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ABSTRACT

A redundant robot has more degreesdf freedom then what is needed to uniqudly
position the robot end-effector. In practica gpplicationsthe extradegrees of freedom
increase the orientation and reach of the robot. The load carrying capacity of asingle
robot can be increased by cooperative manipulation of the load by two or more
robots. In this paper we develop an adaptive control schemefor kinematically redun-
dant multiple robotsin cooperative motion.

In a usud robotic task, only the end-effector position trgjectory is specified. The
joint position trajectory will therefore be unknown, for aredundant multirobot sysem
and it must be selected from a self-motion manifold for a specified end-effector or
load motion. We show that the adaptive contol of cooperative multiple redundant
robots can be addressed as areference velocity tracking problem in the joint space. A
stable adaptive velocity control law is derived it ensures bounded parameter conver-
gence, exponential convergence to zero of the load postion error, the internal force
error and the reference velocity error. The individual robot joint motionsis shown to
be stable by decomposing the joint coordinates into two variables one which is
homeomorphicto the load coordinated, the other to the coordinates of the salf-motion
manifold. The dynamics on the self-motion manifold is directly shown to be related
to the concept of zero-dynamics. It is shown that if the reference joint trgectory is
selected to optimize a certain type of objective functions, then stable dynamicson the
salf-motion manifold results. The overall gability of the joint angle is established
from the stability of two cascaded dynamic systems involving the two decomposed
coordinates.




1 INTRODUCTION

Recently considerable amount of research has focused on the problem of
cooperative control and coordination of multiple robots. Interest in multi-robot sys-
tems has arisen because several tasksrequirethe use of two or more robots. Examples
of such tasks include the joining and securing of large pipes for the construction of
gpace structures, picking up and carrying heavy loads, and grasping odd shaped loads.
Cooperative robots may be used in hazardous or unsafe environments such as in
space, in deep waters and in radioactive environments. By using more than one robot
the manipulation capability and the workspace of the sysem may be further
increased. However cooperative multiple-robot systems are more difficult to control
than single robots. Additiona problems may arise in the control if the parameters of
the robots and the manipulated load may not be known exactly.

Severd control schemes, adaptive and non adaptive schemes have been pro-
posed for cooperative multiple robots with rigid joints manipulating a common load.
Zheng and Luh [32] considered the kinematic and dynamic mode of the multi-robot
system and devel oped an inverse dynamics schemesfor load position control. Hsu et
a [23] developed a control agorithm for the coordinated manipulation of multi-
fingered robot hands. Tarn, et d [28] developed a robust nonlinear control scheme
usng nonlinear transformation techniques. Yun, et al [29] also used exact lineariza-
tion and output decoupling techniques to control multiple robots. Y oshikawa and
Zheng [31] adso developed linearizing tracking control laws for multiple robots,
experiments were also reported. Few adaptive control schemes for cooperative
robots manipulating a common load have been proposed. Waker et d. [30]
developed an adaptive agorithm for the control of two robots handling a common
load of an unknown mass. Zribi and Ahmad [24] proposed a robust adaptive con-
troller for the multi-robot system manipulating arigid object cooperatively when sub-
ject to bounded disturbances. The problem of manipulating a load usng multiple
robots when the load makes contact with an environment was addressed by Hyati
[33], Cale [34] and, Hu and Goldenberg [27]). Ahmad and Guo [26] addressed the
problem of controlling multiple flexible-joint robots with linear dynamics. Ahmad
[35] developed afeedback linearizing controller for multipleflexible joint robots.

There are a very few papersin the areaof control of multiple redundant robots,
these include the recent paper by Tarn et d. [36] which addressed the zero dynamics
issue. The paper by Tao and Luh [37] aso addressed multiple redundant robot con-
trol. The reason there is such a few works in the multiple redundant robot control is
primarily because non-redundant robot control schemes cannot be easily extended to
control redundant robot systems. This is because a redundant robot has more joints
than what is required to position the end-effector. Usualy the end-effector trgjectory




is known and thus the joint trgjectory cannot be found uniquely. In fact, for a fixed
end effector position there is a self-motion manifold on which joint motions could
occur without effecting the end-effector podtion. In Figure. 1, we show a planar
redundant robot with three prismatic axes, we seeif the end-effector is stationary the
joints may move in a straight line in the joint space without effecting the end-
effector. Any arbitrary joint trgectory which ensures end effector position cannot be
used as this may not result in stable joint motions on the sdf motion manifold and
would therefore effect overall stability. These two problems have prevented the sm-
ple extenson of non-redundant strategies being adopted for multiple redundant
robots. We should note here that the extra joints are extremely useful in real applica:
tions as they can be used to configure the manipulator posture, to avoid obstacles in
the workspace or to avoid joint singularities.

Initial interest in the control of redundant robots started with the work of Whit-
ney [21] who devised a kinematical resolved motion rate control strategy. Since then
a number of researchers have addressed the the joint coordination and control of
redundant robots (see Nenchev [13] for a review of those developments). The
tutorial review by Siciliano [17] and the tutorial workshop report on the theory and
application of redundant robots at the 1989 [EEE robotics and automation conference
[1] covered some more recent developments (see also [1-3,7,11-14,16,17]). In the
area of redundant robot adaptive control, Sergji {16] presented an gpproach based on
the model reference adaptive control theory. He resolved the redundancy problem by
adding additional task dependent kinematic constraints to the end-effector kinemat-
ics. This effectively ensured the joint solutions were unique. Niemeyer and Slotine
[14] applied diding mode adaptive control to redundant manipulators. They used the
passivity principleto prove the stability of the adaptive system. Niemeyer and Sotine
also performed some experiments to demongtrate their control law. Colbaugh et al.
[3] proposed an adaptive inverse kinematics algorithm that did not require the
knowledge of the kinematics of the robots. However their agorithm required per-
sistent excitation conditions; also their dgorithm did not consider the dynamicsof the
robot. Luo, Ahmad and Zribi [38] developed an adaptive control law for redundant
robots making use of weighted scaling functions and the concept of zero dynamics to
show both the joint motions on the self motion manifold and the end-effector motions
would be stable for their control law.

In this paper, we address the problem of controlling redundant multiple robots
manipulating a load cooperatively. We assume the load mass/inertial parameters and
the robot joints mass/inertial parameters are unknown. We firg state the dynamic
modelsof the robotsand the load and give afew propertiesof the multi-robot system.
Next the redundancy resolution problem is discussed, and a modd for adaptive reso-
lution of the redundancy is established. A controller that leads to the exponentia
tracking of the load postion and the convergence of the interna forces to their
desired vaues is then derived. The boundedness of the joint motion and control
torques are proved next. The conclusions can be found in the final section of the

paper.




2.MULTI-ROBOT SYSTEM MODEL

2.1 Dynamics M odel

The general dynamic mode for a cooperative multi-robot system has been
investigated thoroughly in the literature, and is also described in the bedow for com-
pleteness. In Figure. 2 we depict the organization of the multiple robots grasping a
common load which is to be manipulated cooperatively. We firs state afew assump-
tions related to the robots grasp of the load and the reachability of the trgjectory that
will be used in the subsequent derivation.

Assumptions

(A1) The manipulators are rigidly grasping the load, (i.e., there is no motion between
the contact point of the load and the robots end-effectors).

(A2) The dedired trgjectory is reachable and the end effector can be positioned a
those workspace (of dimension six) positions without exceeding any joint motion
limits.

Thedynamic equation of the ith manipulator in cooperative manipulation can e
written as,

Di(g:)§; + Ci(qi,G)4: + Gi@) t ., (@) F., =% i=lL...k (1)

where, ¢; € R™ is the vector of joint displacements, and r;>6 is the number of joints
of theith robot The inertia matrix of theith robot is Dy(g;) € R™™, thisisa positive
&finite and symmetric matrix. The matrix of centrifugal and Coriolis forces is
Ci(gi,g:) € R™™; the vector of gravity forces is Gi(g;) € R™, and the manipulator
Jacobian is J,(q;) € R®™. The control input torque for the ith robot ist; € R™. We
will &fine the total number of joints of thek robotsasn, n= ’fn,- .
i=l

The forces/moments applied by the ith manipulator on to the object a the point
of contact are F,,. The contact forces/moments F,. € R® can be written in terms of
the contact forces f,, € R3? and contact moments M, € R3, (where 6 represents the
dimension of the Cartesian work space), such that,

T
F, = [f,..T ne,.T] i=1,...k. @

Now we will group the dynamicsaf the k-robots system to get,
D@} +C@@4+G (@ +J.@)F. =1, 3)

where D € R™" is a block diagonal matrix whose diagonal elementsare D; € R™™.
C e R™ is a block diagonal matrix whose diagonal elements are C; € R™" and
J e R%* s a block diagonal matrix whose diagona dements are J,, € R®™. Also
we will define the following vectors as,

q=Iq:"... &1.G,=1G,\"... G r=lv," ... 41" and, F.=[F, ... F,T1{4)



If we assume that the object is rigidly grasped, then the equations of motion of
the object are obtained from the Newton-Euler mechanics as,

i=k
Mx, +Mg1= 3 fe. (5)
i=1
. i=k
and, 10 +x(Iw)= Y (M, +rXfe,), 6

i=1

where the pogtion of the center of mass of the object expressed in the world coordi-
nae frameis x, < R3 . Therotational velocity of the object expressed in the world
coordinate frame is w € R3, and the gravity force vector of the object, expressed in
the world coordinate reference frame is g; € R>. The mass matrix M, € R¥? isa
diagona mamx whose diagonal elements are the mass of the load; the matrix
| € R*3 is the inertia matrix of the load. The vector ri=|[ ru,r;y,riz]r e R3
represents the translational displacementsfrom the center of mass of the object to the
contact point of theobject and the ith manipulator.

If we letx = [X': @’ 17, then the motion of the object expressed by equation
(5) and (6) can be written as,

Mi +Ni +G,=GF,=F,, )
where G € R isthe grasp mamx; G isdefined as,
G=[Ti T2 .. Tu]. ®)

The mamx T; € R®® is such,

Isa 0 0 =~ 7y
.= Ar) = ; 0 —r;
T; [Qi(’i) 13!3:| and, Qi) riz Tix
—r;y rix 0

The mamx I3,3 € R itheidentity mamx. Also we have,

M
M:[Ol and Gl= )

) 0 Mlgl-
| Nx = O)X(Im):' I: .

22 Kinematic M odel

We are interested in controlling the manipulators in some predefined Cartesian
task space such that,

%, =K, (q)) i=1,... .k, (10)
where K. (.) :R™5R* is the transformation from the joint angle space of g; to the
task space containing x,, and x,, € R® is the position and orientation of the point of

contact of the ith manipulator, with the load, expressed in the world coordinateframe.
If we differentiate equation (10) with respect to time, and if we define /. (¢;) to be the




differential map from the ¢; spaceto x,, space, then we can write,

Xe, =Je(q)di i=1,... k. (11)
If these equations are stacked into a single vector by forming the J/,. into a block
diagonal matrix, and concatenating the ¢; ’s into one vector g, we get,

vc=1¢é ’ (12)

T . JTIT : .
where v, = [x,l sz x,,] is the velocity vector at the contact points and

Je=diag(Uey,...,J.).
Using equation (7), we can write,

F,=GF, (13)
Now from the duality between theforces and the velocities, we can write,
G'x=v,, (14)

where x is the velocity of the object. Thusfor the k robots system, we can combine
eguations (12) and (14) to get,

GTx=J,4. (15)
where G isthe grasp matrix defined earlier.

2 3 Definitionof Internal Forcesand Internal Force Errors

The end-effector force of the ith manipulator, F,,, can be decomposed into two
forces, the maotion force and the internal grasping force. The internal grasping forces
F;=[Fi.1,..Fr)T€R% do not cause ay motion of the load. However we must
control these end-effector internal forces, Fi;€R® with i=1,..k, in order to prevent
excessive compressive or expangve forces being applied to the load. 'We can calcu-
late the internal force F; from equation (7) if F, isknown andrank (G)= 6, then

F,=G*F,+F;. (16)

Here, G*=GT(GGT)™ and GG*=l, given /¢ is an 6x6 identity matrix. (For a dis-
cussion related to other choices of the inverse of the G* matrix see [36] and [39].
Notice that other choicesd the inverse of G does not effect the derivations presented
in this paper.) Therefore we see that GF;=0 and GF .=F,, i.e, the interna forces do
not contribute to the motion of the load. The desired internal forces F7 4R % aso
satisfy GF;4=0. The interna forceerror, e, = Fj 4 — F;, alsosatisfies

G er=0. (17)
Theseinternal force properties will be used to derive the control law.




24 A Few Propertiesof the Multi-Robot System

In the following we will state several properties which will be used in the
derivationsof the controller.
System DynamicsProperties
(P1) D and M are symmetric positive&finite matrices.
(P2) D = 2Cis skew symmetric mamx or % ql (D —2C)gq =0 . The proof of property
P2 can befound in [19] and [40].
(P3) M — 2¥; is skew symmemc mamx or, % X (M =2N)i =0 . This property can

be seen from energy considerations. In general if M is not expressed in the object
center of mass coordi natefr?me, M=M (x) and Nx=N(x,x)x. The totd energy of the
load is given by EL=-;—X Mx +A(x) where h(x) is the potentid energy and

G,=a%h(x). As the power input to the load is given by,
d

ZEL=x'TF,,:;eT(Mja + % Mi +G)=i (Mi+Ni+G)), thus we have the property,

Lt -anyi=0.
Two important properties of the inertia matrix, the centrifugal/Coriolis mamx
and the gravity vector which will be usad in the developmentsare now given.

(P4) Linear Parameterization of the Robot Dynamics

Thelinearity of D, C and G, with respect to the manipulatorsdynamic parame-
tersP, € R™ is now stated, these parameters will be estimated by the proposed adap-
tive scheme. The robot dynamicscan be linearly parameterized [19], [40] and,

Da’ +C\I1+67:YFPF1 (17)

wherea, € R™ and v, € R™ are vectors and we denote a, as the "reference accelera
tion of the robots' and aso, v, isthe " reference velocity of the robots.” The regres-
sor matrix Y,(¢.4.v,.a,) € R™™ represents the structure of the robots dynamics,
hence its elements are combinations of the nonlinear functions present in the inertia
mamyx, centrifugal/Coriolis matrix and the gravity vector.

(P5) Linear Parameterizationof the Object Dynamics

The second property deds with the linearity of M, N, and G; with respect to the
load parameter vector P,,

Mg +Nyv, +G =Y,P, (18)

where a, € R® and v, € R® are the "reference acceeration of the load and the
"reference velocity of the load," respectively. We will denote by P, € R™ the vector
of s, load parameters which are constantsfor a given load. These parameters will be
estimated by the proposed adaptive scheme. The regressor matrix Y,(x,x,v,,a,)
€ R% represents the structure of the load dynamics.




Remark 1

Let P be the vector of estimates of the parameters of the robots, then the error
vector in the estimates of the robots parameters is P, P P S|m|IarIy, we can
write the parameter estimation error vector for the load as P, - P,. Notice that
we can write,

Da, +Cv, +G =7,P, (19)

where D is the estimate of the inertia mamx D, € is the estimate of the
Coriolis/centrifugal mamx and G, is the edimate of the the gravity vector. Also
notice that, Da, + Cv, + G, =Y,P, =Y,(P, - P,) , where D is the error in the inertia
mamx, € is the error in the Coriolis/centrifugal mamx and é, is theerror in the grav-
ity vector.

Similarly we can write,
Ma +A72vo+éleoﬁ0s (20)

where M is the estimate of M, 102 is the estimate of N, ad é, is the estimate of G;.
Also notice that Ma, + N,v, + G; =Y,P,, where M, N, and G, are the differences
between the estimates and the true values.

3. REDUNDANCY RESOLUTION PROBLEM

3.1 Preliminaries

Consider a kinematically redundant manipulator with the carried load center of
mass positioned a point X, and the joint position g;. Then the differentiable
kinematic mapping is K; such that,

X =K,-(q,-) i=1,....k (21)

wherex € R® is the position of theload and q; € R™ is the vector of joint positionsof
the ith manipulators and as n; > 6, the degree of redundancy of the ith robot is
r;=n; — 6. Asaresult of the joint redundancy & the end effector point X = x4, there
will exit a set of joint angles, the sdf motion manifold such that
Qf. ={qilx =x4 =Ki(g)}. (Recal the example in Figure. 1, the sdf motion mani-
fold was the line in the joint gpace) Thus, in order to find a unique joint angle q,
additional requirementsare necessary; these will be stated later. We will denote the
Jacobian of the kinematic mep (21) by, J; =T77J,, < R®™. Thisrelates differential
map between the load position kinematics K;(*) and the end effector kinematics
K. (®). The projection operator onto the null space of J; is denoted by
P;.(qi) (i=1,...,k). Alsolet dl the columns of matrix ~,, be the bass of ker (J;),
which is the null space of J;. Hence we have,




JiP;; =0, and  ker (Ji)=span (V;). (22)
Thematrix N;. e R™ has the following properties that will be used in the text,

JiN;=0eR®, NJJT=0eR™  NJJf=0e R, (23)
NJ,Pj, =N}, € ™™, NjNj =l , NjNJ =P; € R™™ (24)
for any vector g; € R™  if N g;=0€R" thenP;4;=0eR™ . (25)

Notice al so that [AJ,"T] isasquare matrix of full rank, thus we have,
5

Ji -
[NI-] =it N;]. (26)

These properties show that the pairs (J,-,NJT,. ) and (J7,N;,) are orthogonal complement
operator pairs.

33 Statement of the Problem of the Redundancy Resolution

The redundancy is usually resolved by the constrained optimization of a perfor-
mance index H; (i=1,...,k), thisfunction can be used to avoid joint limits, obstacles
and singularities (see the review papers listed in the reference). The problem can be
formulated asfollows. given adesired position x4, find the joint position ¢; (i=1,..,k)
such that,

min  Hi(g) with xg=K;(q;) i=1,....k. (27)
qi
We can conclude from the Lagrange multiplier method that the solution of the con-
strained optimization problem (27) necessarily satisfies the following set of con-
strained differential equations:

PJI.VH;((],')=0 and xd=K,-(q,-) i=1,...,k. (28)
We will define the end-effector path tracking error e as,
e=Ki(q)—-xq4 i=1,...,k (29)

Our goal is to resolve the "asymptotic resolution of the redundancy problem" such
that ast — oo, we have,

e—0, e—0, and, P;VH;(qg) -0 i=1,...k (30)

We want to optimize H; (i=1,...,k) by appropriate joint motion on the self-motion
manifold, @f. (i=1,...,k). Attheoptimal point, we do not desire further motion on
the self motion manifold. Therefore the projection of the joint velocity on the self-
motion manifold must be zero, and Nid,- +0as t+= Thusit issufficient (not
necessary) to write the asymptotic redundancy resolution as ¢ —ee,




(e +Y¥e > 0) and, N7 (4; —;VH) -0, withNTg; -0 i=1,... k. (1)

Here, y >0 and p; # 0. The first equation can be written as J;¢; —x4 tye — 0 .
After grouping terms and using the matrix inversion expressed by (26), we find g;,
and, ast—-e,

gi— [fi+ NJ,.] u;sf,. gi]i =0 withg, —>{q; | NI. VH;=0 and x;=K;(q;) }.(32)
Therefore the "asymptotic resolution of redundancy problem” can be expressed by
the conditionsgiven by (32). These conditionsresult in the joint velocities gpproach-
ing their desired values, while the joint positions satisfy aset of constraint equations.
Notice that the redundancy resolution problem is characterized by the fact that the
desired joint positions are not known in advance. This fact prevents us from directly
using the existing adaptive schemes that achieves joint podtion tracking.

We will denote by v,, (i=1,...,k) the joint reference velocity for the ith robot.
We also will denote by v, the load reference velocity. We will choosev,, (i=1,...,k)
such that,

X.d —Ye .

We will group the v, (i=1,...,k) into one vector v, such that,

v, = |-vrTl VI, VrT,] is the joint reference velocity of the robots. We will
L 4

choose v,, such that,

Vo =Jéd—ye . (34)
It should be noted that the choice of v, guarantees that,
Vo=Jiv,, =Ti T v, i=1,... k (35)

The asymptotic resolution of redundancy problem can be solved by a mechanism that
ensures ¢; —v,, = 0, (for i=1,...,k), ast — .

In order to proceed further we will state a few more assumptions these will be
needed in the control law development.

3.3 Assumptions- Continued

(A3) Thedesired pathsx4(t), x4(t) and x4(t) are bounded for al timez.

(A4) The Jacobian J;(g;) (i=1,...,k) isafull rank continuoudy differentiable func-
tion matrix, that is, J;(q;) isof classC', r22. (ie., a least twicedifferentiable).

(AS5) The cost function H;(g;) (i=1,...,Kk) given in (27) is a twice differentiable rea
valued function.




In assumption (A4) the full rank restriction on J;(g;) (i=1,... k) requires that al
possible joint motions g;, do not pass through any singularity configuration of J;(g;),
this will be shown to be possible with the control law derived in this :paper, this will
be addressed in the final section of the paper (see also [38]). If Ji(gi) is continuous
and full rank in some subset G;, CR"", then J¥ =JT U™, Py =1, —TfJ; and Ny,
are continuous in G;.. The mamcesJ;, Jf, Py, and N;. are shift varying linear opera-
tors. It iseasy to show that any continuous linear operator is bounded, hence J;, J1,
P; and N; are bounded in Gy, (i.e. the induced nom of J;, Ji, P and N, aefinite
in G;.). Furthermore, if J',- is continuous in G, then d]d—tT and Pj.. are continuous on
any path with continuous g; in Gy..

4. DESIGN OF THE CONTROL AND UPDATE LAWS

4.1 Design of the Control Law

Qur god is to design an adaptive controller that guarantees the asymptotic con-
vergence of the load tracking error to zero, the convergence of the internal forcesto
their desired values and the redundancy resolution. We will start by defining a few
variables needed for the development. The weighted reference velocity error for the
ith robot isdefined as,

pr.=w(di—v,) i=l,....k. (36)

The scalar weighting function w, will be chosen as, w,; =¢™, where A is a positive
constant (see [18] for the use of weighting functionsin the adaptive control of single
rigid robots). We will g{;roup the p,, (i=1,...,k) into one vector p, such that,
pr = [PI1 PI, PZ.] . Also the weighted reference velocity error for the load is
defined as,

Po =wi(X = V,) . GN
It iseasy to show that,
Po=Jip,, i=1,....k. (38)
We will choose p, and p, such that,
pro=wiGi—a,) i=l,... kK, (39)
and, p, =w,(X —a,) . (40)

Thechoicedf p,, given by equation (36), and the choice of b,,. given by equation (39)
will result in the following vauefor a,. ,




a, =V, + My, —q) i=l,... k. 4n
We can group the a (i=l,...,k) into one vector a such that,
T
a = [a?l ai, ... a?.] . The choice of p, given by equation (37), and the choice
of p, given by equation (40) will result in the following vaue for a,,
G, =V, +A(V, —X). (42)
Notice that v, and v, are independent of g and x, hencea, and g, are not functions of
g and X. Therefore the proposed adaptive scheme does not require the measurements
of 'the accelerations q and x.

Theorem 1

Given that the matrices K,, K,, I', and T, are positive definite mamces, K is a posi-
tive semidefinite diagonal mamx, the control law given by (43) and the parameter
update laws given by (45) and (46) ensure that p, , p, € LonL. and that P, ,
P,eL,.

t1=Da, +Cv, + G, = K,(g~v,) + JTG*[Ma, + Navo + G; = Ko(i—vo)] +J 115
= Yrﬁr - Kr(q._vr) + J£G+[Yoﬁo - Ko(x.'_vo)] + jztf ’ 43)

Theforce torque s isgiven by,

1:,~=F¢,‘—Kfjef, (44)

The parameters update laws are such,
P,=-T;'YTpw,, (45)
and, P,=-T3YTp,w, . (46)

Preliminaries to the Proof.

Before proving theorem 1, we will derive the equation of the closed loop sys-
tem. We can solve for the force from equation (7), thus we get,

F,=G*(MX +N,x+G)+F,. 47
If we combine equations (3) and (47), we get,
DG+CqtG tIIG* Mzt N2+ GyHITF, =1, (48)
Now we will multiply both sidesof equation (48) by GUD* , we Oet,
GUD'[DqtCg+G, 1t My +Nux+G =GUD* . (49)

Here we used the fact that GF g4 = 0.
Replacing t by its value from equation (43), and using the fact that Gty =0, we get,




GUD[ DG +Cq+G, ]+ MX +Npx +G;
=GUD' 1 Y,P, = Ko(G=v,) 1+ YoP, = K, (i=v,)
=SGUD' LY, P, +Y,P =K (G~ 1+ Yo Py + Y Py — K, (iv,) . (50)
Replacing Y,P, and Y, P, by their valuesfromequations (17) and (6), we obtain,
GU I D(G~a,) + CG~v,) + K, (G=v,) 1+ M =) + Ny Gi-v,) + K, (i=v,)
=GUN*Y,P,tY,P,. (51)
Thus the composite system can be written as,

GUDY [Dp, +Cp, +K,p,1+Mp, +N2p, +Kopo=GUTY Y, Pw, +Y,P,w,. (52)

Proof of Theorem 1:
Consider thefollowing Lyapunov function candidate

V——-p,Dp,+-—P TP, +-—p,,Mp,,+—P I‘P (53)
Now if we differentiate V with respect to time and use propemes P1 - P3, we get,

V =pT[Dp, +Cp, 1+ PiT,B, +pl[ Mp,+Nap, 1+ P.T,P, (54)
using thefact that p, =J£GTp, , V becomes,

. . ~T = %
=pl[GUD) (Dp, +Cp,) +Mp, +N2op, 1+ P, TP, + P,T,P,. (55)
Using equation (52), we get,
=l ~GUTYK,p, — Kopy+ GUTY'Y,Pow, + Y, P,w 1+ P.T,P, + P.T,P,
== poG(JT)+K ﬁGTpo - PoKopo + PoG(JT)+Y P rw + poY Pow,
+B TP, +P,T,P,. (56)
Using the update laws given by equations (45) and (46), we get,
pTGUDY K, J:GTp, — pTK,p, + pEGUTY'Y,P,w, - P Y R
~ ~T
+plY,Pow, —P,YTp,w, . 57

Thus,
V==plGUDKJGTp, - plK,po =~ pTK,p, = pIK,po . (58)
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HenceV > 0 and V <0. Thus we can conclude that p, € Ly~ L, ,p,€ LanL, ,
PeL.andP,eL,

O
adiay 1
gi—v,, > 0(@i=1,...,k)and ¥ —v, — O a therate of e™ .
Proof :
Using equation (36), we can write g; = v, =p,e ™. Hence ¢; - v, =0 (i=1,... k)
at the rate of e™. Similarly, from equation (37), we can write, x = v, =p,e .
Hence, % = v, — 0, at therate of ™.

O

Hence we can conclude from equation (51) that,

GUDY*Dp,e™ + Mpe™ - GUIY'Y,P,-Y,P, >0 ast—oe. (59
provided that the joint angles g are bounded and v,(g) is bounded. We can show
through the analysis of the perturbed dynamical syssemsq — v,(g) = wrip, — 0, as,
I = oo that q for an appropriate choice of v,(g) will be bounded and stable. This will
be shown next (see also [38]). In fact the boundedness q and the boundedness J:GT
(i.e, robot trgjectories do not pass through singular configuration) both depend on the
stability of g =v,(¢) and therefore on the choice of v,(g), this will be seenin the find
sections (see also [38]). If J:GT is bounded (J, nonsingular and ¢ is bounded), we
can write,

Dp,e ™ +JTG*Mp,e™ -Y,P, —-JIG*Y,P, 50 ast-— o (60)

4.2 Boundednessof the Internal Forces

Theorem 2

The control law given by (43) and the parameter update laws given by (45) and (46)
ensure the convergence of the internal forces to their desired trgectories. ( i.e.,
ef — OasI — =),

P oof :
If we combineequations (48) and (43), we get,

DG +Cg + G, + JTG*(MZ+Ni+Gp) + JIF, =Y, P, — K,(§—v,)
+ JTGH [V ,Po=K, (v )] +J 14, (61)

Using the facts that P, =P, + P, and P, =P, + P,, and replacing ¥,P, and Y,P, by
their valuesfrom equations (17) and (18), we obtain,
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D(q-_ar) + C(d—vr) + Kr(d“vr) +-]Z‘G+[ M(x - aa) +N2('i_vo) + Ko(x.—vo) ]
= YrP-r +-,:G+Yo};o +j£(1f"Fel) . 62)

Dp,e™ +Cpe™ +K,p,e™ + JTG* [ Mp,e ™ + Nopoe™ + K, p,e ™ ]
=Y,P, +JLG Y P, - JL(es+ Kffep). (63)

Using corollary 1 and equation (60) (assuming /G T and q is bounded), we can con-
clude that,

Jl(es+Ksfe) =0 as ¢ —eo. (64)

The mamx J7 is not asingular matrix, and it is afull rank mamx, thus we can con-
clude from equation (64) and with appropriatechoice of Ky that, e+ 0, as, t + —.
Notice that X can be set to zeroif theinterna forces are not measurable.

[l

5. BOUNDEDNESSOF THE JOINT MOTIONSAND CONTROL TORQUES

In this section we will show the boundednessof g, g, and the control torque <
based on a perturbation modd. We notice that equation (32) can be written as a
decayed perturbation system,

i = v, (q) + 8, (qi.0) i=1,....k (65)

Recdl from Corollary 1 that |I6,.(gi.0Il = 0, as, t — =, thus the perturbation
8, =wrlpyi (i=1,...,k) isbounded and tendsto zero ast — .

We will prove the boundedness of g; in the perturbed system, described by
equation (65), by ensuring the boundedness of ¢; in the unperturbed system
g; =v.,(g)- In the following, we will consider severad Lemmeas that establish the
relationship between the boundedness of the perturbed and unperturbed systems. The
first important lemma which is stated without proof is the result of Markus and Opial
(see [5] pp. 282). Recdl that the set S is said to be invariant if each solution starting
in S remainsin Sfor dl t [5]. Specificaly, for a continuous time system, Sis said to
be an invariant set under the vector field z = f(z) if for any z(0)=z" < S, we have
z(t) € Sfordl t € R* (withzeR" andf :R"+R").




Lemma 1 (Stability of the perturbed system) [5]
Consider the perturbed differentia equation with zgeR” andf :R"—R".

I5=f(z5) +8(zst) with z5(0)=2° (66)

This sysem iscalled "asymptotically autonomous' if:

(1) 8(z5,1) = O ast — oo uniformly for zg in an arbitrary compact set Q inR", or, (2)
&(z5,t) € Ly for al zg(t) which are bounded and continuouson 2 for t 2 0.

Then, the positive limit sets (i.e., the set witht € R* and t — =) of the solutions of
(66) areinvariant setsof the origina differential equation,

i=f(z) with z(0)=2z9. (67)

Notice that because of the choice of w;, the redundancy resolution equation (65)
modeed as a perturbed system is indeed asymptotically autonomous, since the per-
turbed term 3y, isabsolutely integrable as,

j 18y, llds < —— (68)
where B, isa positive constant.

Lemma2 (Asymptotic stability of the perturbed system)
Assume that the perturbed sysem (66) is an asymptotically autonomous system.

Then the limit solution set of (66) is the limit solution set of (67). If the positive limit
set of (67) is bounded, then ||z — z|| is bounded ast — .

Proof:

Let V be acontinuous Lyapunov function defined on the set G, which is a subset of
R”. We define E to be the set of all pointsin the closure[15] of G,, ( the closure of
G will be denoted by G;), where V(z) =0, that is,

E={z|V(z)=0,z€ G, ] . (69)

Let M, be the largest invariant set in E, then LaSalle’s theorem [10] asserts that every
solution of (67) approachesM; ast — =, Thus theresult of Lemma 1 yields that the
positive limit set of (66) is the positive limit set of (67), hence zg tends to some limit
points of the unperturbed system in (67). Moreover, if the positive limit set of (67)is
bounded, then |z — z|| isbounded ast — <.

O

We should note that the asymptotic convergence to the podtive limit set is a
local behavior. Lemma 2 tells usthat if Ay is the measureof the limit set of (67) (i.e,
lz5 = z|| < Ap &St — *=). then given any number h > A,, we can dwaysfind a time
t, such that for t > z; we have ||z5(¢) — z(¢)|| < h. The next lemmaenables us to show
that the trgjectory of (66) isbounded int € [0,24].




Lemma 3 (Boundednessof the perturbed system)

Consider the perturbed differential equation (66) and suppose that the mapping
f :R" = R" has a Lipschitz constant C; >0, and suppose that the perturbation
d(z5,2) dong the trgjectory zs has bounded L; norm. Then the trgectory z5(2) is
bounded up to a given timez, if the original differential equation

i=f(z) with z(0)=2z° (70)
issable.

Proof:
It issufficient to show that ||z 5 — z|| is bounded for dl t € [0,0), Since z (t) is bounded
by the assumption of the stability of (70).

t

t
The solution curve of (66) can be written as, z5(t)~z°= [ f(z)du+ j' S(z5,u)du.
u=0 u=0

t
Similarly for unperturbed system (70), we have, z(r) - z° = jf(z)du. Combining

u=0
t t

these two equations, we get, z5(t) — z(1) = f S(zg,u)du t J' (f(zg) - f(z))du. As
u=0 u=0

t
f () is Lipschitz by assumption, hence, [lzs -zl s Bs + | Cplizs—zlldu. Recall that
u=0

the norm in Banach space is dways a continuous and nonnegative function (Banach
spaces are complete normed spaces). Hence this dlows us to use the Bellman-
Gronwall’s lemma (see [6], p. 169), thus we have

IIZa-ZlISBseC"", A (71)

for ¢ =¢,. Hence the stability of the unperturbed system (70) ensures the bounded-
nessof z thenzs isboundedin ¢ ¢ [0,2,] for any givent, 20.
O
Using Lemma 2 and Lemma 3 to solve the asymptotic redundancy resolution
problem, we arrive at the following propositions.

Proposition 1 (Boundednessaf joints and parameters)
If we assume that the function v,, (i=1,...,k) in (33) is Lipschitz, then we can find a
set Rge (the set of theinitial ¢;), such that the solutionsof the adaptive control system

(i.e. the parameters and the joint positions) are bounded for any time. Therefore with
the adaptive control law given by (43), (45)-(46), the solution of (36) is bounded for
any time, if the solution of the unperturbed system,

Jigi=%4+ye  NJg;=WN] VH; i=1,....k (72)
isboundedin Rge.




Proof:
The adaptive system given by equations (3-6), (43), (45) and (46) is an asymptoti-
caly autonomous system because we have shown that the perturbation term is uni-
formly bounded time decreasing function. The set {¢q; | |l4; — Vvr |l £Bp,J can be taken
as the compact set 2 in Lemma 1. Thus Lemma 2 and Lemma 3 guarantee the
boundedness of the adaptive system for dl timeif g; (i=1,...,k), the solution of (72),
IS bounded.

The boundedness of the unperturbed system will be studied in the next section.
To show the boundedness of the control torque we will make use of the assumptions
Stated earlier.

Proposition 2 (Boundedness;of g; )
Based on assumptions (A3), (A4) and (AS), the boundedness of the joint motion
q; (i=1,... k) ensuresthe boundedednessaf the joint velocity ¢; (i=1,...,k).

Proof:

The joint reference velocity v,, (i=1,...,k) given by (33) is a function of x4, x4 and
g;. By Assumption (AS), the boundednessaf ¢g; yields the boundedness of x4 —ye. By
Assumptions (A4) and (A5), the boundedness of ¢; yields the boundedness of J7 (g;),
P;(q;) and VH;(q;) (fori=1,...,k), hence v..(¢;) (fori=l,... k) is bounded for all
bounded g; (for i=1,...,k). Therefore the boundedness of [Ig; = v,.|| in the adaptive
system leads us to the boundednessof g; , provided that g; is bounded.

Proposition 3 (Boundedness of the control torque)

Based on assumptions (A3) - (AS), if ¢; and ¢; (i=1,...,k) are bounded then the
adaptive control torque defined by (43) is bounded.

Proof :

Based on assumptions (A3) - (A5) and the boundedness of ¢; and g;, the reference
velocity v,, and acceleration a,, expressed by (33) and (41) respectively are bounded.
Therefore the control torque is bounded.

6. THE STABILITY OF THE UNPERTURBED SYSTEM

The trgectories g; (i=1,...,k) of the unperturbed sysem are bounded if
q; (i=1,... k) of the sdf motion manifold is bounded. The dynamics of ¢; on the
saf motion manifold have to be shown to result into joint angle g; which is bounded.
We will show that the quadratic form cost function H;(g;) (i=1,....k) is a specid
choice which guaranteesthe boundedness of ¢; (i =1,....k).
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Below, we will examine the boundedness of the unperturbed system by using a
homeomorphic transformation of the coordinates. A homeomorphism is a continuous
mapping between two topological spaces if itsinverse mappingisalso continuous. A
homeomorphism also maps a continuous function to another continuous function. A
homeomorphism preserves the topological properties such as the openness, connect-
edness, and the convergence of a set. We will find a homeomorphism which
transforms the coordinates of the configuration ¢; (i=1,...,k) into a decomposable
coordinates &; and &; (i=1,...,k), where &; is homeomorphic to the workspace coor-
dinates x. The variable §; will be used to represent the dynamics on the self motion
manifold. Hence the unperturbed system g; = v,.(¢g;) (i=1,... k) istransformed into a

cascaded system,

Ci=ve &), &i=vg &) i=1,....k. (73)

The boundedness of g; (i=1,...,k) will be deduced from the boundedness of &; and
¢;. We will adopt the method used to prove the sufficiency of the Frobenius' theorem
[9], to find the homeomorphism. We will construct the diffeomorphism based on the
self-motion manifold. For any given x, al the points g; such that x = K;(g;) lie on the
leaf of the self-motion manifold Q,‘l;‘o. The leaf of the self-motion manifold will be
denoted by Q,‘\’;‘p, This manifold is a connected region. By assumption Ny, (g;) is non-
singular, then the distribution A; =ker (J;) =span (M) is nonsingular. The null
space of a Jacobian matrix is always completely integrable, hence 4; is involutive.
The distribution A; = ker (J;) has an annihilator A} which is spanned by J; which is
the exact differential of the kinematic map K;. The integrability of A; alows us to
construct the integral manifold by piecewise integrating every column of N;..

Let <D{; &note theflow of the vector field f;, such that g;(z) :Of(q?) solves the
ordinary differential equation gq; = f;(g;) with initial condition q?. The transition
mapping <b{ which maps q? to qi(r) is a diffeomorphism, and has the property
CadhCH)

at
Nj. isthe solution of the following differential equations,

= fi(qi(¢)) [6,9]. The flow of each vector field represented by a column of

gi=Np(g) with @ =q?, for I=1,...r; (74)
and can be written as,
qG=th=del @)  I1=1,....m; (75)
Thus we have,
DL (g?)
=Nj;i(qi) I=1,...,r;. (76)

oG,




Lemma4 (The parameterizedequation of the salf-motion manifold)
Given a kinematic mapping X =K;(g;). The composite mapping Q¢ : R" — 0O,
such that,
v Ny "
(Czl' “ua ,Ci‘) - q;(t)= (Dg?'r 0.. .o<b2{n” (q?) and t= C‘l.;. . .+.Cf" . an

is a locdly parametrized equation of the manifold Q,‘{; ={g; € C(@?) such that
xo =K;i(q:) =Ki(q?)} , which passes through ¢?. Here C(¢?) is used to denote the
connected regions of the self-motion manifold and C(g?) passes through the initial
joint configuration q?.

Proof:
We shall show that fort =.C}+. . .+Cf‘, we have K;(q:(#)) :K,-(q?). Sincex =K;(g)),
it suffices to show that x is unchanged whenever {; varies locadly, i.e. aa—é =0 for

I=1,. ..

First. consider the rightmost integral d>z{’ in(77).Letqg = (D;l’ (@®). Then

N
ox _ aK‘-I _ axil oq ! _ oK | od¢! (g))
A} gt Y ag ¢ ot eq Yt}
=Jilqg) Ns (@) =0. (78)
Hence q¢! € Q,‘(;g when ¢? € Q,‘(,?. Similarly, we have
a%:o for 1=2,....r;. (79)

Then for the lth transition, we have, g;(¢ =} ... +L)) = d>2’f‘ (qi(e=Cl+. . . +LF1y) for
I=1,...,r;. Hence qt=C}+...+C) e Q,‘(,?. Moreover these g;’s are connected since
<sz’ for I=1,...,r;. are continuous mapping with respect to §! (I=1,...,r;). There-
fore (77) maps §; to q;(1) € QK/?. This mapping is a diffeomorphism because it is a
compositionof the diffeomorphisms (Dgg”.

Lemma5 (Decompostion of the coordinates)

Given a kinematic mapping X =K;(g;) (i=1,...,k), and let U; be the image of the
joint space Q;. At any point g; € Q;, there exists a diffeomorphism Fil, which
decomposes ¢; into {; € R™ ad £ ¢ R™ (here mj=6 for dl i=1,...,k), such tha
[g“_] = F71(q:)- The mapping &:(g:) maps a point g; on the corresponding self-motion

manifold Qf;, into &;.




Proof:
We will construct the desired diffeomorphism on the given leaf of the self-motion

manifold. Recall that &;. is the orthogonal complement of Jf. The matrix J; is
assumed to be full rank and has theright inverse /¥, JT =JT(JJ7)L. "Thenthe range
space of J and the range space of J T are equal. The domain space of any matrix is
the direct-sum of itsrow space and its null space, hence the domain of J; isR™. Thus
we have,

rank([N;, ,JiD=n; . (80)
Consider the composite mapping F; : R™ —= Q;
; m; Jt It Np Ny
Glae WCEEL.LET) S () = DFFo. oDt oD 0. oD (). (8])

The mapping F; is a diffecinorphism, since the composition of diffeomorphisms isa
diffeomorphism. Hence the inverse of F; , F;!, exists and it is a smooth mapping.
Thus,

H =F7' (@) (82)

where §; = (¢},...,C7)T and &; = &} ... £™)T are real functions,
We have,

&, &) =Fi' oFi(Gi.&), (83)
then the Jacobian matrices F;! and F; should satisfy the following equation,

'at;,- -

aq‘- aF,' aF,' _

% | |3t & | =™ &9

9q;

In the next lemma we can find the relationships between the derivatives of (§;,&;) and
qi-
As the distribution A; =ker (J;) is involutive, the diffeomorphism F; has the

property, ([4] pp. 27) that for every g;, the r; columnsof the Jacobian matrix a_C: are

linearly independent vectorsin the distribution 4;.

Lemma6 (The time derivatives of the transformed coordinates)
Thetransformation F; given in Lemma5 allows us to write,

Ei=Mj J;qi (85)

i=M5 NT 4 (86)

U U —— -
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Proof:
We can always find a nonsingular ryxr; matrix My, which expresses ‘;F L asalinear
combination of the columnsin Ny,

oF;

oF;
From (84) we have gé‘ T =, thus,
5‘ N, My = 0e R™" (88)
- &, : _ ok
Hence Nj, annihilates P Recall that J;N;, =0, thus each row of e must be a
linear combination of the rows of J;. Hence,
o _

where M. is a nonsingular m;xm; matrix. Therefore §; = gg‘ q:i =M J; q; yields
(85). From (84) we have, ai gg =Im;; combining thisequation with (89) yields,

oF; -

5 =M (90)

because the nonsingular mamx J; has a unique pseudo-inverse J¥ such that
JJT=1. Wecan write,
oF, .  OF,

di=a—C:Ci+a—§:‘§i- 91)
Thus we have,
oF; oF; ) ) .
o 5= Un — g My, Ji i = U =TT T4 =Py, G . 92)

T o obtain (86), we substitute (87) into the above equation and premultiply both sides
by NJ,. Notice that NJ,N;,=I,,, since each column of N ;. isanormalized basis vector.

Remark 2
Equation (85) implies that & =M 71X and ——=
theorem, the non singularity of M;, ensures that €; is homeomorphic to x.

ag‘ =M;. From the implicit mapping

Lemma7 (The decomposition of the unperturbed system)
Using the transformation F; given by lemma 5, we can write the unperturbed system
q; =v,.(q), (v,. isexpressed by (33)) asa cascaded system in the following form,

&= WMy (NT. VH;) (g e)), (93)




€ +ve=0. (94)

The notation used in (93) means that NI. and VH; are functions of (§;,e) through
dependency on the joint variable g;.

Proof :
The unperturbed system is now given by,

q‘-=f‘-"(x'd—‘ye)+p‘-PJ‘_VH,- i=l,....k. (95)

Equation (94) isobtained by premultiplying both sides of (95) by J; and recalling that
JiPy =0. Similarly, equation (93) is obtained by premultiplying both sides of (95)
by Ma! N7, and recalling that N3.J} = 0. Notice that ; can be decomposed into (&:,&:)
by F;! given by (82). Also notice that &; is homeomorphic to x. Thus &; is
homeomorphic to e because there is a one to one mapping betweenx ande. Then eis
independent of &;, so g; can be decomposed into (§;,e).

Lemmas8 (The stability of acascaded system)
Consider the system (93) and (94) in hierarchical form,

Ci=riGi.8) and, &i=8iC). (96)
If the functions f; and g; are continuously differentiable, then (£;,&;)=(0,0) is a
locally asymptotically stable equilibrium of the system, if and only if & =0 is a
locally asymptotically stable equilibrium of g;(§;) and {; =0 is a locally asymptoti-
cally stable equilibrium of £;(&;,0).
The proof of this lemma can befoundin Vidyasagar [9].

The equilibrium point of the cascaded system given in lemma 7 is e=0,
¢ = (fori=1,...,k). Here; isthecoordinates such that,

(NI VH)(@CF,00=0 i=l,... .k (97)
The equilibrium joint position ¢; isthen,
q; =Fi((;.0)  i=l,....k. (98)
Remark 3
Setting e =0 in (93) gives us the zero-dynamics [4],
& =wMy (N, VH) (@G, 00 i=1,... .k, (99)

of the unperturbed system. The zero dynamics is defined on the manifold ", Equa-
tions (86) and (99) lead to,

NT i = w(NY, VH)(:(Gi,0)) or Prgi =Py, VH)@i(§i,0) i=1,...,k(100)

Notice that i(§;,0)€ Qf.. Equation (100) is defined on the manifold of
{q; =Fi({;,&) suchthat §; « R"and e = 0J. Thismanifold isalso expressed by,




Qf. ={qi € Q; suchthat x;=K;(¢q;) and Jig; =0} fori=1,... .k, (101)
and it is indeed the sdf-motion manifold over x;. We observe that the identity
q;i=WtJ; +P,..)é,- is satisfied on any g; € Q;. However for motions on the sdf-
motion manifold X = J;(g;)g; =0, and thus for motions on the sdf motion manifold
we aso have g; = P;.q;. Equation (100) can be rewritten as,

qi =Wi(P;, VH)(q;) forallg; € OF, . (102)

Equation (102) will be called the "equivaent zero dynamics' expressed in the joint
space and defined on the manifold Qf;..

Proposition 4 (Boundedness of the unperturbed system)

The equilibrium points g; (i=1,...,k) of the unperturbed system is asymptotically
stable if the equilibrium point (;,0) of the zero-dynamics (102) is asymptotically
stable. The trgjectory g;(¢) of the unperturbed system starting from any finite initial
configurationq? is bounded if the solution trgjectory of the zero dynamics defined on

the salf-motion manifold Q,‘{f ={qi€ CqY) such that Ki(@)=Ki(q?)=xo} is
bounded.

P oof :

Lemma7 assertsthat the unperturbed system given by (102)) can be decomposed into
a cascaded system, then the asymptotic stability results are obtained immediately
from Lemma8.

Proposition 5 (Boundednessis guaranteed with the choice of H; )
L et the cost function H;(g;) be aquadratic of theform :

Hig) = 2@ —ac)"Mu(@i—qc)  i=l....k (103)

where qc, (i=1,...,Kk) is fixed, and M, is a symmetric postive definite mamx.
Further let g¢, be givenin asat of isolated points. Consider the zero-dynamics,

qi = WP VH (q:) = Py My (qi~qc,) with . g; € On 7 . (104)
The vector ¢; is bounded and ¢; — ¢q; a t — e for every fixed qc,. Where
q: (i=1,...,k) isthe optima solution of the problem given by (27).
Proof :
Let the Lyapunov function candidate V; be,
Vi=2@i~4c) My @—dc)  ai< O . (105)

Thederivativedf V; is,




25

Vi=Hi(qi~dc,)" My, P; M4, @i~qc,)=1illPs, My, @~qc)IP <O, for p; <0, (106)
Here the fact that P; is a projector was used. Hence ¢; —qc, € L,,, in addition,
because of the boundedness of gc, we have ¢; € L,  Notice that the set E; ={q; |
V; = 0} is the the set of equilibrium points of (108), and is therefore an invariant s&t.

From LaSalle’s extension of Lyapunov direct method [5], gi(¢) = qi (i=1,... k) as
t = oo because g; isin a bounded set.

Remark 4

Thus we see from the |ast proposition the choice of g¢, and M, fori=l1,...,k can be
used to ensure that point g; isfar from singular configurations. Thus ensuring thet the
robot joints do not go through the singular configuration this was assumed in A3 for
the purpose of the development of the control law & the beginning of the paper. We
should note the exact value o the joint angles ¢; Q% for dl i=I...,k can be
obtained by simulation o the equation (104).

Remak 5
The quadratic performance function defined in (103) ensures that the function
vy, (I=1,...,K) islocdly Lipschitz.

Vr, =Jir(Xg—Ye) + WPy My (gi—qc,)  i=1,....k. (107)

The mamces J{ and P;, are differentiable because of assumption (A4). A continu-
oudy differentiable function is localy Lipschitz. Also notice that M, is a constant
mamx. Hence the function given in (107) is differentiable with respect to ¢;, and is
therefore Lipschitz.

7. CONCLUSION

In this paper, we addressed the problem of controlling redundant multiple robots
manipulating a load cooperatively. We proposed an adaptive controller that ensures
the exponential tracking of the load position to its desired vaue and the: convergence
of the internal forces to their desired values. The controller also guaranteed that the
parameters errors remained bounded, and that the redundancy resolution error was
asymptotically stable. Measurements of the joint or load accelerations were not
required. The conceptsd zero dynamics and stability of perturbed nonlinear dynam-
ica systems were used to prove the stability of the adaptive system, particularly the
stability of the joint motions on the self motion manifold. The overadl stability of the
adaptive system was established for a certain class of optimization functions used for
redundancy resolution.




Further work can be done to simplify the control law calculations, as the control
law is rather complex. Other possible areas of future developmentscan address actua-
tor dynamics, the effects of joint flexibility and effectsof bounded actuator power or
torques. At this stage experimenta work should be carried out to verify the effective-
ness of the control law proposed in this paper. In such an experiment the workspace
trgectory must be selected which is reachable and the actuator power/torque capaci-
ties must also be sufficient to ensure the & Sired load trgjectories are feasible. If such
adesred trgectory is found then the collisions between the robots and the singulari-
tiesmay be avoided by an appropriateselectionof H(q).
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