Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

11-1-1993

Exact and Approximate Methods for Computing
the Hessian of a Feedforward Artificial Neural

Network

Craig W. Codrington
Purdue University School of Electrical Engineering

Manoel E Tenorio
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Codrington, Craig W. and Tenorio, Manoel F,, "Exact and Approximate Methods for Computing the Hessian of a Feedforward
Artificial Neural Network” (1993). ECE Technical Reports. Paper 249.
http://docs.lib.purdue.edu/ecetr/249

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F249&utm_medium=PDF&utm_campaign=PDFCoverPages

ADVENTURESIN CuBic CURVE
FITTING: Two OPTIMIZATION
TECHNIQUESAND THEIR
APPLICATIONTO THE TRAINING OF
NEURAL NETWORKS

CRrAIG W. CODRINGTON
ANTONIO G. THOME
MANOEL F. TENORIO

TR-EE 93-42
NOVEMBER 1993

g 7 PURDUE UNIVERSITY
~

o> WEST LAFAYETTE, INDIANA 47907-1285

e &g
f%’., . ScHOOL OF ELECTRICAL ENGINEERING
:: [}

Adventures in Cubic Curve Fitting: Two
Optimization Techniques and their Application to

the Training d Neural Networks

Craig W. Codrington Antonio G. Thome

Manoel F. Tenorio

Abstract

We present two optimization techniques based on cubic curve fitting; one
based on function values and derivatives at two previous points, the other
based on derivatives at three previous points. The latter approach is viewed
from a derivative space perspective, obviating the need to compute the verti-
cal translation of the cubic, thus simplifying thefitting problem. We demon-
strate the effectiveness of the second method in training neural networks on
parity problems of various sizes, and compare our results to a modified

Quickprop algorithm and to gradient descent.

1 Introduction

Gradient descent, in the form of the well-known backpropagation algorithm,
is frequently used to train feedforward neural networks, i.e. to find the
weights which minimize some error measure f. However, it's dow rate of
convergence has prompted investigations into second order methods, such

as Newton's method:

‘lBk-H = Wy — H(ll_;k)_lvf(W) (1)

where H () is the Hessian matrix. To avoid the computationally expensive
task of computing the exact Hessian, quasi-Newton type approximaticns are
often made, based on past gradient and weight differences. Such methods
can be viewed as minimizing a quadratic surface g fitted to a set K of
previous points, such that the gradient of the quadratic approximates the

gradient of T at each point, i.e.

V(@) ~ V(@) for each k € K (2)

However, the same quadratic may not hold over the entire sequence of nt1

points required to estimate the Hessian, particularly when thereis no local

minimum nearby, or when the steps are large. Alternatively, by imposing a
structure on the Hessian (diagonal, for example), one can use fewer points,
but there is no guarantee that the resulting estimate will be close to the
true Hessian. In this paper we go one step further and treat the weights as
being entirely decoupled (although in reality they are not), thus reducing the
problem to a seriesof 1D optimizations along each weight axis. Theresulting
reduction in complexity alows a higher order curve to be fit, which would
theoretically mean a higher rate of convergence, were it not for coupling
effects between the weights. It also means that the fitting can be based on
fewer points, allowing more rapid adaptation to the local characteristics of
f.

Anindependent "greedy” 1D minimization along each weight axis yields
a solution that isless optimal than the cooperative solution, which takes ac-
count of coupling. 1t may be advantageous, however, when the true Hessian
is not positive definite; many quasi-Newton type methods construct a posi-
tive definite approximation to the Hessian, which can introduce a somewhat
arbitrary perturbation of the Newton step (1) which acts along all weight
axes. Minimizing along each weight axis independently decouples these per-
turbations, so that the adjustment resulting from a well-behaved fit in one

dimension is not altered by the perturbation which must be introduced to

control a poorly behaved fit in another.

This strategy proved very effective in the Quickprop algorithm [1, 2],
which uses the Method of False Position [3, pages 202-2031tofit a quadratic
to f along each weight dimension independently. The component o the
next point w4, corresponding to each weight w is chosen to minimize the

quadratic;

f’
Wh1 = Wk — ———— (W — Wh—1) (3)

A -
where f, = f'(wy) and f;_, = f'(wx_1) are the respective components
o Vf (@) and VT (@) corresponding to w. Quickprop also adds a few
heuristics to improve convergence and enhance stability; one is to bound
the rate of increase of |wxy1 — wy| by an empirically tuned parameter called
the maximum growth rate (we will return to this later).

The Method of False Position (3) can be derived either by fitting a
quadratic to one function value (f;) and two derivatives (f; and f;_;), or
by approximating the second derivative in Newton's Method (1) by

Fe = fima

f(wg) = pre—— (4)

Since the function value fi does not appear in the Quickprop update

equation (3), it can be interpreted as finding the zero of a line fitted to
two points ((wg, fi) and (wk_1, f;,_;)) in “derivative space” (fig 1b), as well
as minimizing a quadratic fitted in "function space™ (fig la). In one of the
algorithms we have developed, Cubicpropll, this concept will be extended by
fitting a quadratic to three points in derivative space, which is the same as
fitting acubic in function space. Intuitively, a derivative space interpretation
is possible when knowledge of only one function value (e.g. fi) iS assumed,
since this can only constrain the "vertical” translation of thefitted (function
space) curve, which is of no conseguence if we are searching for a local

minimum.

2 Cubicpropl

Inspired by Quickprop, which fits a quadratic to onefunction value (f) and
two derivatives (f;, and f;_,), we attempted to fit a cubic to two function
values (fx and fx-1) and two derivatives (f{, and f/_,). The next point
wk+1 18 chosen as the local minimum of the fitted cubic, resulting in the
following update equation:

iwk — wk_1|u2 - (u)k - 'u}k*l)(fit + ul)
fe+ fioq +2u

(5)

W41 — Wi =

where

fe = Ji-
w = fi + fro — 3m (6)

and
Ug = 4/ “% ~ fifia (7)

Luenberger [3, pages 205-206] states a similar result, but his formula is
not correct, since it is not invariant under permutations of the current and
previous points (this can be verified by applying his formula to a cubic;
if for two given points wy and wy_, the formula gives the minimum, then
interchanging the two points will give the maximum, and conversely).

Thefitted cubic will haveno local minimum when (7) is complex; in this
case an alternative strategy, such as a gradient descent step, must be used.
An alternative strategy must also be used when the adjustment indicated
by (5) is not in the negative gradient direction; this occurs, for example,
when |f{| > 1fi_;| and fi < fu—1 (figure2).

Although (5) will find the local minimum of a cubic in one step, it was
found to be ill-suited to training neural networks. On the flat plateaus
which characterize the error surface of such networks, the algorithm tends
tofit a cubic which appears flat in the vicinity of the current and previous

points (figure 3a), but on closer examination is seen to have its minimum

and maximum near the current and previous points, respectively (figure 3b);

the resulting step is frequently very small.

3 Cubicpropll

Quickprop can be viewed as finding the minimum of a quadratic fitted in
function space, or equivalently, as finding the zero of a line fitted to two
points ((wg, fi) and (wk—1, fj_;)) in derivative space. The natural 'exten-
sion to this is to fit a quadratic to three points ((wx, fi.), (wk—1, f{_,) and
(wk—-2, fi_5)) in derivative space; the next point is then chosen to he the
zero of the quadratic corresponding to the (local) minimum of the cubic
in function space (figure 4). The resulting update equation, which we call

cubicpropll, is given by:

_ w1 = fi(wg — wp_9)(wg—1 — wr_2) + sUy
filwi—y — wi—2) — fi_ (wr — we—2) + fr_o(wk — wi—1)

(8)

Wgy1 — Wk

where

U = %(fl::(wk—l — wr—a)? + fi_q(wk — wp—2)? = fi_o(we — wie1)?) (9)

up = \Jud — fLfl_y(wg — wi_g)2(we_1 — wk—2)? (10)

s = sign ((wr — wg—2)(Wk — wr—1)(Wg—1 — W—2)) (11)

The above update equation can also be expessed as

uy — 2(f; — fi_1)(wk — wg—2)(wr—1 — w—2) + sug

, g — 1
Wkt — Wk g (12)
where
uo = falwp—1 — wk_2) — fio1(Wk — wp—2) + frp(wr — wk—1) (13)

uy = filwp—y—wi_2)*+ fl_1 (g1 —wk—2)(Wp—2wk_1 +wk—2)~ fie g (Wp—wk—1)?)

(14)

wz = \Jud — 4f|_ uo(wk — wp_2)(w — wemy)(wimy — wpz) (15)

Asin cubicpropl, an alternative strategy must be used when (10) is com-
plex or when the adjustment indicated by (8)is not in the negative gradient
direction relative to the current point; we initially tried using a gradient
descent step instead of the cubic adjustment in these cases. In fact, gradi-
ent descent was used whenever (10) was complex or the first derivative of

thefitted quadratic (i.e. the second derivative of the corresponding function

space cubic) was negative when evaluated at the current point, i.e,

2aqwi + b < 0 (16)

where ¢ and b are given in the Appendix. Thisis a morestringent condition
which implies that the adjustment will be in the negative gradient direction
relative to the current point.

The resulting algorithm provided good stability and rapid convergence,
and was a clear improvement over cubicpropl. However, it suffered Irom a
tendency to become trapped in local minima. To counteract this, we applied
a. perturbation in the form of a gradient descent term and a momentum
term which were always added to the cubic adjustment (8). When the
cubic adjustment could not be applied because (10) was complex or the
first derivative of the quadratic was negative when evaluated at the current
point, the gradient and momentum terms were used alone. This yielded a

dramatic improvement in performance.

4 Results

The Cubicpropll algorithm was used to train neural networks on parity

problems of various sizes. The n-parity function maps each of the 2" possible

n-bit binary input patterns with an even number of onesto 0, and those with
an odd number to 1. However, since the hyperbolic tangent nonlinearity
was used in the network, a-1/1 parity function was used instead of the 0/1
parity function described above. Performance was measured in terms of the

Normalized Root Mean Squared Error (NRMSE), defined as

1 —P 2
7 2p=1(¥p — 2p)
NRMSE = VP = (17)
\/% p:l(yp - 37)2
where P is the number of patterns, z,..., zp are the outputs of the network

and y,...,yp are the desired outputs, with sample mean .
Table 1 shows the results for Cubicpropll, Gradient Descent, and a mod-
ified Quickprop algorithm on the parity-2 (XOR) problem, using a net-
work with 2 hidden units and hyperbolic tangent nonlinearities. On a given
run, each optimization algorithm was started from the same initial random
weights, and run until either the NRMSE dropped below .001 or 500 epochs
were reached, whichever came first. The statistics given are based on 100
runs from different initial random weights. For this problem, Cubicpropll
was the clear winner over Gradient Descent and Quickprop in all categories
but one; its worst convergent run took 130 epochs, as compared with Quick-

prop's 93, although its best run took only 17 epochs, as compared with

Quickprop's 40.

Table 2 gives corresponding results for the parity-3 problem, using a
network with 3 hidden units. The statistics given are hased on 50 runs from
different initial random weights. Here Cubicpropll was the clear winner in
all categories.

Table 3 gives corresponding results for the parity-4 problem, using a
network with 5 hidden units. In this case, each algorithm was alowed to
run for up to 800 epochs. The statistics given are based on 50 runs from
different initial random weights. Here Quickprop performed better overall,

but worse than Cubicpropll in the best and worst run categories.

5 Conclusion

We have presented two optimization algorithms based on cubic curvefitting,
and demonstrated the effectiveness of one of them, Cubicpropll, in training
neural networks. Cubicpropll compares favourably with Quickprop in terms
of convergence rate and stability, and in addition does not require a growth
factor to bound the rate of increase of the weights.

Although Cubicpropl and 11 have been presented in the context of neural

network training, they arein fact general optimization methods which may

10

find application in other areas.

6 Appendix

The cubic fitted by Cubicpropl in function space is given by

azd + bzt 4+ cx+d (18)

where

o« (fe + fi N we — wi—1) — 2(fe — fr—1)

(w — wg—1)3 (19)

30k = fron)(wn + wim) 4 fio (Wi 4 wkwko = 20F) + Q2w — wpwk—1 — w})

b .
(wr — wg—1)3

(20)

—6(fr — fr—1)wrwWE—1 — f,i_lwk(sz_l — WpWy—1 — wh) — f,’cwk_l(w%_l + wrwg_q1 — 2w})
(wg — wg—1)3

(21)

B fki_l7i_1(3wk — Wg—1) + fe-1 wz(wk — 3wi_1) — f,’c_lw,%wk_l(wk — Wgo1) — frwi_jwi{wg — wi_1)

d
(wi — wr—1)3
(22)
The quadratic fitted by Cubicpropll in derivative space is given by
ar’® + bz + ¢ (23)

11

where

~ filwey —wipa) — fr_y (wp — wi_2) 4 fi_o(wr — wi_y)
‘= (wr — wie—1)(wr — we—z)(Wr—1 — Wr_2) (24)

b= (fior — fl’c—z)'wl% +(fi — flé—1)w1%—2 —(fi — fl:r—2)wl%—1
(wk — wg—1)(wk — Wr—2)(Wk-1 — Wk—2)

(25)

. fiwp—rwi—o(wrg—1 — wr—2) — fi_ wrwp—_o{wr — wr—2) + fl_,Wrwi_1(wk — wi_1)
(wr — wi—1)(Wr — Wg—2)(Wre1 — Wi_2)

(26)

Thefirst derivative of this quadratic evaluated at the current point is given

Fi(wi_g 4 2wpwi—y — 2wpw—z) — wi_y) — fi_(wk — wi-2)® + fi_,(wy — wp_1)?
(Wi — we—1)(wk — wg—2)(Wr—1 — Wh—-2)

(27)

2awi+b =

References

[1] Scott E. Fahlman, "Faster learning variations on back-propagation: An
empirical study”, in Proceedings o the 1988 Connectionist Models ,.Sum-

mer School, pp. 38-51. Morgan Kaofmann, June 1988.

[2] Scott E. Fahlman, "An empirical study of learning speed in back-

propagation networks", Technical Report CMU-CS-88-162, Carnegie-

12

Mellon University, June 1988.

[3] D.E. Luenberger, Linear and Nonlinear Programming, Addison-VVedey,

1984.

[4] Antonio G. Thome, Massively Parallel Nonlinear System ldentification
Techniques: A Committee Architecture, PhD thesis, Purdue University,

1993.

13

Tahle 1: Statistics computed over 100 runsfor Parity-2 using a network with
2 hidden units and hyperbolic tangent nonlinearities.

Gradient Descent Quickprop Cubicprop II

Average over al runs (epochs) 500 163.67 124.85
Std dev over all runs (epochs) 0 184.95 160.84
Median over all runs (epochs) 500 67 65
Average over convergent runs (epochs) 500 63.20 58.64
best run (epochs) 500 ‘ 17
worst convergent run (epochs) 500 130
Number of non-convergent runs 100 23 o
Percentage of non-convergent runs 100 23 '
Average NRMSE 1260 1425 .0937

Tahle 2. Statistics computed over 50 runs for Parity-3 using a network with
3 hidden units and hyperbolic tangent nonlinearities.

Gradient Descent Quickprop Cubicprop 11
Average over all runs (epochs) 500 63.34 50.06
Std dev over all runs (epochs) 0 21.72 23.31
Median over all runs (epochs) 500 60 44
Average over convergent runs (epochs) 500 G3.34 50.06
best run (epochs) 500 43 18
worst. convergent run {epochs) 500 197 98
Number of non-convergent runs 50 0 0
Percentage of non-convergent runs 100 0 0
Average NRMSE 0278 .0009 .0009

14

Table 3: Statistics computed over 50 runs for Parity-4 using a network with
5 hidden units and hyperbolic tangent nonlinearities.

Gradient Descent Quickprop Cubicprop 11
Average over all runs (epochs) 800 327.46 443
Std dev over al runs (epochs) 0 261.22 287.91
Median over all runs (epochs) 800 193 272
Average over convergent runs (epochs) 800 209.32 224.23
best run (epochs) 800 128 86
worst convergent run (epochs) 800 660 389
Number of non-convergent runs 50 10 19
Percentage of non-convergent runs 100 20 38
Average NRMSE 1275 0703 .1609

15

Function Space f (w}

12 T

2
[=70:)

w
(a)
Derivative Space f'(w)
0.4 T T T T

0.3r

0.2r

0.1r

k+1

£ (W)
o

0.1} i

0.2r B

03¢ J

w

(b)

Figure 1: The Method of False Position (aka Quickprop) can be viewed as
(2) minimizing a quadratic fitted in function space, or (b) finding the zero
of a line fitted in derivative space.

16

0.6

0.55
0.5
0.45
0.4
Zoss
0.3

0.25

Figure 2. An example in which the minimum of the cubic fitted by Cu-
bicpropl (5)is not in the negative gradient direction relative to the current
point K.

17

40 T T T T T T T

30

20

-30

-40

50 \ s s L L) I
0.25 0.258 0.26 0.265 027 0.275 0.28 0.285 029

w

(a)

0.9]

0.89

Zoss

0.87|

0.86

A L L L n L
0.267 02675 0268 02885 0269 02695 027 02705 o021
w

(b)

Figure 3: (a) A typical cubic fitted by Cubicpropl (5). (b) The same curve

at a higher magnification.

18

Function Space {{w)
07 T T T T T T

0.65
06
0.55
05
§0.45
0.4
0.35
03

0.25

0.2
-2

Derivative Space f'(w)

02r k-2

0.15f k-1

0
ke

0009 w08 07 06 05 04 03 02 01 0

(b)

Figure 4: Cubicpropll (8) can be viewed as (a) finding the local minimum of
a cubic fitted in function space, or (b) finding the zero of a quadratic fitted
in derivative space.

19

	Purdue University
	Purdue e-Pubs
	11-1-1993

	Exact and Approximate Methods for Computing the Hessian of a Feedforward Artificial Neural Network
	Craig W. Codrington
	Manoel F. Tenorio

