Conputed and Adjusted Values of Paraneters f,, fi,, C,
for Different Displacenments of the Center S of the
| mge Coordi nate System
(B, = 0.7623, B, =0.1912, C, =3.0279,
A /£f=-0.000174, f\,/f=-0.000106, Cc,/f=-0.053011)
i, j, & BAdj HErr g, #Adj HErr C CyAdj C,Err
10 0 0.7632 0.7640 0.0008 0.1906 0.1923 0.0017 3.547 3.558 0.011
0 10 0.7641 0.7623 0.0018 0.1952 0.1912 0.0039 3.047 3.028 0.020
10 10 0.7650 0.7640 0.0010 0.1947 0.1923 0.0024 3.568 3.558 0.010
20 0 0.7644 0.7658 0.0014 0.1904 0.1933 0.0030 4.067 4.088 0.021
0 20 0.7656 0.7623 0.0033 0.1973 0.1912 0.0061 3.058 3.028 0.031
20 20 0.7676 0.7658 0.0018 0.1975 0.1933 0.0041 4.105 4.088 0.017
30 0 0.7659 0.7675 0.0016 0.1908 0.1944 0.0036 4.591 4.618 0.027
0 30 0.7663 0.7623 0.0040 0.1975 0.1912 0.0063 3.059 3.028 0.031
30 30 0.7694 0.7675 0.0019 0.1991 0.1944 0.0047 4.637 4.618 0.019
40 0 0.7676 0.7692 0.0016 0.1915 0.1955 0.0040 5.118 5.148 0.030
0 40 0.7668 0.7623 0.0045 0.1977 0.1912 0.0064 3.058 3.028 0.030
40 40 0.7699 0.7692 0.0007 0.1977 0.1955 0.0023 5.159 5.148 0.011
50 0 0.7692 0.7710 0.0018 0.1915 0.1965 0.0050 5.643 5.678 0.036
0 50 0.7675 0.7623 0.0052 0.1987 0.1912 0.0075 3.058 3.028 0.031
50 50 0.7698 0.7710 0.0012 0.1927 0.1965 0.0038 5.673 5.678 0.005
60 0 0.7699 0.7727 0.0028 0.1899 0.1976 0.0077 6.159 6.209 0.050
0 60 0.7683 0.7623 0.0061 0.2005 0.1912 0.0093 3.060 3.028 0.033
60 60 0.7728 0.7727 0.0000 0.1944 0.1976 0.0032 6.209 6.209 0.000
70 70 0.7760 0.7745 0.0015 0.1980 0.1986 0.0006 6.749 6.739 0.011
Aver age 0. 0021 0. 0043 0. 021
St andard Deviation 0.0017 0. 0024 0.013

Page 40



TABLE

6. Conputed and Adjusted values of Paraneters ¥,, ¥,, C,
for Different Displacenents of the Center S of the
| mge Coordi nate System

=-0.3454,

A /£f=-0.000174,

(v,

iD jD vx'
10 0 -.344s8
0 10 -.3445
10 10 -.3440
20 0 -.3444
0 20 -.3429
20 20 -.3422
30 0 -.3439
0 30 -.3410
30 30 -.3403
40 0 -.3432
0 40 -.3392
40 40 -.3376
50 0 =-.3420
0 50 -.3377
50 50 -.3337
60 0 -.3406
0 60 -.3365
60 60 -.3314
70 70 -.3298
Aver age

St andar d. Dev

V. Adj

-0.3454
- 0. 3437
- 0. 3437
- 0. 3454
- 0. 3419
- 0. 3419
- 0. 3454
-0.3402
-0.3402
-0. 3454
-0.3385
-0.3385
- 0. 3454
-0.3367
-0.3367
-0.3454
-0.3350
- 0. 3350
-0.3333

ation

8.4 Test. Results for

V,Err

.0006
.0008
.0003
.0010
.0009
.0003
.0015
.0008
.0001
.0022
.0007
.0009
.0034
.0009
.0030
.0049
.0015
.0036
.0035
.0015
.0014

v, =0.

Y

y

0.9573
0.9597
0.9594
0.9570
0.9618
0.9614
0.9569
0.9638
0.9635 -
0.9570
0.9658
0.9657
0.9574
0.9678
0.9678
0.9579
0.9696
0.9697
0.9716

9575,

v,  V,Adj

0.9575
0.9586
0.9586
0.9575
0.9596
0.9596
0.9575
0.9607
0.9607
0.9575
0.9618
0.9618
0.9575
0.9628
0.9628
0.9575
0.9639
0.9639
0.9649

Lens Distortion

I n order t 0 generate reasonabl e distortions
chose a 8mm | ens for our imaging setup. We used

methods[13] for the conputation of

assumed that there is no scale factor distortion in the imge

Cc

v

V,Err

.0003
.0011
.0008
.0005
.0022
.0018
.0007
.0031
.0028
.0006
.0040
.0040
.0001
.0050
.0050
.0003
.0057
.0058
.0066
.0025
.0022

c,’
-1.255
-0.735
-0.732
-1.253
-0.203
-0.201
-1.252

0.333
0.332
-1.252
0.870
0.865
-1.250
1.407
1.397
-1.246
1.944
1.930
2.464

=-1.2592,
A /f=-0.000106, C,/f=-0.053011)

C,Adj CErr

-1.259
-0.729
-0.729
-1.259
-0.199
-0.199
-1.259
0.331
0.331
-1.259
0.861
0.861
-1.259
1.391
1.391
-1.259
1.921
1.921
2.452

of the |ens,
state of the art
I mage center displacenent and

.004
.006
.003
.007
.004
.002
.007
.002
.001
.007
.009
.003
.009
.016
.006
.013
.023
.009
.012
.007
.006

we

e

t hen conputed the calibration parameters w thout conpensating for
| ens distortion and conputed the errors in the i mge and world
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coordi nate conmputations (shown by iterations-0 in Tables 7 and
8). Next we repeated this experinment with conpensation for radial
and tangential |ens distortions by the proposed algorithmin
Section 4.2. The average and standard devi ation of errors in the
i mge and world coordi nate conputations for various iterations of
this algorithm are shown in Tables 7 and 8

TABLE 7. FErrors in the Conputation of |Imge Coordinates for
Different Iteration of the Lens Distortion Algorithm.
Iteration-0is for No Lens Distortion Conpensati on.
I mmge Center Displacenents are i,=6, j,=4.

Iterations | Errors (Average) Errors (Std. Dev.)
I J I J
0 0. 6530 0. 4498 0. 6096 0. 3274
1 0.4218 0. 4496 0. 3482 0.3592
2 0. 3574 0.4315 0.2812 0.3494
3 0. 3559 0. 4167 0. 2617 0. 3393
4 0. 3547 0. 4158 0. 2613 0. 3449
5 0. 3533 0. 4156 0. 2608 0. 3414
TABLE 8 Errors in the Conmputation of Wirld Coordi nates for

Di f f erent

| mge Center

I[teration of the Lens Distortion Al gorithm
Iteration=0 is for No Lens Distortion Conpensation.

Di spl acenents are i=6, j,=4.

. E——————————————————mm |

|| Iterations | Errors (Average) Errors (std. Dev.)
X Y X Y

0 0. 0264 0. 0147 0. 0242 0.0108

1 0. 0170 0. 0144 0. 0138 0.0116

2 0. 0145 0. 0138 0. 0112 0.0112
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0.0145 0.0135 0.0133 0.0109
0.0144 0.0135 0.0109 0.0110
0.0144 0.0133 0.0104 0.0109

It is clear from T Tables 7 and 8 that the proposed al gorithm
for lens distortion conpensation inproves the calibration
accuracy in the first two steps of iteration. Subsequent steps of
iteration causes |ess than 1% i nprovenent in accuracy. As
nmentioned before in Section 4, the accuracy of this algorithm for
both radi al and tangential cases depend on the proper selection
of the starting values of 1,, p,, and p. In the radial case,

however, the algorithmconverges (within 3 iterations) to wthin
1% of the final value for different starting values of parameter
1,.

9.0 Concl usions

I n this paper we have presented a new and sinple algorithm
for camera calibration based on state of the art geonetrica
models[22,28]. W have established a direct transformation
bet ween t he 3D object world and the 2D image plane in ternms of
honmogeneous vectors, and have conputed the extrinsic canera
paraneters in sinple steps by fast and accurate algorithms.

Next we have denonstrated a strong robust property of the
proposed nethod, that if the camera is calibrated wth, imge data
(not compensated for inage center displacenent and scale factor),
our calibration al gorithmyields paraneters that produce no
errors in the conputation of inmage and world coordinates. This
robust property of the proposed al gorithmhas been shown by both
analytical and experinental neans. This appears to be the first
known analytical proof of its kind for robustness in a.
calibration al gorithm

Furthermore, we have presented a new algorithmfor the

solution, of (a) radial and, (b) both radial and tangential |ens
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di stortions by a constrained |east squares approach. An

anal ytical proof for the convergence of this algorithmis also
shown. Experinental results to support the algorithmand its
convergence are presented. \Wile other procedures exist for the
solution of lens distortion paraneters, we appear to have shown
the only anal ytical proof of convergence for this algorithm

Next, a conplete algorithmfor the solution of al
calibration parameters is shown. The inproved robustness of this
new algorithmis discussed in light of state of the art
procedures for the solution of all calibration paraneters.

We have al so presented the new Increnmental Model for
t ol erances between the 3D world coordi nates and the 2D sensor
coordinates. All these anal yses have been di scussed for both
copl anar and non- copl anar distributions of object points in 3D.
Experimental results have been presented to support the
cal i bration nmodel and parameter conputation algorithns.

Al'l discussions on canera calibration presented in this paper
can be extended to a nmulti-canera stereo setup.
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Appendi x |

Al gorithmfor Paraneters with Orthonormal R
inthe 3D (Non~Coplanar) Case

The extrinsic calibration paraneters conputed in Section 22
can be inproved to produce an orthonormal rotation matrix R
(equation 29) by the al gorithmbel ow obtai ned froma constrained
| east squares solution with Lagrange nultipliers.

Step 1

Step 2

Step 3

Step 4

Sol ve paraneters &,, &, 8,, V., ¥, V,, A,/f, A /f, & /f,
G €., and C,/f by the proposed al gorithmin Section
2.2

Conput e coordi nat €S (Xc,rYear2es) Obt ai ned by
transforming cal i brati on point (x,,y.,2,) t0 the canera
coordi nate system (#,V,A) with center Cin Figure 1

Xeo = (xA/f + yA/f + 2A/f - C/f)i,
Yoo = (X% A/f + yA/f + zA/f - C/£)],
Zo = (XA, +ydh, +2zA - )

where subscript n stands for the n* calibration point
(n=1,...,N)o

Obtain a 3x3 matrix Gfrommatrix G for thel n*
calibration point as foll ows:

(X og=X) (Xp=X) (V=T o) (%p=%X) (2o5-Z ) (X,-X)
G, = | (Xeq=X) (¥p=Y) (Yeu Vo) (VP (29-Z,) (¥,-F)
(Xp-%.) (2,-2) (V¥ ) (2,-2) (2,-Z.) (2,-2)

where (%.,¥.,2Z.) and (i,?,:z) are the respective
aver ages.

Conput e the singul ar val ue deconposition of G as
G = UDV where Uand V are orthonormal and Dis a
di agonal natri x.
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Step S Conmput e orthonormal R = V*UT.

Step 6: Fromthe new extrinsic paraneters (obtained fromR)
conpute focal length f by Step 2 of Method | in Section
2.2
Step 7. Repeat steps 2-6 for a maxi num nunber of iterations.
Appendix II

Proof of Derivation of Canmera Paraneter f in Equation (9)

The orthonormal rotation matri x R obtai ned from the canera
matrix in equation (5) is as follows:

:q»
m»
o

bl e y z

>

(29)

1 g z

<

y
y

T <P
h N1

By the normal properties of the first two columms of the rotation
matrix R, we obtain the follow ng equation

B, B, +9, 9, +A 4 =0 ceee (30)
The parameters conputed fromthe matrix equation (4) are H,,
g, V., ¥, and C,. The paraneters conputed fromequation (8) are

A./f, A,/f and C./f. Fromthese known paraneters, we can rearrange
equation (30) above to obtain equation (9).

(o)

Proof of Derivation of Camera Paraneter ¢, im Equation (12)

Since the first two colums of the rotation matrix R in
equation (29) above are unit vectors, we can obtain the follow ng
equat i ons:

B2 + 02 + £2(A/£)" = 1

or
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B2+ V2 + £2(A/£)2 =1 eees (31)

Since parameters f,, 8, ¥, V,, A,/f and &,/f obtained from
equations (4) and (8) assume that ¢, = 1, we can obtain the value
of C, from equation (31) as shown i n equation (10).

Appendix JIIX

Proofs of Theorems 1 and 2

Let M be the camera matrix, with no image center displacement
and scale factor, in equation (5) for the 3 calibration case.
Let My (1<i,j<3) be the entries of the matrix M. Including image
center displacement (i,,3j,) and scale factor (s;,s;) the new
camera matrix M’ with entries M'y; (1<i,j<3) can be expressed in
terms of M,y from equations (12) and (14) as follows:

SiM . +1.My, SM,+1 M, SM+1 My, SiM+1Myy

M = (S3My, 4T My, SMy+ G oMy, SMys+ToMyy S My +T My, caee (32)
M, M, M, My,

Let (if,J¢) be the image coordinates (not corrected for image
center displacement and scale factor) of a world point (x,y,2z).
Let (i',jJ') be the computed image coordinates from world
coordinates (x,y,z) with camera matrix M. From equations (6) and
(11), (i',3') can be expressed as follows:
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i' = (S,M,,+1oMy;) X+ (S, M, +1oMy, ) Y+ (S; M3 +IMyy) Z+ (8,M +14M5,)
(My, X+ My, +Myy 2+ My, )

si+dy = 1,

o (SMy+TMyy ) X+ (S3Mr+ T oMy, ) Y+ (S My + T oMyy) 2+ (S4M,+T oMy, )
(Myy X+My, Y +Myy Z+ My, )

Sjj"'jo = jf

where (i,j) are the inmage coordinates corrected for image center
di spl acenent and scale factor of world point (x,y,2).

The above expressions showthat the conputed imge
coordinates (i’,j") are same as the unconpensated inage!
coordi nates (if,j¢) of world point (x,y,z). This proves; Theorem
1 This result can be extended to the 2D calibration case by
starting fromthe canera matrix Min equation (6).

For the 2D calibration case, let N= M? where M is the
camera matrix in equation (6). Let Ny (1l<i,j<3) be the! entries
of matrix N Let N = (M) where N';; (1<i,j<3) are entries of
matrix N. From equation (32) we obtain the follow ng
expr essi ons:

, -1
N, = 8;"'N,
- -1
N, = 8;°Ny,

P o -1
N;; = 8,7'Ny;

N'j, = 847N,

N';, = 87N,

Ny, = 857'N;,

N}, = Nu.'si-lioNu'sj-ljoNn

Ny = sz:'si-lioNn'sjdjosz

N'j, = Naz;'si-lioNn'sj-ljoNaz eeee (33)
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Let; (if,j¢) be the image coordi nates (not conpensated for
i mge center displacenent and scale factor) of an world poi nt
(x,y). Let (x',y’) be the conputed world coordi nates fromi nmage
coordinates (i;,j,) Wth canera nmatrix N°. From equations (6),
(33) and (11) we obtain the follow ng expressions:

- . - , - . - .
5y 1N111 t+S; 1N12-7 £+ (Ny;-85 1Nn-"-o -85 Ny3J,)

-1 ] -3 ’ -1 ] -1 ’
81 Ny 1,485 NypJ o+ (N3 -85 Nyyig-85"Ny, )

51t (i,-1,) N_u'*sj-l (J¢=Jo) Nyo+Nyy
511 (1p~14) Ny +85" (J g=J o) Ny +Ny,

Ny i+N,J+Ny;
Ny  i+N,,J+N,,

.‘1 [} -1 ] -1 . -1 ’
83 Ny 1 ,p+8y NypJ ot (Nyy-85 N,y i5-85 NypJ)
-1 . = . -1 . -1 .
&y N311£+SJIN32-7f+ (Ny3-81 Ny ig-85"Nyy5¢)

S1 (1-10) Ny +873(F g~ ) Npp+N,,
st (ip-1,) N31+SJ-1 (Fg=Fo) Nyy +Nyy

_ Ny i+N,, G+N,, y
Ny 1+N,,5 +Ny,

The above equati ons show that the conputed world coordinates

(x,y’) are sane as the true world coordinates (x,y) for the 2D
calibration case. This proves Theorem2 This result for the 2D
case can be extended to include Method 11 of the 3D calibration

case for a stereo setup.
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COMPUTE 10, JO, SL, SJ
BY STATE OF THE STEP 1
ART METHODS

- 1 1

. COMPUTE LI, P1, P2,
Ax, Hy, Ad Vx, Vy, Vz, Cv
BY ALGORITHM IN SECTION 4.2

'

COMPUTE REMAINING EXTRINSIC STEP 2
PARAMETERS AND f BY ALGDRITHM
IN SECTIONS 2.2 & 2.3

'

| ORTHONORMAL R

TERM%NATE

Y

FIGURE 3. FLDWCHART FDR THE COMPLETE ALGORITHM
FUR THE COMPUTATION OF ALL CALIBRATION
PARAMETERS.
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SETUP FOR CAMERA CALI BRATI ON

Fl QURE 4.
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