5-1-1993

COMPUTING MULTIPLE QUADRATIC FORMS FOR A MINIMUM VARIANCE DISTORTIONLESS RESPONSE ADAPTIVE BEAMFORMER USING PARALLELISM: ANALYSES AND EXPERIMENTS

Mu-Cheng Wang
Purdue University School of Electrical Engineering

Wayne G. Nation
Purdue University School of Electrical Engineering

James B. Armstrong
Purdue University School of Electrical Engineering

Howard Jay Siegel
Purdue University School of Electrical Engineering

Shin-Dug Kim
Purdue University School of Electrical Engineering

http://docs.lib.purdue.edu/ecetr/230

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Authors
Mu-Cheng Wang, Wayne G. Nation, James B. Armstrong, Howard Jay Siegel, Shin-Dug Kim, Mark A. Nichols, and Michael Gherrity

This article is available at Purdue e-Pubs: http://docs.lib.purdue.edu/ecetr/230
COMPUTING MULTIPLE QUADRATIC FORMS FOR A MINIMUM VARIANCE
DISTORTIONLESS RESPONSE
ADAPTIVE BEAMFORMER USING
PARALLELISM: ANALYSES AND
EXPERIMENTS

MU-CHENG WANG
WAYNE G. NATION
JAMES B. ARMSTRONG
HOWARD JAY SIEGEL
SHIN-DUG KIM
MARK A. NICHOLS
MICHAEL GHERRITY

TR-EE 93-20
MAY 1993

SCHOOL OF ELECTRICAL ENGINEERING
Purdue University
West Lafayette, Indiana 47907-1285
COMPUTING MULTIPLE QUADRATIC FORMS FOR A MINIMUM VARIANCE DISTORTIONLESS RESPONSE ADAPTIVE BEAMFORMER USING PARALLELISM: ANALYSES AND EXPERIMENTS

Mu-Cheng Wang†*
Wayne G. Nation†*
James B. Armstrong†*
Howard Jay Siegel†*
Shin-Dug Kim†*
Mark A. Nichols†*
Michael Gherriety†

†Parallel Processing Laboratory
School of Electrical Engineering
Purdue University
West Lafayette, IN 47907-1285 USA

‡Superconcurrency Research Team
Naval Ocean Systems Center, Code 421
San Diego, CA 92152-5000 USA

May 1993

Purdue University
School of Electrical Engineering
Technical Report TR-EE93-20

*This research was supported by Rome Laboratory under contract number F30602-92-C-0150, by the Naval Ocean Systems Center under the High Performance Computing Block, ONT, by the Office of Naval Research under grant number N00014-90-J-1937, by the National Science Foundation under grant number CDA-9015696, and by National Aeronautical and Space Administration under grant number NGT-50961.

Wayne G. Nation, Shin-Dug Kim, and Mark A. Nichols are currently with IBM Corporation, Rochester, MN, KwangWoon University, Seoul, Korea, and NCR Corporation, San Diego, CA, respectively.
Abstract

Data-parallel implementations of the computationally intensive task of solving multiple quadratic forms (MQFs) have been examined. Coupled and uncoupled parallel methods are investigated, where coupling relates to the degree of interaction among the processors. Also, the impact of partitioning a large MQF problem into smaller non-interacting subtasks is studied. Trade-offs among the implementations for various data-size/machine-size ratios are categorized in terms of complex arithmetic operation counts, communication overhead, and memory storage requirements. Furthermore, the impact on performance of the mode of parallelism used is considered, specifically, SIMD versus MIMD versus SIMD/MIMD mixed-mode. From the complexity analyses, it is shown that none of the algorithms presented in this paper is best for all data-size/machine-size ratios. Thus, to achieve scalability (i.e., good performance as the number of processors available in a machine increases), instead of using a single algorithm, the approach proposed is to have a set of algorithms from which the most appropriate algorithm or combination of algorithms is selected based on the ratio calculated from the scaled machine size. The analytical results have been verified from experiments on the MasPar MP-1 (SIMD), nCUBE 2 (MIMD), and PASM (mixed-mode) prototype.

Keywords: data-parallel algorithms, MasPar MP-1, multiple quadratic forms, nCUBE 2, PASM, scalable algorithms
1. Introduction

The real-time processing of computationally intensive tasks often requires a parallel implementation. There may be several parallel implementations that can satisfactorily perform the task. As the size of the problem, the memory space constraints, the execution time constraints, and the machine architecture are changed, the parallel programmer must reevaluate which approach is the best [SiS82]. An algorithm is regarded as "scalable" if it continues to perform effectively the task for which it was designed as the number of processors increases [ChD92]. Here, the term scalable is applied to a set of algorithms. In this sense, as the number of processors is varied, the goal is to select the algorithm or combination of algorithms in the set that most effectively performs the task.

Several data-parallel algorithms are developed and analyzed in this research for computing the multiple quadratic forms (MQFs) that are part of an adaptive beamformer calculation with minimum variance distortionless response (MVDR) [Hay86]. The implementations of the MQF problem for various data-size/machine-size ratios are evaluated in terms of the number of complex arithmetic operations, communication overhead, and memory storage requirements. Both coupled and uncoupled parallel methods are investigated, where coupling relates to the degree of interaction of the processors. The impact on performance of the mode of parallelism used is considered, specifically, SIMD versus MIMD versus SIMD/MIMD mixed-mode. Then, the effect of partitioning a large MQF problem into smaller non-interacting subtasks is studied. The analytical results show that none of the algorithms presented in this paper is best for all data-size/machine-size ratios. Thus, to achieve scalability (i.e., good performance as the number of processors available in a machine increases), instead of using a single algorithm, the approach proposed is to have a set of algorithms from which the most appropriate algorithm or combination of algorithms is selected based on the ratio calculated from the scaled machine size. The importance of using a set of algorithms also has been recognized by other researchers (e.g., [Pan91]). Experimental results from the MasPar MP-1 (SIMD), nCUBE 2 (MIMD), and PASM (mixed-mode) parallel processing systems are shown to support the theoretical results derived herein.

In Section 2, the MQF problem is defined. Parallel processing system models for which the application is targeted are overviewed in Section 3. Section 4 describes the uncoupled data-parallel algorithm. Several coupled data-parallel implementations and the impact of problem partitioning are presented in Section 5. A generalized method, of which the uncoupled and coupled methods are special cases, is defined in Section 6. In Section 7, the theoretical results of Sections 4, 5, and 6 that are useful for choosing an optimal algorithm are reviewed. Also in Section 7, a combined coupled/uncoupled approach is presented. Experimental results are discussed in Section 8. Related work is addressed in Section 9.
2. The MQF Problem

Let \(\mathbf{s} \)-vector, or steering vector, be an \(n \times 1 \) vector of complex numbers and \(\mathbf{v} \) be the total number of \(\mathbf{s} \)-vectors. Define \(\mathbf{M} \) to be an \(n \times n \) matrix of complex numbers and \(M(i, j) \) to be the element of \(\mathbf{M} \) in row \(i \) and column \(j \), for \(0 \leq i, j < n \). The \(q \)-th \(\mathbf{s} \)-vector is denoted by \(\mathbf{s}_q \), for \(0 \leq q < v \). Element \(m \) of the \(\mathbf{s} \)-vector \(q \) is denoted \(s_q(m) \), for \(0 \leq m < n \). Let \(\mathbf{H} \) denote the Hermitian transposition, i.e., the complex conjugate transposition of the \(\mathbf{s} \)-vector (where the complex conjugate of \(a + bi \) is \(a - bi \)). Then, the MQF calculation can be formally defined as:

\[
\mathbf{w}_q = \mathbf{s}_q^H \mathbf{M} \mathbf{s}_q \quad \text{for} \ 0 \leq q < v
\]

For easy reference, Table 1 summarizes most of the parameters used in the paper.

In addition to the MVDR problem, this type of computation also appears in other problems. For example, if \(\mathbf{M} \) is a positive definite matrix, the quadratic \(P(x) = \frac{1}{2} x^T \mathbf{M} x - x^T \mathbf{b} \) is minimized at the point where \(\mathbf{M} x = \mathbf{b} \) and the minimum value is \(P(\mathbf{M}^{-1} \mathbf{b}) = -\frac{1}{2} \mathbf{b}^T \mathbf{M}^{-1} \mathbf{b} \). The parallel algorithms proposed here can be easily generalized to compute the equation \(x^T \mathbf{M} y \) that appears in the fundamental variational principles of physics \([\text{Str86}]\).

If the computation of \(v \) quadratic forms is performed on a serial machine, \(v(n^2 + n) = vn^2 + vn \) complex multiplications and \(v(n(n-1)+(n-1)) = vn^2 - v \) complex additions are required. Also, the serial machine must have enough memory space to store the entire \(\mathbf{M} \) matrix and \(v \) \(\mathbf{s} \)-vectors, with \(n^2 \) and \(vn \) complex numbers, respectively. It is assumed that each complex number is represented by two floating point numbers.

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M(i, j))</td>
<td>the element of matrix (\mathbf{M}) in row (i) and column (j)</td>
</tr>
<tr>
<td>(n)</td>
<td>the number of rows and columns of matrix (\mathbf{M})</td>
</tr>
<tr>
<td>(v)</td>
<td>total number of (\mathbf{s})-vectors</td>
</tr>
<tr>
<td>(P)</td>
<td>number of \textbf{PEs} in a parallel system</td>
</tr>
<tr>
<td>(s_q(m))</td>
<td>the element (m) of the (\mathbf{s})-vector (q)</td>
</tr>
<tr>
<td>(r_q)</td>
<td></td>
</tr>
<tr>
<td>(w_q)</td>
<td></td>
</tr>
</tbody>
</table>

\(\mathbf{w}_q = \mathbf{s}_q^H \mathbf{M} \mathbf{s}_q \) or \(r_q \mathbf{s}_q \)

Table 1: Summary of notation used throughout the paper.
3. Parallel System Model

The model of a parallel system that is assumed here includes \(p \) processing elements (\(\text{PEs} \)) of the same computing power, where each PE is a processor and memory module pair. Such a configuration is often referred to as a physically distributed memory machine, and is used in most current parallel systems with 64 or more processors, e.g., MasPar [Bla90] and nCUBE 2 [HaM89], as well as in the PASM prototype [FiC91, SiS87]. The proposed data-parallel algorithms can be implemented on a SIMD, MIMD, or mixed-mode distributed memory machine. These three models of parallel machines are overviewed below.

An SIMD [Fly66] machine is typically composed of a control unit (\(\text{CU} \)), a set of \(\text{PEs} \), and an interconnection network, as shown in Figure 1. In an SIMD machine, the enabled \(\text{PEs} \) receive and synchronously execute common instructions that are broadcast from the \(\text{CU} \); thus, there is a single instruction stream. The \(\text{PEs} \) fetch data from their memory modules; thus, there are multiple data streams. The interconnection network allows \(\text{PEs} \) to communicate among themselves and exchange data. Examples of SIMD machines that have been constructed include CLIP4 [Fou81], CM-2 [TuR88], DAP [Hun89], Illiac IV [BoD72], MasPar [Bla90], MPP [Bat80, Bat82], and STARAN [Bat74, Bat77].

![Figure 1: SIMD machine model with \(p \) \(\text{PEs} \).](image)

An MIMD [Fly66] machine consists of a set of \(\text{PEs} \) and an interconnection network, as shown in Figure 2. In contrast to the SIMD machine, where all processors are performing the same instruction in lock-step on their own data, in an MIMD machine, each processor executes instructions from its local memory, asynchronously with respect to each other [Fly66]. As with the SIMD model, the interconnection network provides communication links among the \(\text{PEs} \). Examples of large MIMD systems that have been constructed are BBN Butterfly [CrG85], CM-5 [PaS92], IBM RP3 [PFB85], Intel iPSC Cube [Arl88], and nCUBE [HaM89].
In a mixed-mode parallel processing system, processors are capable of executing in either SIMD or MIMD mode of parallelism. The ability to switch between the two modes at instruction-level granularity with very little overhead allows the parallelism mode to vary for each portion of an algorithm. There have been at least three mixed-mode parallel prototypes built. TRAC [LiM87], designed and built at the University of Texas at Austin, implemented mixed-mode switching at the subtask level, rather than at the instruction level. OPSILA [DuB88], from Laboratoire de Signaux et Systems in Nice, France, has the capability of executing instructions in either SIMD or SPMD (single program - multiple data stream) mode, a subclass of MIMD. PASM [ArW93, SiN90, SiS81, SiS87] can dynamically switch between SIMD and full MIMD modes of parallelism at instruction-level granularity with negligible overhead. Triton/1 [PhW93] is capable of mixed-mode parallelism at the instruction-level. Unlike PASM and TRAC, Triton/1 is not partitionable. The design can support up to 4096 processors.

PASM is reconfigurable along three dimensions: modes of parallelism (SIMD/MIMD) as described above, partitionability, and inter-processor connections. It can be dynamically partitioned into independent or communicating submachines of various sizes, each having the same characteristics as the original machine. PASM uses a flexible multistage cube type network [SieW], which allows the connection patterns among the processors to be varied. Extrapolation techniques can be used to study the potential performance of larger PASM systems with the small-scale prototype, as done, for example, in [BrC90].

Experimental results for the MQF problem were obtained from SIMD (MasPar MP-1), MIMD (nCUBE 2), and mixed-mode (PASM) machines. There are many trade-offs among these modes of parallelism [BeK91, BeS91, FiC91, SiA92]. Computational characteristics of algorithms affect the choice of the best mode for executing each section of code [Jam87]. A general discussion of these trade-offs is beyond the scope of this paper.

Furthermore, no particular interconnection network is assumed for the proposed algorithms, but the multistage cube and hypercube (single-stage cube) networks [SieW] are shown to be flexi-
ble interconnection networks that can perform the PE-to-PE permutations required by the MQF implementations without any conflicts (i.e., without two communication paths needing a common network link). The multistage cube network has been used or proposed for use in systems, such as the Goodyear Aerospace Corporation ASPRO [Bat82], BBN Butterfly [CrG85], Cedar [KuD86], IBM RP3 [PfB85], Goodyear Aerospace Corporation STARAM [Bat77], PASM [SiN90, SiS87], and NYU Ultracomputer [GoG83]. The class of multistage cube topologies includes: baseline [WuF80], flip [Bat76], generalized cube [Sie90], indirect binary n-cube [Pea77] multistage shuffle-exchange [ThN81], omega [Law75], and SW-banyan (S=F=2, L=n) [LiM87] networks [Sie90, WuF80]. The hypercube interconnection topology has been implemented in the CM-2 [TuR88], Intel iPSC cube [Arl88], and nCUBE [HaM89].

The following sections describe the data-parallel implementations of the MQF algorithms. Included is a discussion of the impact of the mode of parallelism and the network topology used.

4. The Uncoupled Data-Parallel Method

The uncoupled method uses the obvious approach to parallelizing the MQF problem. Assume that p divides v, i.e., v = c*p where c is an integer. By distributing v s-vectors evenly among p PEs, each PE can compute c quadratic forms in parallel without having to communicate with any other PE. If p does not divide v, i.e., v ≠ c*p, floor(v/p) s-vectors will be assigned to each of v mod p PEs, and ceil(v/p) s-vectors will be assigned to each of the remaining PEs. However, in this case some PEs will do more work than others. If v < p, only v PEs will actually be utilized. Thus, for the uncoupled method, utilization is good when either p divides v or v = wp.

Solving a quadratic form can be decomposed into two phases. Letting * denote scalar multiplication, the phase (1) calculation is

\[r_q(y) = \sum_{x_0}^{n-1} s_q(x)*M(x,y), \]

and the phase (2) calculation is

\[w_q = \sum_{y_0}^{n-1} r_q(y)*s_q(y). \]

The number of complex multiplications and additions required for each s-vector during phase (1) is \(n^2 \) and \(n(n - 1) \), respectively. For phase (2), \(n \) complex multiplications and \((n - 1) \) complex additions are performed for each s-vector. Thus, the total number of complex multiplications and additions performed for each s-vector is \(n^2 + n \) and \(n^2 - 1 \), respectively. Because some PEs are assigned \(\lfloor v/p \rfloor \) s-vectors, the maximum number of parallel complex multiplications and additions is \(\lceil v/p \rceil (n^2 + n) \) and \(\lceil v/p \rceil (n^2 - 1) \), respectively.

For the uncoupled method, the maximum storage requirement per PE is \(n^2 \) complex elements for the M matrix and \(\lceil v/p \rceil \) n complex elements for the s-vectors. This assumes that as each element of \(r_q \) is computed, it is used to calculate \(w_q \) and is not stored (i.e., phases (1) and (2) are temporally interleaved).
The uncoupled data-parallel method described above can be implemented in either SIMD (synchronous) or MIMD (asynchronous) mode. If all PEs are operating synchronously, the computations being performed by the PEs can be overlapped with the CU's execution of control-flow instructions and/or any instruction common to all PEs. This is called CU/PE overlap [KiN91]. Also, during phase (1), each element of mamx M can be embedded as an immediate operand of an SIMD instruction broadcast from the control unit to the PEs. Thus, each PE need not store the M matrix. One disadvantage of the implicit synchronization of the SIMD mode of parallelism is that it can cause some PEs to remain idle because of data-dependent variable-time instructions (e.g., a floating point addition instruction) [BeS91, FiC88].

If all PEs are operating asynchronously, the data-dependent variable-time instructions are better performed in MIMD mode than in SIMD mode [FiC88]. However, CU/PE overlap is not possible in MIMD mode. Because both the SIMD and MIMD modes of parallelism have their advantages and disadvantages, the right choice of execution mode depends on the machine design & tails and the characteristics of the data being processed.

5. The Coupled Data-Parallel Method

5.1. Overview

This section describes how to map the MQF problem onto p PEs configured as an \(a \times b \) (=p) logical grid (not necessarily a physical grid or mesh), where \(1 \leq a, b \leq n \), and \(a, b, \) and \(p \) are powers of two. Furthermore, the impact of partitioning the problem is discussed. The special cases of \(p = n \) (\(a = 1, b = n \)) and \(p = n^2 \) (\(a = b = n \)) are studied first to help explain the general case.

There are two common data layouts of the M matrix and s vectors in memory, referred to in [FoJ88] as the block and scattered decompositions. For the MQF problem, the block decomposition method has contiguous enmes of the M matrix and s-vectors assigned to PEs in blocks. The scattered decomposition method has consecutive entries in the M mamx and s-vectors assigned to different PEs. For this case study the block decomposition method is used.

For ease of presentation, \(n \) is assumed to be a power of two initially. Based on the description of the coupled implementation, the proposed method can be readily extended to cover the case when \(n \) is not a power of two. This case will be briefly discussed in Subsection 5.6.

5.2. When \(p = n \)

Consider the case when the number of PEs is equal to the number of elements in a s-vector, i.e., \(p = n \). As shown in Figure 3, PE \(j \) stores the \(j \)-th column of the M matrix and the Hermitians of \(v \) s-vectors \((s_q^H s_q, 0 \leq q < v) \). Given \(v = 6 \) and \(p = n = 4 \), Figure 4 illustrates how M is distributed across
As in the uncoupled data-parallel method, the calculation of the MQF problem can be decomposed into two phases: the phase (1) calculation is \(r_q(y) = \sum_{x=0}^{n-1} s_q^H(x) \cdot M(x, y) \), and the phase (2) calculation is \(w_q = \sum_{y=0}^{n-1} \sigma_q(y) \), where \(\sigma_q(y) = r_q(y) \cdot s_q(y) \). To form the intermediate result \(r_q(j) \), for \(0 \leq q < v \), PE \(j \) will execute \(v \cdot (n - 1) \) complex multiplications and \(v \) complex additions. All PEs involved can perform these computations in parallel (with PE \(j \) calculating \(r_q(j) \)). As shown in Figure 4, the resulting element in PE \(j \) is \(r_q(j) \) for \(0 \leq q < v \).

In the second phase, PE \(j \) first computes \(r_q(j) \cdot s_q(j) \) for all \(q \). Thus, \(v \) complex multiplications are performed, as shown in Figure 5. Similar to phase (1), all PEs involved can perform these multiplications at the same time. Next, the summation is performed, i.e., \(w_q = \sum_{j=0}^{n-1} \sigma_q(j) \). However, in this case, the elements to be totaled are stored in distinct PEs. Recursive doubling can be used to compute the sums [Sto80]. Performing interleaved recursive doubling procedures [SiA92, SiS81] to find simultaneously the sum of the elements of \(p \) distinct vectors is referred to here as a \(p \)-recursive doubling.

To help clarify the operations involved in the \(p \)-recursive doubling technique, Figure 6 illustrates how \(N = 4 \) PEs would sum the elements for an arbitrary set of vectors. In this example, there are \(p = 6 \) vectors, \(a_\eta \) for \(0 \leq \eta < 6 \), each having \(N \) elements. If \(a_\eta^j \) is the \(j \)-th element of vector \(\eta \) with \(a_\eta^j \) initially stored in PE \((j)\), then the sum that is sought is \(\sum_{j=0}^{3} a_\eta^j \) for each \(\eta, 0 \leq \eta < 6 \). In Figure 6, the arrows denote the transfer of data from one PE to another followed by an addition; together these form a transfer-add operation. Five transfer-adds are required: three for the first step and two for the second step.
Figure 5: Distribution of $r_q(j) \ast s_q(j)$ onto PEs for $v = 6$ and $p = n = 4$ (* represents element-wise scalar multiplication).
Figure 6: Using recursive doubling to sum simultaneously six vectors. Care for 0 ≤ i ≤ 6 and 0 < j < 4, on N = 4 PEs.
In general, the final sums for all p vectors, each with N elements, are computed in $\log_2 N$ steps, where $[p/2^i]$ transfer-add operations occur at step i for $1 \leq i \leq \log_2 N$. Thus, the total number of transfer-adds required in the p-recursive doubling procedure is $\sum_{i=1}^{\log_2 N} [p/2^i]$. Figure 7 gives an algorithm to perform the p-recursive doubling procedure. With the multistage cube network, each of these parallel transfers can be done in a single pass through the network without any conflicts [Sie90]. With the hypercube network, because each of these parallel transfers involves pairs of PEs that are directly connected, no conflict will occur for any inter-PE transfer [Sie90].

/* The following procedure will be performed on $PE(j)$, $0 \leq j < N$. */
for $i = 1$ to $\log_2 N$ do {
 /* step i */
 $k = j \oplus 2^{(i-1)}$; /* the destination PE number */
 for $\beta = 0$ to $([p/2^i] - 1)$ do {
 $\eta = (k \text{ mad } 2^i) + \beta 2^i$;
 transfer local partial sum of vector η to $PE(k)$;
 perform the complex addition with the received data and the corresponding local partial sum in $PE(j)$;
 }
 if ($p/2^i \neq [p/2^i]$) {
 $\beta = [p/2^i]$;
 $\eta = (k \text{ mad } 2^i) + \beta 2^i$;
 if ($j \& 2^{(i-1)} \neq 0$) {
 transfer local partial sum of vector η to $PE(k)$;
 } else {
 perform the complex addition with the received data and the corresponding local partial sum in $PE(j)$;
 }
 }
}

Figure 7: An algorithm to perform the p-recursive doubling procedure.

In the coupled data-parallel method for $p = n$, $\sigma_q(j)$ is equivalent to $\alpha_q(j)$ in the example above. Let w_q be the final sum of vector q, i.e., $w_q = \sum_{j=0}^{3} \sigma_q(j)$. Then, as shown in Figure 8, for the example above w_0 and w_4 are placed in PE_0, w_1 and w_5 are placed in PE_1, and w_2 and w_3 are placed in PE_2.
In summary, there are vn complex multiplications and $v(n-1)$ complex additions during the first phase, and the second phase requires v complex multiplications followed by $\sum_{i=1}^{\log_2 n} \lceil v/2^i \rceil$ transfer-adds. Thus, the computational complexity of the coupled implementation in this case is $v(n+1)$ complex multiplications, $v(n-1)$ complex additions, and $\sum_{i=1}^{\log_2 n} \lceil v/2^i \rceil$ transfer-adds. If $\sum_{i=1}^{\log_2 n} \lceil v/2^i \rceil$ transfer-adds can be decomposed into $\sum_{i=1}^{\log_2 n} \lceil v/2^i \rceil$ inter-PE transfers and $\sum_{i=1}^{\log_2 n} \lceil v/2^i \rceil$ complex additions, the computational complexity becomes $v(n+1)$ complex multiplications, $v(n-1)+\sum_{i=1}^{\log_2 n} \lceil v/2^i \rceil$ complex additions, and $\sum_{i=1}^{\log_2 n} \lceil v/2^i \rceil$ inter-PE transfers.

If n divides v (i.e., $v = cn$ and c is an integer), $\sum_{i=1}^{\log_2 n} \lceil v/2^i \rceil = \sum_{i=1}^{\log_2 n} (v/2^i) = (v/n)(n-1)$. Then, the coupled method requires $v(n+1)$ complex multiplications, $v(n-1)+\frac{v}{n}(n-1)+\frac{v}{n}(n-1)\log_2 n$ complex additions, and $(v/n)(n-1)$ transfer-adds. Comparing the parallel complexity to the serial complexity given in Section 2 shows that a speedup of $n=p$ is achieved on the number of complex multiplications and additions. This multiplicative factor of $n=p$ speedup on calculations comes with an overhead cost that is only an additive term of less than v inter-PE transfers.

Because $(v/2^i) \leq \lceil v/2^i \rceil \leq (v/2^i)+1$ and $\sum_{i=1}^{\log_2 n} (v/2^i) = (v/n)(n-1)$,

$$(v/n)(n-1) \leq \sum_{i=1}^{\log_2 n} \lceil v/2^i \rceil \leq (v/n)(n-1) + \log_2 n.$$ Consequently, the number of complex additions and inter-PE transfers are bounded by $v(n-1)+(v/n)(n-1)+\log_2 n = vn - (v/n) + \log_2 n$ and $(v/n)(n-1)+\log_2 n$, respectively. If $v \geq n$, as with the case for the **MVDR** application, this implies that $\sum_{i=1}^{\log_2 n} (v/2^i) = (v/n)(n-1) \gg \log_2 n$. Hence, $\sum_{i=1}^{\log_2 n} \lceil v/2^i \rceil \approx (v/n)(n-1)$. Therefore, a speedup of approximately $n=p$ on the number of
complex multiplications and additions is achievable even when \(n \) does not divide \(v \).

As an example, let \(v = c \cdot p = c \cdot n \) and assume that the time to do a complex multiplication is ten times that required by a complex addition, and, on the average, the time to do an inter-PE transfer is the same as a complex multiplication. Then, the total speedup attained is:

\[
\text{speedup} = \frac{\text{serial-time}}{\text{parallel-time}} = \frac{vn^2 - v + 10(vn^2 + vn)}{(vn - vIn) + 10(vn + v) + 10(v - vIn)} - \frac{(11n^2 + 10n - 1)}{(11n + 20 - 11n)}.
\]

If \(p = n = 2^8 = 256 \), then the speedup is approximately 255. The total speedup in this example is only a function of \(n \) and is independent of \(v \).

The memory storage requirement for the coupled implementation is \(n \) complex numbers for a column of \(M \), \(vn \) complex numbers for \(v \) s-vector Hermitians \(s_q^H \), and \(v \) complex numbers for the \(v \) single components of s-vector \(s_q \) used in the second phase of the computation. If the \(v \) single s-vector components can be obtained by negating the imaginary part of the corresponding \(s_q^H \) stored in each PE local memory initially, the memory storage requirement can be reduced to \(n + vn \) complex numbers. If an SIMD or mixed-mode machine is used, each element of the \(v \) s-vector Hermitians can be stored on the CU and can be embedded as an immediate operand of an SIMD instruction broadcast from the CU to the PEs. By doing this, the memory storage local to each PE can be further reduced to just \(n \) complex numbers. Because in an MIMD machine each PE executes instructions from its local memory asynchronously, this saving in PE memory storage is not possible.

5.3. When \(p = n^2 \)

This subsection considers the case when \(p = n^2 \). This analysis assumes that \(n \) and \(p \) must be a power of two. Let \(\text{PE}(i,j) \) be the PE in row \(i \) and column \(j \) in an \(n \times n \) logical PE grid, where \(0 \leq i, j < n \). As shown in Figure 9, the data initially stored in \(\text{PE}(i,j) \) is \(M(i,j) \), \(s_q^H(i) \) for \(0 \leq q < v \), and \(s_m(j) \) for \(m \mod n = i, 0 \leq m < v \), and \(0 \leq i, j < n \).

Similar to Subsection 5.2, the calculations of the quadratic forms can be decomposed into two phases: i.e., to compute (1) \(r_q(j) = \sum_{i=0}^{n-1} s_q^H(i) \cdot M(i,j) \), and (2) \(w_q = \sum_{j=0}^{n-1} \sigma_q(j) \), where \(\sigma_q(j) = r_q(j) \cdot s_q(j) \). In phase (1), \(\text{PE}(i,j) \) first performs the \(v \) complex multiplications to compute \(s_q^H(i) \cdot M(i,j) \), for all \(q \). All PEs can perform these multiplications simultaneously. Then, because the result of \(s_q^H(i) \cdot M(i,j) \) is stored on \(\text{PE}(i,j) \), the \(v \)-recursive doubling procedure is used to form \(r_q(j) \) for \(0 \leq q < v \). In this case, all the PEs in column \(j \) (i.e., \(\text{PE}(i,j) \) for \(0 \leq i < n \) and \(j \) fixed) are participating in the same \(v \)-recursive doubling procedure to form \(r_q(j) \). Therefore, there are \(n \) independent \(v \)-recursive doubling procedures executing at the same time, as shown in Figure 10.
Figure 9: Distribution of \(\mathcal{M} \) and \(\mathcal{N} \) steering vectors onto \(u \) and \(v \).

<table>
<thead>
<tr>
<th>Condition</th>
<th>(u = 1)</th>
<th>(u = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda > \mu \leq 0)</td>
<td>((1 - u) \equiv u \mod w \cdot (1 - u)^w s)</td>
<td>((1 - u) \equiv u \mod w \cdot (1)^w s)</td>
</tr>
<tr>
<td>(\lambda > b \geq 0 \cdot (1 - u)^w s)</td>
<td>((1 - u') \equiv u \mod w \cdot (1)^w s)</td>
<td>((1 - u') \equiv u \mod w \cdot (0)^w s)</td>
</tr>
<tr>
<td>Memory ((1 - u'))</td>
<td>Memory ((0'))</td>
<td>Memory ((0'))</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Condition</th>
<th>(u = 1)</th>
<th>(u = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda > \mu \leq 0)</td>
<td>((1 - u) \equiv u \mod w \cdot (1)^w s)</td>
<td>((1 - u) \equiv u \mod w \cdot (0)^w s)</td>
</tr>
<tr>
<td>(\lambda > b \geq 0 \cdot (1 - u)^w s)</td>
<td>((1 - u') \equiv u \mod w \cdot (1)^w s)</td>
<td>((1 - u') \equiv u \mod w \cdot (0)^w s)</td>
</tr>
<tr>
<td>Memory ((1 - u'))</td>
<td>Memory ((0'))</td>
<td>Memory ((0'))</td>
</tr>
</tbody>
</table>
Figure 10: Example of the P formulation for $n = 0$ PEs, for $u = 4$, $d = 4$, $v = 10$, $t = 16$. The column on the right side of the equation is calculated on the column on the left side.

\[
\begin{array}{c}
(0,0)^{(0)}_P \quad (0,0)^{(0)}_T \\
(0,0)^{(0)}_P \quad (0,0)^{(0)}_T \\
(0,0)^{(0)}_P \quad (0,0)^{(0)}_T \\
\text{--=--} \\
(0,0)^{(0)}_P \quad (0,0)^{(0)}_T
\end{array}
\]

<table>
<thead>
<tr>
<th>Within that PE</th>
<th>Column PEs</th>
<th>Within that PE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(f') P = (f') H^{b \xi}_P$</td>
<td>$(f') P = (f') H^{b \xi}_P$</td>
<td>$(f') P = (f') H^{b \xi}_P$</td>
</tr>
</tbody>
</table>

Recursive
The number of transfer-add operations required to perform the v-recursive doubling is \(\sum_{i=1}^{\log_2 n} \lfloor v/2^i \rfloor\). The final sums \(r_q(j)\) are placed in \(PE(i, j)\), where \(q \mod n = i\) for \(0 \leq q < v\). For \(v = 10\) and \(n = 4\), Figure 11 shows how \(r_q(j)\), for all \(q\) and \(j\), is calculated and distributed across the logical grid of PEs.

Assume logical \(PE(i, j)\) corresponds to physical \(PE(i*n+j)\), for \(0 \leq i, j < n\). Because all \(n\) logical columns of PEs perform the \(n\) v-recursive doublings simultaneously, each transfer may involve all \(n^2\) PEs sending data. Both the multistage cube and hypercube networks can support the required inter-PE communications for all \(n^2\) PEs without any conflicts. That is because, each of the required parallel transfers can be done in a single pass through the multistage cube network without any conflicts [Sie90]. With the hypercube network, no conflicts will occur during each inter-PE transfer [Sie90] because each of these transfers involves pairs of PEs directly connected.

The second phase computes \(w_q = \sum_{j=0}^{n-1} \sigma_q(j)\), where \(\sigma_q(j) = r_q(j) \ast s_q(j)\). After the phase (1) computation, \(PE(i, j)\) holds \(\lfloor v/n \rfloor\) distinct \(r_q(j)\) elements and the corresponding components of \(s_q(j)\) initially resident in its local memory, where \(q \mod n = i\) for \(0 \leq q < v\). Thus, to form \(\sigma_q(j)\), the number of complex multiplications required is \(\lfloor v/n \rfloor\) and all PEs can perform these operations independently (see Figure 12). To total \(v\) vectors, each with \(n\) elements (i.e., \(w_q = \sum_{j=0}^{n-1} \sigma_q(j)\) for \(0 \leq q < v\)), all PEs in the same row will participate in a \(\lfloor v/n \rfloor\)-recursive doubling procedure, as shown in Figure 13. Because there are \(n\) rows of PEs, \(n\) independent \(\lfloor v/n \rfloor\)-recursive doubling procedures will be performed in parallel. The number of transfer-add operations required to total the components of \(w_q\) is \(\sum_{i=1}^{\log_2 n} \lfloor \lfloor v/n \rfloor/2^i \rfloor = \sum_{i=1}^{\log_2 n} \lfloor v/(n \cdot 2^i) \rfloor\). As a result, each PE will get at most \(\lfloor v/p \rfloor\) components of \(w_q\). More precisely, \(PE(i, j)\) gets \(w_q\), for \(q = fp + jn + i\), \(0 \leq f < \lfloor v/p \rfloor\), and \(0 \leq q < v\). Figure 14 shows the distribution of \(w_q\) across the \(n^2\) PEs for \(v = 10\) and \(n = 4\) at the end of computation. Analogous to the case discussed for the first phase, both the multistage cube and hypercube networks can support the necessary inter-PE transfers without any conflicts.

In summary, there are \(v\) complex multiplications followed by \(\sum_{i=1}^{\log_2 n} \lfloor v/2^i \rfloor\) transfer-adds performed during the first phase of computation and the second phase requires \(\lfloor v/n \rfloor\) complex multiplications followed by \(\sum_{i=1}^{\log_2 n} \lfloor v/(n \cdot 2^i) \rfloor\) transfer-adds. Thus, the computational complexity of the coupled implementation in this case is \(v + \lfloor v/n \rfloor\) complex multiplications and \(\sum_{i=1}^{\log_2 n} \lfloor v/2^i \rfloor + \sum_{i=1}^{\log_2 n} \lfloor v/(n \cdot 2^i) \rfloor\) transfer-adds. By regarding each transfer-add as an inter-PE transfer followed by a
Figure 11: Distribution of the matrix onto the PEs for $\lambda = 10$ and $n = 4$, where $I = 4$.

\[
(f')_W \times (f')_H = (f')_F
\]

<table>
<thead>
<tr>
<th>$f'_{(i)}$ Memory</th>
<th>$f'{(i)}$ Representation of cell ($f'{(i)}$) Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f'_{(i)}$ Memory</td>
<td>$f'{(i)}$ Representation of cell ($f'{(i)}$) Memory</td>
</tr>
<tr>
<td>-------------------</td>
<td>---</td>
</tr>
<tr>
<td>$f'_{(i)}$ Memory</td>
<td>$f'{(i)}$ Representation of cell ($f'{(i)}$) Memory</td>
</tr>
</tbody>
</table>

\[
\begin{array}{c|c|c|c|c|c}
& (3,3) & (3,2) & (1,3) & (0,3) & (3,3) \\
\hline
(3,3) & 3 & 3 & 3 & 3 & 3 \\
(3,2) & 3 & 3 & 3 & 3 & 3 \\
(1,3) & 3 & 3 & 3 & 3 & 3 \\
(0,3) & 3 & 3 & 3 & 3 & 3 \\
(3,3) & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
& (3,3) & (3,2) & (1,3) & (0,3) & (3,3) \\
\hline
(3,3) & 3 & 3 & 3 & 3 & 3 \\
(3,2) & 3 & 3 & 3 & 3 & 3 \\
(1,3) & 3 & 3 & 3 & 3 & 3 \\
(0,3) & 3 & 3 & 3 & 3 & 3 \\
(3,3) & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
& (3,3) & (3,2) & (1,3) & (0,3) & (3,3) \\
\hline
(3,3) & 3 & 3 & 3 & 3 & 3 \\
(3,2) & 3 & 3 & 3 & 3 & 3 \\
(1,3) & 3 & 3 & 3 & 3 & 3 \\
(0,3) & 3 & 3 & 3 & 3 & 3 \\
(3,3) & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
& (3,3) & (3,2) & (1,3) & (0,3) & (3,3) \\
\hline
(3,3) & 3 & 3 & 3 & 3 & 3 \\
(3,2) & 3 & 3 & 3 & 3 & 3 \\
(1,3) & 3 & 3 & 3 & 3 & 3 \\
(0,3) & 3 & 3 & 3 & 3 & 3 \\
(3,3) & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
& (3,3) & (3,2) & (1,3) & (0,3) & (3,3) \\
\hline
(3,3) & 3 & 3 & 3 & 3 & 3 \\
(3,2) & 3 & 3 & 3 & 3 & 3 \\
(1,3) & 3 & 3 & 3 & 3 & 3 \\
(0,3) & 3 & 3 & 3 & 3 & 3 \\
(3,3) & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]

\[
\begin{array}{c|c|c|c|c|c}
& (3,3) & (3,2) & (1,3) & (0,3) & (3,3) \\
\hline
(3,3) & 3 & 3 & 3 & 3 & 3 \\
(3,2) & 3 & 3 & 3 & 3 & 3 \\
(1,3) & 3 & 3 & 3 & 3 & 3 \\
(0,3) & 3 & 3 & 3 & 3 & 3 \\
(3,3) & 3 & 3 & 3 & 3 & 3 \\
\end{array}
\]
Figure 12: Complex multiplications in second phase for $\alpha = 10$ and $n = 4$ represents element-wise scalar multiplication.

<table>
<thead>
<tr>
<th>Cell (f') memory</th>
<th>cell</th>
<th>(f') memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f) ℓ_x</td>
<td>3</td>
<td>(f) ℓ_x</td>
</tr>
<tr>
<td>(f) ℓ_y</td>
<td>2</td>
<td>(f) ℓ_y</td>
</tr>
<tr>
<td>(f) ℓ_z</td>
<td>1</td>
<td>(f) ℓ_z</td>
</tr>
<tr>
<td>(f) ℓ_0</td>
<td>0</td>
<td>(f) ℓ_0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f) ℓ_x</td>
<td>(f) ℓ_y</td>
<td>(f) ℓ_z</td>
<td>(f) ℓ_0</td>
</tr>
<tr>
<td>(f) ℓ_x</td>
<td>(f) ℓ_y</td>
<td>(f) ℓ_z</td>
<td>(f) ℓ_0</td>
</tr>
<tr>
<td>(f) ℓ_x</td>
<td>(f) ℓ_y</td>
<td>(f) ℓ_z</td>
<td>(f) ℓ_0</td>
</tr>
<tr>
<td>(f) ℓ_x</td>
<td>(f) ℓ_y</td>
<td>(f) ℓ_z</td>
<td>(f) ℓ_0</td>
</tr>
</tbody>
</table>

\ldots 0 1 2 3 \ldots
Figure 13: Example of the row calculation on the row \(i \) for \(n = 0 \) PEs, for \(u = 4 \), \(d = 4 \), and \(\omega = 10 \).

\[
\begin{array}{c}
\begin{array}{c}
\omega = 8 \\
\omega = 4 \\
\omega = 0
\end{array}
\end{array}
\]

\[
\begin{array}{c}
8^m \\
4^m \\
0^m
\end{array}
\]

\[
\begin{array}{c}
\text{Row PEs} \\
\text{within PE} \\
\text{local (\text{with)}-recursive}
\end{array}
\]

\[
(f)^b_s \ast (f)^b_d = b^m
\]

\[
\sum_{\varepsilon}^{0=\ell}
\]

Peps
Table: contents of PE(i, j) memory

<table>
<thead>
<tr>
<th>i \ j</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\text{w}_0</td>
<td>\text{w}_4</td>
<td>\text{w}_8</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>\text{w}_1</td>
<td>\text{w}_5</td>
<td>\text{w}_9</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>\text{w}_2</td>
<td>\text{w}_6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>\text{w}_3</td>
<td>\text{w}_7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

\text{cell}(i, j)\ represents\ \text{contents\ of\ PE}(i, j)\ memory.

Figure 14: Final distribution of scalar \(w_q \) for \(v = 10 \) and \(n = 4 \).

For complex addition, the computational complexity becomes \(v + [v/n] \) complex multiplications, \(\sum_{i=1}^{\log_2 n} [v/2^i] + \sum_{i=1}^{\log_2 n} [v/(n2^i)] \) complex additions, and \(\sum_{i=1}^{\log_2 n} [v/2^i] + \sum_{i=1}^{\log_2 n} [v/(n2^i)] \) inter-PE transfers.

Because \(\sum_{i=1}^{\log_2 n} v/2^i + \sum_{i=1}^{\log_2 n} v/(n2^i) = v(1-1/n) + v(1/n - 1/n^2) = v - (v/n^2) \),

\[
v - (v/n^2) \leq \sum_{i=1}^{\log_2 n} [v/2^i] + \sum_{i=1}^{\log_2 n} [v/(n2^i)] \leq v - (v/n^2) + 2\log_2 n.
\]

Consequently, both the number of complex additions and inter-PE transfers are bounded by \(v - (v/n^2) + 2\log_2 n \). If the time to do a complex multiplication and the time to do an inter-PE transfer are ten times that required by a complex addition, as used in the previous subsection, then the total speedup is \(\text{speedup} = \frac{\text{serial-time}}{\text{parallel-time}} \), or,

\[
\text{speedup} = \frac{(vn^2 - v) + 10(vn^2 + vn)}{(\sum_{i=1}^{\log_2 n} [v/2^i]) + \sum_{i=1}^{\log_2 n} [v/(n2^i)] + 10(\sum_{i=1}^{\log_2 n} [v/2^i]) + \sum_{i=1}^{\log_2 n} [v/(n2^i)] + 10(v + [v/n] + 10(v + (v/n^2) + 10(v - (v/n^2) + 2\log_2 n))}
\]

\[
\geq \frac{v(11n^2 + 10n - 1)}{(v - (v/n^2) + 2\log_2 n) + 10(v + (v/n^2) + 10(v - (v/n^2) + 2\log_2 n))}
\]

\[
= \frac{v(11n^2 + 10n - 1)}{v(21 + 10/n - 11/n^2) + 22\log_2 n + 10}.
\]

If \(n = 128 \), \(v = 4n = 512 \), and \(p = n^2 = 16,384 \), the speedup is 8,482.
If \(v \geq n \), then
\[
\log_2 n < \log_2 (v/n^2) + 2 \log_2 n
\]
and, consequently,
\[
\sum_{i=1}^{\log_2 n} (v/2^i) + \sum_{i=1}^{\log_2 n} (v/(2^i)^2) \approx v - (v/n^2).
\]
Comparing the number of complex multiplications and additions to the corresponding operations required in the serial algorithm shows that an approximate speedup of \(n^2 = p \) is achieved. This multiplicative factor of \(n^2 = p \) speedup on calculations incurs an overhead cost that is an additive term of approximately \(v \) inter-PE transfers.

The memory storage requirements per PE for this method is
\[1 + v + \left\lfloor \frac{v}{n} \right\rfloor; \]
\[\text{i.e., one location for M(i,j), v locations for the } \]
\[\text{s-vector components of } s^H_q(i) \text{ for } 0 \leq q < v, \text{ and } \left\lfloor \frac{v}{n} \right\rfloor \text{ locations for the } \]
\[\text{s-vector components } s_m(j) \text{ for } m = fn, 0 \leq f < \left\lfloor \frac{v}{n} \right\rfloor, \text{ and } 0 \leq m < v. \]

Unlike the \(p = n \) case discussed in Subsection 5.2, because there is no common data stored on all PEs, the possibility of broadcasting common data to the PEs as immediate operands in SIMD mode does not exist. Consequently, the memory storage requirements per PE are the same for both SIMD and MIMD machines.

5.4. Coupled Data-Parallel Algorithm: General Description and Evaluation

The previous two subsections introduced the coupled method via two special case examples, \(p = n \) (subsection 5.2) and \(p = n^2 \) (subsection 5.3). This subsection formalizes the presentation of the coupled method: i.e., the mapping of the MQF problem onto an \(a \times b (=p) \) logical grid of \(p \) PEs, where \(1 \leq a, b \leq n \), anda, b, and \(p \) are powers of two.

Let \(\text{PE}(i,j) \) denote the PE in row \(i \) and column \(j \) in an \(a \times b \) logical PE grid, where \(0 \leq i < a \) and \(0 \leq j < b \). Figure 15 illustrates how \(M, s^H_q, \) and \(s_q \) are distributed across the PEs of the \(a \times b \) grid. Initially, the \(s \)-vectors are loaded into the PE memories such that an \((n/a)\)-element part of the Hermitian of each \(s \)-vector, \(s^H_q \), and an \((n/b)\)-element part of at most \(\left\lfloor v/n \right\rfloor \) \(s \)-vectors, \(s_q \), are stored in each PE memory. Each PE also holds an \((n/a) \times (n/b)\) portion of \(M \). The exact elements stored in each PE are defined for general \(\text{PE}(i,j) \) in Figure 15. For example, if \(v = 6, n = 4, a = 2, \) and \(b = 4 \), \(\text{PE}(1,2) \) contains \(M(2,2), M(3,2), \) \(s^H_q(2) \) and \(s^H_q(3) \) for \(0 \leq q < 6 \). \(s_1(2), s_3(2) \), and \(s_5(2) \), as shown in the boxes in Figure 16.

As in the previous cases, the calculation can be decomposed into two phases: the phase (1) calculation is
\[r_q(y) = \sum_{x=0}^{n-1} s^H_q(x) * M(x, y), \]
and the phase (2) calculation is
\[w_q = \sum_{y=0}^{n-1} \sigma_q(y), \]
where
\[\sigma_q(y) = r_q(y) * s_q(y). \]
Assuming \(v = 6, n = 4, a = 2, \) and \(b = 4 \), Figure 17 illustrates the complex multiplications and subsequent complex additions performed by \(\text{PE}(1,2) \). For each \(s \)-vector \(s^H_q \), each PE calculates \((n/a)\) products for each of \((n/b)\) \(r_q(y) \)'s. \(\text{PE}(i,j) \) calculates \(\sum_{x=i(n/a)-1}^{(i+1)(n/a)-1} s^H_q(x) * M(x, y) \), for \(j \leq y < (j+1)(n/b) \) and \(0 \leq q < v \). Thus, each PE performs \(v(n/b)(n/a) = vn^2 \) complex multiplications followed by \(v(n/b)(n/a-1) = (vn/p)(n-a) \) complex additions. All \(p \) PEs do these calculations simultaneously.
\[
\begin{align*}
\text{Figure 15: Distribution of } P \text{ and } V \text{ on } q \times P, \text{ (The maximum value } q \text{ can have is } 1 - V) \text{ have the form } P \times (1 - q)\times V.
\end{align*}
\]
Figure 16: Data elements in boxes are stored in PE(1,2) local memory.

Next, the summation in phase (1) is performed. The elements to be totaled to calculate $r_q(y)$ are resident in the a PEs of a given column. In the coupled algorithm, because each of the a PEs in a given column contributes to b different $r_q(y)$'s for each of the v s-vectors, a (vn/b)-recursive doubling procedure, utilizing $\sum_{i=1}^{\log_a a} [(vn/b)2^i]$ transfer-add operations, on the a PEs of each column can be used. All b logical columns of PEs simultaneously perform the b (vn/b)-recursive doublings (one per column). Both the multistage cube and hypercube networks can perform the needed inter-PE communications for all PEs with no conflicts. As a result, PE(i,j) will hold $r_q(y)$, where $j(n/b)\leq y < (j+1)(n/b)$ and for all q, $0 \leq q < v$, where q mod a = i. As an example for $v = 6$, $n = 4$, a = 2, and b = 4, the calculation of $r_q(j)$ (for all q, j) is illustrated in Figure 18.

Phase (2) of the coupled algorithm involves the formation of $w_q = \sum_{y=0}^{n-1} \sigma_q(y)$, where $\sigma_q(y) = r_q(y) \star s_q(y)$. After the first phase of computation, each PE holds at most $\lceil v/a \rceil (n/b)$ distinct $r_q(y)$ components and the corresponding elements of the s-vectors, $s_q(y)$, required to form $\sigma_q(y)$. PE(i,j) forms the local partial sums of the products $\sum_{y=j(n/b)}^{(j+1)(n/b)-1} \sigma_q(y)$, for all q, $0 \leq q < v$, where q mod a = i. This is shown in Figure 19 for $v = 6$, $n = 4$, a = 2, and b = 4. To do this, $\lceil v/a \rceil (n/b)$ complex multiplications and $\lceil v/a \rceil (n/b - 1)$ complex additions are needed. Then, similar to that of the first phase, a $\lceil v/a \rceil$-recursive doubling procedure is employed in each row of b PEs to combine the partial sums above to form w_q for all q. All PEs in row i, i.e., PE(i,j) for $0 \leq j < b$ and i fixed, participate in the same $\lceil v/a \rceil$-recursive doubling procedure to form at most $\lceil v/a \rceil w_q$ values, for all q, $0 \leq q < v$, where q mod a = i. To compute all v values of w_q in parallel, a independent $\lceil v/a \rceil$-recursive doubling procedures are performed simultaneously (one per row). Both the multistage cube and hypercube networks can perform the required inter-PE transfers with no
\(b \geq 2 \Rightarrow (\gamma'x(M * (x) H 2)^{b=\gamma} \sum_{2}^{(\gamma(u))=x} \text{partial sums}) \geq \gamma \geq (q/u)(1+f) > \gamma \geq (q/u)f \)

Image 17: Concerns of Pe(1,2)'s memory when forming the partial sums.
\[\sum_{\xi} (x,\xi) \mathcal{M} [x, \xi] = \mathcal{M}^{b} \sum_{\xi} (x,\xi) \mathcal{M} [x, \xi] = \mathcal{M}^{b} \sum_{\xi} (x,\xi) \mathcal{M} [x, \xi] \]

Figure 18: Distribution of data over the PE set for \(V = 6 \), \(u = 4 \), \(q = 2 \), and \(b = 4 \). Where \(\mathcal{M}^{b} \), and \(b > 0 \).

\(f' \) in \(\text{PE} \) (1.1) and \(\text{PE} \) (1.2)

\((\text{PE} \) (1.1) \(\times \) \(\text{PE} \) (1.2) \() \)

\((f' \) in \(\text{PE} \) (1.1) and \(\text{PE} \) (1.2) \() \)

\((\text{PE} \) (0.3) \(\times \) \(\text{PE} \) (0.2) \() \)

\((\text{PE} \) (0.1) \(\times \) \(\text{PE} \) (0.1) \() \)

\((\text{PE} \) (0.0) \(\times \) \(\text{PE} \) (0.0) \() \)
Figure 19: Distribution of data over the PEs for \(v = 6, n = 4, q = 4 \) and \(b = 4 \) (**) represents element-wise scalar multiplication.

\[
\begin{array}{cccc}
\text{Pe(0)} & \text{Pe(1)} & \text{Pe(2)} & \text{Pe(3)} \\
\hline
(\alpha) s & (\beta) s & (\gamma) s & (\delta) s \\
(\epsilon) s & (\zeta) s & (\eta) s & (\theta) s \\
(\iota) s & (\kappa) s & (\lambda) s & (\mu) s \\
(\nu) s & (\xi) s & (\omicron) s & (\pi) s \\
\hline
\end{array}
\]
After the \(\lceil v/a \rceil \)-recursive doubling procedures, each PE stores at most \(\lfloor v/p \rfloor \) elements of \(w_q \). Specifically, the results placed in \(\text{PE}(i,j) \) are \(w_q \) for all \(q, 0 \leq q < v \), where \(q = ja + i + fab \), for \(0 \leq f < \lceil v/p \rceil \). This is illustrated in Figure 20 for \(v = 6, n = 4, a = 2, \) and \(b = 4 \). To form \(w_q \), \(\sum_{i=1}^{\log_2 b} \lfloor v/(2^i a) \rfloor \) transfer-add operations are performed in this phase.

\[
\begin{array}{cccc}
\text{PE}(0,0) & \text{PE}(0,1) & \text{PE}(0,2) & \text{PE}(0,3) \\
\hline
w_0 & w_2 & w_4 & - \\
& w_1 & w_3 & w_5 \\
\text{PE}(1,0) & \text{PE}(1,1) & \text{PE}(1,2) & \text{PE}(1,3) \\
\end{array}
\]

Figure 20: Distribution of \(w_q \)'s at conclusion of procedure for \(v = 6, n = 4, a = 2, \) and \(b = 4 \).

In summary, the first phase requires \(vn^2lp \) complex multiplications followed by \((vn/p)(n - a) \) complex additions and \(\sum_{i=1}^{\log_2 a} \lfloor vn/(2^i b) \rfloor \) transfer-adds. The second phase requires \(\lceil v/a \rceil (n lb - 1) \) complex multiplications followed by \(\lceil v/a \rceil (n lb - 1) \) complex additions and \(\sum_{i=1}^{\log_2 b} \lfloor v/(2^i a) \rfloor \) transfer-adds. Table 2 summarizes the computational complexity of the uncoupled algorithm from Section 4 and the coupled algorithm of this subsection.

<table>
<thead>
<tr>
<th></th>
<th>Uncoupled complexity</th>
<th>Coupled complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex multiplications</td>
<td>(\lceil v/p \rceil (n^2 + n))</td>
<td>(vn^2/p + \lceil v/a \rceil (n/b))</td>
</tr>
<tr>
<td>complex additions</td>
<td>(\lceil v/p \rceil (n^2 - 1))</td>
<td>((vn/p)(n - a) + \lceil v/a \rceil (n lb - 1))</td>
</tr>
<tr>
<td>transfer-adds</td>
<td>-</td>
<td>(\sum_{i=1}^{\log_2 a} \lfloor vn/(2^i b) \rfloor + \sum_{i=1}^{\log_2 b} \lfloor v/(2^i a) \rfloor)</td>
</tr>
</tbody>
</table>

Table 2: Computational complexity for the uncoupled and coupled parallel algorithms. Recall that \(p \) is the total number of PEs in the logical PE grid \((p = a \times b) \).

By regarding a transfer-add as an inter-PE transfer and a complex addition, the complex additions required in the coupled scheme becomes \((vn/p)(n - a) + \lceil v/a \rceil (n lb - 1) + \sum_{i=1}^{\log_2 a} \lfloor vn/(2^i b) \rfloor \) + \(\sum_{i=1}^{\log_2 b} \lfloor v/(2^i a) \rfloor \). Fixing \(v, p, \) and \(n \) and varying \(a \) and \(b \), the lower bounds for the number of complex operations can be derived as follows.
Multiplications: \[vn^2/p + \left[v/a \right] (n/b) \geq \frac{vn^2}{p} + \frac{v}{a} (n/b) = (v/p) (n^2 + n) \] (2)

Additions: \[(vn/p)(n-a) + \left[v/a \right] (n/b - 1) + \sum_{i=1}^{\log_2 a} \frac{vn}{(2^i b)} + \sum_{i=1}^{\log_2 b} \frac{v}{(2^i a)} \]

\[\geq (vn/p)(n-a) + (v/a)(n/b - 1) + \sum_{i=1}^{\log_2 a} \frac{vn}{(2^i b)} + \sum_{i=1}^{\log_2 b} \frac{v}{(2^i a)} = (v/p)(n^2 - 1) \] (3)

Inter-PE Transfers: \[\sum_{i=1}^{\log_2 a} \frac{vn}{(2^i b)} + \sum_{i=1}^{\log_2 b} \frac{v}{(2^i a)} \geq \sum_{i=1}^{\log_2 a} \frac{vn}{(2^i b)} + \sum_{i=1}^{\log_2 b} \frac{v}{(2^i a)} = (vn/p)(a - 1) + (v/p)(b - 1) \] (4)

The lower bounds are attainable when \(v/p \) is an integer.

Recall that with the coupled method, \(p = a \times b \), for \(0 < a, b \leq n \), and \(a, b, \) and \(n \) are assumed to be powers of two. As shown in Equations (2) and (3), the lower bounds for the number of complex multiplications and additions are independent of \(a \) and \(b \), and there is a factor of \(p \) speedup on the required number of serial arithmetic operations. However, to minimize the number of inter-PE transfers, \(a \) should be set as small as possible while remaining a power of two (and \(b \) should not be greater than \(n \) due to the structure of the algorithm). Thus, if \(p \leq n \), a \(1 \times p \) logical grid of PEs should be chosen to compute the problem and consequently, the recursive doubling procedure is involved only in the second phase of computation. If \(n < p \leq n^2 \), a logical \((p/n) \times n \) grid of PEs is the optimal choice and the recursive doubling procedure is required to total the partial sums stored on different PEs during both the first and second phases of computation. If \(p > n^2 \), according to the computational characteristics of the coupled method, only \(n^2 \) PEs can be utilized and the remaining PEs are idle.

The data memory storage requirements for this method are \(n^2/p + vn \text{ la} + \left[v/a \right] (n/b) \) complex numbers. The \(n^2/p \) term is for the \((n1a) \times (n1b) \) subarray of \(M \), the \(vn \text{ la} \) term is for the \((n/a) \)-element part of each of the \(v \) s-vector Hermitians, \(s^H \), and the \(v/a \) term is for the \((n/b) \)-element part of \([v/a] \) s-vectors, \(s_q \), stored in each PE memory.

In terms of computational effectiveness, consider the trade-offs between the SIMD and MIMD modes of parallelism for the coupled method. The trade-offs for the local computations, i.e., the sequences of complex multiplications and additions executed within each PE, are similar to those discussed in Section 4. For the transfer-add operations, in general, they are executed more-effectively in SIMD mode [BeS91]. Typically, in MIMD mode, explicit synchronization primitives and identification protocols are required for inter-PE communications. However, due to the implicit synchronization in SIMD mode, these are not necessary. The choice between a pure SIMD and a pure MIMD mode implementation will depend upon characteristics of the data being processed,
machine architecture, and the resulting relative impact of effects discussed above. For PASM, if MIMD mode is better for the local computations, then the optimal implementation of the coupled data-parallel method would be mixed-mode, i.e., MIMD for local computations and SIMD for the transfer-add operations; otherwise, the optimal implementation would be SIMD mode.

55. Comparison of the Single and Multiple Groups Coupled Data-Parallel Methods

When employing the coupled data-parallel method, it is assumed that all active PEs are working together as a single group at execution time. However, some machines (e.g., nCUBE, PASM) allow another possibility. For the \(n < p \leq n^2 \) case, if \(p \) PEs are partitioned into \(a = \frac{p}{n} \) independent groups of \(1 \times n \) PEs, \(\lfloor v/a \rfloor \) s-vectors are assigned to each of \(v \mod a \) groups, and \(\lfloor v/a \rfloor \) s-vectors are assigned to each of the remaining groups. Then the recursive doubling becomes unnecessary during the first phase of computation. This may reduce overall execution time. Assuming \(n < p \leq n^2 \) and \(a = \frac{p}{n} \), Table 3 shows the computational complexity of the single group coupled method (i.e., one group of \(a \times n \) PEs) and the multiple groups coupled method (i.e., \(a'' \) groups of \(1 \times n \) PEs). More storage is required for the multiple groups coupled method; however, computational complexity is the performance metric stressed here.

<table>
<thead>
<tr>
<th></th>
<th>L: one group of (a \times n) PEs, where (a = \frac{p}{n})</th>
<th>R: (a'') groups of (1 \times n) PEs</th>
<th>(\Delta = L - R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M)</td>
<td>(vn/a + \lfloor v/a \rfloor)</td>
<td>(\lfloor v/a \rfloor (n + 1))</td>
<td>(v = ca)</td>
</tr>
<tr>
<td>(A)</td>
<td>((v/a)(n-a) + \sum_{i=1}^{\log_2a} \lfloor v/2^i \rfloor)</td>
<td>(\lfloor v/a \rfloor (n-1))</td>
<td>(L = R)</td>
</tr>
<tr>
<td>(T)</td>
<td>(\sum_{i=1}^{\log_2a} \lfloor v/2^i \rfloor)</td>
<td>(\sum_{i=1}^{\log_2n} \lfloor v/(2^i a) \rfloor)</td>
<td>(\Delta > v - (v/a))</td>
</tr>
</tbody>
</table>

Table 3: Computational complexity for the one group \(a \times n \) PEs and \(a'' \) groups of \(1 \times n \) PEs coupled methods, where \(n < p \leq n^2 \) and \(M, A, \) and \(T \) represent multiplications, additions, and inter-PE transfers, respectively.
As shown in Table 3, if a divides \(v \) (i.e., \(v = ca \) and \(c \) is an integer), the multiple groups coupled method is always better than the single group coupled method. When \(v \neq ca \), although the number of inter-PE transfers is reduced by partitioning all PEs into "a" groups of \(1 \times n \) PEs (consequently, the communication overhead is reduced), the number of complex additions and multiplications is increased. Thus, if the reduction in communication time is greater than the increase in computation time, the multiple groups coupled method will outperform the single group coupled method; otherwise the single group coupled method will be at least as good.

5.6. Coupled Data-Parallel Method When \(n \) is Not a Power of 2

This subsection extends the discussion of the coupled method to include the case when \(n \) is not a power of 2. The data allocation among the PEs is slightly modified, but the algorithm for the coupled method described earlier is still valid. Consequently, it will not be discussed in great detail.

The distribution of the \(M \) matrix and the Hermitians of \(v \) s-vectors across \(a \times b \) PEs are described below. Initially, a \(v/a \)-element part of the Hermitian of each s-vector, \(s_q^H \), a \((n/b) \)-element part of \(v/a \) s-vectors, \(s_q \), and a \((n/a) \times (n/b) \) portion of \(M \) are stored in each PE's local memory. Stated precisely, the memory of PE\((i,j)\) is loaded with \(s_q^H(m) \) for \(i \leq m < (i+1)(n/a) \), \(0 \leq m < n \), and \(0 \leq q < v \) and \(s_i(z) \), where \(i = fa + i \) for \(j \leq z < (j+1)(n/b) \), \(0 \leq z < n \), and \(0 \leq r < v/a \). PE\((i,j)\) holds \(M(x,y) \) for \(i \leq x < (i+1)(n/a) \), \(j \leq y < (j+1)(n/b) \), and \(0 \leq x, y < n \).

Similar to the previous case, the calculation of MQF is decomposed into two phases, i.e., to compute (1) \(r_q(y) = \sum_{x=0}^{n-1} s_q^H(x) * M(x,y) \), and (2) \(\omega_q = \sum_{y=0}^{n-1} \sigma_q(y) \), where \(\sigma_q(y) = r_q(y) * s_q(y) \). Because of the data distribution described above, phase (1) requires at most: \(v \lfloor n/b \rfloor \lfloor n/a \rfloor - 1 \) complex multiplications followed by \(v \lfloor n/b \rfloor \lfloor n/a \rfloor - 1 \) complex additions and \(\sum_{i=1}^{\log_2 a} \left(v \lfloor n/b \rfloor / 2^i \right) \) transfer-adds.

After the first phase, each PE holds at most \(v \lfloor n/b \rfloor \lfloor n/a \rfloor \) distinct \(r_q(y) \) components and the corresponding elements of the s-vectors \(s_q(y) \) required to form \(\sigma_q(y) \). Thus, in phase (2), \(v \lfloor n/b \rfloor \lfloor n/a \rfloor \) complex multiplications followed by \(v \lfloor n/b \rfloor \lfloor n/a \rfloor - 1 \) complex additions and \(\sum_{i=1}^{\log_2 b} \left(v / (2^i a) \right) \) transfer-adds are performed. Table 4 compares the computational complexity of the coupled algorithm when \(n \) is and is not a power of 2.

The data memory storage requirements of the coupled method for this case is \(\lfloor n/a \rfloor \lfloor n/b \rfloor + v \lfloor n/a \rfloor + v \lfloor n/b \rfloor \) complex numbers. i.e., \(\lfloor n/a \rfloor \lfloor n/b \rfloor \) for the \(\lfloor n/a \rfloor \times \lfloor n/b \rfloor \) subarray of \(M \), \(v \lfloor n/a \rfloor \) for the \(\lfloor n/a \rfloor \)-element part of each of the \(v \) \(s_q^H \) vectors, and \(v \lfloor n/b \rfloor \) for the \(\lfloor n/b \rfloor \)-element part of \(v \lfloor n/a \rfloor \) \(s_q \) vectors stored in each PE memory. The analyses in Subsections 5.4 and 5.5 can be used here. Depending on the trade-off between the increase in communication
Table 4: Comparison of computational complexity of the coupled algorithm when \(n \) is and is not a power of 2. Recall that \(p \) is the total number of PEs in the logical PE grid \((p = a \star b)\).

time and the decrease in computation time, the optimal implementation can be either the (single or multiple groups) coupled or uncoupled method.

6. Generalizing the MQF Algorithm

Given \(p \) PEs where \(p = a \star n \le n^2 \), the multiple groups coupled method described in the previous subsection partitions all \(p \) PEs into \(a \) independent groups of \(\frac{n}{a} \) PEs. This idea can be generalized to allow different methods of solving the MQF problem: three of which are the uncoupled method (Section 4), the single group coupled method (Subsection 5.4), and the multiple group coupled method (Subsection 5.5). Let \(p = \gamma \star a \star p \), where \(a \), \(p \), and \(\gamma \) are powers of two and \(1 \le \gamma \le p \) and \(1 \le a, b \le n \). Given \(p \) PEs where \(p \le n^2 \), if all \(p \) PEs can be partitioned into \(\gamma \) groups of \(\alpha \times \beta \) PEs, then the problem is to compute the MQF for \(\gamma \) vectors on \(\alpha \times \beta \) PEs. It can be seen that the single group coupled and uncoupled methods represent two extreme cases of the generalized method, i.e., for \(\gamma = 1, a = a, b = b \), and \(\gamma = p, a = b = 1 \), respectively.

Let \(v, a, \) and \(b \) in Table 2 be replaced by \(\frac{v}{\gamma}, a, \) and \(b \), respectively. Then, the computational complexity of the generalized method is:

\[
\begin{align*}
\text{complex multiplications} & = \gamma \left\lfloor \frac{n}{b} \right\rfloor \left\lfloor \frac{n}{a} \right\rfloor + \left\lfloor \frac{v}{a} \right\rfloor \left\lfloor \frac{n}{b} \right\rfloor \\
\text{complex additions} & = \gamma \left\lfloor \frac{n}{b} \right\rfloor \left(\left\lfloor \frac{n}{a} \right\rfloor - 1 \right) + \left\lfloor \frac{v}{a} \right\rfloor \left(\left\lfloor \frac{n}{b} \right\rfloor - 1 \right) \\
\text{transfer-adds} & = \log_2 a \left(\frac{\gamma}{n/b} \right) + \sum_{i=1}^{\log_2 b} \left\lfloor \frac{v}{2^i a} \right\rfloor + \sum_{i=1}^{\log_2 b} \left\lfloor \frac{v}{2^i b} \right\rfloor \\
\text{complex multiplications} & = \frac{\gamma a^2}{p} + \left\lfloor \frac{v}{a} \right\rfloor \frac{b}{b} \\
\text{complex additions} & = \left(\frac{v}{b} \right) (n-a) + \left\lfloor \frac{v}{a} \right\rfloor (\frac{n}{b} - 1) \\
\text{transfer-adds} & = \log_2 a \left(\frac{\gamma v}{n/b} \right) + \sum_{i=1}^{\log_2 b} \left\lfloor \frac{v}{2^i a} \right\rfloor + \sum_{i=1}^{\log_2 b} \left\lfloor \frac{v}{2^i b} \right\rfloor \\
\end{align*}
\]

transfer-adds. By regarding a transfer-add as an inter-PE transfer and a complex addition, the number of complex additions required in the generalized method becomes \(\frac{\gamma a^2}{p} (n-a) \) \(+ \left(\frac{v}{a} \right) (n/\beta - 1) \) \(+ \sum_{i=1}^{\log_2 a} \left\lfloor \frac{vn}{\gamma a^2 i} \right\rfloor + \sum_{i=1}^{\log_2 b} \left\lfloor \frac{vn}{\gamma b^2 i} \right\rfloor \).

Similar to the single group coupled method, given \(v, p, \) and \(n \) values, the actual number of complex operations and inter-PE transfers are dependent on the values of \(\gamma, a, \) and \(b \). By fixing \(v, p, \)
and \(n \), the lower bounds for those operations are derived as follows:

Inter-PE Transfer:

\[
\begin{align*}
\sum_{i=1}^{\log_2 \alpha} \left\lfloor \frac{vn}{(\gamma \beta 2^i)} \right\rfloor + \sum_{i=1}^{\log_2 \beta} \left\lfloor \frac{v}{(\gamma \alpha 2^i)} \right\rfloor \\
\geq (vn / (\gamma \beta))(1 - 1/\alpha) + (v / (\gamma \alpha))(1 - 1/\beta) = (vn / p)(\alpha - 1) + (v / p)(\beta - 1)
\end{align*}
\]

(5)

Multiplications:

\[
\begin{align*}
\left\lfloor \frac{v}{\gamma} \right\rfloor (n^2 / (\alpha \beta)) + \left\lfloor \frac{v}{\gamma \alpha} \right\rfloor (n / \beta)
\end{align*}
\]

\[
\geq (v / \gamma)(n^2 / (\alpha \beta)) + (v / (\gamma \alpha))(n / \beta) = (v / p)(n^2 + n)
\]

(6)

Additions:

\[
\begin{align*}
\left\lfloor \frac{v}{\gamma} \right\rfloor (n / (\alpha \beta))(n - \alpha) + \left\lfloor \frac{v}{\gamma \alpha} \right\rfloor (n / \beta - 1)
\end{align*}
\]

\[
+ \sum_{i=1}^{\log_2 \alpha} \left\lfloor \frac{vn}{(\gamma \beta 2^i)} \right\rfloor + \sum_{i=1}^{\log_2 \beta} \left\lfloor \frac{v}{(\gamma \alpha 2^i)} \right\rfloor
\]

\[
\geq (vn / (\gamma \alpha \beta))(n - \alpha) + (v / (\gamma \alpha \beta))(n - \beta) + (vn / p)(\alpha - 1) + (v / p)(\beta - 1)
\]

\[
= (v / p)(n^2 - 1)
\]

(7)

The lower bounds are attainable when \(v / p \) is an integer.

The lower bounds for Equations (6) and (7) are independent of \(\alpha \) and \(\beta \). When the number of PE groups \(y \) is decided, to minimize Equation (5), \(\alpha \) should be set as small as possible while remaining a power of two and \(\beta \) should not be greater than \(n \), which is identical to the results obtained for the single group coupled method.

When \(p > n^2 \), not all of the PEs can be utilized by the single group coupled method. However, by partitioning \(p \) PEs into \(\gamma \) groups, where \(\gamma \) is a power of two and \(1 \leq p / \gamma \leq n^2 \), the resources can be fully utilized. This is done by assigning \(\left\lfloor v / \gamma \right\rfloor \) s-vectors to each of \(v \mod \gamma \) groups, and \(\left\lfloor v / \gamma \right\rfloor \) s-vectors to each of the remaining groups. Within each group, whether the single group or multiple groups optimal coupled method should be used can be determined based on their relative performance. Thus, the computational complexity required for this problem is equal to the complexity of computing the MQF problem for \(\left\lfloor v / \gamma \right\rfloor \) s-vectors on \(p / \gamma \) PEs. The optimal value of \(\gamma \) is dependent on \(v, n \), and the communication overhead. Table 5 summarizes the computational complexity of the uncoupled, single group, and generalized methods.

Table 6 shows the comparison of the computational complexity between the single group coupled and uncoupled methods (the two extreme cases of \(y \) in the generalize method). If \(p \) divides \(v \),

\[
\left\lfloor v / p \right\rfloor = v / p
\]

and

\[
v n^2 / p + \left\lfloor v / a \right\rfloor (n / b) = (v / p)(n^2 + n)
\]
Table 5: Computational complexity for the coupled and uncoupled methods when $p \leq n^2$ and M, A, and T represent the number of multiplications, additions, and inter-PE transfers, respectively.

<table>
<thead>
<tr>
<th>Coupled Method where $p = a^b = \gamma \cdot a^\alpha \cdot \beta$</th>
<th>Uncoupled Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>One group of (a^b) PEs</td>
<td>γ groups of (α^β) PEs</td>
</tr>
<tr>
<td>M & $\left\lfloor \frac{v}{\gamma} \right\rfloor \left(n^2 + 1 \right)$ & $\left\lfloor \frac{v}{\alpha} \right\rfloor \left(n^2 + 1 \right)$ & $\left\lfloor \frac{v}{p} \right\rfloor (n^2 + n)$</td>
<td></td>
</tr>
<tr>
<td>A & $\frac{vn}{\log_2 a} + \sum_{i=1}^{\log_2 a} \left[\frac{v}{2^i} \right] + \sum_{i=1}^{\log_2 b} \left[\frac{v}{2^i} \right]$ & $\frac{v(n-a)}{\log_2 \alpha} + \sum_{i=1}^{\log_2 \alpha} \left[\frac{v}{\gamma^2 i} \right] + \sum_{i=1}^{\log_2 \beta} \left[\frac{v}{\gamma \alpha \beta} \right]$ & $\frac{v(n-a)}{\log_2 \alpha} + \sum_{i=1}^{\log_2 \alpha} \left[\frac{v}{\gamma^2 i} \right] + \sum_{i=1}^{\log_2 \beta} \left[\frac{v}{\gamma \alpha \beta} \right]$ & $\frac{v}{\log_2 p}$ & $\left(n^2 + 1 \right)$</td>
<td></td>
</tr>
<tr>
<td>T & $\frac{v(n-a)}{\log_2 a} + \sum_{i=1}^{\log_2 a} \left[\frac{v}{2^i} \right] + \sum_{i=1}^{\log_2 b} \left[\frac{v}{2^i} \right]$ & $\frac{v(n-a)}{\log_2 \alpha} + \sum_{i=1}^{\log_2 \alpha} \left[\frac{v}{\gamma^2 i} \right] + \sum_{i=1}^{\log_2 \beta} \left[\frac{v}{\gamma \alpha \beta} \right]$ & $\frac{v(n-a)}{\log_2 a} + \sum_{i=1}^{\log_2 a} \left[\frac{v}{2^i} \right] + \sum_{i=1}^{\log_2 b} \left[\frac{v}{2^i} \right]$ & $\frac{v}{\log_2 p}$ & $\left(n^2 + n \right)$</td>
<td></td>
</tr>
</tbody>
</table>

Thus, both uncoupled and single group coupled methods require the same number of complex additions and multiplications. However, because there are inter-PE transfers associated with the single group coupled method, the uncoupled method will outperform the single group coupled method when $v = cp$.

If p does not divide v, $\left\lfloor \frac{v}{p} \right\rfloor = (v/p) + 1$ and

$$\frac{v}{p} + \left\lfloor \frac{v}{a} \right\rfloor (n/b) < \left(\frac{v}{p} \right) (n^2 + n) + \left(\frac{v}{n/b} \right) (1 - (1/a)) + (v/a)(1 - (1/b)) = \left(\frac{v}{p} \right) (n^2 + 1).$$

Although the single group coupled method takes less time to perform the needed complex additions and multiplications than the uncoupled method, the single group coupled method has the overhead of inter-PE transfers. Thus, if the reduction in communication time is greater than the increase in computation time, the uncoupled method will outperform the single group coupled
Table 6: Computational complexity for the uncoupled and single group coupled methods, where \(0 < p \leq n^2\) and \(M, A,\) and \(T\) represent the number of multiplications, additions, and inter-PE transfers, respectively.

\[
\begin{align*}
\text{L: single group coupled method with } p = a^*b \text{ PEs} & & \text{R: uncoupled method} & & v = cp & & v \neq cp \\
\text{M} & & vn^2/p + \left\lfloor \frac{v}{a} \right\rfloor (n/b) & & \left\lfloor \frac{v}{p} \right\rfloor (n^2 + n) & & \begin{array}{c} L=R \\ L<R \end{array} \\
\text{A} & & \left(\frac{vn}{p} \right) (n-a) + \left\lfloor \frac{v}{a} \right\rfloor ((n/b)-1) \right. & & \left. \left\lfloor \frac{v}{p} \right\rfloor (n^2 - 1) \right. & & \begin{array}{c} L=R \\ L<R \end{array} \\
& & \sum_{i=1}^{\log_2 b} \left[\frac{vn}{(2^i b)} \right] + \sum_{i=1}^{\log_2 b} \left[\frac{v}{(2^i a)} \right] & & \sum_{i=1}^{\log_2 b} \left[\frac{v}{(2^i a)} \right] & & \begin{array}{c} \text{--} \\ L>R \end{array} \\
\text{T} & & \sum_{i=1}^{\log_2 a} \left[\frac{vn}{(2^i b)} \right] + \sum_{i=1}^{\log_2 b} \left[\frac{v}{(2^i a)} \right] & & \begin{array}{c} \text{--} \\ L>R \end{array} \\
\end{align*}
\]

method; otherwise the single group coupled method will be at least as good.

It can be seen from Table 5 that, in general, if \(a\) and \(p\) are kept constant and \(y\) is doubled (\(b\) is halved), the number of transfers decreases. However, if the number of vectors, \(v\), is not a multiple of \(2y\), then more computation per PE is required when \(y\) is doubled; otherwise, the same amount of computation takes place. In the former case, the \(y\) value that can provide the best performance is dependent on the trade-off between the increase in computation time and the reduction in communication time. In the latter case, it would be preferable to double the number of groups (i.e., double \(y\)).

7. Choosing an Optimal Algorithm

Results from the previous sections that relate different algorithm data-parallel approaches include the following. Section 6 presents the complexity of the algorithm proposed in this paper in terms of \(v, n, y, a,\) and \(b\). The parameters \(v\) and \(n\) are input data parameters and \(y, a,\) and \(b\) are logical system configuration parameters used by the generalized method. Section 4 and Subsection 5.4 describe the structure of the algorithm when certain restrictions are placed on \(y, a,\) and \(b\). The uncoupled method applies when \(a \beta = 1\). When \(y = 1, a \beta = p\) and \(b \leq n\), the coupled method is used. Subsection 5.4 showed that, when using the coupled method and \(y\) is fixed, it is best to make \(a\) as small as possible, but keep \(b\) less than or equal to \(n\). Subsection 5.5 made a strong argument for partitioning the problem in certain situations. It demonstrated that if \(y = a, a = 1,\) and \(b = n,\) when \(v = ca\), it is better to use a groups of \(1 \times n\text{ PEs}\) then 1 group of \(a \times n\text{ PEs}\). Finally, Section 6 concludes
that the logical configuration $2^{\gamma\times\alpha}\times\beta/2$ (when $\beta/2$ is an integer) will outperform the logical configuration $y\times\alpha\times\beta$ when 2γ divides v: another argument for partitioning the problem.

Now consider the many possible ways to solve the MQF problem by the algorithms presented in this paper, given v, n, and p. One can use any variant of the generalized method (e.g., the uncoupled method, the single group coupled method, the multiple group method), or a combined approach. A combined approach may use a different method to compute the MQF problem for each different subset of steering vectors. For example, if $v > p$, then the best algorithm may use the uncoupled method for $v-(v \mod p)$ vectors and the single group coupled method for $v \mod p$ vectors. The combined approach permits any combination of methods, each being used to compute the MQF problem for a different subset of steering vectors. The total number of complex multiplications, complex additions, and inter-PE transfers for any algorithm can be computed from Table 5. The relative cost of a complex multiplication, complex addition, and inter-PE transfer for a given system can be obtained by experimentation and used to determine the optimal algorithm. Trade-offs involved in changing the logical system configuration, such as those mentioned earlier in this section, can be used to limit the number of possible algorithm choices to solve the MQF problem for a given v, n, and p.

8. Experimental Studies

The goal of this section is to validate experimentally many of the theoretical results found earlier. Both the uncoupled and coupled methods for solving MQFs have been implemented on the 16-PE small-scale PASM prototype, the 64-PE nCUBE 2, and the 16K-PE MasPar MP-1. The implementations assume that a, b, and p are powers of 2.

Figure 21 shows that for a logical $a \times b$ machine configuration when using the single group coupled method, the communication overhead for both the PASM prototype (Figure 21a) and the nCUBE (Figure 21b) decreases as b increases. The same is true for the MasPar (not shown), where communication time nearly doubled when the logical configuration was changed from 64×128 to 128×64. These experimental results confirm the conclusion presented in Subsection 5.4 that communication overhead is minimized when a is chosen as small as possible (i.e., a and b being a power of 2 and $p = a \times b$). Consequently, all the following experiments using the coupled method chose a to be as small as possible.

The results of executing the uncoupled and coupled methods on the PASM prototype when transfer costs are minimal compared to computation costs are shown in Figure (22a). The algorithms were executed in mixed-mode: the floating-point computation was executed in MIMD mode and all other computation was done in SIMD mode. As one can see, the difference between the performance of the uncoupled and coupled methods on the PASM prototype when p divides v is not significant. This is because the current implementation of the PASM prototype does floating-point
Figure 21: Communication cost for various $p = a \times b$ logical configurations for (a) the PASM prototype for $n = 128$, $p = 16$, and $v = 2, 5$, and (b) the nCUBE 2 for $n = 16$, $p = 32$, and $v = 32$.
Figure 22: Execution time of the uncoupled and coupled data-parallel methods for (a) the PASM prototype for $n=128$ and $p=16$, and (b) the nCUBE 2 for $n=16$ and $p=16, 32, 64$.
operations by software emulation, so the total execution time is dominated by the complex operation computation time. The execution time for transfer-add operations represents only a very small portion (0.1% for \(v = 96, n = 128\) on 16 PEs) of the entire execution time. These results corroborate the mathematical derivations in Table 5 showing that the uncoupled method outperforms the coupled method whenever \(v = cp\), even when communication costs are low. The reduction in communication time by partitioning 16 PEs into several independent groups (e.g., two groups of 1x8 PEs, 4 groups of 1x4 PEs) is relatively insignificant when compared to the complex operations computation time. Consequently, only results from the single group coupled methods are reported for PASM for the performance of the coupled method.

Figure 22(b) shows the results of executing the uncoupled and single group coupled methods on the nCUBE 2, using 16, 32, and 64 PEs for a varying number (v) of steering vectors of size \(n = 16\). The logical system configuration \((a \times b)\) used to generate the graph for 16 PEs was \(1 \times 16\), for 32 PEs was \(2 \times 16\), and for 64 PEs was \(4 \times 16\) (recall that \(b\) should be less than or equal to \(n\)).

The experimental results validate the theoretical conclusions summarized in Table 3 and Table 5. Table 5 says that whenever \(v = cp\) the uncoupled method outperforms the single group coupled method. Figure 22(b) verifies this for \(p = 16, 32,\) and 64. Furthermore, when \(p\) does not divide \(v\), the choice of method depends on the relationship between communication and computation costs. For example, as shown in Figure 22(b), when \(p = 32\), the uncoupled method outperforms the single group coupled method for \(v = 24, 32, 48, 56, 64, 80, 88, 96\). The exact points of intersection depend on the communication and computation cost relationship.

Now consider the computational complexities shown in Table 3. When \(v = ca\), the table shows that "a" groups of \((1 \times n)\) PEs will outperform one group of \(p = a \times n\) PEs. Let \(v = 80, a = 4,\) and \(n = 16\). From Figure 22(b), one group of 64 = 4 \(\times\) 16 PEs takes .01 seconds. To compute \(v = 80\), it would take four groups of \((1 \times 16)\) PEs as long as it takes one group of \((1 \times 16)\) PEs to compute 20 steering vectors. By looking at the graph for the single group coupled method using \(p = 16\) PEs for \(v = 20\) vectors, one can deduce that four groups of \((1 \times 16)\) PEs take .0077 seconds for \(v = 80\), which is less than .01 seconds. Thus, in this case, the multiple group method outperforms the single group method, as predicted by Table 3.

The combined approach, discussed in Section 7, can be used to compute the MQF problem for \(v\) steering vectors. For instance, the combined approach may consist of the following two steps: (1) use the uncoupled method for the first \((v/p) \times p\) vectors, and (2) compute the remaining \((v - [v/p] \times p)\) vectors by the single group coupled method. For example, if \(v = 80\) and \(p = 64\), then step 1 would compute 64 vectors by the uncoupled method (.0049 seconds), and step 2 would compute 16 vectors by the coupled method (.0032 seconds). By this combined method, the MQF problem for \(v = 80\) takes .0081 seconds on the nCUBE 2. The coupled and uncoupled methods take .01 seconds and .0097 seconds, respectively. Therefore, the combined method outperforms the single
group coupled and uncoupled methods. Consequently, when choosing an optimal algorithm for a particular set of \(v, n, \) and \(p \) values, different combined approaches may need to be considered.

\[
\begin{align*}
\text{Time (seconds)}
\end{align*}
\]

\[
\begin{align*}
\text{Number of steering vectors, } v
\end{align*}
\]

\[16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256\]

Figure 23: Execution time of the uncoupled and coupled data-parallel methods for the *MasPar* MP-1 for \(n = 128 \) and \(p = 16,381 \).

The *MasPar* MP-1 results in Figure 23 show the number of steering vectors versus execution time for the single group coupled and uncoupled methods. It also graphs the time spent doing communication for the coupled method. Because the data is distributed across a large number of PEs \((p = n^2 = 128 \times 128) \), the computation per PE is negligible compared to the communication time. Despite this fact, the coupled method greatly **outperforms** the uncoupled method for the number of vectors tested. If the coupled method line (solid line) was extrapolated until it intersected the uncoupled method line (dashed line), the value of \(v \) would be approximately 516 at the point of intersection. For \(v < 516 \), the added computation cost of the uncoupled method outweighs the communication cost of the coupled method. This shows that when massive parallelism is available to implement the MQF problem \((p \infty v) \), the more sophisticated coupled method is needed to exploit the available parallelism, &spite incurring high communication overhead. In contrast, when
516 < v ≤ 16,384, the uncoupled method using only v PEs will outperform the single group coupled method using 16,384 PEs. This is the communication overhead price that is paid for the “fine grain parallelism” that characterizes the coupled method.

9. Related Work

Adaptive filter theory [Hay86] provides a theoretical background for implementing an adaptive beamformer with MVDR and a serial algorithm for implementing this problem can be found in [Sch86]. To date, no related work has been found that examines the problem of determining parallel implementations for computing multiple quadratic forms for the same matrix (the type of computation in the MVDR problem). However, many publications exist that examine the more general problem of parallel implementations of matrix multiplication (e.g., [Ber89, ChS88, DeN81, FoO87, Mod88]).

In [Mod88], different parallel algorithms for matrix multiplication are discussed. Its treatment covers data layout on a logical mesh of processors (including the p = n and p = a*b general case). However, time complexities and arithmetic operation counts are not provided.

An overview of parallel matrix multiplication algorithms based on different processor interconnection topologies, such as the hypercube, mesh, and perfect shuffle networks, is given in [DeN81]. Concerning the hypercube topology, that paper presents some parallel matrix multiplication algorithms for p = n^3 and p = n^2 cases. The computational complexity of the parallel algorithm is O (log_2 n) when p = n^3 and O (n) when p = n^2.

Several papers (e.g., [Ber89, ChS88, FoO87]) have been published that discuss performing matrix multiplication on hypercube machines by using a logical mesh of processors. These papers differ from [DeN81], [Mod88], and the discussion in this paper in that the analyses are specifically for hypercube machines. [FoO87] shows that the optimal performance of matrix multiplication on the Cosmic Cube [Sei85] is achieved (in terms of communication overhead and load balancing) by decomposing the problem into square sub-blocks. Similarly, [ChS88] discusses partitioning the matrix and the impact of communication overhead when performing matrix multiplication problem on an nCUBE [HaM89]. The work presented in [Ber89] is an extension of [FoO87] in that it considers the restrictive condition of only having nearest-neighbor one-to-one communication.

The publications described above address the problem of multiplying together two- or three-dimensional matrices. Unlike previous work, this paper deals with the computation of multiple quadratic forms and discusses the impact of the two primary aspects of system configuration on the computation: interprocessor communication and partitionability. Trade-offs among various parallel implementations are also addressed in this paper. Furthermore, it is presented that, for a given problem, a combined uncoupled/coupled approach could achieve the optimal scalability for this computation. Consequently, the results set forth in the above publications are not directly applica-
able to the **MQF problem** discussed here.

10. **Summary**

Several parallel data-parallel implementations of the computationally intensive task of computing the MQF problem have been examined. Trade-offs among the implementations for various data-size\texttimes{}machine-size ratios are categorized in terms of complex arithmetic operation counts, communication overhead, and memory storage requirements. The results showed that when \(p \) (the number of **PEs**) \textit{divides} \(v \) (the number of steering vectors), the uncoupled data-parallel method is the optimal parallel implementation and a speedup of \(p \) on the number of complex multiplications and complex additions can be achieved. However, when \(v \) is not a multiple of \(p \), a combined approach using both the uncoupled and coupled data-parallel methods should be considered. For both the uncoupled and coupled data-parallel methods, the advantages and disadvantages of executing the different sections of the algorithms in SIMD, MIMD, and mixed-mode were discussed. In addition, trade-offs between the "single-group" and "**multiple-group**" decomposition for the coupled method were presented.

This research can be directly applied to SIMD, MIMD, and mixed-mode parallel machines interconnected with either the multistage cube or the hypercube interconnection network topology. This work can be extended to other topologies (**e.g.**, mesh-connected). The experiments performed on the **MasPar** MP-1 (SIMD), **nCUBE** 2 (MIMD), and PASM (mixed-mode) prototype were used to validate some of the analytically derived relationships among input data and logical system parameters.

Both analytical and experimental results \textit{demonstrated} that a combined approach may be better than any one method. Choosing an optimal algorithm for an MQF problem with a given \(n \) (the size of a steering vector) and \(v \) is machine and \(p \)-**dependent**. Therefore, by having a set of algorithms that perform the MQF problem efficiently for various input data parameters (**e.g.**, \(n, v \)) and system parameters (**e.g.**, \(p \), communication time, complex addition time, complex multiplication time, mode of parallelism supported), an automatic algorithm selection methodology that may combine several approaches can be implemented using the analysis established. This analysis of the MQF problem that has been presented and experimentally explored supports the viability of such an automatic method that can be developed for a variety of applications.

Acknowledgment: The authors thank Professor Michael **Zoltowski** of Purdue University for his assistance.
References

