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Abstract 

We present two optimization techniques based on cubic curve fitting; one 

based on function values and derivatives a t  two previous points, the other 

based on derivatives a t  three previous points. The latter approach is viewed 

from a derivative space perspective, obviating the need to  compute the verti- 

cal translation of the cubic, thus simplifying the fitting problem. We dieinon- 

strate the effectiveness of the second method in training neural networks on 

parity problems of various sizes, and compare our results to a modified 

Quickprop algorithm and to  gradient descent. 



1 Introduction 

Gradient descent, in the form of the well-known backpropagation algorithm, 

is frequently used to  train feedforward neural networks, i.e. to  fiud the 

weights wllich minimize some error measure f .  However, it's slow ].ate of 

convergence has prompted investigations into second order methods, such 

as Newton's method: 

where H(Gk)  is the Hessian matrix. To avoid the computatioilally expensive 

task of computillg the exact Hessian, quasi-Newton type approximations are 

often made, based on past gradient and weight differences. Such mc?thods 

call be viewed as minimizing a quadratic surface q fitted to a set K of 

previous points, such that the gradient of the quadratic approximates the 

gradient of f at  each point, i.e. 

vq(tSik) z B f (Gk)  for each k E I< 

However, the same quadratic may not hold over the entire sequence of n + 1 
points required to  estimate the Hessian, particula.rly when there is no local 



minimuin nearby, or when the steps are la,rge. Alternatively, by imposing a 

structure on the Hessia,n (diagonal, for example), one can use fewer points, 

but there is no guarantee that the resulting estimate will be close to the 

true Hessian. In this paper we go one step further and treat the weights as 

being entirely decoupled (although in reality they axe not), thus reducing the 

problem to a series of 1D optin~iza~tions along each weight axis. The resulting 

reduction in complexity allows a higher order curve to  be fit, which would 

theoretically mean a higher ra.te of convergence, were it not for coupling 

effects between the weights. It also means that the fitting can be based on 

fewer points, allowing more rapid adaptation to the local characteristics of 

f. 

An independent "greedy" 1D minimization along each weight axis yields 

a solution that  is less optimal than the cooperative solution, which takes ac- 

count of coupling. It may be advantageous, however, when the true Hessian 

is not positive definite; many quasi-Newton type methods construct a posi- 

tive definite approximation to  the Hessian, which can introduce a somewhat 

a.rbitrary perturbation of the Newton step (1) which acts along all weight 

a.xes. Minimizing along ea.ch weight axis independently decouples the~ ,e  per- 

turbations, so that  the adjustment resulting from a. well-behaved fit iin one 

dimension is not altered by the perturbation which must be introduced to 
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control a poorly behaved fit in another. 

This strategy proved very effective in the Quickprop algorithm [l, 21, 

which uses the Method of False Position [3, pages 202-2031 t o  fit a quadratic 

t o  f along each weight dimension independently. The compoilent of the 

next point GkS1 corresponding to  each weight to is choscn to  minimize the 

where fi = f f (wk)  and f&-, = f ' ( u ~ ~ - ~ )  are the respective components 

of V f (Gk) and V f (Gk) correspondiilg to  w. Quickprop also adds a few 

heuristics to improve convergence and enhance stability; one is t o  bound 

the rate of increase of I w ~ + ~  - wkJ by an empirically tuned paran~eter called 

the maximum growth rate (we will return to  this later). 

The  Method of False Position (3)  can be derived either by fitting a 

quadratic to  one function value (fk) and two derivatives (f& and f&--,), or 

by approximating the second derivative in Newton's Method (1) by 

Since the function value f k  does not appear in the Quickprop update 



equation (3), it can be interpreted as finding the zero of a line fitted to 

two points ((wk, f i )  and (wk-1, fi-l)) ill "deriva,tive space" (fig lb ) ,  ijs well 

as minimizing a quadratic fitted in "function space" (fig l a ) .  I11 one of the 

algorith~ns we have developed, CubicpropII, this concept will be extended by 

fitting a quadratic t o  three points in derivative space, which is the same as 

fitting a cubic in function space. Intuitively, a derivative space interpretation 

is possible when knowledge of only one function value (e.g. fk)  is assu~ned, 

since this can only constrain the "vertical" translation of the fitted (function 

space) curve, which is of no consequence if we are searching for a h  local 

mininlum. 

Inspired by Quickprop, which fits a quadratic to one function value ( f k )  and 

two derivatives (f:, and fL-l), we attempted to  fit a cubic to  two function 

values (fk and fk-1) and two derivatives ( f i ,  and fL-l). The next point 

wk+l is chosen as the local ~ninimuln of the fit,ted cubic, resulting in the 

following update equation: 



where 

Luertberger [3, pages 205-2061 states a similar result, but his fornlula is 

not correct, since it is not invariant under permutations of the current and 

previous points (this can be verified by applying his formula t o  a cubic; 

if for two given points t o k  and w k - 1  the formula gives the minimum, then 

interchanging the two points will give the maximu~n, and conversely). 

The fitted cubic will have 110 local rninimum wheil (7)  is complex; in this 

case an alternative strategy, such as a gradient descent step, must be used. 

An alternative strategy must also be used when the adjustment indicated 

by (5) is not in the negative gradient direction; this occurs, for example, 

when I fi.1 > > f i-l  ( and f k  < fk -1  (figure 2). 

Although (5)  will find the local minimum of a cubic in one step, it was 

found to be ill-suited to  training neural networks. On the flat plateaus 

which characterize the error surface of such networlcs, the algoritllm tends 

to  fit a cubic which appears flat in the vicinity of the current and previous 

points (figure 3a), but on closer examination is seen t,o have its minimum 
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and rnaximunl near the current and previous points, respectively (figure 3b); 

the resulting step is frequently very small. 

Quickprop can be viewed as finding the minimum of a qua,dratic fitted in 

function space, or equivalently, as finding t,he zero of a line fitted to two 

points ((wk, f L )  and ( ' u ! ~ - ~ ,  f i- l))  in derivative space. The natural 'exten- 

sion to  this is to  fit a quadratic to three points ((tok, fL), ( w ~ - ~ ,  fLeIL) and 

( ~ ~ - 2 ,  fL-2)) in derivative space; the next point is then chosell to be the 

zero of the quadratic corresponding to the (local) minimum of the cubic 

in function space (figure 4). The resulting update equation, which we call 

cubicpropII, is given by: 

where 



The above upda.te equation can also be expessed as 

where 

U g  = f j ! ( I ~ ~ - ~  - wk-2) - fL-l(~lk - wk-2) + fL-2(wk - l17k-1) 

As in cubicprop1, an alternative strategy must be used when (10) i!; com- 

plex or when the adjustment indica.ted by (8) is not in the negative gradient 

direction relative t o  the current point; we initially tried using a, gradient 

descent step instead of the cubic adjustment in these cases. In fact, gradi- 

ent descent was used whenever (10) wa,s complex or the first derivative of 

the fitted qua.dra.tic (i.e. the second derivative of the corresponding function 



space cubic) was negative when evaluated at  the current point, i.e. 

where a and b are given in the Appendix. This is a more stringent coiidition 

which implies that the adjustment will be in the negative gradient direction 

relative to  the current point. 

The resulting algorithm provided good stability and rapid convergence, 

and was a clear improvenlent over cubicpropI. However, it suffered lion1 a 

tendency to  become trapped in local minima. To counteract this, we applied 

a. perturbation in the form of a gradient descent term and a momentum 

term which were always added to  the cubic adjustment (8). When the 

cubic adjustment could not be applied because (10) was complex or the 

first derivative of the quadratic was negative when evaluated a t  the current 

point, the gradient and momentum terms were used alone. This yielded a 

dramatic improvement in performance. 

4 Results 

The Cubicprop11 algorithm was used to train neural networks on parity 

problems of various sizes. The n-pa.rity function maps each of the 2n possible 
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n-bit binary input patterns with an even number of ones to  0, and t h o ~ e  with 

an  odd nunlber to  1. However, since the hyperbolic tangent ~lonlii~earity 

was used in the network, a -1/1 parity function was used instead of the 0 /1  

parity function described above. Performance was measured in terms of the 

Normalized Root Mean Squared Error (NRMSE), defined as 

J$ E;=~(Y~ - zPl2 
NRMSE = Jm 

where P is the number of patterns, 21,. . . , zp are the outputs of the network 

and y l , .  . ., yp are the desired outputs, with sample mean j. 

Table 1 shows the results for CubicpropII, Gradient Descent, and a, mod- 

ified Quickprop algorithm on the parity-2 (XOR) problem, using a net- 

work with 2 hidden units and hyperbolic tangent nonlinearities. On a, given 

run, each optimization algorithm was started from the same initial random 

weights, and run until either the NRMSE dropped below .001 or 500 c?pochs 

were reached, whichever came first. The statistics given are based on 100 

runs from different initial random weights. For this problem, CubicpropII 

was the clear winner over Gradient Descent and Quickprop in all categories 

but one; its worst convergent run took 130 epochs, as compared with Quick- 

prop's 93, although its best run took only 17 epochs, as comparetl with 



Quickprop's 40. 

Table 2 gives corresponding results for the parity-3 problem, using a 

network with 3 hiddell units. The statistics given are based on 50 runs from 

different initial random weights. Here CubicpropII was the clear winner in 

all categories. 

Table 3 gives corresponding results for the parity-4 problem, using a 

network with 5 hidden units. In this case, each algorithm was allowed t o  

run for up t o  800 epochs. The statistics given are based on 50 runs from 

different initial randoin weights. Here Quickprop perforilled better overall, 

but worse than CubicpropII in the best and worst run categories. 

5 Conclusion 

We have presented two optimization algorithms based on cubic curve litting, 

and demonstrated the effectiveness of one of them, CubicpropII, in training 

neural networks. CubicpropII compares fa,vourably with Quickprop in terms 

of convergence rate and stability, and in addition does not require a growth 

factor t o  bound the rate of increase of the weights. 

Although C:ubicpropI and I1 have been presented in the context of neural 

network training, they are in fact general optimization methods which may 



find application in other areas. 

6 Appendix 

The cubic fitted by Cubicprop1 in function space is given by 

The qua.dratic fitted by Cubicprop11 in deriva.tive spa.ce is given by 



where 

The first deriva.tive of this quadratic evaluated a t  the current point is given 
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% A I 

Average over convergent runs (epochs) ) 500 63.20 58.64 

Tahle 1: Statistics computed over 100 runs for Parity-2 lising a network with 
2 hiddell units and hyperbolic tangent nonlinearities. 

Average over all runs (epochs) 
Std dev over all runs (epochs) 
Median over all runs (epochs) 

Tahle 2: Sta.tistics cornplited over 50 runs for Parity-3 using a network with 

Gradient Descent 
,500 
0 

500 6 7 

best run (epochs) 
worst convergent run (epochs) 
Nilinher of non-convergent runs 
Percentage of non-convergent runs 
Average NRMSE 

500 
500 
100 23 
100 23 

.I260 .I425 .0937 

1 Median over all runs (epochs) I 500 60 44 I 

3 hidden units a,nd hyperbolic tangent nonlinearities. 

Average over all runs (epochs) 
Std dev over all runs (epochs) 

. - 
/ worst. convergent run (enochs) -500 197 98 

Gradient Descent Quickprop Cubicprop I1 
500 63.34 50.06 

0 21.72 1 23.31 

Average over convergent runs (epochs) 
best rlin (epochs) 

500 G3.34 5::G 1 
.500 43 

Number of non-convergent runs 
Percentage of non-convergent runs 
Average NRMSE 

50 
100 

.0278 .0009 .0009 



Ta.ble 3: Statistics cornputed over 50 runs for Parity-4 using a network with 
5 hitldeil units and hyperbolic tangent nonlinearities. 

Gradient Descent Quickprop Cubicprop I1 
Average over all runs (epochs) 
Std dev over all runs (epochs) 261.22 
Median over all runs (epochs) 
Average over convernent runs (epochs) 800 209.32 224.23 

1 best run ( e ~ o c h s )  I 800 128 86 1 
worst convergent run (epochs) 
Number of non-convergent runs 

800 
5 0 10 - 

Percentage of non-convergent runs 
Avera,ae NRMSE 

100 
.I275 .0703 



Funct~on Space t (w) 
1 2  

1 1 5 -  

0.95 - 

Figure 1: The Method of False Position (aka Quickprop) can be viewed as 
(a)  minimizing a, qua,dratic fitted in function space, or (b) finding the zero 
of a line fitted in derivative spa.ce. 



Figure 2: An example in which the minimum of the cubic fitted hy Cu- 
hicprop1 (5) is not in the negative gradient direction relative to the current 
point k .  



Figure 3: (a,) A typica.1 cubic fitted by Cubicprop1 ( 5 ) .  (b) The samtD curve 
a t  a higher magnification. 



Figure 4: Cubicprop11 (8) can be viewed as (a,) finding the local miilinlum of 
a, cubic fitted in functjon space, or (b) finding the zero of a, quadratic fitted 
in derivative space. 
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