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Abstract

The standard trace-driven cache simulation evaluates the miss rate of cache C on an
address trace T for program P running on input data | with object-code address map
M for P. We note that the measured miss rate depends significantly on the address
mapping M set arbitrarily by the compiler and linker. In this paper, we remove the
effect of the address-mapping on the miss rate by analyzing a symbolic trace T of
basic blocks. By assuming each basic block has an equal probability of ending up
anywhere in the cache, we determine the average miss rate over all possible address
mappings.

We present the gap model for predicting the mean and variance of the miss rate for
direct-mapped caches. Our model also predicts how an intervening trace, such as an
operating system call or a task switch, will affect the miss rate. For fully-associative
caches, we give the expected number of misses for different working set sizes. In
particular, for a working set of size w, and a fully-associative cache of size L, the
expected number of misses until the working set is resident is = LIn(L/L —w) for
w < L. We present a metric for estimating the interference between two parts of
a program, which is important in choosing a address mapping that minimizes cache
conflicts. Finally, we present a method to compactly summarize a trace that alows
accurate miss rate prediction for direct-mapped caches.

| ntr oduction

Our initial motivation for this study came about by observing the design process of a memory
system for a commercia workstation. To evaluate the performance of different memory systems,
computer architects often use trace-driven simulation to determine cache miss rates. Architects
compare predicted miss rates via cache simulators. The address traces are usualy from standard
benchmark suites (SPEC, Perfect, etc.) and are meant to be representative of typical computer
workloads. Unfortunately, architects frequently place significant emphasis on the absolute miss rate
numbers because no better method exists. It is natural to ask "Is a miss rate of z for benchmark

y on memory system z good, or bad?' Moreimportantly, how do we answer such a question?
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The measured cache miss rate depends on four factors, (i) the program P being executed, (ii)
the input data | for P, (iii) the type of cache used, and (iv) the specific address mapping M of
the object code for P, which is determined automatically by the compiler and linker.

We are concerned with the last factor. An address mapping, M, assigns each basic block in
P to a unique set of physical addresses. A mapping is itself affected by many factors including
compiler optimization (such as procedure inlining), the order the object modules are linked, and
the specific libraries on a system. We wondered how much the miss rate would vary if we linked
program b differently?

As such, we question the accuracy of using a single address trace from 'P based on a single
mapping to represent the expected behavior of P, even for similar input data, because of seemingly
arbitrary variations in the address mapping from system to system. We have heard of extreme
storiesin which changing the order object modules are linked has changed the execution time by a
factor of two due to caching effects. It is apparent the specific address mapping can have significant
effects on cache performance. In a worse case scenario, the most frequently executed code would
be mapped over one another. Although, such a scenario is unlikely, it is natural to ask how likely
are bad address mappings? In particular, how much variation in miss rate are we likely to observe
simply due to different address mappings?

Toisolatetheeffect of an address mapping from a particular addresstrace, weview theexecution
of Pon | as a block trace (or, smply trace) as a sequence of "named” blocks, e.g. “block;y Of
function sgrt™. Thus, for any address mapping M, running program P on input 1 aways produces
the same trace. The advantage of defining traces in this way is that small perturbationsto Por I
produce small perturbations to the resulting trace. For example, if small changes are made to P
over time, such as fixing bugs or adding new features, we expect the traces from the modified P
and the original P to be roughly the same. The same argument holds true for input I. E.g. if P
isaVLSI layout tool, we would expect similar traces when laying out similar circuits.

Given a block trace, we derive formulas for the expected number of misses averaged over all
possible address mappings of that tracefor direct-mapped and fully associative caches. Our method
has the advantage of defining a single meaningful number for the miss rate of a given memory
system for a specific benchmark. Our cache models handle the expected effect on the miss rate of
intervening traces, such as process switches. Finally, our models provide a quantitative measure of
the expected interference in the cache between two parts of a program.

The paper is organized as follows. Section 2 gives states our definitions and assumptions. In
Section 3, we present the gap model and derive equations the mean and variance of the miss rate
for direct-mapped caches. We also show how to model the effect on the miss rate of intervening
traces, such as an kernel traps or kernel cals. Finally we describe how to compactly summarize
atrace by giving gap counts. In Section 4, we derive the expected number of misses for a fully
associative cache using random replacement for different working set sizes.



2 Definitions

A cacheis described by the triple C(L, LS, SS), where L = the number of linesin the cache, LS=
theline sizein bytes, and SS= the number of setsor the set size. A cache has SSsets, each of which
contains L/SS linesor slots. For a direct-mapped cache, SS = L; for a fully-associative cache,
SS= 1 Otherwise, we have a a-associative cache, where « = L/S§S. In this paper, dl addresses
and sizes will be measured in units of cache lines, 0 that the phrase “u unique addresses” means
u unique cache lines. Two addresses collideif they map to the same cacheline. We define z = the
probability that two different addresses collide. For a direct-mapped cache, x = 1/L. An address
in the cache is called resident.

We use lower case letters for program-specific values and upper case symbols for trace-specific
values. We denote definitions via italics or with the = symbol. We assume we have a program P
whose instruction segment is partitioned into aset of n (basic) blocks B = {;,...b,}. A block bis
a segment of machine code such that if oneinstruction in | is executed, all of & must be executed.
We denote the size of block b; as s;, where s; is the number of cache lines occupied by b;; note that
s can be fractional. E.g. on a cache with 32-byte lines, a 40-byte block has size 40/32 = 5/4.

We are given afixed trace, T(P,1), for program P running input | . A block trace or tmce T is
sequence of blocks (not addresses) By, Bs,..., By, Where B; € B. Because we areinterested in the
state of the cache between reference, we view block B; as being accessed or referenced immediately
after timet. If By = b;, then dl of block b; is contained in the cache at timet + 1. Asour analysis
assumes a fixed trace T, and we omit T when convenient.

Times are denoted by the letter t. A timeinterval is denoted [t,¢] wheret < t'.

The term N; denotes the number of times block b; is referenced in T, thus, N = >"* N;. The
term t;(k) represents the time of the k-th referencedf block b;. A gap of block b; is the timeinterval
between references to b;. The first gap of b; is [0,t;(1)], namely, the time interval from startup
to the first reference to b;'. There are N; gaps of b;. We denote the kth gap of b; as [gapi(k)] =
[t:(k = 1) T 1,4;(k)]. The length of [gap;(k)] is t:(k) — t:(k — 1).

Wedefine U[t',t"] = {b;| B = bs, ¥’ < tt < t") = theset of unique blocks accessed between time
t and t"*, not including time ¢’ or t"*. We denote the size of Uf{t,t] as|U[t,t]]|, so that |U[t,t]]| isthe
number of unique addresses referenced between time t and t. We define the size o gap [gapi(k)] as
u(7, k) = the number of unique referencesin the kth gap of I;. Table 1 summarizes the definitions
used in this paper.

As an example, let P consist of basic blocks B = {b;, b, ...,bs}, wheres, = ¢. Let traceT =
bz, b4, b1, ba, bs, by, by, by. We have By = by, By = by, B3 = b;. The gaps of b, are [gap2(1)] = [0, 1],
[gap2(2)] = [2,4], and [gap2(3)] = [5,8]. We have U[2,7] = {by,b2,bs}, |U[2,7]| = 1 +2+t5=n35,
and u(2,3) = |U[5,8] =511+ 4=10.

For any random variable (r.v.) Z, E[Z] = Z = the expected value of Z, and Var[Z] = the
variance of Z = E[(Z — Z)?]. If Z € {0,1} (aBernoulli trial), then Var[Z] = Z(1 - Z). We use

1This definition allows us to catch cache misses at startup and also simplifies later formulas because there are N;
gaps rather than N; — 1 which would have resulted if we ignored the first gap.



Program value Trace value

block i of program P B, block accessed just after time t

number of blocksin P N number of blocksin trace T

N; # times b; isaccessed in T

8 size of block z (in cache lines) u(3, K) # unique addr in k-th gap of b; (gap size)
[t,t] timeinterval fromttot, t <#¢ g(1,k) # addr of k-th gap of 4; (gap length)
S(i,t) # of resident addresses of b; at timet
X;(k) # of missesblamed on b; inits kth gap
t;(k) timeof k-th reference to block b;

L size of the cache (in lines)
probability two addresses collide

Table 1: Definitions

random variables named S = 1 to represent blocks surviving in the cache, and X = 1 to represent

cache misses.
We make the following assumptionsin our analysis.

1 For1<i<n,s; <|L| — each block b; is much smaller than the cache, e.g. each block is no

larger than 1/20 of the cache size.

2. |C| » 1 — the number of cache lines is much greater than 1, e.g. the cache has at least 50

lines.
3. |P| > |C| — thesize of program P is much larger than the cache.

4. Block by is equally likely to start at any line in the cache. This assumption follows from 3, by
considering al possible address maps o P. (This assumption allows for physically impossible
mappings such as having every block start at line 1in the cache. It can be proven that
the physically impossible mappings are improbable enough to have an insignificant effect on
thefinal answer. Throughout this paper, we shall assume =  the probability that any two
addresses A; and A, collideis 1/L. In practice, address mappings are continuous, laying out

blocks one after another, so that

IPl-L 1 1 _1
z=|P|—*L=Z_m%Z, when|P| > |L|

To apply this correction, use the exact value for 2z wherever the term 1/L is found.

5. Addressesin thesame block do not collide with each other except for afully associative cache

using random replacement.

In practice, these assumptions are usualy valid. Note, if blocks are basic blocks in machine

code, the assumptions on block size are quite reasonable.




3 A Gap Model of Direct Mapped Caches

3.1 The expected ni ss rate

We blame each cache miss on the block currently being accessed, which then replaces a resident
address. We calculate the expected number of cache misses in trace T by adding the expected
number of missesfor each block b; over dl blocks. To determine the number of misses blamed on
block b;, we consider each of the gaps of b;. The intuitive reason for using gapsis that if B; = b;,
attt1dl of by must bein the cache, so that the previous status of b; isirrelevant for future times.
We define the random variable
S(i,t) = the number of addresses of b; in the cache at time t.

S(,t) denotes the number of "survivors" of by sinceitslast reference. To determine S(¢,t) assume
[t,#] is a gap of block &; and blocks b;, bk, b; are accessed at timet+1,t+ 2,t + 3, respectively as
shown below.

time: t t+1 t+ 2 t+3 et
block: bi b; br b; ... bi

Accessing block &; replaces s; lines in the cache. Over dl possible address maps, each line of
b has a(1- s;/L) chance of surviving. (This analysis remains true even if part of b; was already
in the cache)) The expected number of cache lines for b; that survive past the reference to b;
is E[S(i,t T 2)] = si(1 - s;/L). Similarly, after referencing bx at t + 2 we have E[S(z‘,t+3)] =
si(1—s;/L)(1 — si/L).

However, S(i,t + 4) = S(i,t + 3), because at t + 3 we reference b; which has already been
referenced earlier in this gap. This and subsequent references to &; in this gap cannot replace any
b; lines in the cache, because the first reference to b; would have already done so. Thus, only the
first access to each block in the gap matters, and we need only consider the set of unique blocks
accessed in [t,t’], namely U[t,t’]. As a result, the expected value of S(i,t') is

E[SG, )] = s [[(1 —se/L),  be€ UL, ] (1)
¢
In practice, we will probably need to add a correction factor because blocks that follow one another
in the trace are often "neighboring™ blocksin program (e.g. spatial locality). Thus, a significant
number of conflicts from the gap model simply won't occur in practice. The reason is that the
compiler and linker place neighboring blocks at adjacent addresses, with the result that they will
not collide. Our correction consists of labelling pairs of blocks (b;, b;) exzempt from colliding with
each other. For example, we might declare d| blocks in the same procedure exempt from collisions
with one another, which assumes the cache is larger than any procedure. With exempt pairs, we
modify Equation 1 so that the (1 - s¢/L) term exists only for non-exempt blocks b, of b.
We define the random variable
Xi(k)=s — S(i,ti(k)) = # of cache misses blamed on &; after its kth gap,




because the number of missesis the block size minus~the number of surviving lines. Summing over
dl the gaps of b;, we get the expected number of misses blamed on |; over the entire trace is

N; K
E[X.] = Z E[X,(k)] = Z (s,- - E[S(i, t,'(k)]).
k=1 k=1

The total number of misses over the entire trace is the sum of the misses over dl blocks, X(T) =

3.r1 X;. The miss rate is the number of misses divided by the total number of accessesin the
trace. If b; is accessed at time t, B; = b;, then s; cache lines are referenced at t.

As a simplification, for L > 1and L > s; > 1, we have (1— s;/L) ~ (1— 1/L)% =~ e~(s:/1),
Thus, applied to the kth gap of b;, Equation 1 becomes

E[S(i, k)]

i H(l —se/L) = s; ];[e‘st/L = s,-e'”(i’k)/L @

4
1- E[S(4,K)] = s (1 — e‘“(i’k)/L) (3)

I

E[X (4, k)]

As an example, Equation 3 showsthat if the gap is the samesize as the cache, b; hasae~! = 36.8%
chance of surviving. Summing over all gaps of blocks gives the expected number of misses over T.

v [SR o k)L
E[X(T)] = Zs. (Z l-e ) . (4)
k=1

i=1
Wegrossly categorize gaps sizesas either small (survival islikely), medium (survival dependson the
specific address map) or large (survival unlikely). For small gap sizes u less than L/4, the chance
of surviving is = (1 - «/L). For gaps larger than 3L, by has less than a 5% chance of surviving,
indicating &; is ailmost always knocked out. Thus, for any address mapping, blocks will survive
small gaps and will not survive large gaps. Alternatively phrased, for a specific address mapping,
the main factor of the actual cache performance is the miss rate on mid-sized gaps, e.g. those with
sizes between L/30-3L.

Note that our model provides quantitative insight on how much each block accounts for cache
misses. Unlike other miss rate models, Equation 4 is a weighted sum of exponentials. With different
weights, Equation 4 accounts for a wide variety of miss-rate versus caches size behaviors.

32 Data Caches

The preceding analysis assumes only instruction address traces. We now discuss data-only caches
and then mixed caches. When considering data references, some of our previous assumptions no
longer apply. We make the following modifications to our model. Data consists of either scalars or
arrays. In general, a trace consists of aseries of blocks and array references By, Bs,...,B;, ..., Bn,
where B; is either a basic block, a scalar, or an index from an array, such as "index 42 from array
17." As before, we assume the sizes of dl blocks, scalars, and arrays are known.




Each scalar is treated as a block, except that scalars have fractional sizes. E.g. on a cache
with 32-byte lines, a 4-byte integer scalar has size 4/32 = 1/8. Allowing fractional sizesis a better
model for blocks/scalars that are likely to bein the same cache line, because in Equation 1, we are
interested in the number of unique cache lines used. Rounding sizes up to the nearest integer is
a better model for blocks that are unlikely to occupy the same line, such as when text and data
collide in a mixed cache. As a contrived example, if eight scalarsfit in a cache line, and L = 128,
what is the likelihood that a scalar will survive through a gap that references 128 other scalars?
We believe spatial locality implies that if two scalars are accessed close to each other in time (such
as local variables for a given function), they are likely to be close to each other in the address map,
perhaps in the same line.

Arrays however, do not fit perfectly into the block model. Like basic blocks, arrays occupy
contiguous addresses, and thus, array addresses do not collide with one another (unless the array
islarger than the cache). Unlike blocks, however, (i) arrays can be quite large relative to the cache
size, and (ii) arrays need not be referenced in their entirety. We model small arrays as blocks that
need not be referenced in their entirety.

We categorize arrays as either small or large. If an array A[]is small, say |A| < L/5, we treat
each entry of A as a separatescalar. Otherwise, if an array A[] islarge, we cannot use our previous
approximation. We define S(%, A[],7) = the expected number of addresses of block b; that survive
T unique references to A[]. We have §(4, A[],1) = (1— rs4/L), where s4 is thesize (in cache lines)
of an array element. If the array is accessed sequentially, i.e. viaindices5, 6, 7,8 ..., then s4 is
thefractional size of each array element. Thus, if an array is one-third of the size of the cache and
it is accessed in its entirety, then rs4 = L/3 and the probability of an address surviving is 2/3,
which is what we would expect.

Thus, we amend the Equation 1 on the expected number of lines of b; that survive through time
t to be

E[S(i’t,)] =S5 H(l - Sg/L) H(l — TkSA, /L)7 be € U[t,t'],A‘[] € U[t’t’]’ (5)
2 K

where each b; is a block or scalar, and each A, isalarge array of with elements of size s4,, to which
there are r. unique references during [t, t].

33 Mixed instruction and data caches

Although not obvious, the equations for instruction-only caches remain reasonably accurate for
traces with both instruction and data addresses. We can still use the approximations from Equa-
tion 2 because if (for alarge array) rs4 islarge relative to the cache size (say, > L/5), the gap size
must also be large, as instruction references must outnumber array references. The inaccuracy of
the approximation (1- s/L) =~ e/l only matterswhen L/5 < rsgq < L. If rsq4 > L, theterm
e~(% k)L & 0 which remains accurate. If rs4 is small relative to L, our prévious approximation
is obviously valid. Thus, for the kth gap of b;, Equations 2 and 3 remain




E[s(i, k)] = sie YBk)L ©)
E[X(i,k)] = 1- E[S(,K)]=s: (1 _ eu(i, k)/L) @

where u(%, k) now counts al unique addressesincluding array references.

3.4 The interference between blocks

We can now quantitatively define the interference between two blocks blocks b; and b;. We define
two random variables Y (i, j,k) and Y (4, j,T) = the number of cache misses blamed on &; when
referencing b; (i) in the k-th gap of b; and (ii) over the entire trace T, respectively. As before,
we sum Y (%, 7, k) for each gap of b; to get Y (4, j,T). If [¢,¢] is the k-th gap of b; and ¢; is the
first reference of b; in the gap, then E[Y (i,],K)] = S(i,¢;)(1 - s;p) & si(1 — e-\Vltts+10I/L) The
interference between b; and b;isZ(i :j) = Y(4,j,T) + Y (5,1, T),which givesthe desired symmetric
property Z(i:j)= Z(j:1i).
As a generalization of Equation 4, we introduce the interference function

ELT) =3 s (% 1- e-u(i’k)/L) . (8)

i=1 k=1

which describes, in theory, the expected miss rateof T for a direct-mapped cache of any size.

3.5 Interveningtraces

When analyzing trace T, we definean intervening trace T’ as a continuous sequence of blocks during
T that have no addresses in common with T. Thus, we can view (i) operating system calls, (ii)
operating system interrupts and (i) process switches due to multi-tasking, all as intervening traces.
For simplicity, we assume the intervening trace T” runs to completion without being interrupted
itself. The notation T < T” > indicates that T’ was an intervening trace sometime during T.

If T’ has U’ unique addresses, it increases thesizedf dl pending gapsby U’. An intervening trace
interruptsL gaps. Let G = thesum of all gaplengths. If noinformation is known a priori as to when
theintervening tracewill occurin T, e.g. a hardware timer interrupt, the probability of interrupting
any gap g is proportional to the length of g, Pr[ interrupting gap ¢ ] = (length of g) * L/G. For the
kth gap of b;, we define the r.v.

Vi(k, T') = X:(k, T <T'>)- X;(k,T) = # extra cache missesin kth gap of b; due to T".
Then the expected value of V;(k) is

E[Vi(k)] = (g(i, k)L/G) si(et2 (i KWUI/L _ (i BVL) 9)
The expected number of additional misses due to T is the sum of E[V;(k)] over all gaps.




36 An approximate lower bound of misses

Because Equation 4 represents the average number of cache missesfor T over dl address mappings,
there must exist "good" mappings that result in fewer misses. How well might a good address
mapping perform? Unfortunately, determining the missrate of the optimal mapping isan NP-hard
problem. However, using the gap model we can estimate a lower bound.

As donein [McF89], we use the optimal cache-line replacement strategy, OPT, to derive alower
bound. On a cache miss, OPT replaces the line that will be accessed furthest into the future.
Although OPT isimpossible to implement in practice (asit requires knowledge of the future and
a fully associative cache to boot), the miss rate of OPT forms a convenient comparison point. We
can overestimate the number of misses for OPT, by discarding dl termsin Equation 4 for gaps of
sizeless than L, as seen by following lemma.

Lemma 1 If block i has a gap g of size u, using the OPT replacement strategy, b; survives through
gifsi+u<slL.

Proof : Let U be the set of addresses referenced in gap ¢. Assume g starts at time t. Rank
(withlabels 1, 2, 3, ..., L) each of the addresses resident at t based on the time of the next access,
with lower ranks for sooner accesses. Let 7 be the number of addresses in U are already resident
and z = u — 1 of the addresses are not resident at t. At the end of g, OPT will have replaced
the z addresses of largest rank; thus, the L — z addresses with lowest rank must survive through
g. Thelast address of b (the address of b; with highest rank) has rank r+ s;. From the lemma,
s +u= s +z++ < L. Thus, s; +r<L- X, and b; has low enough rank to survive through g. O

We note a block can survive gaps with size greater than L, if OPT replaces partsof U as the
gap progresses. As an example, assume L = 2, and all blocks have size of one. In the following
trace, block b, survives the entire trace including two large gaps.

by, ba, b3, by, by, bs, b, bz, by, ba, b3, by.

37 Theimageof atrace

In this section, we describe methods to compactly summarize the gaps in a trace. Our ideais to
categorize each gap as either "'short™ or "long" depending on whether the size of the gap (number
of unique addresses in the gap) is smaller-than, equal-to or larger-than the cache size, L.

Equation 4 shows that the ratio of the gap size to L determines the miss rate. For example, if
the gap sizeis 5L, then the block probably will not survive the gap as e=® < .7%. Thus, for each
block, if we know how many gaps are of each size, we can calculate Equation 4 precisely. However,
this information potentially requires keeping information about many gaps sizes.

Instead, we adjust all gap sizes by rounding them to the nearest power of 2, and we count the
number of gaps of each adjusted sizes. For atraceof length N, there arelog, N adjusted gap sizes.
Thus, we need log, N integers for each block, or nlog, N integersin total to summarize a trace.
Aswe alluded earlier, we can group large gaps with sizes > 5L together. Asit is seems unlikely we




will see caches with more than 2 X 10° cache lines (not bytes) in the near future, in practice, we
can lump together all gaps of size greater than 106. Thus, we need only log, 108 ~ 30 adjusted gap
sizes, meaning we need only {30n) integers to summarize the trace. For example, if N = 10° and
n = 104, we need 30 x 10* = 3 X 10° integers, a space reduction by afactor of 3X 103. Furthermore,
if many blocks have gap sizes with zero counts, we can save more space by listing just the non-zero
entries for each block (analogous to an adjacency list for representing sparse graphs). This method
could reduce the space needed by another factor of 2-1000 times.

If handling intervening traces is important, we need to store both the length and size of each
gap. As before we can adjust each gap length by rounding to the nearest power of 2, so that we
need n(log, N)? integers. As before, if many entries are zero, we can list just the non-zero entries.

If is not important to know which blocks are causing the misses, we can lump all blocks together
and simply count adjusted gap sizes weighted by block sizes. That is, if block b; has a gap with
adjusted size 29, then we add s; to the gap count for size 29. In this manner, only log, N integers
are needed. Asthisisat most 40 integersin practice, for better accuracy, we might round gap sizes
to the nearest power of +/2 or even +/2, which would double or quadruple the space requirement.
To capture how the miss rates changes as the trace progresses, we can split T into shorter pieces
and summarize the pieces individually.

Finally, we notethat our gap model expands upon the LRU stack model of an address trace [Spi77]
[RS77]. In their model, they record the probability that the next address in the trace will be the
mth most recent address. This correspondsto agap of size min our model. However, our derivation
points out the expected effect on the miss rate of such an occurrence.

3.8 Bounds on the variance of X(T)

Determining the variance of X(T) directly is difficult because the terms X;(k) are not independent.
Although we can derive an analytic formula for Var[X (T)], directly evaluating this formula is
computationally intractable as it involves many, many terms (typically, > 108), forcing us to settle
for bounding the value of Var[X(T")].

Before getting involved in the mathematics, recall the goal of this section is to estimate how
much the miss rate varies. We shall use the variance as a yardstick. However, as we can only
estimate the variance, our methods are approximate at best. As such, we shall sacrifice accuracy
and rigor for simplicity and intuition when possible. For any r.v. X = X;t X, t...F X,., we have

Var[X] = E[(X - X)}
= Y VarlxJ+ 28[3 ,é (X: - Xi)(X; - X, (10)
= iVar[X,'] + QE[i ii:l(X,'Xj - X,XJ)] (11)

i=1 1=23=1

= sum o variances T cross terms
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Var[X] > ) Var[X;, crossterms>0 (12)
i=1
If the X; terms are pairwise independent (namely, E[X;X;] = E[X;]E[X;]) then the double sum of
cross termsis zero. In our case, X; and X; represent the number of cache misses when accessing
blocks b; and b; at times t; and t;, respectively. Unfortunately, these cross terms are dependent
and there are Q(n?) of them. Directly calculating each of these terms is somewhat involved.
Consequently, we shall instead derive upper and lower bounds of Var[X].

The cross terms X;, X; are positively correlated if E[(X; — X;)(X; — X;)] > 0 or dternatively,
E[X:X;] > E[X;]E[X;]. In this case, Equation 12 shows we can underestimate Var[X] by summing
the variances of theindividual X;. Informally, if knowing that X; is greater than its average value
means that we expect X; to be greater than its average value, then we shall consider X; and X;
to be positively correlated. We believe the sum of cross terms is positive so that discarding them
gives a lower bound.

Both loop iterations are gaps of b, If we know that b; or b; collide with b; then the X;(k;)
and X;(k!) terms will both have larger than average values, showing they are dependent. We can
also, view the same referencesin terms of gaps of b;. Here, we see by and &, in the b; gaps. Thus,
the corresponding X;(k;) and X;(k}) terms are related. Finaly, the X;(k;) and X;(k;) terms are
dependent because if b; and b; collide, then both terms will tend to be larger. (All four terms
are dependent, in fact.) Overall, we expect the terms for the same block to be related for this
reason and many of the terms for different blocks to be dependent if references to these blocks are
interleaved as in major loop calls.

We may discard terms for gaps with > 10L unique addresses because it is unlikely (prob
< 5x 10~%) ablock can survive the gap. The term E[(X — X)] will be quite small.

We can underestimate Var[X;(k)] by considering each address in a block, independently. We
define the r.v. X;;(k) = 1if and only the jth address in b; causes a miss at the end of the kth
gap. Using Equation 3 with s; = 1, gives the value of Xj;;(k) = L We know X;p;(k) and X;pj(k)
are positively correlated, because if the jth address of &; is replaced during the gap, it islikely the
j'th address was also replaced. Thus,

Var[X;(k)] > iVar[X,—b-](k)] = (1 _ e—u(z‘,k)) e-u(ir k).

Jj=1

which plugged into Equation 12 gives

VarlX(T)] > 3° ki (1 muCobrnY -t k]

=1

We can get a crude estimate of the variance by considering the dominant loops in the trace, as a
significant fraction of the execution trace will consist of iterations from a few major loops. Loop
iterations will appear as consecutive (nearly) identical gaps. In practice, caches are much larger
than a loop body, so that we expect the loop to survive intact from iteration to iteration. Thus,
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much of the variance will come from the case where two (or more) blocks collide in a frequently
executed loop. E.g. the gap model predicts no collisons but some occur. In the following, we
assume that dominant loops have been identified by some means.

time:  t t+1 t+2 t+3 et
block: b; b; bx by ... b;

Consider a loop that is a gap of by which contains b; once, as shown above. (If a gap contains
more than one occurrence of 4;, we consider only thefirst.) We restrict ourselves to the case where
b; and b; collide. Let X; and X; represent the number of misseson the second loop iteration when
accessing by and b;. We shall evaluate the cross term in Equation 11, X;X; — X’;X'j. For simplicity,
we assume the gap sizeis less than L/10 so that we can ignore the product of the means because
X;X; < el/10e1/10 < 01 ~ 0. Without loss of generality, if s; > s;, there are three cases for b; and

b;: no collision, partial collision, and full collison where b; completely "covers” b;.

s;—1

BX:X;] = T (b=si =5+ D020+ 2 T (ke K+ (5= 5+ (e *5)
= ho collision + partial co_llision + full collison
= 2 [sstss = 1)+ (i = 5+ 1)(sD)] (13)
~ w 525

The above cross term applies to each X; and independently to each X; from each loop iteration.
Thus, if there are m iterations of a particular loop, there are m? identical X; X; termsfor each i
and j due to the cross product of m X; terms and m X; terms. We calculate similar termsfor all
pairs of variables involved in the loop. Finally, we apply these terms over all major loops of the
program. Formally, let 4 represent aloop from T that makes || iterations. Let i, j € 4 mean that
blocks b; and b; are referenced in each iteration of 4. Then using Equation 13, the sum of the loop
crosstermsis

XU Y [silsi =D+ Gsim s+ D] = 2 DIl T [(si -5 +2)()]

$€T  1i,j€P $€T  i,j€$

4 A fully associative cache

We now consider the expected number of missesfor a fully associative cache using random replace-
ment. With this scheme, a random line is replaced on a cache miss. The use of random replacement
simplifies our analysis because block collisions are independent of the address mapping. A fully
associative cache dynamically adapts to the trace, so that recently accessed lines are likely to be
in the cache, independent of the trace. We shall use a working-set model [Den68] not the gap
model. Previous studies [Smi78] have shown that fully associative caches have significantly lower
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miss rates than direct-mapped caches. The results of this section also apply to a-way set-associative
caches for a > 4. In practice, a-way set-associative caches, for a > 4 have similar performance to
fully associative caches. However, full associativity is significantly easier to analyze than a-way
set-associativity.

To analyze afully associative cache, we consider each address of P individually, because any
address can collide with any other address. In this case, we partition P into n addresses (not
blocks), b1,bs,...,b, where each b; is a cache line's worth of object code.

To gain someinsight into how the behavior of adirect-mapped cache differs from that of afully
associative cache, we shall analyze the expected number of misses for a cyclic trace of w different
addresses by, bz, ..., byw—1,bu, b1,b2,. .., bp1,by,b1,... ON an initially empty cache. Here, w is
meant to represent the effective working set size. We call b;3,b,,...,b4-1,b, acycle. Intuitively, if
w < L, we expect all addresses will eventually reside in the cache; if w > L, the trace cannot fit in
the cache and at least w — L blocks must miss each cycle.

In a direct-mapped cache, two blocks b; and b; either always conflict or never conflict. Thus,
the expected miss rate from these blocks over all mappingsis 1/L for each reference. In contrast,
on afully associative cache, b and b, will probably be placed in different cache locations initially
resulting in no further collisions. However, there is a chance 4; and b; might collide one or more
times before both become resident.

4.1 Small working sets, w< L

We now solve for the expected number of misses when dealing with an arbitrary trace of w distinct
addresses where w < L. We shall categorize the state of the cache by u, the number of unique
addresses it contains. Note that u must monotonically increase, because on a cache miss, we either
replace an old address leaving u unchanged, or we load the new address into an empty cache line
incrementing u. Once u = w, there will be nofurther misses.

Let X(n — n + 1) = the expected number of misses starting with u = n until = n +1 For
example, X[D — 1] = 1, as the first access misses and becomes resiclent. However, if w = L and
u=w-1,toincrement » tow requiresfilling the one empty line rather than replacing any of the
L — 1 resident addresseson amiss. As weshall see, X[n — n+1] = L/(L-n), sothat X[L—1— L]
= L misses are needed on average to randomly fill the last slot. Note that we ignore cache hits at
this point, and it will be the case that many hits occur between misses. We have

X(n—-n+1) = i%Pr[X'(n—»n+1)=i]

i=1

= iPr[}_((n—»n+1)2i]

1=1 '
>'—l= L_ (14)

!
)8
/N
@
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a=w/L Jd| 25| 33| 50| 66| .75| 80| .90
misses. total / compulsory | 1.05 | 1.15 | 1.21 | 1.39 | 1.63 | 1.85 | 2.01 | 2.56

Table 2 Total misses for w = aL, as a ratio of compulsory misses

We have Pr[ X(n — nt1) > i) = (n/L)"" because we need (i — 1) consecutive misses that replace
one of the n resident addresses in the cache. In general X(a — b) = 322! X(n — n+1). Using
H,=Yr,1/i=lnn?t 577+ 1/(2n) - 1/(12n?) [GKP8Y],

_ b—l_ b-1 L
X(a—b) = ZX(i—>i+1)=ZL_i
= L—( ! S )—L(H H.,) (15
- I-etI-a-1"t L-b+1) L™ FL-b
N L-a (b-a)
~ L[lnL—b+2(L—a)(L—b)
L—-a
" <b<L L- 1
Lins—p, 10<b<L-2 (16)

Thus, if a= 0 and & = L, we expect ~ LlnL misses from Equation 15. Alternatively, if a = 0
and b = w = al, each address has (1/a)(In(1/1 — a) misses on average. Table 2 shows that
for w < 50%L, compulsory misses account for most of the misses, indicating that cache quickly
captures the working set if the working set is smaller than the cache. In practice, caches will
frequently be much larger than the working set, so that « <« 1. For o« < 1, use dof the Taylor
expansion In(1tz) = z - x%2+ ..., for 0 < x < 1, shows that the ratio of total misses over
compulsory misses is roughly 1+ a/2(1 - a).

The preceding analysis only considers cache misses. We now calculate the expected number of
total references, including cache hits, for the working set to become resident, assuming addresses
are accessed randomly from the w addresses in the working set. Let R(a — b) = the expected
number of references starting with u = a until u = b and let Q(a) be the expected number of
references until a cache miss occursif there are a resident addresses in the cache.

Oa) = S i-Pr{Qa)=1]
=1

= gPr[Q(G)Zi]
_ i(g)”:w‘ja.

=1

(17)

We have Pr[ @(a) > i ] = (a/w)*~! because we need i — 1 consecutive references to one of the a
resident addresses in the cache, giving i — 1 consecutive cache hits. Combining this result with
Equation 14 gives
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b-1

Rla—b) = ER(;‘—»i+1)=%X(i~i+l)c?(i—>i+1)=2(,;ii)( - )

i=a i=a i=a w—1
Lw 22/ 1 1
- L—wg(w—i_L—i)’ wil
Lw
= T o(Hua— Hop—Hp  + HL ) (18)
L Lw (w—a)(L—b)]
~ L-wln (w--a)l’ b<w<lL (19)
Lw (w—a)(L - w)
~ <b= .
L-—-wln[ ) , 10<b=w<1L (20)

In most cases, b = w as we assume the entire working set becomes resident. In particular, if a=0
and b= w = L — 1, there are (L — 1)? references on average before the working set is resident. If
w = oL, where e < 1, then R(0 — w) = (w/(1 — @))In(w(1 — a)).

The above analysis makes theimplicit assumption that every block in the working set is accessed
regularly, such as a cyclic trace, so that the entire working set eventually becomes resident. In
practice, traces will rarely be so cooperative. To handle irregular access to the working set, we
shall augment T with extra references.

We prove that adding blocks to a trace cannot decrease the expected number of misses. (Note,
this process may decrease the miss rate, as the trace becomes longer.) We denote an insertion
asinsert(T, b, t) = add a reference to b, to T immediately after B; before Byyi. Thus, if T =
Bi,...,Bt,Bi1,...,Bx, then insert(T, b, t) = B,...,Bt,b,, Biy1, BN. As before X(T) is the
expected number of misseson trace T.

Lemma 2 For any trace T, let T' = insert(T, b, t). Then, X(T) < X(T").

Pr oof : There are two cases.

(i) Block b is present in the cache at time t. The extra reference to b; is a cache hit so

X(T)=X(T").
(ii) Block b replaces block &, at timet in the cache. We consider the misses blamed on &, and
b,.

Misses blamed on &. — In trace T, if b, survives until its next reference, we get an extra miss
in T' on the next reference to b, If b, would have been replaced anyways beforeits next
reference, the extra b, causes no change. In both cases, we have X(T) < X(T").

Misses blamed on b, — In T', the extra b, either prefetches b, if bz survives until its next
reference or generates an extramissif b, is replaced by its next reference. In either case,
X(T)< X(T). o

. - L-1 oo
'If a=0,andb=w=1L,weget R0 L)= 3y L*/(L-i)*=~L***/6~1.6L% Wehave used ) 1/i* = x*/6.
1=0

i=1

15




Theor em1 For any trace T, let T, ke the resulting truce after an arbitrary number o insertions
onT. Then, X(T) < X(T»).

Proof : By repeated single insertions we can convert T to T;. The theorem follows by repeated
application of thelemma. O

We use this theorem to get bounds on the misses for traces with irregular reference patterns.
For example, let by represent the blocks in a loop body and consider the trace (fragment) To =
by,b2,b¢, by, by, b1,b2,bg, by, by, by, by in which by and b, are accessed sporadically. At the end of
T, it is not clear whether b; is likely to be resident, because the last reference to b; occur By
inserting references to b, and b, before by, when necessary, we can convert Tp to T§, a sequence
of cyclic traces so that Equation 15 applies. If w for Tp is small and the cache is initially empty,
we get the bounds w < X(To) € X(T}) = LIn(L/L — w). For w < L/10, Table 2 shows that
w = LIn(L/L — w), indicating our bounds are quite tight. Other trace fragments can be handled
similarly.

4.2 Analyzing thetrace, w< L

To determine the expected number of misseson T, we assume the T has been partitioned by some
means into sub-traces Ti,...,Tn, such that each sub-traces has a different working set than its
neighbors. E.g each time the working set changes, we get a new working set. The working set for
T is Wy; its size (in cachelines) is w;. We assumew; < L, and that after each subtrace, the entire
working set W; is resident. In this section (Section 4.2), we clenote the time immediately before
subtrace T; astimet, e.g. it isasif each subtrace requires one unit of time. The notation b; € W;
means that address b; is part of working set W;.

Within each subtrace Ty, we have X(T;) = X(a; — w;), Where a; is the expected number of
addresses of W; already resident at the start of T;. We use the gap mocld to determine at. We
define the random variables

2

S@it) = 1 b;inthecacheat timet
’ 0 b; not in the cache at time't

and

SWit)= Y S(1).

b;eW;
Thus, S(W;,t) is the number of addresses of W; that are resiclent at timet. Let b € W; as
shown below. The probability that address &; will survive through subtrace T;41 is (1— we41/L),
assuming none of Wyy; was resident before Ty4,. However, if aw:y, addresses of Wiy survived
from a previous subtrace through T3, then during Ti41 only (1 — a)w:1 addresses will be reloaded
into the cache, and the probability of &; surviving though Tiyq is (1 - (1— a)wst1/L).

time; t t+1
blocks: Y S bi1 bjg--bjm---
subtrace: | =« T; — | | — Ten — |




Thus, the number of addressesof W, already resident before T is a; = S‘(Wt,t), which is defined
by the recurrences

E[SGi,ttT1)] = 1, b € W,

E[SG,tt )] = E[SGtt1)« @- 2= E[S(Wt’t)])’

bj & W (21)

As an example, consider the case where two working sets, W; and W4, overlap in their transition.
We model theoverlap in a separate subtrace that referencesthelarge working set W;UW, 4, that has
been warm-started with all of W, resident. Then during the transition, we expect X (w; — w; +w,)
- L- . . .. . .

S Llnr_(—T‘j}m misses from Equation 16. After the transition, W4, is already resident and no
further misses are encountered.

4.3 Working sets larger than the cache, w > L

[Originally wetried to analyzefully-associative caches using thefollowing analysis, howeverit yields
erroneous results when w < L. Fortunately, it yields reasonably accurate results for w > L. In
practice, caches are becoming large enough so that w > L isincreasingly unlikely.]

If w> L (say w> 5L), we can again apply the gap model, because few addresses will survive
their gaps. In particular, an address will survive with probability e=*/L giving a miss rate of
1-ew/L (A brief simulation indicates this model is quite accuratefor w > 3L.) The probability
of amiss when accessing b; at timet depends in part on thelikelihood of b; already residing in the
cache. As before, we define the random variable

1 b&; in thecache at timet
0 b; not in the cache at time' t

If w>> L, the probability of an address surviving through a cycle until its next reference is small,
and we may assume with little loss in accuracy that S(4,t) is independent of S(j,t) for any ¢ and
j- Then, if B; = b;, we have

E[S(i,t+1)] = 1 -
B[SG,et D] = BISG o) (1- o)
~1+ i
= E[S(j,t)]*(L 1 ED[S(,t)]) oy 5
(24)

In Equation 23, theterm (1 — E[S(,1]) is the probability that ; is not in the cache and the term
(1- E[S(,t)])/L isthe probability b; replaces b; in the cache. For the cyclic trace, we assume the
cache reaches a stationary state in which S(j,t) depends only on how long ago b; was referenced,
and we can treat all blocks identically, except they are shifted in time. We define S(t) = expected
value of §(j,t) where b; was referenced t time units ago. In the cyclic trace, each address has a gap
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w 32 36 40 44 48 52 56 60
calculatedx | 0.0% | 16.9% | 33.7% | 46.6% | 56.2% | 64.0% | 70.0% | 75.1%
measured -% | 23.6% | 38.8% | 50.3% | 58.9% | 66.0% | 71.7% | 76.4%
w 64 68 72 76 80 84 88 92
calculatedx | 79.0% | 82.3% | 85.0% | 87.1% | 88.9% | 90.7% | 91.9% | 93.1%
measured 79.8% | 83.0% | 85.5% | 87.7% | 89.5% | 91.0% | 92.4% | 93.3%
w 96 100 104 108 112 116 120 124
calculated X | 94.0% | 94.9% | 95.5% | 96.1% | 96.7% | 97.0% | 97.6% | 97.9%
measured 94.1% | 95.0% | 95.6% | 96.2% | 96.7% | 97.1% | 97.5% | 97.8%

Table 3: Comparison of predicted and measured miss rates for L = 32 on a cyclic trace of w
addresses.

of length w — 1, so the currently referenced address has probability S(w — 1) of still being resident
in the cache. Using Equations 22 and 23, we can solvefor S(w — 1).

5(0) = 1 ]
Sit) = S(t-1)=(1- 1;9(2"_'1_))
5'(w—1) = 5'(w—-2)*(1—1__S(Tw__1))=§(0)* (1_ I_S(L‘”—l))
~ e—(w—l)(l—S'(w—l))/L (25)

Taking thelogarithm of Equation 25 and rearranging gives a transcendental equation which defines
the expected miss rate, X, whichis1 - S"(w -1).

LIn(1-X)=—(w-1)X (26)

After solving for X iteratively, Table 3 shows that the calculated miss rate X from Equation 26
matches wdl with simulation results for w > 1.5L. For Table 3, we measured the miss rate o a
fully associative cache on 100 cyclesof thetrace1,2,3,...,w. Because random replacement is used,
we can only calculate the expected miss rate. In We chose L = 32in Table 3, because in practice,
TLB’s are often fully associative and TLB’s are frequently of this size.

4.4 Intervening traces

Assume at some point during trace T the working set size is w and u o these addresses are
resident. If an intervening trace T occurs with %' unique addresses that all become resident, it
reduces the expected number of resident addresses of T to u(1 — //L), using the same reasoning
asfor Equation 1. After T ends, we expect X [u(1 — u'/L) — w] more misses until the working set
from T become fully resident.

18




5 Summary and future work

We have presented formulas for the expected number of cache misseson a trace T over all possible
address mappings of the underlying program P for direct-mapped and fully associative caches.
For direct-mapped caches, we used a gap model; for fully associative caches, we use a working set
model. As aresult, our analysis (i) provides a single meaningful number representing for the miss
rate of a cache for a specific benchmark, (ii) naturally models the effects of intervening traces, and
(iii) is likely to be reasonably insensitive to small changes in the program or program input. The
gap model provides a quantitative estimate of how blocks interefere with one another in the cache,
provides acompactly trace summary and models a wide variety of cache-miss-rate versus cache-size
curves.

The obvious omission in this paper islack of experimental validation. We shall test our models
for direct-mapped and associative caches empirically on the SPEC benchmarks in a future paper.
Also, we wereunable to develop a model for a 2-way associative caches remains an unsolved problem.
We aso plan to use our model to determine good address mappings during linking. For a direct-
mapped cache, a good mapping must perform well for mid-sized gaps. The gap model provides this
information.

6 Acknowledgements

We thank Steve Crago for his feedback on this paper.

References

[Den68] Peter J. Denning. The working set model for program behavior. Communications o the
ACM, 11(5):323-333, May 1968.

[GKP89] R. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley,
Reading, MA, 1989.

[McF89] Scott McFarling. Program optimization for instruction caches. In ASPLOS-111, Boston,
MA, April 3-6 1989. ACM/IEEE.

[RS77] Turner Rollins and Bill Strecker. Use of the Iru stack depth distribution for simulation
of paging behavior. Communications o the ACM, 20(7):795~798, November 1977.

[Smi78] Alan Jay Smith. A comparative study of set associative memory mapping algorithms
and their use for cache and main memory. |EEE Transactions on Software Engineering,
SE-4(2):121-130, March 1978.

[Spi77] J.R. Spirn. Program Behavior: Models and Measurements. Operating and Programming
Systems Series. Elsevier Scientific Publishing Co., Inc., New York, 1977.

19




	Purdue University
	Purdue e-Pubs
	7-1-1993

	Expected Values for Cache Miss Rates for a Single Trace (Technical Summary)
	Russell W. Quong


