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CALIFORNIA DESERT RESOURCE INVENTORY 
USING MULTISPECTRAL CLASSIFICATION OF 
DIGITALLY MOSAICKED LANDSAT FRAMES 

NEVIN A. BRYANTJ RONALD G. MCLEOD J AND 
ALBERT L. ZOBRIST 
Jet Propulsion Laboratory 

HYRUM B. JOHNSON 
Bureau of Land Management 

ABSTRACT 

Time and budget constraints have pre­
cluded the use of conventional mapping 
techniques for the U.S. Bureau of Land 
Management to produce a comprehensive re­
source inventory of the California deserts 
region as mandated by the California Des­
ert Conservation Act. A Landsat mosaic at 
full resolution for ten scenes over the 
California deserts region was used to pro­
vide a continuous data base for mUltispec­
tral thematic classification. Procedures 
for adjustment of brightness values be­
tween frames and the digital mosaicking 
of the Landsat frames to standard map pro­
jections were developed for this task and 
are discussed. 

The principle of transect sampling 
was adopted as a means to obtain a uniform 
classification throughout the entire des­
ert while generating one set of classifi­
cation statistics. The transects were 
sel'ected by the BLM science team to in­
clude all variable types in the landscape. 
The initial set of unsupervised statisti­
cal clusters was reduced by the BLM staff 
to 100 primary statistical clusters and 
applied to twelve small (512x512) test 
areas extracted from the Landsat mosaic. 
Subsequent to verification, classification 
was performed on the entire desert mosaic 
in lOxl o segments. Resource class assign­
ment was aided by including, in a post 
Classification procedure, DMA/NCIC digital 
terrain elevation data (with derived mea­
sures of slope gradient and aspect) regis­
tered to the Landsat mosaic. The combina­
tion of local terrain variations and a 
global sampling strategy based on tran­
sects provided the framework for an 

*This paper presents one phase of 
research conducted at the Jet Propulsion 
Laboratory, California Institute of 
Technology, under NAS 7-100, sponsored 
by the National Aeronautics and Space 
Administration. 

for an accurate classification throughout 
the entire desert region. 

I. INTRODUCTION 

The Bureau of Land Management (BLM) in 
the State of California has been mandated 
by Congress to prepare a comprehensive, 
multiple use management plan for the Cali­
fornia Desert Conservation Area (CDCA) by 
October 1, 1980 (Federal Land Policy and 
Management Act, Section 601, 1976)1. The 
CDCA encompasses an area of approximately 
25 million acres, or about one-fourth of 
the State of California. Resource infor­
mation for this sparsely occupied portion 
of the state is incomplete in many areas 
and nonexistent in others. Time and bud­
get constraints have precluded the use of 
conventional mapping and inventorying 
techniques for obtaining much of the needed 
resource data. The feasibility of using 
multispectral classification of Landsat 
imagery for the CDCA Plan was explored by 
representatives of the BLM Desert Plan 
Staff at the EROS Data Center in early 
1977. In general the results were highly 
favorable and the conceived potential was 
found to greatly exceed the initial expec­
tations. However, different systems and 
procedures needed to be implemented if an 
approach to uniform classification over 
the entire region was to be realized. 

The BLM personnel turned to the Jet 
Propulsion Laboratory's Image Processing 
Lab to assist in preparing a controlled 
digital mosaic of Landsat frames for the 
entire CDCA prior to digital classification 
of spectral data and for the incorporation 
of digital terrain data in resource classi­
fication strategies. The artificialty of 
essentially all resource classification 
schemes (ground based and otherwise) was 
tacitly accepted at the outset. Thus, 
during the initial phases of establishing 
the training statistics little concern was 
shown for trying to establish spectral 
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clusters that corresponded to "known" re­
source types. Typal classifications of 
natural biological resources (vegetation, 
habitats, etc.) are most often only intu­
itive in substance and seldom adequately 
quantified. This condition has contribu­
ted to difficulties for testing Landsat 
classification as observed by Maxwel1 2 
working with vegetation production in Col­
orado, Bentley et a1 3 working with vegeta­
tion and soils in Arizona and Montana and 
Hutchinson~ striving for an integrated sur­
vey method in the Mojave Desert of Califor­
nia. It appears that extreme variability 
within the ground control class areas com­
monly leads to improper evaluations of how 
well Landsat data can define resources. 

A basic assumption made here is that 
spectral reflectance patterns are related 
in a rational way to resource characteris­
tics and that from this relationship prac­
tical classification schemes can be devel­
oped. The first goal in proceeding with 
the digital spectral classification then 
became one of establishing a set of spec­
tral clusters that would embrace the range 
of spectral reflectance intensities and 
patterns found in the data set for the 
COCA. There is a need for such an approach 
to be fine grained enough, i.e. have enough 
clusters, to separate out essentially all 
signatures that might correspond to spe­
cial purpose resource classes desired for 
practical applications. The underlying 
principle of this approach is the opposite 
of the null hypothesis most commonly used 
in statistics (type and error) but instead 
relies on minimizing the chances of keeping 
things together that are different (type 2 
error). In terms of the splitter taxono­
mists, "It is a greater sin to call things 
that are different the same, than to call 
things that are the same different." In 
this case more than one spectral cluster 
representing a given special purpose re­
source type can easily be combined. A 
pixel transect sampling method was devel­
oped to assure uniform classification 
throughout the entire area of analysis 
while generating one set of classification 
statistics. An unsupervised, purely sta­
tistical classification of the Landsat 
data could then be employed which would 
deliver an initial classification of 
enough discrete classes that all resource 
cover types, as known to resource special­
ists, could be delineated. The combina­
tion of local terrain variations and a 
global sampling strategy based on tran­
sects was to provide the framework of 
spectral ciassification results that could 
be used more or less independently by veg­
etation, soils and wildlife specialists 
in defining their own class aggregation 
parameters "for resource mapping. 

II. LANDSAT MOSAIC DATA BASE 

Considerable work has been done at 
JPL's Image Processing Laboratory develop­
ing geometric rectification and registra­
tion algorithms, and more recently, soft­
ware has been developed for digital image 
map reprojection and image mosaicking. 
Image processing support for JPL's plane­
tary program provides the basic software 
and procedures necessary to achieve digital 
image mosaickingS'6. Methods have been 
developed that not only geometrically cor­
rect and register images in the x and y 
directions but also correct and register 
images in the z domain (i.e. brightness). 
After corrections are applied to the three 
axes (x, y, and z) of each Landsat frame 
in the set of multiple images, a mosaicking 
algorithm is employed to construct a single 
larger mosaic image. 

Planetary mission images, and the 
associated image rectification software 
differs from the Landsat MSS digital im­
agery in that reprojection of vidicon 
images to specific projections could be 
achieved by using the pointing statis"tics 
of the spacecraft and then fine-tuning the 
local misregistration between frames by 
applying a rubber-sheet geometric distor­
tion correction algorithm a second time'. 
In the case of Landsat mosaicking, it was 
found that it was necessary to incorporate 
ground control points of known position in 
the image, as well as relative registration 
points to fine-tune the local misregistra­
tion between frames~. The reasons for in­
corporating known ground control points are 
twofold: a) the MSS multispectral scanner 
on Landsat is not a framing imaging system, 
so that continuous changes in pointing per­
spective geometry make it virtually impos­
sible to reconstruct a perfect orthophoto 
image from calibration data; and b) the 
relative position of points on the earth's 
surface is precisely known, with the result 
that geodetic control points must be used 
as input to the geometric correction of the 
satellite image data if any satellite mosa­
ic is to be expected to conform to the 
planimetry of existing maps. All the imag­
ery used to construct the COCA mosaic data 
base was, therefore, resampled in the x and 
y directions to accommodate Landsat sensor 
and orbital characteristics, local topo­
graphic offset effects, and to conform to 
the Lambert Conic Conformal Map Projec­
tion8 . The pixel resolution selected was 
80 meters square. The data were also re­
sampled in the z domain to present a smooth 
surface that no longer reflected abrupt 
changes in sensor calibration or day-to-day 
side-lap differences associated with atmo­
spheric effects. 
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The images used to generate the CDCA 
regional mosa~c were ten Landsat scenes 
taken on four sequential cloud-free days 
in August, 1976. A detailed analysis of 
image products generated has shown that 
the brightness value adjustment (z correc­
tion) has successfully smoothed out any 
sharp edge effects between frames due to 
atmospheric differences at different days, 
thereby permitting the extension of them- 9 atic classification across Landsat frames . 
Converting the image data to a specific 
map projection allows for easy, repeatable 
access to any portion of the mosaic. Co­
ordinates of the vertices of an area re­
quiring access are specified in latitude 
and longitude (degrees, minutes, seconds) 
which are in turn converted into the x and 
y positions of the image raster grid. 
This capability is useful for detailed in­
ventory and analysis of sub areas, since 
the CDCA mosaic comprises some 50 million 
picture elements (pixels) per Landsat band 
(Figure 1). Such a corrected image grid 
permitted the overlaying of the National 
Cartographic Information Center/Defense 
Mapping Agency (NCIC/DMA) digital terrain 
files. The registration accuracy of both 
multispectral and terrain elevation files 
was sufficient to effectively utilize the 
elevation data as an aid to thematic clas­
sification. 

III. OBTAINING CLASSIFICATION STATISTICS 

Despite the fact that the mosaicking 
procedure's brightness value adjustment 
(a correction) had successfully smoothed 
out any sharp edge effects between frames 
due to atmospheric differences on differ­
ent days, it was felt that assumptions of 
signature extension from selected ground 
plots across Landsat scene boundaries 
should probably not be made. Even though 
desert regions are characterized by stable 
atmospheric conditions for long periods of 
time, changes in plant species composition 
for similar habitats are known to develop 
over several degrees of latitude, as are 
reflectivity signatures for similar areas. 
A system of linear transect sampling was 
adopted as a means to assure uniform class­
ification statistics with sufficient dis­
crete classes to accommodate essentially 
all resource cover types defined by the 
BLM resource specialist. The initial pixel 
brightness values for all four MSS bands 
were extracted in two pixel wide swaths 
along approximately 3,000 miles of, tran­
sects specified by the Bureau of Land Man­
agement science team to include all vari­
able types in the landscape (see Figure 2). 
The transects traversed all types of ter­
rain elevation, slope gradient, slope as­
pect, and the various cultivated and popu­
lated areas. The transect data were then 

aggregated into one small image per Land­
sat band which represented one-half of one 
percent (0.5%) of the entire CDCA. An un­
supervised clustering algorithm was applied, 
which initially separated out 1993 clusters. 

The unsupervised clustering algorithm, 
which builds up clusters as it passes 
through the training data was structured to 
maximize the number of initial clusters. 
The initial cluster data set displayed the 
very broad range in reflectivity values 
found in the California deserts regions, 
which range from highly reflective white 
sands and playas to dark basalts, and irri­
gated agriculture to forested mountain 
areas, as well as the diverse variety of 
rangeland and dry cropland conditions. 
Much of the CDCA is sparsely vegetated, i.e. 
has less than 10% plant ground cover, and 
maximum ground cover seldom exceeds 50% ex­
cept in cultivated lands which were of lit­
tle concern to BLM scientists. Wildland 
areas, with the higher percentage ground 
cover values, though comparatively small in 
size, are of great significance in terms of 
total plant productivity and related re­
source values. The task of reducing the 
1993 clusters to a manageable number became 
a problem of devising a way to retain sig­
nificant but small clusters having strong 
vegetation components in their signatures. 
It is generally known that such clusters 
should be those with comparatively low re­
flectance in the red band (MSS 5) and high 
reflectance in the infrared bands (MSS 6&7) 
(Maxwel1 2 , Bently et a1 3 ). The BLM science 
team developed a systematic procedure to re­
duce the initial 1993 clusters into 100 
principal clusters while maintaining the 
critical elements needed to define land­
scape diversity. To that end, the 1993 ini­
tial clusters were first separated into two 
partitions based upon the strength of the 
vegetation component of the spectral signa...: 
ture as indicated by the brightness ratio of 
MSS band 6 to MSS band 5. If the ratio of 
MSS band 6 to MSS band 5 was greater than or 
equal to one, the clusters were determined 
to signify a chlorophyll type signature and 
if the ratio was less than one, the clusters 
determined a nonchlorophyll signature. This 
basically broke the clusters into vegetation 
reflecting (684 clusters) and non-vegetation 
reflecting signatures (1309 clusters). To 
further reduce the amount of clusters each 
resultant group was broken down into two 
partitions. Of the vegetation reflecting 
signatures where MSS band 6 was greater than 
MSS band 5, these signatures were divided 
into groups where MSS band 7 was greater 
than or equal to MSS band 5 (very high veg­
etation signature content; 363 clusters) 
and where MSS band 7 was less than MSS band 
5 (high vegetati0n siqnature; 321 
clusters). The non- or low vegetation 
clusters were divided on the basis of 
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whether MSS band 5 brightness was greater 
than 130 (on a pixel reflectance scale of 
0-255), (very bright surface conditions, 
e.g. playas and sand; 690 clusters) and 
whether MSS band 5 brightness was less 
than or equal to 130 (dark surface fea­
tures, e.g. basalt flows, shadows, 619 
ciusters). This resulted in partitioning 
the 1993 initial clusters in four groups 
representative of four major signatures 
types in the COCA. 

The reduction of the clusters to 
approximately 25 classes within each of 
the four partitions was performed by first 
ranking clusters in accordance with their 
brightness coefficient (Figure 3) and then 
by merging overlapping clusters and de­
leting the population and associated sta-. 
tis tics of clusters where the mean value 
occurred within the one standard deviation 
ellipse of a cluster with a larger popula­
tion. In order to assure that population 
size and standard deviation about the mean 
value of a cluster did not predominate in 
the cluster merging process, each parti­
tioned group was treated individually. 
Important low frequency pixel clusters 
representing strong vegetation signatures 
were thus retained to be used in the clas­
sification process (Table I). 

IV. CLASSIFICATION 

The final one hundred clusters selec­
ted for the COCA were then used as input 
to a hybrid Bayesian/Parallelepiped type 
classifier and applied to four primary 
test areas comrpising over 400,000 acres 
eachll. These areas were 25.4 miles (40.9 
km) on a side or 512x512 pixels. Eight 
secondary test areas were also used for 
classification verification. The test 
areas were selected by the BLM Oesert Plan 
science team for their diversity and repre­
sentativeness of the varieties of land­
scape found throughout the COCA. The four 
primary test areas were intensively stud­
ied and analyzed by the BLM staff in their 
office by using black and white film over­
lays of each class on color transparencies 
of the raw Landsat data. As general pat­
terns of class distributions emerged names 
were given to the classes. Several class 
combinations for both primary and second­
ary test areas were then displayed on an 
interactive display system at JPL and 
analyzed by the BLM science team to permit 
the assignment of each class or class com­
bination to either a plant community, a 
soil series, or wildlife habitat type. 
Class assignment was aided by extensive 
supplemental graund truth callected by the 
BLM staff through field surveys and low 
altitude aerial photography. The ground 
truth information helped spot inconsisten-

cies in classes from test area to test 
area. It was found, for instance, that 
with the aid of registered NCDC/DMA eleva­
tian data, and derived slope aspect data, 
many of the inconsistencies in class as­
signments were resolved. Changes in ele­
vation stratification of communities with 
similar reflectance characteristics often 
accurred between those test areas in the 
high desert and those in low desert areas. 
In a similar manner, problems such as dark 
desert pavement and shaded north slopes in 
mountains could be differentiated. 

Once the BLM science team was assured 
of the proper class assignments to soils, 
vegetation, and wildlife habitat types, 
the respective maps were generated for each 
of the 22 quadrangular. areas encompassing 
one degree of latitude and longitude in 
the COCA (Figure 4). As the results of the 
12 test areas analyses showed a systematic 
drift in signature characteristics from 
north to south, the quadrangles were each 
assigned to one of four quadrangle groups. 
Each quadrangle is considered as an indi­
vidual unit for further analysis and re­
source inventorying. The resouce data for 
the area had naw been "packaged" into man­
ageable sizes for mare detailed investiga­
tion during the comparative study phase 
needed to draw up a comprehensive plan for 
use of the COCA. Furthermare, the lOxlo 

quadrangle data sets can be easily accessed 
on BLM minicomputer systems in the future. 

V. CONTINUING WORK 

Two further phases of the project are 
underway at the time this report has been 
written. One involves a verification 
procedure that goes beyond that already 
performed at the 12 test areas, and the 
other involves the derivation af resource 
inventory statistics by administrative 
areas. The verification procedure involves 
the integration of approximately 500 large 
scale (1:2000) low altitude colar phota­
graph strips approximately 750x2000 meters 
each. The air photo strips were taken 
throughout the COCA, and will be used to 
both verify further the classification pro­
cedure used with the Landsat mosaic and 
derive more specific estimates of biamass 
concentration and plant species distribu­
tion. The latter measures will help the 
decision making pracess for both wildlife 
habitat and range carrying capacity assess­
ments. The resource inventory statistics 
will be aggregated according to. land owner­
ship and areas leased for grazing range 
allotments for each lOxl o quadrangle. The 
procedure used involves the application of 
the JPL created Image Based Information 
System l2 to generate georeference planes 
for the administrative areas requested and 
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then through the application of image 
overlay software derive the resource in­
ventory acreage statistics and related co­
efficients of range carrying capacity 
obtained from the 500 low altitude photo 
test areas. 
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RELATIVE PERCENT OF PIXELS AND CLUSTERS 
IN THE BAND RATIO-BRIGHTNESS CATEGORIES 

FROM THE TRANSECT SAMPLE TRAINING SET 

LANDSAT BAND RATIO-BRIGHTNESS CATEGORIES 

2 3 

Band 5 ~ Band 6 Band 5 > Band 6 

Band 5 > Band 7 Band 5 5. 130 

12% 52% 

16% 35% 

4 

Band 5 > Band 6 

Band 5 > 130 

30% 

31% 
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Figure 1 . Ten frame Landsat mosaic encompassing the California 
Deser t Conservation Ar ea . 
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Figure 2. Location of Transect Lines Used to Gather 
Training Sample Statistics for California Desert 
Conservation Area Multispectral Classification. 
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Figure 3. Procedure Used to Determine 
Brightness Coefficient (after Meuller­
Dombats , Ellenberq (101) 
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Figure 4. Sample one degree latitude, one degree longitude 
quadrangle of data extracted from CDCA mosaic . Quadrangle 
corresponds to U.S. 1 : 250,000 map series NI ll- S/W, San 
Bernardino West . 
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