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Abstract 

The use of dynamic reconfiguration has been proposed to tolerate faults in large-scale parti- 
tionable parallel processing systems. If a processor develops a permanent fault during the 

execution of a task on a submachine A, three recovery options are migration of the task to 

another submachine, task migration to a subdivision of A, and redistribution of the task 

among the fault-free processors in A. Quantitative models of these reconfiguration schemes 

are developed to consider what information is needed to make a choice among these methods 

for a practical implementation. It is pointed out that in certain situations collecting precise 

values for all needed parameters is very difficult. Therefore, the model parameters are then 

analyzed, together with the cost of making the wrong reconfiguration choice, to determine a 

useful heuristic that is based on the information available. A multistage cube or hypercube 

inter-processor network is assumed. PASM, an experimental SIMD/MIMD mixed-mode 

machine with a partitionable multistage cube communication network, and nCUBE 2, a com- 

mercially available MIMD machine with a partitionable hypercube communication network, 

are used as vehicles for studying the model parameters. 



1. Introduction 

To provide reliable operation over extended periods of time, massively parallel process- 

ing systems must be capable of tolerating faults. A fault-tolerant system must be able to 

detect and locate faults, to reconfigure itself to "disconnect" and perhaps replace faulty 

components, to recover from possibly erroneous computations, and to restart operation from 

a correct state. When more than one reconfiguration option is available, the option that 

results in the earliest completion of the task is desirable. Quantitative models of three dif- 

ferent reconfiguration schemes are developed in this chapter to consider what information is 

needed to make a choice among these methods for a practical implementation. In certain 

situations collecting precise values for all needed parameters is very difficult (if not impossi- 

ble). Therefore, the ranges of values that the model parameters can assume are analyzed to 

develop guidelines for making the best reconfiguration choice. Because there is no guarantee 

that these guidelines will produce the optimal reconfiguration strategy in all cases, the cost 

penalty of making the wrong choice is also considered. The analysis incorporates 

experimentally-derived parameters obtained on PASM FiC9 1, SiS871, an experimental 

SIMD/MIMD mixed-mode machine with a partitionable multistage cube communication 

network, and on nCUBE 2 [Ncu90], a commercially available MIMD machine with a parti- 

tionable hypercube communication network. 

One approach to achieving fault tolerance in parallel processing systems involves the 

use of redundant hardware. When a faulty component is detected, the system is reconfigured 

in such a way that the faulty component is replaced by one of the redundant components. An 

example of such a system is MPP Pat821. MPP is a 128 128 array of single bit processors 

implemented as a 64 32 array of 2 row 4 column VLSI ICs. A redundant column of VLSI 

ICs (64 ICs) is provided to replace any of the 32 columns of ICs within which a faulty pro- 

cessor may exist. Thus, any single processor IC failure in the array can be tolerated. Addi- 

tional hardware could be added, at additional cost, to allow a greater number of faults to be 

tolerated. A general disadvantage of the redundant hardware approach is that the extra 

hardware is idle until a fault occurs. 

The work presented in this chapter focuses on partitionable parallel processing systems 
where the set of processors can be partitioned to form multiple independent submachines. 

The execution of a parallel program on a submachine is defined as a task. - It is possible to 

achieve fault tolerance in such a system by utilizing the reconfigurability of the system to 

effectively "disconnect" the faulty component. For example, parallel processing systems 

such as Intel Cube [Int85], nCUBE maM861, IBM RP3 [PfB85], and PASM [SiS87, FiC91.1 

incorporate partitionable interconnection networks and therefore have the ability to migrate a 



task from a faulty submachine to a fault-free submachine [e.g., ScS901. Such an approach 

has the advantage of no redundant hardware costs in the absence of faults. However, the 

total available system resources are decreased when a fault occurs. Furthermore, if the smal- 

lest possible submachine in such a system consists of more than one processor, the fault-free 

processors in the faulty submachine become idle. Thus, there is a trade-off between redun- 

dant hardware cost and degraded system performance for the fault tolerance schemes dis- 

cussed. 

The architecture assumed here implements a physically distributed memory such that 

each processor is paired with local memory to form a processing element (PE). Most exist- 

ing large-scale parallel processing systems use a physically distributed memory approach 

(e.g., BBN Butterfly [ C I G ~ ~ ] ,  Connection Machine CM-2 [TuR88], Intel Cube [Int85], 

nCUBE [HaM86], DAP [Hun89], MasPar [Bla90], IBM RP3 [PfB85]). These systems 

implement either a logically nonshared memory system, a logically shared memory system, 

or a hybrid of the two memory systems. In a logically nonshared memory system (e.g., CM- 

2, MasPar), processors cannot access remote memory locations directly. Instead, all com- 

munication between PEs is through explicit message passing. In a logically shared memory 

system (e.g., BBN Butterfly), all system memory appears in the address space of each pro- 

cessor. Accesses to memory locations located in a remote processor's memory requires use 

of the interconnection network. As a result, remote memory accesses incur a larger latency 

than local memory references. Careful placement of program code and data is one way to 

reduce the effects of this network latency. In one type of hybrid memory system (e.g., IBM 

RP3), a portion of each processor's memory is reserved for nonshared access, the remainder 

is treated as logically shared memory, and all interprocessor communication is through the 

shared memory. For the model of reconfiguration presented in this chapter, a logically 

shared or hybrid memory system is assumed. 

Previous research on fault recovery by dynamic reconfiguration includes myR85] and 

[UyR88]. These papers explored task redistribution in a MIMD environment to recover from 

a PE fault for near-neighbor-class problems. Other work has considered the reconfiguration 

of hypercube architectures in the event of PE failure [HaL87, LiS881. Here, quantitative 

models of three different reconfiguration schemes are developed. Givn today's technology, 

collecting precise values for all needed parameters is very difficult in certain circumstances. 

Therefore, the time-cost ranges of the model parameters and of the time penalty for a subop- 

timal reconfiguration choice are examined and compared. The PASM and nCUBE 2 parallel 

machines are used as vehicles for studying the model parameters. For some parameters, the 

range can be restricted to a very small and precise interval. For other parameters, only very 

coarse, but useful, ranges can be determined. It is shown that this combination of precise 



and coarse ranges can be used to determine useful guidelines for a choice among 

reconfiguration options. 

The system and fault models used to analyze fault recovery options are described in 

Section 2. Section 3 presents recovery options and associated costs. One cost that must be 

considered for every fault recovery option is the remaining execution time of the task that 

was on the faulty submachine when the fault occurred. As an example of the difficulties in 

determining some of these costs, Sections 4 and 5 provide models for determining the 

remaining execution time of a task depending on the system configuration and operation 

modes. In Section 4, tasks whose execution times are data independent are considered, while 

in Section 5 tasks whose execution times are data dependent are considered. An analysis of 

the range of costs for each option is examined in Section 6 to determine the relative weight 

of these costs in the reconfiguration decision. Finally, the penalty for making the wrong 

choice is considered in Section 8. Guidelines for choosing a reconfiguration strategy in the 

event of a fault are also presented in Section 8. 

2. System Model for Fault Recovery 

The analyses here can be used to model MIMD, multiple-SIMD, or partitionable 

SIMDIMIMD parallel processing systems, utilizing a multistage cube or hypercube intercon- 

nection network, and possessing a logically shared or hybrid memory system. The research 

assumes a partitionable SIMDfMIMD machine with a multistage cube network and can be 

directly applied to the other cases. 

It is assumed that overall system activities are supervised by a dedicated processor 

known as the system controller unit (SCU), although it could be a program distributed among 

system processors. Among other duties, the SCU is responsible for allocating and deallocat- 

ing submachines, and for determining the proper recovery action in the event of a detected 

fault. The activities in each submachine are supervised by a submachine controller (SC). 

Similar to the SCU, the SC is assumed to be a designated processor, although it could be a 

program distributed among the processors of the submachine. 

The execution of an SIMD procedure on a submachine is an SIMD process. An 

MIMD process is the execution of an MIMD procedure on a PE that is part of the sub- 

machine. The term subtask refers to a single thread of control (stream of instructions). A 

subtask can be composed of one or more SIMD processes executed sequentially on the same 

submachine, in which case subtask refers to the program executing and/or broadcast by the 

SIMD submachine SC. A subtask may also be composed of one or more MIMD processes 



executed sequentially on the same submachine PE, in which case subtask refers to the pro- 

gram executed by a single PE in the MIMD submachine. A task can be composed of one or 

more subtasks. Tasks are coded assuming that any number of virtual processors required is 

available. At execution time, the SC determines the number of physical processors available 

in the submachine and maps the virtual processors onto physical processors. The ratio of vir- 

tual processors to physical processors is called the virtual processor ratio. When the virtual 

processor ratio is greater than one, some or all of the physical processors will perform the 

functions of more than one virtual processor. If the virtual processor ratio is less than one, 

some physical processors will remain idle. Use of a virtual processor scheme allows tasks to 

be executed on submachines of various sizes without having to be re-compiled. The Con- 

nection Machine models CM1 and CM2 [TuR88] uses such a virtual processor scheme to 

allow programs to be executed on machines consisting of different numbers of physical pro- 

cessors. Other schemes that allow for the same kind of functionality are equally applicable 

to this research. 

The model used for fault tolerance and recovery is as follows. At regular intervals dur- 

ing the execution of a task, the state of each PE, including register and allocated memory 

contents, is stored in a buddy, i.e., a different PE within the same submachine. This state 

information is called checkpoint data and is used to restore a valid system state (i.e., a 

recovery point) in the event of a fault. No two PEs have the same buddy. Furthermore, bud- 

dies are chosen such that all PEs in a submachine can store checkpoint data in their buddies 

simultaneously without conflicts in the inter-PE communication network. The checkpoint 

data are also stored in local PE memory to allow recovery in the event its buddy becomes 

faulty. Thus, no matter which PE becomes faulty, a copy of that PEs checkpoint data is 

available for error-recover somewhere within the submachine. Error-recovery techniques 

using checkpointing are discussed in [TaS84] and [FrT89]. 

It is assumed that existing fault detection techniques in the literature (e.g., [DaM85] or 

[BaB91]) are used in the system to detect faulty components. The faults of interest are per- 

manent faults that affect the processor of the PE or the memory module of the PE. Transient 

faults are not considered, because they do not require system reconfiguration. For this study 

it is assumed that a faulty processor is unable to either compute or communicate with other 

PEs, but does not interfere with the operation of fault-free PEs. Furthermore, the local 

memory of a faulty processor is assumed to be corrupt, or inaccessible. The failure of a pro- 

cessor local data bus or arithmetic logic unit would be examples of faults classified as pro- 

cessor faults. When a memory module is faulty, it is assumed that neither the local processor 

nor any other PE can reliably read data from or write data to the faulty memory module. The 

local processor is assumed to be fully operational in every other way. Such would be the 



case if there was a failure in the memory module refresh circuitry or a memory module UO 

buffer, for example. A PE with a faulty processor or a faulty memory module will henceforth 

be referred to as a faulty PE, unless it is necessary to distinguish between the two fault types. 

When a fault is detected, the SCU determines and directs the proper recovery action after 

which processing continues from the last valid checkpoint. 

3. Quantitative Dynamic Reconfiguration Model 

When a permanent fault occurs in a submachine A, four possible 

reconfiguration/recovery options are as follows. The first three options apply to PE faults in 

general, while the fourth is applicable only to PE memory module failures. 

1) Subdivide A into two equal-size system submachines, and use the one that is fault-free 

to complete the execution of the task. 

2) Migrate the task to another submachine that is fault-free. 

3) Redismbute the task programs and data among the fault-free PEs in A and complete the 

task using a modified algorithm that does not use the faulty PE. 

4) If a PE memory module fault occurs, using information from secondary storage or 

checkpoint data, load the process that was executing on that PE into the memory 

modules of other PEs in submachine A and continue as before, but with the processor 

associated with the faulty memory module accessing only remote memory. 

These recovery options are discussed further in the following subsections. Table I summar- 

izes the most important notation used throughout the sections that follow. 

In addition to the costs of recovery discussed for each option, there is a time overhead 

of determining these recovery costs to select the best option for a given situation. However, 

this overhead is incurred prior to the initiation of any of these recovery schemes, so it is 

separate from the cost of recovery and is not included in the following subsections. 

3.1. Task Completion on a Fault-Free Subdivision 

When a PE fault occurs on a dynamically partitionable system, it can be avoided by 

subdividing the current submachine and completing the task on the fault-free subdivision. 

Figure 1 illustrates this process. It depicts a task executing on a submachine originally con- 

sisting of eight PEs. When PE 2 develops a fault, the task is moved to the fault-free subdivi- 

sion (four PEs) of the original submachine, and task execution is completed there. 

The fault-free subdivision recovery process would proceed as follows. Once the PE 



Table I: Summary of notation used throughout the chapter. 

*YYY = FFS, TM, or TR reconfiguration option. 

Notation 

FFS 

TM 

TR 

TEC~ 
TK 
TFFS 

Part 

TK 
TE$~ 
YW 

TCvhc 

Tsetup 

Txmit 

Tmessage 

TDA 

qexec(x) 

z 

F~m(t) 

R~m(t) 
WC 

TPeMlty 

Meaning 

fault-free subdivision reconfiguration option 

task migration reconfiguration option 

task redistribution reconfiguration option 

time to select fault-free subdivision 

time to determine new mapping of task for YYY* 

time to update system partition table for FFS option 

time to plan for YYY* 

time to move task data and code for YYY* 

time to complete task execution after YYY* 

time to establish interconnection network data path 

time to transmit one word over interconnection network 

time to send a message over interconnection network 

time to access disk 

estimated execution time for task on x PEs 

total time spent executing task prior to associated checkpoint 

probability of submachine failure fiom time 0 to time t 

submachine reliability function, Rsm(t) = 1 - Fsm(t) 

wont case reconfiguration-option-choice penalty 



Figure 1: Fault-free subdivision recovery option. 



fault has been located and the recovery point for the task has been determined, the SCU must 

make a determination about the partitionability of the current submachine. For this option, it 

is assumed that algorithmic constraints dictate that the subdivision is required to possess the 

same topological network properties as the original submachine. The recovery option of 

Section 6.3.3 is used when there is no need to preserve these properties. To create indepen- 

dent submachines with the same topological network properties as the original network, all 

submachines in a system possessing a multistage cube or hypercube interconnection network 

must have sizes that are a power of two [Sie80, Sie901. Thus, if a submachine can be parti- 

tioned (i.e., it is not of minimum size), it can be partitioned into two equal-size submachines. 

For a machine with N = 2" PEs, numbered from 0 to N - 1, the numbers of all PEs in a sub- 

machine of size K = 2k agree in n-k bit positions. These n-k bits are called sub- 

machine bits. Without loss of generality, let these submachine bits be the low-order n-k 

bits. The fault-free subdivision (half) B of this submachine A is composed of K/2 PEs. B's 

submachine bits are calculated by appending the complement of bit n-k+l of the faulty PE 

number to the high-order end of submachine A's submachine bits. Thus, to determine the 

submachine bits of the fault-free subdivision (FFS) requires a constant amount of time 

The number of physical processors in the subdivision is half the number of physical 

processors in the original submachine. Therefore, the virtual processor ratio for the subdivi- 

sion will double. The SC must determine the new mapping of virtual processors onto physi- 

cal processors and coordinate the relocation of program code and data accordingly. T L ~ ,  

the time to perform this mapping, is computable by the SC and will depend on the imple- 

mentation specifics of virtual processors in the system. 

The next step is to move all the task program code and data onto the fault-free subdivi- 

sion as per the virtual processor to physical processor mapping determined above. This will 

require T$:& time. The amount of code a task consists of can be easily determined during 

task compilation. However, the amount of data associated with a task can change dynami- 

cally during task execution. For this reason, part of the information saved during every 

checkpoint operation is the amount of checkpoint data saved. Because every PE stores its 

checkpoint data into a different PE within the same submachine, no data is lost when a PE 

becomes faulty. It is assumed that the interconnection network is used to transfer data. This 

transfer can be accomplished without conflicting with inter-PE messages from other sub- 

machines because of the partitioning properties of the network. The time to accomplish the 

data transfer can therefore be determined and will depend on the amount of data and the vir- 

tual processor to physical processor mapping. 

In the SPMD (Single Bogram - Multiple Data) restriction of MIMD mode [DaG85], 



every PE in the submachine has a copy of the same program. Thus, in SPMD mode, pro- 

gram code does not have to be transferred and T F ~  will consist only of the time required to 

transfer the data. However, for SIMD and h4IMD modes, some program code will have to 

be transferred. 

The structure of SCPE and inter-SC connections (if they exist) varies among 

approaches to multiple-SIMD architectures (e.g., CM-2 [TuR88], MAP [Nut77a, Nut77b1, 

PASM [SiS87], TRACLiM871). Because of this, the time to do any needed transfer of 

SIMD programs when "moving" a SIMD task from one set of PEs to a subset or different 

set is highly machine dependent. Thus, in the discussions that follow, it is assumed as an 

upper bound time requirement that the SIMD program is reloaded from secondary storage 

whenever a reconfiguration occurs. 

For general h4IMD mode tasks, program code will have to be moved from PEs not in 

the subdivision to those that are in the subdivision. Furthermore, depending on the mapping 

of virtual to physical processors, program code may have to be moved among PEs in the sub- 

division. The interconnection network is used to perform this transfer of program code and 

the time to do this can be determined in the same way as for the transfer of data across the 

network. However, the MIMD programs that resided on the faulty PE will have to be loaded 

from secondary storage (disk). 

The time to transfer a SIMD or MIMD program from disk depends on the disk latency, 

the amount of code to be transferred, and the bandwidth of the disk communication channel. 

In such cases, TF~& is difficult to predict accurately because of variation in disk latency 

from one access to another. Therefore, an expected time for disk access will have to be used 

to determine T;$. 

The SCU must then perform whatever operating system functions are needed to estab- 

lish the new system partitioning. This requires a system dependent time represented by 

T The time to complete the task execution on the subdivision is TgZExle and will gen- 

erally be greater than the time to complete the task execution on the original submachine. 

The difficulty of determining T{EExeC for this recovery option and those that follow is dis- 

cussed in Subsection 4.4. T;;%, the total time to reconfigure and complete a task on a subdi- 

vision of the original submachine is represented as follows. 

There are three main disadvantages of the subdivision recovery method. The first is that 

a subdivision of the current submachine may not exist, i.e., there is no way to further subdi- 

vide the current submachine. This is due to restrictions on minimum submachine size, which 



is usually associated with SIMD operation. The second disadvantage is similar and follows 

from this. There is a limit to how many faults can be tolerated in this way because of the 

physical limits to the number of times a machine can be partitioned. Finally, two types of 

performance degradation may occur. The first is task performance degradation. A task will 

generally require more time to complete on a subdivision of the original submachine. This is 

further discussed in Subsection 4. The second type of performance degradation is that of the 

system. After subdividing a submachine because of a fault, the entire subdivision containing 

the faulty PE becomes idle. In MIMD mode, the fault-free PEs of this subdivision can be 

utilized by the system because the PEs act independently of one another. However, in SIMD 

mode, the system must repeatedly partition the subdivision containing the fault until the fault 

is in a submachine of minimum size. Other tasks can be executed on the fault-free sub- 

machines created during this partitioning process. If the minimum size of the submachine 

containing the fault is greater than one, fault-free PEs become underutilized and thus conm- 

bute to a degradation in system performance. 

3.2. Task Migration 

It is likely that some tasks executing on a massively parallel processor will not use the 

entire machine and will therefore execute on an independent submachine formed by parti- 

tioning the machine. Reasons for partitioning include system utilization (e.g., due to the size 

of the data set to be processed, the task can make use of only a subset of the PEs), and reduc- 

ing task execution time (some tasks can execute faster using fewer PEs [KrM88, SaS93, 

SiA921). Therefore, if one or more PE faults occur in the current (source) submachine P,, 

the task can be migrated to a another (destination) submachine Pd, if one is available. An 

example of this is provided in Figure 2. In this figure, PE 2 becomes faulty during the execu- 

tion of a task on a submachine (P,) of four PEs. The task is then migrated to an idle sub- 

machine (Pd) elsewhere in the system, and task execution is completed there. It is assumed 

that P, and Pd are of equal size. While this may not be a requirement for some systems, it is 

a reasonable assumption to make because P, was originally of an appropriate size for the 

task. A brief analysis of the task migration costs discussed in [ScS88] is provided below. 

The first step to be made during the migration of a task from P, to Pd is to decide to 

which Pd to migrate. When more than one Pd is available, the Pd that results in the least 

cost of migration should be chosen. Two factors that enter into this decision are the loca- 

tions of P, and Pd and the mapping of P, PEs to Pd PEs. For a N = 2n PE machine, a O ( n )  
time method for determining the mapping of PEs from P, to Pd that minimizes the task 

migration time is provided in [ScS90]. Thus, T&%, the time to choose Pd and to 



Figure 2: Task migration recovery option. 



determine the optimal mapping of source PEs to destination PEs is a function of the log of 

the size of the machine and the number of destination submachines to be considered. The 

SCU performs this function, because it is responsible for allocating and deallocating sub- 

machines. 

The next step in the task migration process is to transfer all necessary task information 

from P, to Pd.  The time to accomplish the data transfer depends on a combination of the 

amount of data to be transmitted, the location of source and destination submachines, the 

source-PE-to-destination-PE mapping, the use of the interconnection network by other tasks, 

the type of network, and system implementation details. It is assumed that the interconnec- 

tion network is used to transfer data for the SIMD case, and programs and data for all other 

cases. During the migration of a task, conflicts in the network may occur with other migrat- 

ing tasks, or with normal inter-PE message traffic due to other tasks [ScS90]. These types of 

interference are not considered in the model presented here because: (1) it is assumed that 

two simultaneous migrations would rarely occur, and (2) interference with normal inter-PE 

message traffic is expected to be very limited relative to the task migration traffic. 

Let T$?@ be the time to transfer the program and data. For multistage cube intercon- 

nection networks and with the exception of SIMD and general MIMD program code, the 

time to perform this transfer is a linear function of the amount of data to be transferred and 

the number of network permutation settings required to accomplished the transfer. The 

amount of time to transfer the SIMD program code to Pd is machine dependent. In the worst 

case, the code will have to be loaded from secondary storage into the SC of P d .  For the gen- 

eral MIMD case, the program for the faulty PE must also be transferred from secondary 

storage. As discussed earlier, this access to secondary storage makes prediction of the 

transfer time difficult. 

As before, T$Gkc is the time to complete the task execution once the migration is 

complete. ~ 6 % ~ ~ ~  is equivalent to the time required to complete the task from the recovery 

point on the original submachine before the fault occurred. Thus, T$Zal, the time to migrate 

a task is as follows. 

The main advantages of task migration to another equal-size submachine are that no remap- 

ping of virtual processors to physical processors is required and once the migration is com- 

pleted, the task will finish executing without any performance degradation. However, the 

overhead to move a task may be significant compared to the task execution time remaining. 



As with the fault-free subdivision option, system degradation in the form of underutilization 

of fault-free PEs may occur for the PEs in P,. 

It is possible that no idle destination submachine exists to which to migrate a task. The 

task can be migrated to a submachine already being used to execute another task, and the two 

tasks can time-share the submachine. A number of factors should be considered in this 

event. First, it is desirable that the submachine to be shared have enough memory to hold 

both tasks. Second, if the expected completion times for tasks are known, the submachine 

with the earliest expected completion time should be selected. Finally, because two tasks are 

sharing one submachine, the estimated remaining execution time for each is more than dou- 

bled because of the context switching that must take place. Although time-sharing of sub- 

machines is not included in the quantitative framework presented here, the framework can be 

extended to include this option. To do this, it will be necessary to establish a method to 

incorporate into the reconfiguration choice the impact on the task already executing on the 

destination submachine. 

3.3. Task Redistribution 

In many cases when a PE or PE memory fault occurs, it may be possible to redistribute 

the data and/or subtasks associated with the faulty PE to neighboring PEs within the same 

submachine, thus effectively removing the faulty PE from the computation. Figure 3 illus- 

trates this task redistribution recovery option. The ability to redistribute the task in such a 

way that the faulty PE is effectively removed from the computation depends on a number of 

factors including the algorithm, the mode of operation, and the interconnection network. 

Consider an algorithm that exhibits coarse grain parallelism and is implemented as a set of 

MIMD subtasks. If a PE becomes faulty, the subtask that was executing on that PE can be 

distributed to one or more fault-free PEs. However, to minimize the execution time of the 

task, load balancing may be required. Work on load balancing on parallel and distributed 

systems [e.g., NaM921 has shown that the optimal load balancing solution depends on a 

number of factors including the taskhubtask queuing model used, the precedence constraints 

involved, and on the tasks being executed. Thus, it is unlikely, using available technology, 

that a distribution solution can be found that works for all classes of problems. Furthermore, 

there is a trade-off between the time it takes to distribute the load and the resulting savings in 

execution time. 

Consider an SIMD machine with a mesh interconnection network. A faulty PE might 

require that all the data on all the PEs be considered in the redistribution to achieve optimal 

performance and preserve the near-neighbor communication pattern WyR881. If a 



Figure 3: Task redistribution recovery option. 



multistage cube network is used, it is possible that the network will not be able to support the 

required single-pass inter-PE communication permutations on a submachine where one or 

more PEs have been effectively removed (i.e., the permutations permitted are limited 

[Law75]). In general, there may be additional overhead incurred whether extra time is 

required to redistribute the data or extra time is needed to perform communication in a net- 

work where a needed permutation cannot be performed in one step due to a PE fault. 

The first step in the task redistribution (TR) process is to determine how to accomplish 

the redistribution. In general, an equal load distribution (of data for SIMDISPMD tasks and 

of both programs and data for MIMD tasks) among all of the fault-free PEs will result in the 

greatest efficiency for completion of the task. The time to make the redismbution, Trq,  

depends on the mode of operation, the algorithm mapping, and the current state of each sub- 

task. 

It is assumed that the SC has user-supplied knowledge about the algorithm mapping, 

which it uses to decide how to redistribute the task. Ideally, this knowledge would be 

compiler-supplied. However, while this may be possible for certain classes of problems, it is 

still an open problem in the general case. 
TR The next step is to perform the subtask and/or data redistribution. rTrm is the time 

required to accomplish the relocation of the program code and/or data. As in the previous 

two options, the time to accomplish this transfer depends on the mode of operation, the 

amount of data to be transferred, the location of source and destination PEs, the interconnec- 

tion network, and system implementation details. Once again, for a MIMD task, the transfer 

of program code from secondary storage will add some unpredictability into the expected 

transfer time. The time to complete task execution after task redistribution, T $ & ~ ~ ~ ,  is 

expected to be greater than the time to complete the task on the fault-free submachine and is 

discussed further in Subsection 4.4. Thus, T$Zal, the time to redistribute a task among the 

fault-free PEs of a submachine and complete execution of the task is as follows. 

TTR - TTR + TTR 
Total - Map Trnsfr +~%pEkec 

An advantage of the task redistribution option is that all the fault-free PEs in the sub- 

machine can be utilized by the task, while with the fault-free subdivision option, only half 

the number of original PEs are utilized. A disadvantage is that to allow data and subtasks to 

be redistributed with a minimum of effort, the task must be coded and/or compiled consider- 

ing fault tolerance and reconfiguration. As an example, linked lists should be favored over 

indexed arrays when random access to the list elements is infrequent, because the code does 



not have to know the number of elements in the structure and does not have to be modified 

when the data is redistributed. Of the three options for reconfiguration discussed thus far, the 

task redistribution option is by far the most difficult to quantify. However, if the task redis- 

tribution option is to be considered, the information discussed in this section is needed to 

choose the best alternative. 

3.4. Using Remote Memory for the Faulty PE 

Indirect addressing using base address registers or index registers is a commonly 

employed addressing mode in processor designs (e.g. Motorola 68000 family, Intel 80x86 

family). Using this addressing mode, a register contains the address of an operand. The 

register is incremented or used with an offset to access other operands. Thus, the same pro- 

gram can access different blocks of data in memory, depending on the contents of one regis- 

ter. Because the classes of distributed shared memory parallel processing systems under 

consideration have a single shared logical address space, it is possible for the processor of a 

PE that has experienced a memory fault to continue execution using remote memory loca- 

tions exclusively. 

As stated earlier, the checkpoint data for every PE in a submachine is stored in the 

memory of a different PE within the same submachine. Thus, no data is lost when a memory 

module fails. For all modes of execution, it is assumed that the PE with the faulty memory 

module will access the checkpoint data remotely. 

Because in SIMD mode only data is stored in PE memory, execution can continue after 

a memory fault once the registers used to access operands in the faulty PE are loaded with 

the addresses of the checkpoint data for that PE. Also, because all the processors operate in 

lockstep, assuming that a remote memory access requires more time than a local memory 

access, there will be some increase in execution time when one or more processors are 

required to make a remote memory access as opposed to all processors performing a local 

memory access. This impact on execution time is quantified in Sections 6.4 and 6.5. 

Single-pass network permutations possible on a fault-free submachine are still possible when 

one or more processors use only remote memory. This is because it is assumed that all the 

PE processors utilize transmit and receive registers for network communication in SIMD 

mode. A memory failure will not affect how these registers are used by the network. 

In MIMD mode, to maximize performance, program code and data are typically located 

in the PEs where they are needed. If the processor of a PE with a memory fault is required to 

fetch all its instructions and data from a remote memory as opposed to local memory, one 

would expect a significant degradation in the performance of that processor. Processors that 



possess a local cache andlor that perform instruction prefetching would be expected to suffer 

a smaller performance degradation in most cases. These factors are beyond the scope of this 

model, but the model can be extended to include them. Such extensions and the associated 

analysis would be necessary to make use of the model with this type of processor. 

Another complication that arises in the MIMD mode of operation is that the lack of syn- 

chronization among processors can result in interconnection network conflicts. If one or 

more processors are required to fetch all instructions and data from remote memory, the 

likelihood of interconnection network conflicts is increased. A local processor cache would 

decrease the impact of this. Instruction prefetch capability would not decrease network 

traffic, but the degradation due to network conflicts may be reduced by the overlapping of 

instruction fetch and execution. Modeling the amount of overhead incurred as a result of 

network conflicts is very difficult because of its dependence on the system task load, the 

input data for each task, and the system architecture and hardware implementation. For sim- 

plicity, the model presented here assumes a negligible overhead due to communication net- 

work collisions. Further work is needed in this area to develop a more complete model. 

Regardless of the execution mode, the data of the faulty PE is already stored in a remote 

memory during the checkpointing process. For SPMD mode tasks, every PE has an identical 

copy of the task code. In this case the processor of the faulty PE can access another PE's 

copy of the code remotely. Thus, the only case requiring a transfer of program code is the 

general MIMD mode case. In this case, the subtask code for the faulty PE must be loaded 

from secondary storage to remote memory m. The time to do this is T!?&+ and is a func- 

tion of a number of factors as discussed earlier, including the disk latency (T!$ = 0 for 

SIMD or SPMD mode). As before, the disk latency is difficult to predict and requires the use 

of an expected value. 

Once the code for the faulty PE has been relocated, the SC must write the proper base 

addresses to the faulty PE's base registers. This will require T ~ Z  time, which will vary with 

the number of registers that must be modified. The time required to complete the task execu- 

tion after reconfiguration is TEgkc and will generally be greater than the time required on 

the fault-free submachine. Quantifying T $ " , ~ ~  is discussed in detail in Sections 6.4 and 

6.5. Thus, T!$~~, the time to prepare a task to continue execution substituting remote 

memory for the local memory of a faulty PE and to complete the task execution is as follows. 

In addition to the time required, there is a memory space requirement to consider as 



well. The use of base register addressing requires that there be a contiguous block of 

memory large enough to hold the data structure pointed to by a base register. Therefore, 

some remote memory module is required to have enough contiguous memory free to hold the 

faulty PE's program code (in addition to the checkpoint data it must hold for some PE). The 

advantage of the remote memory approach is that all the PEs from the original submachine 

are utilized and no changes to the task code are necessary. A disadvantage is that the proces- 

sor forced to use only remote memory will generally execute instructions at a slower rate and 

may interfere with the use of the interconnection network by other PEs. 

4. Data-Independent-Execution-Time Model 

One recovery cost common to all the options presented is the remaining execution time. 

However, the time required to complete execution of a task varies with the recovery option. 

For example, a task that has nearly completed executing may complete much earlier on a 

subdivision than it would if it were migrated to another submachine, especially if a high 

overhead migration cost is incurred. Alternatively, if a significant amount of computation 

remains, migrating the task may result in an earlier task completion time. Thus, the remain- 

ing task execution time becomes important. 

Tasks can be divided into two categories based on execution time. These are tasks with 

data-independent execution times and tasks with data-dependent execution times. A task 

with a data-independent execution time does not depend on input data to make branching 

decisions. Thus, the number of times any branch in the task program code is taken can be 

determined by a compiler during program compilation, and a compiler can determine an 

expected execution time for the task. In contrast, a task with a data- 

dependent execution time has branch decisions that are based on data that is known only at 

run time. The execution time of such tasks is considered in the next section. 

A model is presented in this section for determining the execution-time costs of data- 

independent-execution-time tasks. This model differs from other models in that it can 

accommodate the remote memory recovery option. Such an execution-time model must 

necessarily include detail about the amount of time spent making local and remote memory 

accesses. Both SIMD and MIMD versions of the model are presented. Because SPMD is a 

subset of MIMD, it is accommodated by the MIMD model. Mixed-mode operation 

execution-time prediction can be accomplished by extending the model to account for 

switching between modes. 



4.1. SIMD Task Execution Time 

In SIMD mode, it is assumed that instructions to be executed by the submachine PEs 

are loaded into an automatic broadcast queue by the SC. This leaves the SC free to perform 

computations of its own (e.g., the manipulation of loop index variables, PE-common array 

index calculations). Thus, the execution time for an SIMD task includes the SC execution 

time plus the PE execution time minus any overlap between the two. For a comprehensive 

model for determining the amount of SC/PE overlap in an SIMD task see [KiNgl]. Let Tsc 

be the time the SC spends performing its calculations, TOL be the total SCIPE overlap, and 

TpE(P,i) be the execution time of instruction i on processor P. For a disabled PE, 

TpE(P,i) = 0. In SIMD mode, a new instruction is broadcast to the PEs by the SC only after 

the current instruction's execution has been completed (or initiated, if prefetching is used). 

Therefore, TSIMD, the overall time for a SIMD task consisting of the execution of I instruc- 

tions on Q PEs, WPq-1 ,  is 

An extension to this SIMD execution-time model is desired to adapt it for use in analyz- 

ing the difference in execution time when all local memory references are replaced by 

remote memory references. Only PE memory faults are of interest here, so the SC 

execution-time component is not affected. However, the SC/PE overlap component may be 

affected because it is a function of PE execution time. Let tmc be the time required for a PE 

to make a single access to its local memory. It is assumed that any such access takes a con- 

stant amount of time. Similarly, let t ~ , c ~  be the average time required to make an access to a 

remote (non-local) memory location. 

For the architectures under consideration, a remote memory reference requires use of 

the interconnection network. For a read of remote memory, an address must traverse the net- 

work to the remote memory and the memory contents must traverse the network to the 

source of the read request. For a remote memory write, an address and word to be written 

must be sent to the remote memory location. Generally, an acknowledgment of some type is 

returned by the remote network interface. The time required for an address or data word to 

traverse the network can be divided into two components. These are transfer time and over- 

head. The transfer time is the actual propagation time required assuming no contention in 

the network. Transfer time is a constant for networks that have equidistant paths between 

any source and destination pair (e.g., multistage cube network), but may vary for other 



networks (e.g., hypercube). The overhead is time spent to establish a path through the net- 

work and the time spent waiting due to network contention or contention at the remote 

memory. In general, the determination of overhead is a difficult problem that depends on the 

network implementation details and the message traffic. Thus, t~ is only an estimated aver- 

age value; calculating an exact time for each transfer would require machine and 

application-&pendent analysis. Research on &tailed modeling of networks has been the 

topic of entire papers, (e.g., [Har91]), and is beyond the scope of this work. 

Here, for the sake of simplicity, remote memory reads and writes are assumed to take 

the same amount of time. The model could be extended to include different costs for the two 

types of references. 

The number of local and remote memory references made by PE P during instruction i 

(when no PE is faulty) is denoted by MUc(P,i) and MREM(P,i), respectively. A compiler 

could determine these values for every instruction in a task as well as the amount of time 

spent by PE P on instruction i doing non-memory reference work ("computation time"), 

TCOMP(P, i). For a disabled PE, Mmc (P, i )  = 0, MREM (P, i )  = 0, and TCOMP(P,i) = 0. Thus, 

the total time spent by PE P on instruction i is given by 

Therefore, the new SIMD execution-time model becomes 

To  determine the execution time for a task on a submachine in which one or more PEs 

have faulty local memories, the following modifications are made to the faulty PE memory 

reference counts. 

The model for determining SIMD task execution time presented above can be applied in 

cases where the exact sequence of instructions to be executed is known. at compile time. 

However, for most programs the sequence of instructions executed is data dependent. For 

such programs it is not possible to determine an execution time during compilation. 



Furthermore, it is not practical for the SC to determine the amount of execution time left 

when a fault occurs, because it would potentially have to simulate the execution of every 

instruction on every PE to determine when the task has completed. In cases where empirical 

data is available on the execution time of a particular task, it is possible to determine an esti- 

mate of the execution time remaining. Such an estimate is discussed in the next section. For 

data-dependent-execution-time tasks where there is little empirical data, there is no practical 

way of determining an execution time. In such cases, the reconfiguration decision may have 

to be made without benefit of execution-time knowledge. 

4.2. MIMD Execution Time 

It is assumed in the following model that an instruction cycle is composed of a fetch 

phase and an execute phase. Because each PE may execute a different program in MIMD 

mode, let I (P) denote the number of instructions that PE P must execute to complete a task 

and let T'pE(P,i) be the time for PE P to execute its i th instruction. Then, 'TMfMD, the execu- 

tion time for a task in MIMD mode is 

I(P) 
TMIMD = max T'PE(P,~) . 

[ i - 1  ] 
This "max of sums" for MIMD versus "sum of max's" for SIMD has been discussed in 

another context in [BeK91]. 

Let W (P,i) represent the number of words that PE P must fetch from local memory to 

read in instruction i. As before, the number of local and remote memory references made by 

PE P during its i" instruction is denoted by MLoc(P,i) and MREM(P,i) respectively. A Com- 

piler could determine these values for every instruction in a task as well as TCOMP(P,i), the 

amount of time spent by PE P on its ith instruction doing non-memory-reference work. 

Thus, the MIMD task execution time becomes 

To determine the execution time for a task on a submachine in which one or more PEs 

have faulty local memories, the following modifications are made to the faulty PE memory 



reference counts. 

MREM(P,~) +- MREM(P,~) + MLOC(P,~) + W(P,i); 

Mm(P, i )  t 0; W (P, i) t 0 

As with the SIMD execution-time model, the equation above is useful only when the exact 

sequence of instructions for every MIMD subtask is known. A further consideration in using 

remote memory in place of faulty local memory is that the faulty PE must fetch all its 

instructions from remote memory, which will cause a significant increase. in the amount of 

interconnection network traffic. Therefore, the probability of conflicts in the network is also 

increased. The MIMD execution-time equation given does not account for conflicts in the 

network, so the execution time derived from the equation will be a minimum execution time. 

5. Data-Dependent-Execution-Time Model 

Most tasks have a data-dependent execution time, making the execution-time model 

presented in the preceding section inapplicable. However, in a production environment 

where a task is executed repeatedly on various sets of data (e.g., image processing of satellite 

pictures), empirical studies can be performed to derive an estimated execution time for a 

task. For these cases it is possible to develop a model that will predict the expected execu- 

tion time remaining for a task that is recovering from a fault. 

5.1. Execution Time When Using a Different Submachine 

Once a task has been migrated from a submachine containing a faulty PE to a fault-free 

submachine of equal size, the time to complete the task execution will be the same as it 

would have been on the original fault-free submachine. An estimate of this expected com- 

pletion time is now derived. 

Let fETee be a discrete random variable that represents the execution time for a specific 

task. TExec is always positive because a negative execution time is not possible. f(TExec) is 

the discrete density function [Pap841 of fh.. If fExeC takes the value xi with probability pi, 

and 6(x) is the impulse function such that 6(x -xi) has value one at x =xi and value zero 

elsewhere, then 



By definition, the expected value of fE, is 

It is assumed that the amount of execution time spent on a task prior to a checkpoint is 

stored with that checkpoint. If a recovering task is to proceed from a checkpoint and the exe- 

cution time stored with that checkpoint is z, TCwExec, the expected amount of time required 

to complete task execution is 

TCwExec assumes that the submachine size remains the same and that all the PEs in the sub- 

machine are fault-free. 

5.2. Execution Time on a Fault-Free Subdivision 

Here, the completion time of a task that completes execution on a subdivision that is 

half the size of the original submachine is considered. Let T a  be the ertpected execution 

time of a task on a submachine consisting of 2x PEs, and let Tx be the expected execution 

time of the same task remapped onto one of the two equal-sized subdivisions of the original 

submachine. If the average time for an inter-PE transfer remains the same in either case, 

The inequality becomes an equality when the mapping of the task from the subdivision onto 

the 2x PE submachine is optimal. 

This equation can be extended to submachines of arbitrary size as follows. Let Sold be 

the number of PEs in the old (original) submachine and let SN, be the number of PEs in the 

new submachine (subdivision). Then, the expected remaining execution time on the 



subdivision is bounded by 

sold 
Tcw&c 5 - [ ~ l -  - Z] . 

SN, 

A more accurate remaining execution time estimate can be obtained if empirical data is 

available to determine expected task execution times for the submachine sizes of interest. 

Then, the estimated task execution time becomes a function of the submachine size and the 

estimate of the remaining execution time becomes 

C 

T ~ w h e c  = q a n ( S ~ e w  1' - ,, exec (sold) j . 

5.3. Execution Time After Task Redistribution 

An execution-time estimate for the task redistribution recovery option is more difficult 

than for the previous options. Consider a task executing on a submachine of size Sold in 

MIMD mode. If a PE becomes faulty and its subtasks are distributed equally to the 

SN, = SOU - 1 fault-free PEs in the submachine, the remaining execution time is bounded 

as follows. 

Sold 
TcWE.xec [tlexec - ] 

Sold - 1 

Consider the case where the faulty PE's subtasks cannot be distributed equally among the 

fault-free PEs. In the worst case, all the faulty PE's subtasks would be assigned to one PE. 

In this case, the remaining execution time could be twice that of the remaining execution 

time on a fault-free submachine. The degree to which the performance of the system on a 

task is degraded is a function of the system (a), the algorithm implementation (P), and the 

number and location of faulty PEs (y). Let d (a ,  P,y) be defined as the amount of performance 

degradation; 1 < d(a,P,y) 5 2. The amount of performance degradation can be estimated 

from empirical data or from user provided information about the algorithm implementation. 

The remaining execution time then becomes 



5.4. Execution Time When Using Remote Memory 

Estimating the remaining execution time for a task executing on a submachine that 

includes one or more PEs using remote memory exclusively is now explored. Because the 

tasks under consideration have data-dependent execution times, it is not possible, before run 

time, to determine exactly how many times any data-dependent branches (including those 

necessary for loops and conditionals) in a program are executed. However, in the production 

environment assumed, code profiling can be used to determine expected values for the 

number of times each branch is taken. If such empirical data is not available, the user must 

estimate these expected values if the model presented here is to be used. 

Given expected values for the number of times each branch is taken in a data- 

dependent-execution-time task, one can calculate the remaining execution time for the task 

after fault recovery as if it were a data-independent-execution-time task. The last valid 

checkpoint before the occurrence of the fault is used to determine the state from which the 

task execution will begin. As before, where accesses to local memory were used in the origi- 

nal program(s), remote memory accesses will be made instead. For SPMD and MIMD 

modes, the fetching of instructions from local memory will be replaced with fetches from 

remote memory. However, for SIMD mode, instruction fetching is not included because 

instructions are broadcast to the PEs by the SC. 

Using the execution-time models presented in this section, one can arrive at an estimate 

of the remaining execution time for a task after recovery from a fault. The remaining execu- 

tion time for tasks with data-dependent execution times for which no empirical data is avail- 

able cannot be estimated reliably. In these cases, the user must be required to supply an esti- 

mate prior to execution time if a comparison of recovery options is to be performed. 

An alternative method for determining remaining execution time centers around the use 

of an automatic complexity evaluator such as that presented in [LeM88]. The approach here 

is to attempt to generate a nonrecursive function, prior to run time, that can be solved at run 

time to determine the asymptotic time-complexity behavior of a program. This approach is 

applicable to a wide range of programs, but it is not always successful in generating a nonre- 

cursive function. Further study is needed to see how it can be applied here. 



6. Choosing an Option 

6.1. Overview 

Thus far, general quantitative models of four different reconfiguration schemes have 

been presented. It was pointed. out that collecting precise values for some of the model 

parameters is very difficult (if not impossible). The next step is to analyze the information 

available to determine if guidelines can be developed for making a choice among these 

methods for practical implementations. For the remainder of the chapter, only the fault-free 

subdivision, task migration, and task reconfiguration recovery options are considered. Work 

is ongoing to incorporate the remote memory recovery option into the analyses that follow. 

The time to reconfigure and complete a task for the fault-free subdivision, task migra- 

tion, and task redistribution reconfiguration options can be separated into three primary com- 

ponents: time to plan for the reconfiguration option (TPlan), time to move the task data and 

code (TTrdr), and time to complete the task (TCmpExec). 

FFS 
TTotal = 

TM 
T~otal = 

TR 
TTotal = 

In this section, the relative impact these three components has on the overall reconfiguration 

cost is discussed. Experimentally determined ranges for these parameters on the PASM pro- 

totype and the nCUBE 2 are used in the analysis where applicable. 

6.2. Range of TPlan 

First, consider TPlan on PASM for the fault-free subdivision option. The time required 

for the PASM SCU to determine a fault-free subdivision, T;&, is a constant for a fixed- 



sized machine (in terms of number of PEs). In PASM with 2" PEs, the numbers of all the 

PEs in a submachine of 2k PEs agree in their low-order n-k bits; i.e., a partition of size 2' is 

uniquely specified by the common low-order n -k bits of the PEs in the partition. The logical 

PE numbers are the k most significant bits of the physical PE number. The fault-free subdi- 

vision is determined by the low-order n-k+l bits of the faulty PE number with the 

(n-k+l)st bit complemented. This was determined, by experimentation, to require 32 

microseconds (for the 16 PE prototype) on the PASM SCU. 

For an nCUBE 2 with 2" PEs, a submachine is specified by an anchor node and sub- 

machine size (2k). The other PEs in the submachine can be found by XOR-ing the logical 

node numbers, which range from 0 to 2'-1, with the anchor PE number. 'I'hus, the physical 

PE numbers in a subcube of size 2k always agree in their upper n-k bits and vary in their 

low order k bits. To find the anchor PE number for the fault-free subdivision, the (k-1)st bit 

of the original anchor PE number is replaced by the complement of the (k-1)st bit of the 

faulty PE number. The time to do this on a 64-PE nCLTBE 2 was experimentally found to be 

29 microseconds. 

Having determined the fault-free subdivision (TgEck) the next step is to map virtual PEs 

to the physical PEs in the fault-free subdivision. Neither the PASM machine or the nCUBE 

2 actually implements virtual processors. However, the time to determine the mapping, 

T L + ,  can still be determined based on the architectural characteristics of the machines. For 

PASM, a virtual PE that was on logical PE L is mapped to PE 1 L 121. Because the physical 

PE numbers of the PEs in the fault-free subdivision all have the same low-order n-k+l bits 

in common (for a subdivision of size 2'-I), and because the logical PE numbers are the 

high-order k-1 bits of the physical PE numbers, the mapping is known a priori. For nCUBE 

2, a virtual PE that was on logical PE L is mapped to PE L mod 2'-' . As discussed earlier, 

the logical PE numbers for the nCUBE 2 are converted to physical PE numbers by XOR-ing 
FFS , them with the physical PE number of the anchor node (selected in TCheck,). Thus, the map- 

ping is once again known a priori. Therefore TL: = 0 in both cases. 

In the PASM system, only the SCU is aware of the machine partitions. Changing the 

system partitioning is performed by writing one word of data to a system partition register. 

The PASM SCU can use current overall machine partition information along with the fault 

location (to identify the submachine to be subdivided) to determine the correct data to write 

to the system partition register. For the PASM prototype, the time to generate the correct 

data word and write it to the partition register, T F ~ ,  ranges from 36 to 48 microseconds, 

depending on the original system partition register contents. 

For the nCUBE 2, two tasks must be completed to partition a submachine into two 

equal-size submachines. First, the PEs in the fault-free subdivision must be informed of the 



change in submachine size. This is required so they can properly determine their logical PE 

numbers. The time to do this is equal to the time it takes the SCU (front-end processor) to 

broadcast a short message to this effect to the PEs. The nCUBE 2 PEs are capable of imple- 

menting tree-structured communication paths for the broadcasting of data from the SCU. 

When there are no conflicts, establishing such a path requires only slightly more time (a few 

microseconds) than establishing a point-to-point path. Because the PEs in the fault-free sub- 

division are idle at this point, there can be no conflict when attempting to establish a broad- 

cast path among the subdivision PEs. The second task is for the SCU to update its system 

tables to reflect the new machine partitioning. This can be performed in parallel with task 

execution on the fault-free submachine and is therefore not considered here. Because the 

nCUBE 2 SCU is actually a time-shared UNIX system, it is difficult to accurately determine 

T F ~  in this case. However, it is expected that T F ~  is on the order of the transfer of a short 

message over the PE interconnection network; in the range of 160 to 300 microseconds for 

the nCUBE 2 (discussed further in the next subsection). 

Consider T L ! .  Here, a destination submachine must be selected for task migration. 

The choice should be one that minimizes the time to transfer the program code and data. 

Recall that on the PASM prototype, all the PEs in a submachine of size 2k agree in their n-k 

least significant bits, and the k most significant bits can then identify the logical PE number 

of a PE within the submachine. A constant offset permutation is a one-to-one and onto map- 

ping of source PEs to destination PEs such that the physical PE number of any source PE 

minus the physical PE number of its associated destination PE yields the same constant (mod 

2" for a machine with 2" PEs). If a logical PE in the source submachine is mapped to the 

same logical PE number in the destination submachine, the resulting inter-PE data transfer is 

a constant offset permutation, which is guaranteed to be conflict free for a multistage cube 

[Law75, Pea771. Therefore, such a mapping is optimal and known in advance. Thus, ~ 5 %  
consists only of selecting any destination submachine of the desired size. It is assumed that 

the SCU maintains a table of available submachines. While the current prototype system 

does not provide for this, the time to do a table look-up to find a free subrnachine of 2k PEs 

can be roughly estimated to be in the range of 10 to 100 microseconds. Depending on the 

table implementation, more time could be required for larger systems, due to a greater 

number of table entries. 

On the nCUBE 2, assume that the anchor node of the destination submachine is selected 

such that its low-order k bits are identical with the low-order k bits of the anchor node of the 

source submachine. Then, the physical numbers of PEs with the same logical numbers in the 

source and destination submachines will agree in their low order k bits and will differ in 

exactly the same high-order n-k bits. Thus, a conflict-free mapping exists between the PEs 



with the same logical numbers in the source and destination submachines. The number of 

links separating these submachines is equal to the Hamming distance between their 

corresponding n-k high-order bits, and can be no greater than n-k. It is assumed that the the 

number of links traversed has a negligible impact on the overall transfer time (see Subsection 

4.3). As was the case for PASM, it is assumed that the nCUBE 2 SCU maintains a table of 

available submachines. Once again, the time to perform a table look-up is estimated to be in 

the range of 10 to 100 microseconds. 

Now consider TPw. As stated earlier, TPw depends on the mode of operation, the 

algorithm mapping, and the current state of each subtask. It is assumed that the SC has 

user-suplied (or possibly compiler-supplied) knowledge about the algorithm mapping, which 

it uses together with the faulty PE number to decide how to redistribute the task. It is further 

assumed that for most tasks, the decision can be programmed (by the user or by an 

automated process) in the form of a "C" switch statement. The faulty PE number is merely 

a variable in the program that directs the redistribution of program code and data. Thus, the 

decision can be made in the time that the switch statement can be evaluated (estimated to be 

1 to 10 microseconds for PASM and nCUBE 2). It is possible that the mapping of data to 

PEs will change several times during the execution of a program. In such programs, the 

decision of how to redistribute the data may also depend on the mapping that was in place 

when the fault occurred. Although ~ $ 7 ~  will require more time in such cases, it is expected 

that TFL will still be less than T ; ! ~  (discussed in the next subsection). 

6.3. Range of TTrnsfr 

As discussed in Section 6.3, TTrdr represents the amount of time required to move the 

task program code and data as prescribed by the reconfiguration option chosen. Here, the 

range for TTre is considered for each reconfiguration option. Data collected on PASM 

(possessing a multistage cube interconnection network) and on nCUBE 2 (possessing a 

hypercube interconnection network) are incorporated into the analyses. 

It is assumed that one data item calculated and stored during the creation of each check- 

point is the word count for that checkpoint. Given this word count, a mapping of source PEs 

to destination PEs, and knowledge of the interconnection network used in the system, it is 

possible to determine the expected time to transfer a PE's checkpoint data. The networks 

considered in the following discussion are a circuit-switched multistage cube network and a 

circuit-switched hypercube network. However, the analyses can be extended to other inter- 

connection network implementations. 

For circuit-switched networks, the time to transmit a message can be decomposed into 



two phases: set up (path establishment) and actual data transfer. During the set-up phase, the 

message request (routing tag) must propagate through interchange boxes (multistage cube) or 

any possible intermediate nodes (hypercube) to establish the desired data path. This requires 

Tsetlrp time. During the data-transfer phase, the actual data is transferred one word at a time 

and each word requires T-t time to traverse the path. Thus, the time to transmit a w-word - 
message, TmsSaRe, is: 

The above equation assumes that there are no delays due to network conflicts during the set- 

up phase. The effect of network conflicts is discussed later in this section. 

Figure 4 shows a plot of number of words transferred versus time required for the 

PASM experimental prototype in both SIMD and MIMD modes. The times shown include a 

small amount of loop overhead for each word transferred in MIMD mode.. The same over- 

head is present in the SIMD mode implementation, but it is executed by the SC and is over- 

lapped with the data transfers being performed by the PEs. From these experiments, it can 

be seen that the time, in microseconds, to transmit a message on PASM is given by 

240 + w 24.6 in SIMD mode and 240 + w 123.4 in MIMD mode. The reason for the large 

difference in times between the modes is due to the current implementation of message pass- 

ing in MIMD mode on PASM. At present, only one word is sent at a time and the sending 

and receiving PEs must synchronize once for every word transferred. In SIMD mode, no 

synchronization is necessary because the PEs operate in lock-step. An MIMD implementa- 

tion of message passing that requires one synchronization per message, rather than per word, 

would be much closer to the SIMD performance. 

Figure 5 shows a plot of number of words transferred versus time required for the 

nCUBE 2. On the nCUBE 2, the transmission time depends, to a small degree, on the 

number of links (hops) that a message must traverse to travel from the sending PE to the 

receiving PE. Furthermore, the nCUBE 2 uses message buffers at the destination PEs. The 

maximum length of a message is determined by the size of the allocated message buffer. It 

is assumed here that the message buffer is 1024 words in length because this represents a 

good trade-off of local memory usage versus message-passing performance. Longer mes- 

sages must be segmented into 1024 word blocks. The time to transmit a message composed 

of 1024-word blocks, where the last block may consist of less than 1024 words, is: 
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Figure 4: Message transmission time (Tmessage) on PASM in SIMD and MIMD mode. 



On the nCUBE 2, experiments yielded approximate values for Tsetw and TAt of 160 

microseconds and 0.57 microseconds, respectively. 

Consider TF~&, the time to move a task's program code and data onto a fault-fkee sub- 

division. For both PASM and nCUBE 2, a careful choice of buddies can eliminate any need 

to transfer checkpoint data for the fault-free subdivision option. Specifically, the mapping of 

logical PE numbers discussed in the context of determining T L ~  (in Subsection 4.2) can 

also be used to select buddies for checkpointing. In this case, the PEs in the fault-free subdi- 

vision will already have the checkpoint data from the PEs in the subdivision containing the 

faulty PE, and no transfer of checkpoint data is required. 

For SPMD tasks, no program code has to be transferred because the PEs in the fault-free 

subdivision already have copies of the program. For MIMD tasks, the interconnection net- 

work is used to transfer the program code for the fault-free PEs in the subdivision containing 

the faulty PE. In this case, there can be no network conflict with tasks executing on other 

submachines because of the partitioning properties of the network. Also, as discussed in the 

previous subsection, the mapping of PEs used guarantees that only one network setting is 

required to perform the transfer. For SIMD tasks, the program code for the subdivision SC 

has to be loaded from secondary storage (disk), as does the program code for the faulty PE 

for MIMD tasks. Thus, in these cases, TF~& includes the time to access disk, TDA. TDA - 

depends on a number of factors including the disk latency, the amount of code to be 

transferred, and the bandwidth of the communication channel. Physical limitations dictate 

that TDA will require at least 10 milliseconds on average. The upper bound for TDA is depen- 

dent on the size of the program to be moved (no larger than the size of PE memories). 

Now, consider T;?~. Because of the restrictions placed on the formation of sub- 

machines, i.e., all the physical numbers of the PEs in a submachine agree in their low-order 

or high-order n-k bits (see Subsection 4.2), only one network setting is required for the 

transfer between the PEs of the source and destination submachines for both PASM and 

nCUBE 2. However, in both cases, an additional network setting is required to transfer the 

checkpoint data of the faulty PE to the destination submachine because the faulty PE's 

checkpoint data is located in its buddy PE in the source submachine. Thus, ~ $ k ~  must be 

greater than 2Tsetw. In addition, the program code for SPMD tasks and for the fault-free PEs 

of MlMD tasks must also be transferred across the interconnection network. The program 

code for the destination submachine SC and the faulty PE will have to be loaded from 
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secondary storage for SIMD and MIMD tasks, respectively. 

Unlike the fault-free subdivision option, during the task migration option there may be 

additional time required for the interconnection network transfers due to network conflicts 

with tasks on other submachines in the system. For this reason, and because program code is 

also transferred for SPMD tasks, T$% will always be greater than or equal to T!;&, i.e., 

Finally, consider T$:+. As with the fault-& subdivision option, the partitioning pro- 

perties of multistage cube and hypercube interconnection networks guarantee that there is no 

network conflicts with tasks on other submachines during the redistribution of program code 

and data for the redistribution option. In addition, no program code has to be moved for 

SIMD or SPMD tasks. In general, SIMD and SPMD tasks have very regular distributions of 

data. In these cases, the redistribution of data will generally involve only a subset of the 

checkpoint data. For MIMD tasks, only the MIMD procedures associated with the faulty PE 

have to be transferred. Therefore, in the best case, T$;- will be less than T;:&. In every 

case, at least one network setting is required (T$, > T,,). In some cases, the redistribu- 

tion of program code and data among the fault-free PEs in a submachine may require a 

number of network settings. Thus, in the worst case, T$fMr may be greater than T$?*, 

depending on the number of network settings required for task redistribution and on the 

number of conflicts encountered during task migration. 

The ranges for TPIm and TTr+ on PASM and nCUBE 2 are summarized in Table 11. It 

can be seen from the table that TPlan is expected to require less than 400 microseconds for 

the systems considered. In contrast, TTr+ can range anywhere from 0 to hundreds or 

thousands of milliseconds, depending on the amount of data being transferred across the 

interconnection network and from disk. The number of words transferred in both cases is 

bounded by the size of the PE memories. These ranges are compared to the expected range 

of values for TCmpEjFec in Section 6.7. A coarse, but useful, range of values for TCwExec for 

each of the considered reconfiguration options is examined in the next subsection. These 

ranges for all three parameters are then compared and combined to determine an ordering of 

reconfiguration options based on the time needed to complete execution of the task after 

reconfiguration. 



Table 11: Approximate ranges, in microseconds, for TPlan and TTrdr for the FFS, TM, 
and TR reconfiguration options. 

* Upper bound determined by size of PE memories. 

** Add TDA for SIMD, MIMD, or mixed-mode tasks. 
*** 

Add TDA for MIMD tasks. 

TT~,' 
(PASM, nCUBE 2) 

(o** , o*** ) 

(> 480**, > 320***) 

(> 240**, > 160***) 

Option 

FFS 

TM 

TR 

T ~ l ~  

(PASM, nCUBE 2) 

(68 + 80,189 + 329) 

(10 + 100, 10 + 100) 

(1 + 10, 1 + 10) 



6.4. Range of TCmpExec 

A task with a data-independent execution time does not depend on input data to make 

branching decisions. Thus, the number of times any branch in the task program code is taken 

can be determined by a compiler during program compilation, and a compiler can determine 

an expected execution time for the task. In contrast, a task with a data-dependent execution 

time has branch decisions that are based on data that is known only at run time. In this case, 

it is assumed that an estimated execution time for the task can be determined through the use 

of empirical studies (i.e., information about task execution time on various sets of data), an 

automatic complexity evaluator such as that presented in k M 8 8 1 ,  or through analysis of the 

algorithm and data sets. 

For all the reconfiguration options discussed, the number of PEs assigned to a task after 

the reconfiguration is equal to or less than the number of PEs originally assigned to the task. 

It is assumed that the average time for an inter-PE transfer does not increase when the task is 

executed on fewer PEs. 

Once a task has been migrated from a submachine containing a faulty PE to a fault-free 

submachine of equal size, the time to complete the task execution is the same as it would 

have been on the original fault-free submachine. Let ~ , , ( 2 ~ )  be the estimated execution 

time for a task on a submachine with 2k PEs. It is assumed that the total amount of execu- 

tion time spent on a task prior to a checkpoint is stored with that checkpoint. If a recovering 

task is to proceed from a checkpoint and the execution time stored with that checkpoint is - 7, 

the expected amount of time required to complete task execution after migrating the task to 

another submachine is 

T$&& assumes that the submachine size remains the same and that all the PEs in the sub- 

machine are fault-free. The expected range for T$GfieC is 

Now, consider the completion time of a task that completes execution on a subdivision 

that is half the size of the original submachine. T E L c  is bounded as follows: 



FFS TcrnpEvc 201a.C(2*) - 1) = 2 ~ $ & u c  

In addition, it is expected that ~ $ 2 ~ ~  > T$&&~ because the number of processors in a 

fault-free subdivision is assumed to be half the number that would be available if the task 

was migrated to another submachine. Although some tasks can execute faster on fewer PEs 

[KrMSS, SaS93, SiA921, it is assumed here that the original submachine size was selected 

for minimum execution time. That is, if a smaller submachine could be used to execute the 

task in the same or less time, the task would have been mapped to that smaller size sub- 

machine initially. 

A more accurate remaining execution time estimate can be obtained if q,(2*-') is 

known. Then, the estimated task execution time becomes a function of the submachine size 

and the estimate of the remaining execution time becomes 

FFS rlexec(2*-l q exec (2*-' 1 TM T~rnpfiec = T~mp~xec.   exec @*I qexec (2*) 

Consistent with the assumptions given above, qaeC(2*) < qaec(2*-')' 2flaec(2*). 
Thus, using either the qmC(2*-l) information, if it is known, or the inequalities stated in the 

previous paragraph, the expected range for T$% is: 

TM FFS 
Tcrnp~yc < Tcmp~vc ' 2~$Epfiec ' 2q exec 

An execution-time estimate for the task redistribution recovery option is more difficult 

than for the previous options. Consider a task executing on a submachine of size 2* in 

MIMD mode. If a PE becomes faulty and its subtasks are distributed equally to the 2* - 1 

fault-free PEs in the submachine, the remaining execution time is bounded as follows: 

Consider the situation where the faulty PE's subtasks cannot be distributed equally among 

the fault-free PEs. In the worst case, all the faulty PE's subtasks would be assigned to a sin- 

gle PE and the remaining execution time could be twice that of the remaining execution time 

on a fault-free submachine. 



TR In general, it is expected that Tc,o, 5 T~E- because the fault-free subdivision 

option can be thought of as a subset of the task redistribution option where the task is redis- 

tributed to half the PEs in the original submachine. Furthermore, it is expected that 
TR TCnphc > T $ $ ~  based on the earlier assumption that the original submachine size was 

selected for minimum execution time. Therefore, the range on T & . , ~ ~  is given by: 

TM TR FFS 
Tcrnp~xec < Tcrnphc I Tcrnphc. 

In cases where an equal distribution of the task load among the fault-free PEs is possi- 

ble, the upper bound of in the above inequality can be replaced by 
k k  TM min((2 I2 - 1) TCWEue, By combining the results of the inequalities for 

remaining execution time determined in this subsection, the following ordering is esta- 

blished. 

TR FFS 0 < ~ Z $ h c  < Tcmp~uc Tcrnp~xec 2rlurc(2k) 

Although the above inequality indicates that task migration is the best reconfiguration option 

when the decision is based on TCrnphec being the dominant factor, it has already been shown 

that task migration is not the best option when considering TPfm and/or TTrW. Therefore, 

there is no clear choice based on the analysis thus far. 

7. Penalty for Wrong Choice 

In the previous section, a quantitative framework was developed that attempts to relate 

various reconfiguration parameters. Some of the parameters can be predicted with good pre- 

cision on real machines, while other parameters can only be coarsely bounded. The next step 

is to determine if a heuristic can be found that is based on the information available. In this 

section, a combination of probabilistic analysis and worst-case analysis is used to develop 

useful guidelines for choosing among reconfiguration options on real machines in practical 

situations. 

Consider the relative magnitudes of q,(2*), Tplm, and TTrM. In general, for tasks 

with short execution times, it is better to restart the task when a PE becomes unusable rather 

than permanently and significantly increasing the execution time by including periodic 

checkpointing. Therefore, dynamic reconfiguration is generally not considered for tasks 



unless the estimated execution time for the task, ~l,,(2~), is orders of magnitude larger than 

T~rnsfr and Tplan. 
One of the most common cumulative distribution functions assumed in reliability 

models is the exponential distribution, F (t) = 1 - e-h [SiS82]. F a  represents the probabil- 

ity that a PE fault will occur between time 0 and time t, inclusive. The parameter h describes - 
the rate at which failures occur in time. 

The reliability function, R(t), is defined as R (t) = 1 - F (t) = e-h. For a parallel system 

submachine of size 2k PEs, where all the PEs must be operational for the submachine to be 

operational, the submachine reliability function, R,(t), is the product of the individual PE 

reliability functions. 

Thus, the submachine-failure probability distribution function, Fsm(t), for a submachine of 

size 2k PEs is given by: 

Consider the conditional probability that a failure occurs at or before time . 9 ~ ~ ~ ( 2 ~ )  

given that a failure occurs at or before time q,c(2k). 

This probability approaches 0.9 as q,c(2k) approaches zero from the positive direction, and 

it monotonically approaches 1 as ~l,(2~) increases. Therefore, when ~ ~ ~ ~ ( 2 ~ )  is 100 times 

greater than TTrnsfr, there is a 0.9 or greater probability that a failure will occur by time 

90TTrMr, given that a failure occurs by the time the program has completed. Thus, for this 
case, there is a high probability that z, the time the failure occurs, will be less than or equal 

to 90TTrNJr, and TCwExec = Tl,c(2k) - r > 10TTrw. For the case where q,(2*) is more 



than 100 times greater than TTre, there is an even greater probability that 

q-(2*) - T > > TTW Thus, there is a high probability that TcO* will be much 

greater than TTre when a fault occurs. 

Consider the penalty of choosing the wrong reconfiguration option. The worst-case 

penalty, TKLlfy. is defined to be the worst-case difference between the expected completion 

time of a task after choosing a suboptimal reconfiguration option and the expected comple- 

tion time of a task after choosing the optimal reconfiguration option. For example, if the task 

redistribution option was chosen, but the task migration option would have resulted in the 

earliest completion time for the task, the worst-case penalty would be: 

where the maximum and minimum refer to the ranges for the parameters. Here, two cases 

are considered: 1) the reconfiguration choice was made assuming that the remaining execu- 

tion time was much greater than the time to transfer the task code and data 

((qarc(lk) - T) > > TTrW), and 2) the reconfiguration choice was made assuming that the 
remaining execution time was much less than the time to transfer the task code and data 

((qaeC(2*) - T) < < TTrM). The case where (etn,(2*) - T) and TTrW are of the same 
order is not of interest in a worst-case analysis. 

First, consider the case where it was incorrectly assumed that (?l,(2*) - r) > > TTrW. 

In this case, from the results of Subsection 4.4, the task migration option would have been 

chosen. If the fault-free subdivision option is the optimal one, the worst-case penalty would 

be: 

because the best expected time to complete execution on a fault-free subdivision is greater 

than the expected time to complete execution after task migration. Furthermore, for 
TM FFS machines like PASM and nCUBE 2, TJ#,, - T F ~  is negligible, and TTr4 - TTrndr is gen- 

erally on the order of hundreds of milliseconds (see Table II). Thus, in this case, TL$& is 

on the order of T$?'j&fr (recall T$f& = 0). 

If instead the task redistribution option is the optimal choice for this example, the 

worst-case penalty would be: 



Again, the best expected time to complete execution after task redistribution is greater than 

the expected time to complete execution after task migration. For PASM and nCUBE 2, 

TF&@ is on the order of T;:~ (see Table 11). 

Now, consider the case where it was incorrectly assumed that (qexec - 7) < < TTrw. In 

this situation, either the fault-free subdivision or task redistribution option would have been 

chosen. If the fault-free subdivision option was chosen when the task migration option 

would have been better (because in actuality (q- - 7) > > TTrw), the penalty for making 

the wrong choice is given by: 

WC FFS FFS FFS Tpe(* = m=(Tplp, + TTr4 + TCvee) - min(T#,, + TT:~ + T$$fieC). 

Substituting values from the analysis in Subsection 6.6.4, results in: 

Recall the value of q,(2') is assumed to be much larger than TTrM when reconfiguration 

options are to be considered. Thus, in the worst case, the penalty for incorrectly assuming 

(qexec - 2) < < TTrnsfi is much greater than incorrectly assuming (qexeC -. 2) > > TTrMr. A 
similar analysis for the case where task redistribution was erroneously chosen over task 

migration results in the same potential for a large penalty. 

To summarize this section, two conclusions are made: first, it is expected that there is a 

high probability that TCvExec will be much greater than TTrM when a fault occurs, and 

second, that the worst-case penalty for incorrectly assuming this is true is far less than the 

worst-case penalty for incorrectly assuming the opposite. Therefore, a mathematical 

justification for choosing a reconfiguration option by considering only the time required to 

complete the task has been established. Combining this result with the results of Subsection 

4.4, the choice of reconfiguration strategy becomes one of choosing to migrate the task if an 

idle submachine exists. If this option is not available, the next best option is task redistribu- 

tion. Finally, if the task does not lend itself to redistribution, a fault-free subdivision can be 

used to complete the task. 



The model parameter value ranges established in Section 6.6 are in some cases very 

coarse, e.g., TernpExec for tasks with data-dependent (nondeterministic) execution times, and 

therefore do not provide the information needed to determine the best reconfiguration option. 

However, the analysis in this section has made it possible to establish a good set of 

reconfiguration guidelines. 

8. Summary 

A quantitative model of system reconfiguration due to a PE or PE memory module fault 

was examined. Four fault recovery options were discussed and the parameters required to 

determine their respective costs were identified. For the fault-free subdivision, task migra- 

tion, and task redistribution recovery options (future work will add the remote memory 

recovery option), the model parameters were categorized into one of three categories: time 

to plan for the reconfiguration option (TPh), time to move the task data and code (TTrsfr), 

and time to complete task execution after reconfiguration (TCmpExec). The relative times for 

each reconfiguration option considered were examined for each category and the options 

were ranked when possible. Actual parameters collected on the PASM experimental proto- 

type and the nCUBE 2 commercial machine were used to support the analysis. 

For the system architectures considered, TPlan is generally much smaller than TTmsfr. 

Furthermore, when basing the reconfiguration decision only on TTrMr (ignoring TCmpExec), 

the fault-free subdivision or task redistribution options will result in the smallest total execu- 

tion time for the task. The choice between the fault-free subdivision and task redistribution 

options will depend on the task being executed. 

It was shown that for those tasks where dynamic reconfiguration should be considered, 

there is a high probability that the expected value of TCmpExec will be greater than TTrMr. 

Thus, TCmpExec becomes the primary parameter to consider when choosing among 

reconfiguration options. When TCmpExec is the dominant factor, the task migration option 

results in the earliest task completion. Task redistribution is the next best option. However, 

in the worst case, task redistribution can require as much time as completing the task on a 

fault-free subdivision. 

Task execution times used in the model may be just expected values when execution 

times are data dependent and therefore nondeterministic. Because of this, a worst case 

analysis was performed. An examination of the penalty for choosing the wrong 

reconfiguration option provides further justification for basing the reconfiguration decision 

on TCmpExec. An analysis of the worst-case penalties reveals that the penalty for assuming 



TCmpExec to be much greater than TPrm and TTrM is much less than the penalty for assuming 
otherwise. Thus, using a quantitative framework, it has been shown that task migration is the 

best dynamic recovery option when TCmpExec is expected to be much greater than TPlan and 

TTrMr and when the execution time of a task is nondeterministic. 
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