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Abgract

The use of dynamic reconfiguration has been proposed to tolerate faultsin large-scale parti-
tionable parald processing sysems. If a processor develops a permanent fault during the
execution of a task on a submachine A, three recovery options are migration of the task to
another submachine, task migration to a subdivison of A, and redistribution of the task
among the fault-free processorsin A. Quantitative modesof these reconfiguration schemes
are developed to consider what information is needed to make a choice among these methods
for a practica implementation. It is pointed out that in certain Situations collecting precise
values for all needed parametersis very difficult. Therefore, the modd parameters are then
anayzed, together with the cost of making the wrong reconfiguration choice, to determine a
useful heurigtic that is based on the information available. A multistage cube or hypercube
inter-processor network is assumed. PASM, an experimental SIMD/MIMD mixed-mode
machine with a partitionable multistage cube communication network, and nCUBE 2, acom-
mercially available MIMD machine with a partitionable hypercube communication network,
are used as vehiclesfor studying the modd parameters.




1. Introduction

To provide reliable operation over extended periods of time, massvely parallel process
ing systems must be capable of tolerating faults. A fault-tolerant sysem must be able to
detect and locate faults, to reconfigure itsdf to "*disconnect™ and perhaps replace faulty
components, to recover from possibly erroneous computations, and to restart operation from
a correct state. When more than one reconfiguration option is available, the option that
results in the earliest completion of the task is desirable. Quantitative models of three dif-
ferent reconfiguration schemes are devel oped in this chapter to consider what information is
needed to make a choice among these methods for a practical implementation. In certain
stuations collecting precise vauesfor al needed parametersis very difficult (if not impossi-
ble). Therefore, the ranges of vaues that the modd parameters can assume are andyzed to
develop guiddinesfor making the best reconfiguration choice. Becausethereis no guarantee
that these guidelines will produce the optimal reconfiguration strategy in al cases, the cost
penalty of making the wrong choice is aso conddered. The andyss incorporates
experimentally-derived parameters obtained on PASM [FiC91, SiS87], an experimenta
SIMD/MIMD mixed-mode machine with a partitionable multistage cube communication
network, and on nCUBE 2 [Ncu90], a commercialy available MIMD machine with a parti-
tionable hypercubecommunication network.

One approach to achieving fault tolerance in parald processing systems involves the
use of redundant hardware. When afaulty component is detected, the system is reconfigured
in such away that the faulty component is replaced by one of the redundant components. An
example of such asystem is MPP [Bat82]. MPPisa 128 x 128 array of single bit processors
implemented as a64 x 32 array of 2 row x4 column VLS ICs. A redundant column of VLS
ICs (64 ICs) is provided to replace any of the 32 columnsof ICs within which afaulty pro-
cessor may exist. Thus, any single processor IC failure in the array can be tolerated. Addi-
tiona hardware could be added, at additional cost, to alow a greater number of faultsto be
tolerated. A genera disadvantage of the redundant hardware gpproach is that the extra
hardwareisidle until afault occurs.

The work presented in this chapter focuses on partitionable parallel processng sysems
where the set of processors can be partitioned to form multiple independent submachines.
The execution of a parald progran on a submachine is defined as atask. It is possble to
achieve fault tolerance in such a system by utilizing the reconfigurability of the system to
effectively " disconnect™* the faulty component. For example, parale processng systems
such as Intel Cube [Int85], nCUBE [HaM86], IBM RP3 [PfB85], and PASM [SiS87, FiC91]
incorporate partitionable interconnection networks and therefore have the ability to migrate a



task from a faulty submachine to a fault-free submachine [e.g., S¢S90]. Such an approach
has the advantage of no redundant hardware costs in the absence of faults. However, the
total available system resources are decreased when afault occurs. Furthermore, if the smd-
lest possible submachinein such a sysem consistsaf more than one processor, the fault-free
processors in the faulty submachine become idle. Thus, there is a trade-off between redun-
dant hardware cost and degraded system performance for the fault tolerance schemes dis-
cussed.

The architecture assumed here implements a physcaly distributed memory such that
each processor is paired with loca memory to form a processing e ement (PE). Mogt exist-
ing large-scale pardld processing systems use a physically distributed memory approach
(e.g., BBN Buitterfly [CrG85], Connection Machine CM-2 [TuR88], Intel Cube [Int85],
nCUBE [HaM86], DAP [Hun89], MasPar [Bla90], IBM RP3 [PfB85]). These systems
implement either a logically nonshared memory system, a logically shared memory system,
or a hybrid of the two memory sysems. In alogicaly nonshared memory system (e.g., CM-
2, MasPar), processors cannot access remote memory locations directly. Instead, all com-
munication between PEs is through explicit message passing. In alogicaly shared memory
system (e.g., BBN Butterfly), adl system memory appears in the address space of each pro-
cessor. Accessesto memory locations located in a remote processor's memory requires use
of the interconnection network. As aresult, remote memory accessesincur a larger latency
than loca memory references. Careful placement of program code and data is one way to
reduce the effects of this network latency. In one type of hybrid memory system (e.g., IBM
RP3), a portion of each processor's memory is reserved for nonshared access, the remainder
is treated as logically shared memory, and al interprocessor communication is through the
shared memory. For the modd of reconfiguration presented in this chapter, a logicaly
shared or hybrid memory system is assumed.

Previous research on fault recovery by dynamic reconfiguration includes [UyR85] and
[UyR88]. These papersexplored task redistributionin a MIMD environment to recover from
a PE fault for near-neighbor-class problems. Other work has considered the reconfiguration
of hypercube architectures in the event of PE failure [HalL87, LiS88]. Here, quantitative
modéds of three different reconfiguration schemes are developed. Givn today's technology,
collecting precise vauesfor al needed parametersis very difficult in certain circumstances.
Therefore, the time-cost ranges of the mode parameters and of the time penalty for a subop-
tima reconfiguration choice are examined and compared. The PASVI and nCUBE 2 pardld
machines are used as vehicles for studying the modd parameters. For some parameters, the
range can be restricted to a very smal and preciseinterval. For other parameters, only very
coarse, but useful, ranges can be determined. It is shown that this combination of precise



and coarse ranges can be used to determine useful guidelines for a choice among
reconfiguration options.

The system and fault models used to analyze fault recovery options are described in
Section 2. Section 3 presents recovery options and associated costs. One cost that must be
considered for every fault recovery option is the remaining execution time of the task that
was on the faulty submachine when the fault occurred. As an example of the difficultiesin
determining some of these costs, Sections 4 and 5 provide models for determining the
remaining execution time of a task depending on the system configuration and operation
modes. In Section 4, tasks whose execution times are data independent are considered, while
in Section 5 tasks whose execution times are data dependent are considered. An analysis of
the range of costs for each option is examined in Section 6 to determine the relative weight
of these costs in the reconfiguration decision. Finally, the penalty for making the wrong
choice is considered in Section 8. Guidelines for choosing a reconfiguration strategy in the
event of afault are also presented in Section 8.

2. System Modd for Fault Recovery

The analyses here can be used to model MIMD, multiple-SIMD, or partitionable
SIMD/MIMD paradle processing systems, utilizing a multistage cube or hypercubeintercon-
nection network, and possessing a logically shared or hybrid memory system. The research
assumes a partitionable SIMD/MIMD machine with a multistage cube network and can be
directly applied to the other cases.

It is assumed that overall system activities are supervised by a dedicated processor
known as the system controller unit (SCU), althoughit could be a program distributed among
system processors. Among other duties, the SCU isresponsiblefor allocating and deallocat-
ing submachines, and for determining the proper recovery action in the event of a detected
fault. The activities in each submachine are supervised by a submachine controller (SO).
Similar to the SCU, the SC is assumed to be a designated processor, athough it could be a
program distributed among the processorsof the submachine.

The execution of an SIMD procedure on a submachine is an SIMD_process. An
MIMD process is the execution of an MIMD procedure on a PE that is part of the sub-
machine. The term subtask refers to a single thread of control (stream of instructions). A
subtask can be composed of one or more SIMD processes executed sequentially on the same
submachine, in which case subtask refers to the program executing and/or broadcast by the
SIMD submachine SC. A subtask may aso be composed of one or more MIMD processes




executed sequentially on the same submachine PE, in which case subtask refers to the pro-
gram executed by a single PE in the MIMD submachine. A task can be composed of one or
more subtasks. Tasks are coded assuming that any number of virtual processorsrequired is
available. At execution time, the SC determinesthe number of physical processorsavailable
in the submachine and maps the virtua processors onto physical processors. The ratio of vir-
tual processorsto physica processorsis called the virtua processor ratio. When the virtud
processor ratio is greater than one, some or al of the physical processors will perform the
functions of more than one virtual processor. If the virtual processor ratio is less than one,
some physical processorswill remain idle. Useof avirtual processor scheme alowstasks to
be executed on submachines of various sizes without having to be re-compiled. The Con-
nection Machine models CM1 and CM2 [TuR88] uses such a virtua processor scheme to
alow programsto be executed on machines consisting of different numbersof physica pro-
cessors. Other schemes that dlow for the same kind of functionaity are equally applicable
to thisresearch.

The modd used for fault tolerance and recovery is as follows. At regular intervalsdur-
ing the execution of a task, the state of each PE, including register and alocated memory
contents, is stored in a buddy, ie., a different PE within the same submachine. This state
information is called checkpoint data and is used to restore a vdid system date (i.e., a
recovery point) in the event of afault. No two PEs have the same buddy. Furthermore, bud-
dies are chosen such that all PEs in a submachine can store checkpoint data in their buddies
smultaneoudy without conflicts in the inter-PE communication network. The checkpoint
data are also stored in local PFE memory to adlow recovery in the event its buddy becomes
faulty. Thus, no matter which PE becomes faulty, a copy of that PEs checkpoint data is
available for error-recover somewhere within the submachine. Error-recovery techniques
using checkpointing are discussed in [TaS84] and [FrT89].

It is assumed that existing fault detection techniques in the literature (e.g., [DaM85] or
[BaB91]) are usad in the system to detect faulty components. The faults of interest are per-
manent faults that affect the processor of the PE or the memory module of the PE. Transent
faults are not considered, because they do not require sysiem reconfiguration. For this sudy
it is assumed that a faulty processor is unable to either compute or communicate with other
PEs, but does not interfere with the operation of fault-free PEs. Furthermore, the loca
memory of afaulty processor is assumed to be corrupt, or inaccessible. Thefailure of a pro-
cessor local data bus or arithmetic logic unit would be examples of faults classified as pro-
cessor faults. When amemory moduleisfaulty, it isassumed that neither thelocal processor
nor any other PE can reliably read data from or write data to the faulty memory module. The
local processor is assumed to be fully operationa in every other way. Such would be the




case if there was afailure in the memory module refresh circuitry or a memory module I[/O
buffer, for example. A PE with afaulty processor or afaulty memory module will henceforth
be referred to as afaulty PE, unlessit is necessary to distinguish between the two fault types.
When a fault is detected, the SCU determines and directs the proper recovery action after
which processing continues from the last valid checkpoint.

3. QuantitativeDynamic Reconfigur ationM odel

When a permanent fault occurs in a submachine A, four possible
reconfiguration/recovery options are as follows. The first three options apply to PE faultsin
general, while the fourth is applicable only to PE memory module failures.

1) Subdivide A into two equal-size system submachines, and use the one that is fault-free
to complete the execution of the task.

2) Migrate the task to another submachine that isfault-free.

3) Redismbute the task programs and data among the fault-free PEs in A and complete the
task using a modified algorithm that does not use the faulty PE.

4) If a PE memory module fault occurs, using information from secondary storage or
checkpoint data, load the process that was executing on that PE into the memory
modules of other PEs in submachine A and continue as before, but with the processor
associated with the faulty memory modul e accessing only remote memory.

These recovery options are discussed further in the following subsections. Table | summar-

izes the most important notation used throughout the sections that follow.

In addition to the costs of recovery discussed for each option, there is a time overhead
of determining these recovery costs to select the best option for a given situation. However,
this overhead is incurred prior to the initiation of any of these recovery schemes, so it is
separatefrom the cost of recovery and is not included in thefollowing subsections.

3.1. Task Completionon a Fault-FreeSubdivison

When a PE fault occurs on a dynamically partitionable system, it can be avoided by
subdividing the current submachine and completing the task on the fault-free subdivision.
Figure 1illustrates this process. It depicts a task executing on a submachine originally con-
sisting of eight PEs. When PE 2 develops afault, the task is moved to the fault-free subdivi-
sion (four PEs) of the original submachine, and task execution is completed there.

The fault-free subdivision recovery process would proceed as follows. Once the PE

m————



Tablel:

Summary of notation used throughout the chapter.
Notation M eaning
FFS fault-free subdivision reconfiguration option
™ task migration reconfiguration option
TR task redistribution reconfiguration option
TEES & time to select fault-free subdivison
T{};Yp time to determine new mapping of task for YYY*
TEES time to update system partition table for FFS option
TEY, time to plan for YYY"
T time to move task data and codefor YYY*
T%Em time to complete task execution after YYY*
Tserp time to establish interconnection network data path
Trmir time to transmit one word over interconnection network
Tomessage time to send a message over interconnection network
Tpa time to accessdisk
Nexec %) estimated execution time for task on x PEs
T total time spent executing task prior to associated checkpoint
Fg, (1) probability of submachine failurefrom time 0 to timet
Ren() submachine reliability function, R, (t) = 1 — F, (1)
THC iy worst case reconfigurati on-option-choicepenalty

*YYY =FFS, TM, or TR reconfiguration option.
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fault has been located and the recovery point for the task has been determined, the SCU must
make a determination about the partitionability of the current submachine. For thisoption, it
is assumed that algorithmic constraints dictate that the subdivision is required to possess the
same topological network properties as the original submachine. The recovery option of
Section 6.3.3 is used when there is no need to preserve these properties. To create indepen-
dent submachines with the same topological network properties as the original network, all
submachines in a system possessing a multistage cube or hypercube interconnection network
must have sizes that are a power of two [Sie80, Sie90]. Thus, if a submachine can be parti-
tioned (i.e., it is not of minimum size), it can be partitioned into two equal-size submachines.
For a machine with N = 2" PEs, numbered from 0 to N — 1, the numbers of al PEs in a sub-
machine of size K =2*% agree in n—k bit positions. These n—k bits are caled sub-
machine bits. Without loss of generality, let these submachine bits be the low-order n—k
bits. The fault-free subdivision (half) B of this submachine A is composed of K/2 PEs. B’s
submachine bits are calculated by appending the complement of bit n—k+l of the faulty PE
number to the high-order end of submachine A's submachine bits. Thus, to determine the

submachine bits of the fault-free subdivision (FES) requires a constant amount of time

FFS
TCheck-

The number of physical processors in the subdivision is half the number of physical
processors in the original submachine. Therefore, the virtual processor ratio for the subdivi-
sion will double. The SC must determine the new mapping of virtual processors onto physi-
cal processors and coordinate the relocation of program code and data accordingly. Thfs,
the time to perform this mapping, is computable by the SC and will depend on the imple-
mentation specifics of virtual processors in the system.

The next step is to move al the task program code and data onto the fault-free subdivi-
sion as per the virtual processor to physical processor mapping determined above. This will
require TThe time. The amount of code a task consists of can be easily determined during
task compilation. However, the amount of data associated with a task can change dynami-
cally during task execution. For this reason, part of the information saved during every
checkpoint operation is the amount of checkpoint data saved. Because every PE stores its
checkpoint data into a different PE within the same submachine, no data is lost when a PE
becomes faulty. It isassumed that the interconnection network is used to transfer data. This
transfer can be accomplished without conflicting with inter-PE messages from other sub-
machines because of the partitioning properties of the network. The time to accomplish the
datatransfer can therefore be determined and will depend on the amount of data and the vir-
tual processor to physical processor mapping.

In the SPMD (Single Program - Multiple Data) restriction of MIMD mode [DaG85],



every PE in the submachine has a copy of the same program. Thus, in SPMD mode, pro-
gram code does not have to be transferred and TFqas will consist only of the time required to
transfer the data. However, for SIMD and MIMD modes, some program code will have to
be transferred.

The structure of SC/PE and inter-SC connections (if they exist) varies among
approaches to multiple-SIMD architectures (e.g., CM-2 [TuR88], MAP [Nut77a, Nut77b],
PASM [SiS87], TRAC[LiM87]). Because of this, the time to do any needed transfer of
SIMD programs when **moving"* a SIMD task from one set of PEs to a subset or different
set is highly machine dependent. Thus, in the discussions that follow, it is assumed as an
upper bound time requirement that the SIMD program is reloaded from secondary storage
whenever a reconfiguration occurs.

For general MIMD mode tasks, program code will have to be moved from PEs not in
the subdivision to those that are in the subdivision. Furthermore, depending on the mapping
of virtual to physical processors, program code may have to be moved among PEs in the sub-
divison. The interconnection network is used to perform this transfer of program code and
the time to do this can be determined in the same way as for the transfer of data across the
network. However, the MIMD programs that resided on the faulty PE will have to be loaded
from secondary storage (disk).

The time to transfer a SIMD or MIMD program from disk depends on the disk latency,
the amount of code to be transferred, and the bandwidth of the disk communication channel.
In such cases, THhas is difficult to predict accurately because of variation in disk latency
from one access to another. Therefore, an expected time for disk access will have to be used
to determine T

The SCU must then perform whatever operating system functions are needed to estab-
lish the new system partitioning. This requires a system dependent time represented by
Th&- The time to complete the task execution on the subdivision is Téhp . and will gen-
erally be greater than the time to complete the task execution on the original submachine.
The difficulty of determining T&hsexec fOr this recovery option and those that follow is dis-
cussed in Subsection 4.4. TFES ), the total time to reconfigure and complete a task on a subdi-
vision of the original submachineis represented as follows.

FFS _ pFFS FFS FFS FFS FFS
T7otat = TCheck + TMap + TTrn.sfr + Tpar + TCmpExec

There are three main disadvantages of the subdivision recovery method. Thefirst isthat
a subdivision of the current submachine may not exit, i.e., there is no way to further subdi-
vide the current submachine. Thisisdue to restrictions on minimum submachine size, which



is usualy associated with SIMD operation. The second disadvantage is similar and follows
from this. Thereis a limit to how many faults can be tolerated in this way because of the
physical limits to the number of times a machine can be partitioned. Finaly, two types of
performance degradation may occur. Thefirst is task performance degradation. A task will
generally require more time to complete on a subdivision of the origina submachine. Thisis
further discussed in Subsection4. The second type of performancedegradation is that of the
system. After subdividing a submachine because of afault, the entire subdivision containing
the faulty PE becomesidle. In MIMD mode, the fault-free PEs of this subdivision can be
utilized by the system because the PEs act independently of one another. However, in SSMD
mode, the systern must repeatedly partition the subdivision containing the fault until the fault
is in a submachine of minimum size. Other tasks can be executed on the fault-free sub-
machines created during this partitioning process. If the minimum size of the submachine
containing the fault is greater than one, fault-free PEs become underutilized and thus contri-
bute to adegradation in system performance.

32 Task Migration

It is likely that some tasks executing on a massively parallel processor will not use the
entire machine and will therefore execute on an independent submachine formed by parti-
tioning the machine. Reasonsfor partitioning include system utilization (e.g., due to the sze
of the data set to be processed, the task can make use of only a subset of the PEs), and reduc-
ing task execution time (some tasks can execute faster using fewer PEs [KrM88, SaS93,
SiA92]). Therefore, if one or more PE faults occur in the current (source) submachine Py,
the task can be migrated to a another (destination) submachine Py, if one is available. An
example of thisis providedin Figure 2. In thisfigure, PE 2 becomes faulty during the execu-
tion of atask on a submachine (P;) of four PEs. The task is then migrated to an idle sub-
machine (P;) elsawhere in the system, and task execution is completed there. It is assumed
that P, and P4 are of equal size. While this may not be a requirement for some systems, it is
a reasonable assumption to make because P, was originally of an appropriate size for the
task. A brief analysisof the task migration costsdiscussed in [ScS88] is provided beow.

The first step to be made during the migration of a task from P, to P, is to decide to
which P, to migrate. When more than one P, is available, the P, that resultsin the least
cost of migration should be chosen. Two factors that enter into this decison are the loca
tionsof P, and P; and the mapping of P PEs to P, PEs. For aN = 2" PE machine, a0 (n)
time method for determining the mapping of PEs from P, to P, that minimizes the task
migration (TM) time is provided in [ScS90]. Thus, Ti},, the time to choose P, and to

—e e
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Task migrationrecovery option.

Figure2:




determine the optimal mapping of source PEs to destination PEs is a function of the log of
the size of the machine and the number of destination submachines to be considered. The
SCU performs this function, because it is responsible for allocating and deallocating sub-
machines.

The next step in the task migration process is to transfer all necessary task information
from Pg to P4. The time to accomplish the data transfer depends on a combination of the
amount of data to be transmitted, the location of source and destination submachines, the
source-PE-to-destination-PE mapping, the use of the interconnection network by other tasks,
the type of network, and system implementation details. It is assumed that the interconnec-
tion network is used to transfer data for the SIMD case, and programs and data for all other
cases. During the migration of atask, conflicts in the network may occur with other migrat-
ing tasks, or with normal inter-PE message traffic due to other tasks [ScS90]. These typesof
interference are not considered in the model presented here because: (1) it is assumed that
two simultaneous migrations would rarely occur, and (2) interference with normal inter-PE
message traffic is expected to be very limited relative to the task migration traffic.

Let T?,‘fuf, be the time to transfer the program and data. For multistage cube intercon-
nection networks and with the exception of SIMD and genera MIMD program code, the
time to perform this transfer is a linear function of the amount of data to be transferred and
the number of network permutation settings required to accomplished the transfer. The
amount of time to transfer the SIMD program code to P, is machine dependent. In the worst
case, the code will have to be loaded from secondary storage into the SC of P;. For the gen-
eral MIMD case, the program for the faulty PE must also be transferred from secondary
storage. As discussed earlier, this access to secondary storage makes prediction of the
transfer time difficult.

As before, TE‘,‘,’,,,EM is the time to complete the task execution once the migration is
complete. T?,”,’,,,E,ec isequivalent to the time required to complete the task from the recovery
point on the original submachine before the fault occurred. Thus, T: %%al, the time to migrate
atask isasfollows.

M __ rTM ™ ™
Ttota = TMap + TTrn.sfr + TCmpExec

The main advantages of task migration to another equal-size submachine are that no remap-
ping of virtual processors to physical processors is required and once the migration is com-
pleted, the task will finish executing without any performance degradation. However, the
overhead to move a task may be significant compared to the task execution time remaining.




As with the fault-free subdivision option, system degradation in the form of underutilization
of fault-free PEs may occur for the PEs in P,

It is possible that no idle destination submachine exists to which to migrateatask. The
task can be migrated to a submachine dready being used to execute another task, and the two
tasks can time-share the submachine. A number of factors should be considered in this
event. Firgt, it is desirable that the submachine to be shared have enough memory to hold
both tasks. Second, if the expected completion times for tasks are known, the submachine
with the earliest expected completion time should be sdected. Finaly, because two tasks are
sharing one submachine, the estimated remaining execution time for each is more than dou-
bled because of the context switching that must teke place. Although time-sharing of sub-
machines is not included in the quantitative framework presented here, the framework can be
extended to include this option. To do this, it will be necessary to establish a method to
incorporate into the reconfiguration choice the impact on the task aready executing on the
destination submachine.

3.3. Task Redistribution

In many cases when a PE or PE memory fault occurs, it may be possible to redistribute
the data and/or subtasks associated with the faulty PE to neighboring PEs within the same
submachine, thus effectively removing the faulty PE from the computation. Figure 3 illus-
trates this task redistribution recovery option. The ability to redistribute the task in such a
way that the faulty PE is effectively removed from the computation depends on a number of
factors including the agorithm, the mode of operation, and the interconnection network.
Consider an dgorithm that exhibits coarse grain paralelism and is implemented as a set of
MIMD subtasks. If a PE becomes faulty, the subtask that was executing on that PE can be
distributed to one or more fault-free PEs. However, to minimize the execution time of the
task, load balancing may be required. Work on load baancing on parallel and distributed
systems [e.g., NaM92] has shown that the optimal load balancing solution depends on a
number of factorsincluding the task/subtask queuing model used, the precedence constraints
involved, and on the tasks being executed. Thus, it is unlikely, usng available technology,
that adistribution solution can be found that works for dl classes of problems. Furthermore,
thereisatrade-off between the timeit takes to distribute the load and the resulting savingsin
execution time.

Congider an SIMD machine with a mesh interconnection network. A faulty PE might
require that al the data on all the PEs be considered in the redistribution to achieve optimal
performance and preserve the near-neighbor communication pattern [UyR88]. If a
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Figure3: Task redigtributionrecovery option.



multistage cube network is used, it is possible that the network will not be able to support the
required single-pass inter-PE communication permutations on a submachine where one or
more PEs have been effectively removed (i.e., the permutations permitted are limited
[Law75]). In generd, there may be additiona overhead incurred whether extra time is
required to redistribute the data or extra time is needed to perforrm communication in a net-
work where a needed permutation cannot be performed in one step due to a PE fault.

Thefirst step in the task redistribution (TR) processis to determine how to accomplish
the redistribution. In genera, an equa load distribution (of data for SIMD/SPMD tasks and
of both programs and datafor MIMD tasks) among al of the fault-free PEs will result in the
greatest efficiency for completion of the task. The time to make the redismbution, TLR@,
depends on the mode of operation, the agorithm mapping, and the current state of each sub-
task.

It is assumed that the SC has user-supplied knowledge about the algorithm mapping,
which it uses to decide how to redistribute the task. Idedly, this knowledge would be
compiler-supplied. However, while this may be possible for certain classesof problems,it is
till an open problem in the general case.

The next step is to peform the subtask and/or data redistribution. T}E",,_,f, is the time
required to accomplish the relocation of the program code and/or data. As in the previous
two options, the time to accomplish this transfer depends on the mode of operation, the
amount of data to be transferred, the location of source and destination PEs, the interconnec-
tion network, and system implementationdetails. Once again, for aMIMD task, the transfer
of program code from secondary storage will add some unpredictability into the expected
transfer time. The time to complete task execution after task redistribution, ToupExecs IS
expected to be greater than the time to complete the task on the fault-free submachineand is
discussed further in Subsection 44. Thus, T{R ;. the time to redistribute a task among the
fault-free PEs of a submachine and complete execution of the task isasfollows.

TR _ TR TR TR
Trota = TMap ™ TTrngr + T CripExec

An advantage of the task redistribution option is that al the fault-free PEs in the sub-
machine can be utilized by the task, while with the fault-free subdivison option, only half
the number of original PEs are utilized. A disadvantageis that to allow data and subtasks to
be redistributed with a minimum of effort, the task must be coded and/or compiled consider-
ing fault tolerance and reconfiguration. As an example, linked lists should be favored over
indexed arrays when random access to the list elementsis infrequent, because the code does



not have to know the number of e ements in the Structure and does not have to be modified
when the datais redistributed. Of the three optionsfor reconfiguration discussed thus far, the
task redistributionoption is by far the most difficultto quantify. However, if the task redis-
tribution option is to be considered, the information discussed in this section is needed to
choose the best alternative.

34. Usng RemoteMemory for the Faulty PE

Indirect addressing using base address registers or index registers is a commonly
employed addressing mode in processor designs {(e.g. Motorola 68000 family, Intel 80X86
family). Using this addressing mode, a register contains the address of an operand. The
register is incremented or used with an offset to access other operands. Thus, the same pro-
gram can access different blocks of datain memory, depending on the contents of one regis-
ter. Because the classes of distributed shared memory parale processng systems under
consideration have asingle shared logica address space, it is possiblefor the processor of a
PE that has experienced a memory fault to continue execution using remote memory loca
tionsexclusively.

As dtated earlier, the checkpoint data for every PE in a submachine is stored in the
memory of adifferent PE within the same submachine. Thus, no datais lost when amemory
module fails. For all modes of execution, it is assumed that the PE with the faulty memory
module will access the checkpoint data remotely.

Becausein SSIMD mode only datais stored in PE memory, execution can continue after
a memory fault once the registers used to access operands in the faulty PE are loaded with
the addresses of the checkpoint data for that PE. Also, because @l the processors operatein
lockstep, assuming that a remote memory access requires more time than a local memory
access, there will be some increase in execution time when one or more processors are
required to make a remote memory access as opposed to al processors performing a loca
memory access. This impact on execution time is quantified in Sections 6.4 and 6.5.
Single-pass network permutations possible on afault-free submachine are still possible when
one or more processors use only remote memory. This is because it is assumed that dl the
PE processors utilize transmit and receive registers for network communication in SIMD
mode. A memory failure will not affect how these registersare used by the network.

In MIMD mode, to maximize performance, program code and data are typically located
in the PEs where they are needed. If the processor of a PE with a memory fault is required to
fetch dl its ingructions and data from a remote memory as opposed to local memory, one
would expect a significant degradationin the performance of that processor. Processors that




possessalocal cache and/or that perform instruction prefetching would be expected to suffer
asmaller performance degradation in most cases. Thesefactors are beyond the scopedf this
model, but the modd can be extended to include them. Such extensions and the associated
analysiswould be necessary to make use of the modd with thist ype of processor.

Another complication that arisesin the MIMD mode of operation is that the lack of syn-
chronization among processors can result in interconnection network conflicts. If one or
more processors are required to fetch dl instructions and data from remote memory, the
likelihood of interconnection network conflictsisincreased. A loca processor cache would
decrease the impact of this. Instruction prefetch capability would not decrease network
traffic, but the degradation due to network conflicts may be reduced by the overlapping of
instruction fetch and execution. Modding the amount of overhead incurred as a result of
network conflictsis very difficult because of its dependence on the system task load, the
input datafor each task, and the system architecture and hardware implementation. For sm-
plicity, the mode presented here assumes a negligible overhead due to communication net-
work collisions. Further work is needed in this area to develop a more complete mode.

Regardiess of the execution mode, the data of the faulty PE is dready stored in aremote
memory during the checkpointing process. For SPMD mode tasks, every PE has an identical
copy of the task code. In this case the processor of the faulty PE can access another PE’s
copy of the code remotely. Thus, the only case requiring a transfer of program code is the
generd MIMD mode case. In this case, the subtask code for the faulty PE must be loaded
from secondary storage to remote memory (RM). The time to do this is T and is afunc-
tion of a number of factors as disoussed earlier, induding the disk latency (T¥¥; =0 for
SIMDa SPMD mode). As before, the disk latency isdifficult to predict and requiresthe use
of an expected vaue.

Once the code for the faulty PE has been relocated, the SC must write the proper base
addressesto thefaulty PE’s base registers. Thiswill require They time, which will vary with
the number o registersthat must be modified. The time required to complete the task execu-
tion after reconfiguration is T&hm,Exec and will generaly be greater than the time required on
the fault-free submachine. Quantifying T&sgy. is discussed in detail in Sections 6.4 and
6.5. Thus, T4, the time to prepare a task to continue execution substituting remote
memory for the loca memory of afaulty PE and to complete the task execution is as follows.

RM  _ TRM RM , TRM
TTotal = TTrnsfr + TReg + T CmpExec

In addition to the time required, there is a memory Space requirement to consider as



wel. The use of base register addressing requires that there be a contiguous block of
memory large enough to hold the data structure pointed to by a base register. Therefore,
some remote memory moduleis required to have enough contiguous memory free to hold the
faulty PE’s program code (in addition to the checkpoint dataiit must hold for some PE). The
advantage of the remote memory gpproach is that all the PEs from the origina submachine
are utilized and no changes to the task code are necessary. A disadvantageis that the proces-
sor forced to use only remote memory will generally execute ingtructionsat adower rate and
may interfere with the useof the interconnection network by other PEs.

4 Dat a-1 ndependent -Execut i on-Ti me Mdel

One recovery cost common to al the options presented is the remaining execution time.
However, the time required to complete execution of a task varies with the recovery option.
For example, a task that has nearly completed executing may complete much earlier on a
subdivison than it would if it were migrated to another submachine, especialy if a high
overhead migration codt is incurred. Alternatively, if a sgnificant amount of computation
remains, migrating the task may result in an earlier task completion time. Thus, the remain-
ing task execution time becomes important.

Tasks can bedivided into two categories based on execution time. These are tasks with
datarindependent execution times and tasks with data-dependent execution times. A task
with a data-independent execution time does not depend on input data to make branching
decisons. Thus, the number of times any branch in the task program code is taken can be
determined by a compiler during program compilation, and a compiler can determine an
expected execution time for the task. In contrast, a tak with a daa
dependent execution time has branch decisions that are based on data that is known only a
run time. The execution time of such tasksis considered in the next section.

A modd is presented in this section for determining the execution-time costs of data-
independent-execution-time tasks. This modd differs from other models in that it can
accommodate the remote memory recovery option. Such an execution-time modd mus
necessarily include detail about the amount of time spent making local and remote memory
accesses. Both SSIMD and MIMD versions of the modd are presented. Because SPMD is a
subset of MIMD, it is accommodated by the MIMD modd. Mixed-mode operation
execution-time prediction can be accomplished by extending the modd to account for
switching between modes.




4.1. SIMD Task Execution Time

In SIMD mode, it is assumed that instructions to be executed by the submachine PEs
are loaded into an automatic broadcast queue by the SC. This leaves the SC free to perform
computations of its own (e.g., the manipulation of loop index variables, PE-common aray
index calculations). Thus, the execution time for an SIMD task includes the SC execution
time plus the PE execution time minus any overlap between the two. For a comprehensive
modd for determining the amount of SC/PE overlap in an SIMD task see [KiN91]. Let Ty
be the time the SC spends performing its caculations, Tor, be the total SC/PE overlap, and
Tpr(P,i) be the execution time of instruction i on processor P. For a disabled PE,
Tpg(P,i)=0. In SAIMD mode, a new instruction is broadcast to the PEs by the SC only after
the current instruction's execution has been completed (or initiated, if prefetchingis used).
Therefore, Tsiup, the overdl time for a SIMD task consisting of the execution of | instruc-
tionson Q PEs, 0<P<Q -1, is

I
Tsmp=Tsc —ToL + Zm;lx [TPE(P,I')].

i=1

An extension to this SIMD execution-timemodd is desired to adapt it for usein anayz-
ing the difference in execution time when dl loca memory references are replaced by
remote memory references. Only PE memory faults are of interest here, so the SC
execution-timecomponent is not affected. However, the SC/PE overlap component may be
affected becauseit isafunction of PE executiontime. Let troc be thetime requiredfor a PE
to make a single access to its local memory. It is assumed that any such access takes a con-
stant amount of time. Similarly, let zggy be the average time required to make an accessto a
remote (non-local) memory location.

For the architectures under consideration, a remote memory reference requires use of
the interconnection network. For aread of remote memory, an address must traverse the net-
work to the remote memory and the memory contents must traverse the network to the
source of the read request. For a remote memory write, an address and word to be written
must be sent to the remote memory location. Generally, an acknowledgment of some typeis
returned by the remote network interface. The time required for an address or data word to
traverse the network can be divided into two components. These are transfer time and over-
head. The transfer time is the actua propagation time required assuming no contention in
the network. Transfer time is a congtant for networks that have equidistant paths between
any source and degtination pair (e.g., multistage cube network), but may vay for other



networks (e.g., hypercube). The overhead is time spent to establish a path through the net-
work and the time spent waiting due to network contention or contention at the remote
memory. In general, the determination of overhead is a difficult problem that depends on the
network implementation details and the message traffic. Thus, 5 isonly an estimated aver-
age vaue; calculating an exact time for each transfer would require machine and
application-&pendent analysis. Research on &tailed modeling of networks has been the
topic of entire papers, (e.g., [Har91]), and i s beyond the scope of this work.

Here, for the sake of simplicity, remote memory reads and writes are assumed to take
the same amount of time. The model could be extended to include different costsfor the two
types of references.

The number of local and remote memory references made by PE P during instruction i
(when no PE is faulty) is denoted by M;oc(P,i) and Mggy (P,i), respectively. A compiler
could determine these values for every instruction in a task as well as the amount of time
spent by PE P on instruction i doing non-memory reference work (**computation time™),
TCOMP(P,i)- For a disabled PE, MLOC(P’i) =0, Mpey(P,i) =0, and Tecopyp(P,i) =0. Thus,
the total time spent by PE Pon instruction i isgiven by

trocMroc(P,i) + tpemMper (Poi) + Tcomp (PLi).

Therefore, the new SIMD execution-time model becomes

] . .
Tsiup =Tsc —Tor + ngx [iLocMLoc (P,i) + tpeyMpem (P,1) + TCOMP(P,I)]

i=1

T o determine the execution time for a task on a submachine in which one or more PEs
have faulty local memories, the following modifications are made to the faulty PE memory
reference counts.

Mpey(P,i) <« Mpppy(P,i) + Mroc(P.i) ; Mpoc(P,i) <0

The model for determining SIMD task execution time presented above can be applied in
cases wWhere the exact sequence of instructions to be executed is known. at compile time.
However, for most programs the sequence of instructions executed is data dependent. For
such programs it is not possible to determine an execution time during compilation.



Furthermore, it is not practical for the SC to determine the amount of execution time left
when a fault occurs, because it would potentially have to simulate the execution of every
instruction on every PE to determine when the task has completed. In cases where empirical
datais available on the execution time of a particular task, it is possible to determine an esti-
mate of the execution time remaining. Such an estimate is discussed in the next section. For
data-dependent-execution-time tasks where there is little empirical data, there is no practical
way of determining an execution time. In such cases, the reconfiguration decision may have
to be made without benefit of execution-time knowledge.

42. MIMD Execution Time

It is assumed in the following model that an instruction cycle is composed of a fetch
phase and an execute phase. Because each PE may execute a different program in MIMD
mode, let | (P) denote the number of instructions that PE P must execute to complete a task
and let T’pg(P,i) be the time for PE P to execute its i instruction. Then, Tagump., the execu-
tion time for atask in MIMD modeis

1

P) .
Tyimp = m]?x [Z T’PE(PJ)] .

i=1

This ""max of sums' for MIMD versus "*sum of max’s’’ for SIMD has been discussed in
another context in [BeK91].

Let W(P,i) represent the number of words that PE P must fetch from local memory to
read in instruction i. As before, the number of local and remote memory references made by
PE P duringitsi ™% instruction is denoted by Mroc(P,i) and Mgep(P,i) respectively. A Com-
piler could determine these values for every instruction in a task as well as Tcomp (P, i), the
amount of time spent by PE P on its it" instruction doing non-memory-reference work.
Thus, the MIMD task execution time becomes

1(P) . . } .
Tymimp =m}§x > [tLoc [MLOC(PJ)+W(P,1)] + tremMprEM (P,1) + Toomp(Pi) | |-
i=1

T o determine the execution time for a task on a submachine in which one or more PEs
have faulty local memories, the following modifications are made to the faulty PE memory



reference counts.

Mpepm(P,i) < Mpey(P,i) + Mpoc(P,i) + W(P,i);

Mioc(P,i) « 0, W(P,i) « 0

As with the SIMD execution-time model, the equation above is useful only when the exact
sequence of instructionsfor every MIMD subtask is known. A further consideration in using
remote memory in place of faulty local memory is that the faulty PE must fetch all its
instructions from remote memory, which will cause a significant increase.in the amount of
interconnection network traffic. Therefore, the probability of conflicts in the network is also
increased. The MIMD execution-time eguation given does not account for conflicts in the
network, so the execution time derived from the equation will be a minimum execution time.

5. Data-Dependent-Execution-TimeM ode

Most tasks have a data-dependent execution time, making the execution-time model
presented in the preceding section inapplicable. However, in a production environment
where atask is executed repeatedly on various sets of data (e.g., image processing of satellite
pictures), empirical studies can be performed to derive an estimated execution time for a
task. For these casesit is possible to develop a model that will predict the expected execu-
tion time remaining for atask that isrecovering from afault.

5.1. Execution Time When Usinga Different Submachine

Once a task has been migrated from a submachine containing a faulty PE to afault-free
submachine of equal size, the time to complete the task execution will be the same as it
would have been on the original fault-free submachine. An estimate of this expected com-
pletion timeis now derived.

Let fExec be a discrete random variable that represents the execution time for a specific
task. Ty is always positive because a negative execution time is not possible. f(Tgyec) is
the discrete density function [Pap84] of Tree. If Texec takes the value x; with probability p;,
and &(x) is the impulse function such that 8(x — x;) has value one at x =xi and value zero
elsewhere, then




ST Exec) = ZPiS(TExec - Xx;).

By definition, the expected value of Ty iS

E{f&ec}= ITExec S(Tgxec) ATExec = Nexec-
0

Itis assumed that the amount of execution time spent on a task prior to a checkpoint is
stored with that checkpoint. If arecovering task is to proceed from acheckpoint and the exe-
cution time stored with that checkpoint is T, Tepmpexec, the expected amount of time required
to complete task execution is

TCmpExec =MNexec — T

TcmpExec assumes that the submachine size remains the same and that all the PEs in the sub-
machine are fault-free.

5.2. Execution Timeon a Fault-FreeSubdivison

Here, the completion time of a task that completes execution on a subdivision that is
half the size of the original submachine is considered. Let T, be the expected execution
time of a task on a submachine consisting of 2x PEs, and let T, be the expected execution
time of the same task remapped onto one of the two equal-sized subdivisions of the original
submachine. If the average timefor an inter-PE transfer remains the same in either case,

T2 2 Tx.

Theinequality becomes an equality when the mapping of the task from the subdivision onto
the 2x PE submachine is optimal.

This equation can be extended to submachines of arbitrary size as follows. Let So;s be
the number of PEs in the old (original) submachine and let Sy, be the number of PEs in the
new submachine (subdivision). Then, the expected remaining execution time on the



subdivision is bounded by

Soud ]
T, < — -1
CmpExec Sn [T]exec .

A more accurate remaining execution time estimate can be obtained if empirical datais
available to determine expected task execution times for the submachine sizes of interest.
Then, the estimated task execution time becomes a function of the submachine size and the
estimate of the remaining execution time becomes

( ¢ )
T, ec = Vlexec S ew - ~

5.3. Execution Time After Task Redistribution

An execution-time estimate for the task redistribution recovery option is more difficult
than for the previous options. Consider a task executing on a submachine of size Spy; in
MIMD mode. If a PE becomes faulty and its subtasks are distributed equally to the
SNew = Sow — 1 fault-free PEs in the submachine, the remaining execution time is bounded
asfollows.

Sold ]
<" -1
TCmpExec Id— 1 [Tlexec

Consider the case where the faulty PE’s subtasks cannot be distributed equally among the
fault-free PEs. In the worst case, all the faulty PE’s subtasks would be assigned to one PE.
In this case, the remaining execution time could be twice that of the remaining execution
time on a fault-free submachine. The degree to which the performance of the system on a
task is degraded is a function of the system (a), the algorithm implementation (B), and the
number and location of faulty PEs (y). Let d(a,B,y) be defined as the amount of performance
degradation; 1< d(a,P,y) <2 The amount of performance degradation can be estimated
from empirical data or from user provided information about the algorithm implementation.
The remaining execution time then becomes



TcmpExec = d(0B, ) [T]e.xec - T].

5.4. Execution Time When Usng Remate Memary

Estimating the remaining execution time for a task executing on a submachine that
includes one or more PEs using remote memory exclusively is now explored. Because the
tasks under consideration have data-dependent execution times, it is not possible, before run
time, to determine exactly how many times any data-dependent branches (including those
necessary for loops and conditionals) in a program are executed. However, in the production
environment assumed, code profiling can be used to determine expected values for the
number of times each branch is taken. If such empirical datais not available, the user must
estimate these expected values if the model presented hereisto be used.

Given expected values for the number of times each branch is taken in a data-
dependent-execution-time task, one can calculate the remaining execution time for the task
after fault recovery as if it were a data-independent-execution-time task. The last valid
checkpoint before the occurrence of the fault is used to determine the state from which the
task execution will begin. Asbefore, where accesses tolocal memory were used in the origi-
nal program(s), remote memory accesses will be made instead. For SPMD and MIMD
modes, the fetching of instructions from local memory will be replaced with fetches from
remote memory. However, for SIMD mode, instruction fetching is not included because
instructions are broadcast to the PEs by the SC.

Using the execution-time models presented in this section, one can arrive at an estimate
of the remaining execution time for a task after recovery from afault. Theremaining execu-
tion time for tasks with data-dependent execution times for which no empirical datais avail-
able cannot be estimated reliably. In these cases, the user must be required to supply an esti-
mate prior to execution time if acomparison of recovery optionsis to be performed.

An alternative method for determining remaining execution time centers around the use
of an automatic complexity evaluator such as that presented in [LeM88]. The approach here
IS to attempt to generate a nonrecursive function, prior to run time, that can be solved at run
time to determine the asymptotic time-complexity behavior of a program. This approach is
applicable to a wide range of programs, but it is not always successful in generating a nonre-
cursive function. Further study is needed to see how it can be applied here.



6. Choosingan Option

6.1. Overview

Thus far, genera quantitative models of four different reconfiguration schemes have
been presented. It was pointed. out that collecting precise values for some of the modd
parametersis very difficult (if not impossible). The next step is to analyze the information
available to determine if guiddines can be developed for making a choice among these
methods for practical implementations. For the remainder of the chapter, only the fault-free
subdivision, task migration, and task reconfiguration recovery options are considered. Work
isongoing to incorporate the remote memory recovery option into the anayses that follow.

The time to reconfigure and complete a task for the fault-free subdivison, task migra-
tion, and task redistribution reconfiguration options can be separated into three primary com-
ponents: time to plan for the reconfiguration option (Tpy.), time to move the task data and

code (Trrngsr), and time to complete the task (TempExec)-

FFS FFS FFS FFS FFS FFS
T7otar = TCheck + TMap + Tpan + TTrn.sfr + TCmpExec
M _ ™ ™ ™
Troam= | TMap + | Trmsy | + | TCmpExec
R _ TR TR TR
TTotal = TMap + TTrnsfr + TCmpExec
TPlan TTrn.sy"r TCmpExec

In this section, the relative impact these three components has on the overdl reconfiguration
cost isdiscussed. Experimentaly determined ranges for these parameters on the PASM pro-
totype and the nCUBE 2 are used in the analysis where applicable.

6.2. Rangeof Tpjap

First, consider Tpy,,, on PASM for the fault-free subdivison option. The time required
for the PASM SCU to determine a fault-free subdivision, T5fs., is a constant for a fixed-



sized machine (in terms of number of PEs). In PASM with 2" PEs, the numbers of al the
PEs in a submachine of 2¥ PEs agree in their low-order n—k bits; i.e., a partition of size 2 is
uniquely specified by the common low-order n—k bits of the PEs in the partition. The logical
PE numbers are the k most significant bits of the physical PE number. The fault-free subdi-
vision is determined by the low-order n—k+| bits of the faulty PE number with the
(n—k+1)st bit complemented. This was determined, by experimentation, to require 32
microseconds (for the 16 PE prototype) on the PASM SCU.

For an nCUBE 2 with 2* PEs, a submachine is specified by an anchor node and sub-
machine size (2¥). The other PEs in the submachine can be found by XOR-ing the logical
node numbers, which range from 0 to 2¥—1, with the anchor PE number. Thus, the physical
PE numbers in a subcube of size 2¥ always agree in their upper n—k bits and vary in their
low order k bits. Tofind the anchor PE number for the fault-free subdivision, the (k—1)st bit
of the original anchor PE number is replaced by the complement of the (k—1)st bit of the
faulty PE number. Thetime to do this on a 64-PE nCUBE 2 was experimentally found to be
29 microseconds.

Having determined the fault-free subdivision (TEES ) the next step isto map virtual PEs
to the physical PEs in the fault-free subdivision. Neither the PASM machine or the nCUBE
2 actually implements virtual processors. However, the time to determine the mapping,
TEES | can still be determined based on the architectural characteristics of the machines. For
PASM, a virtual PE that wason logical PE L is mapped to PE| L/2]. Because the physica
PE numbers of the PEs in the fault-free subdivision all have the same low-order n—k+| bits
in common (for a subdivision of size 21y and because the logical PE numbers are the
high-order k-1 bits of the physical PE numbers, the mapping is known a priori. For nCUBE
2, avirtua PE that was on logical PE L is mapped to PE L mod 2%~!. As discussed earlier,
the logical PE numbers for the nCUBE 2 are converted to physical PE numbers by XOR-ing
them with the physical PE number of the anchor node (selected in Tgf,fckf). Thus, the map-
ping isonce again known a priori. Therefore Tff;f, =0 in both cases.

In the PASM system, only the SCU is aware of the machine partitions. Changing the
system partitioning is performed by writing one word of data to a system partition register.
The PASM SCU can use current overall machine partition information along with the fault
location (toidentify the submachine to be subdivided) to determine the correct data to write
to the system partition register. For the PASM prototype, the time to generate the correct
data word and write it to the partition register, Thhy, ranges from 36 to 48 microseconds,
depending on the original system partition register contents.

For the nCUBE 2, two tasks must be completed to partition a submachine into two
equal-size submachines. First, the PEs in the fault-free subdivision must be informed of the



changein submachinesize. Thisisrequired so they can properly determine their logica PE
numbers. The time to do thisis equa to the time it takes the SCU (front-end processor) to
broadcast a short message to thiseffect to the PEs. The nCUBE 2 PEs are capable of imple-
menting tree-structured communication paths for the broadcasting of data from the SCU.
When there ar e no conflicts, establishing such a path requiresonly dightly more time (a few
microseconds) than establishing a point-to-point path. Because the PEs in the fault-free sub-
divisonare idle a this point, there can be no conflict when attempting to establish a broad-
cast path among the subdivision PEs. The second task is for the SCU to updete its system
tables to reflect the new machine partitioning. This can be performed in parald with task
execution on the fault-free submachine and is therefore not consdered here. Because the
nCUBE 2 SCU is actualy atime-shared UNIX system, it is difficult to accurately determine
TEES in this case. However, it is expected that Thhs is on the order of the transfer of ashort
message over the PE interconnection network; in the range of 160 to 300 microseconds for
the nCUBE 2 (discussed further in the next subsection).

Consider Ti#4,. Here, a destination submachine must be selected for task migration.
The choice should be one that minimizes the time to transfer the program code and data
Recall that on the PASM prototype, all the PEs in a submachine of size 2* agreein their n—k
least significant bits, and the k most significant bits can then identify the logical PE number
of a PE within the submachine. A constant offset permutation is a one-to-one and onto map-
ping of source PEs to destination PEs such that the physical PE number of any source PE
minus the physical PE number of its associated destination PE yields the same constant (mod
2" for a machine with 2* PEs). If alogicd PE in the source submachineis mapped to the
same logical PE number in the destination submachine, the resulting inter-PE data transfer is
a constant offset permutation, which is guaranteed to be conflict free for a multistage cube
[Law75, Pea77]. Therefore, such a mapping is optimal and known in advance. Thus, Tﬂ‘zp
consstsonly of selecting any destination submachineof the desired size. It is assumed that
the SCU maintains a table of available submachines. While the current prototype system
does not provide for this, the time to do a table look-up to find a free submachine of 2* PEs
can be roughly estimated to be in the range of 10 to 100 microseconds. Depending on the
table implementation, more time could be required for larger systems, due to a greater
number of tableentries.

On thenCUBE 2, assume that the anchor node of the destination submachine is selected
such that its low-order k bits are identical with the low-order k bits of the anchor node of the
source submachine. Then, the physical numbersof PEs with the samelogical numbersin the
source and destination submachines will agree in their low order k bits and will differ in
exactly the same high-order n—k bits. Thus, a conflict-free mapping exists between the PEs



with the same logical numbers in the source and destination submachines. The number of
links separating these submachines is equal to the Hamming distance between their
correspondingn- k high-order bits, and can be no greater than n-k. It is assumed that the the
number of links traversed has a negligibleimpact on the overall transfer time (See Subsection
4.3). As was the case for PASM, it is assumed that the nCUBE 2 SCU maintains a table of
available submachines. Once again, the time to perform atable look-up is estimated to bein
therange of 10 to 100 microseconds.

Now consider TLRap. As dtated earlier, T{fap depends on the mode of operation, the
agorithm mapping, and the current state of each subtask. It is assumed that the SC has
user-suplied (or possibly compiler-supplied) knowledge about the agorithm mapping, which
it uses together with the faulty PE number to decide how to redistribute the task. It isfurther
assumed that for most tasks, the decison can be programmed (by the user or by an
automated process) in theform of a “‘C’’ switch statement. The faulty PE number is merdly
avariable in the program that directs the redistribution of program code and data. Thus, the
decision can be made in the time that the switch statement can be evaluated (estimated to be
1to 10 microsecondsfor PASM and nCUBE 2). It is possible that the mapping of data to
PEs will change severa times during the execution of a program. In such programs, the
decision of how to redistribute the data may also depend on the mapping that was in place
when the fault occurred. Although TH,, will require more time in such cases, it is expected
that Thigs will till be less than TTig (discussed in the next subsection).

6.3. Rangeof Trrnstr

As discussed in Section 6.3, Tty represents the amount of time required to move the
task program code and data as prescribed by the reconfiguration option chosen. Here, the
range for Tr..g is considered for each reconfiguration option. Data collected on PASM
(possessing a multistage cube interconnection network) and on nCUBE 2 (possessing a
hypercube interconnection network) are incorporated into the analyses.

It is assumed that one dataitem calculated and stored during the creation of each check-
point is the word count for that checkpoint. Given this word count, a mapping of source PEs
to degtination PEs, and knowledge of the interconnection network used in the system, it is
possible to determine the expected time to transfer a PE’s checkpoint data. The networks
consdered in the following discussion are a circuit-switched multistage cube network and a
circuit-switched hypercube network. However, the analyses can be extended to other inter-
connection network implementations.

For circuit-switched networks, the time to transmit a message can be decomposed into



two phases: set up (path establishment) and actual data transfer. During the set-up phase, the
message request (routing tag) must propagate through interchange boxes (multistage cube) or
any possible intermediate nodes (hypercube) to establish the desired data path. Thisrequires
Teenyp time. During the data-transfer phase, the actual datais transferred one word at atime

and each word requires Ty time to traverse the path. Thus, the time to transmit a w-word

message, Tmessages IS.

Tmessage = Lseup +W > Tomis.

The above equation assumes that there are no delays due to network conflicts during the set-
up phase. Theeffect of network conflicts is discussed later in this section.

Figure 4 shows a plot of number of words transferred versus time required for the
PASM experimental prototype in both SIMD and MIMD modes. The times shown include a
small amount of loop overhead for each word transferred in MIMD mode.. The same over-
head is present in the SIMD mode implementation, but it is executed by the SC and is over-
lapped with the data transfers being performed by the PEs. From these experiments, it can
be seen that the time, in microseconds, to transmit a message on PASM is given by
240+ w % 24.6 in SIMD mode and 240+ w x 123.4 in MIMD mode. The reason for the large
difference in times between the modesis due to the current implementation of message pass-
ing in MIMD mode on PASM. At present, only one word is sent at a time and the sending
and receiving PEs must synchronize once for every word transferred. In SIMD mode, no
synchronization is necessary because the PEs operate in lock-step. An MIMD implementa-
tion of message passing that requires one synchronization per message, rather than per word,
would be much closer to the SIMD performance.

Figure 5 shows a plot of number of words transferred versus time required for the
nCUBE 2. On the nCUBE 2, the transmission time depends, to a small degree, on the
number of links (hops) that a message must traverse to travel from the sending PE to the
receiving PE. Furthermore, the nCUBE 2 uses message buffers at the destination PEs. The
maximum length of a message is determined by the size of the allocated message buffer. It
is assumed here that the message buffer is 1024 words in length because this represents a
good trade-off of local memory usage versus message-passing performance. Longer mes-
sages must be segmented into 1024 word blocks. The time to transmit a message composed
of 1024-word blocks, where the last block may consist of |ess than 1024 words, is:
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On the nCUBE 2, experiments yielded approximate vaues for Ty, and T, of 160
microseconds and 0.57 microseconds, respectively.

Consider T’Trﬁfvc, the time to move atask's program code and data onto a fault-free sub-
divison. For both PASM and nCUBE 2, a careful choice of buddiescan eiminate any need
to transfer checkpoint datafor the fault-free subdivision option. Specifically, the mapping of
logical PE numbers discussed in the context of determining Tf, (in Subsection 4.2) can
also be used to select buddiesfor checkpointing. In this case, the PEs in the fault-free subdi-
vison will already have the checkpoint data from the PEs in the subdivision containing the
faulty PE, and no transfer of checkpoint dataiis required.

For SPMD tasks, no program code has to be transferred because the PEs in thefault-free
subdivision aready have copies of the program. For MIMD tasks, the interconnection net-
work is used to transfer the program code for the fault-free PEs in the subdivision containing
the faulty PE. In this case, there can be no network conflict with tasks executing on other
submachines because of the partitioning propertiesof the network. Also, asdiscussedin the
previous subsection, the mapping of PEs used guarantees that only one network setting is
required to perform the transfer. For SIMD tasks, the program code for the subdivison SC
has to be loaded from secondary storage (disk), as does the program code for the faulty PE
for MIMD tasks. Thus, in these cases, Tffay includes the time to access disk, Tps. Tpa

depends on a number of factors including the disk latency, the amount of code to be
transferred, and the bandwidth of the communication channel. Physical limitations dictate
that Tps will require at least 10 millisecondson average. The upper bound for Tp, is depen-
dent on the size of the program to be moved (nolarger than the size of PE memories).

Now, consider Tfr.s. Because of the restrictions placed on the formation of sub-
machines, i.e., al the physica numbers of the PEs in a submachine agree in their low-order
or high-order n—k bits (see Subsection 4.2), only one network setting is required for the
transfer between the PEs of the source and destination submachines for both PASM and
nCUBE 2. However, in both cases, an additional network setting is required to transfer the
checkpoint data of the faulty PE to the dedtination submachine because the faulty PE’s
checkpoint datais located in its buddy PE in the source submachine. Thus, T must be
greater than 2Tg,,,. In addition, the program code for SPMD tasks and for the fault-freePEs
of MIMD tasks must also be transferred across the interconnection network. The program
code for the destination submachine SC and the faulty PE will have to be loaded from
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secondary storagefor SIMD and MIMD tasks, respectively.

Unlike the fault-free subdivision option, during the task migration option there may be
additional time required for the interconnection network transfers due to network conflicts
with tasks on other submachinesin the system. For this reason, and because program codeis
also transferred for SPMD tasks, THag Will always be greater then or equal to Ty, ie.,

Tlinge < Thonsp

Finally, consider T%f,q,. As with the fault-free subdivision option, the partitioning pro-
perties of multistage cube and hypercube interconnection networks guarantee that there is no
network conflicts with tasks on other submachines during the redistribution of program code
and data for the redistribution option. In addition, no program code has to be moved for
SIMD or SPMD tasks. In general, SSIMD and SPMD tasks have very regular distributionsof
data. In these cases, the redistribution of data will generdly involve only a subset of the
checkpoint data. For MIMD tasks, only the MIMD procedures associated with the faulty PE
have to be transferred. Therefore, in the best case, TThg Will be less than THheg. In every
case, a least one network setting is required (T > Trenp)- 1N SOMe cases, the redistribu-
tion of program code and data among the fault-free PEs in a submachine may require a
number of network settings. Thus, in the worst case, THag may be greater than THag.
depending on the number of network settings required for task redistribution and on the
number of conflicts encountered during task migration.

Therangesfor Tpi, and Tr,ng 0N PASM and nCUBE 2 are summarized in TableII. It
can be seen from the table that Tpy,, IS expected to require less than 400 microseconds for
the systems considered. In contrast, Tr,.g Can range anywhere from 0 to hundreds or
thousands of milliseconds, depending on the amount of data being transferred across the
interconnection network and from disk. The number of words transferred in both cases is
bounded by the size of the PE memories. These ranges are compared to the expected range
of vauesfor Tempere: in Section 6.7. A coarse, but useful, range of values for Tempexe: for
each of the considered reconfiguration options is examined in the next subsection. These
rangesfor all three parameters are then compared and combined to determine an ordering of
reconfiguration options based on the time needed to complete execution of the task after
reconfiguration.



TableII: ~ Approximate ranges, in microseconds, for Tpi, and Tr.ag for the FES, TM,
and TR reconfiguration options.

Tpign Trrnsp
Option | (PASM,nCUBE?2) | (PASM,nCUBE 2)
FFS | (68 — 80,189 — 329) ©",0™)

™ (10 — 100, 10 — 100) | (> 480", > 320™"")

TR (1 - 10,1 - 10) (> 240", > 160"™)

* Upper bound determined by size of PE memories.
** Add Tp4 for SIMD, MIMD, or mixed-mode tasks.
*** Add Tp,s for MIMD tasks.



64. Rangedf TCmpExec

A task with a data-independent execution time does not depend on input data to make
branching decisions. Thus, the number of times any branch in the task program code is taken
can be determined by a compiler during program compilation, and a compiler can determine
an expected execution time for the task. In contrast, a task with a data-dependent execution
time has branch decisions that are based on datathat is known only at run time. In thiscase,
it is assumed that an estimated execution time for the task can be determined through the use
of empirical studies (i.e., information about task execution time on various sets of data), an
automatic complexity evaluator such as that presented in [LeM88], or through analysisof the
algorithm and data sets.

For al the reconfiguration options discussed, the number of PEs assigned to a task after
the reconfiguration isequal to or less than the number of PEs originally assigned to the task.
Itisassumed that the average timefor an inter-PE transfer does not increase when the task is
executed on fewer PEs.

Once a task has been migrated from a submachine containing a faulty PE to a fault-free
submachine of equal size, the time to complete the task execution is the same as it would
have been on the original fault-free submachine. Let M,c(2¥) be the estimated execution
time for a task on a submachine with 2% PEs. It is assumed that the total amount of execu-
tion time spent on a task prior to a checkpoint is stored with that checkpoint. If arecovering
task is to proceed from a checkpoint and the execution time stored with that checkpoint is z,
the expected amount of time required to complete task execution after migrating the task to
another submachineis

Tg%pExec = Texec (2k) —-T.

TP Exec asSUMes that the submachine size remains the same and that all the PEs in the sub-
machine are fault-free. The expected range for Tompexec i

0< Tg%pExec < nexec(zk)-

Now, consider the completion time of atask that completes execution on a subdivision

that is half the size of theoriginal submachine. TEmpExec IS bounded as follows:



Terpiec S 2Mexec @) - V) = 2T mprec-

In addition, it is expected that Temree: > Tomperee because the number of processors in a
fault-free subdivision is assumed to be half the number that would be available if the task
was migrated to another submachine. Although some tasks can execute faster on fewer PEs
[KrM88, SaS93, SiA92], it is assumed here that the original submachine size was selected
for minimum execution time. That is, if a smaller submachine could be used to execute the
task in the same or less time, the task would have been mapped to that smaller size sub-
machine initialy.

A more accurate remaining execution time estimate can be obtained if M.(2*71) is
known. Then, the estimated task execution time becomes a function of the submachine size
and the estimate of the remaining execution time becomes

TEES  _ Menee(@ [nmc(?.") - 1] - “:]XLQIC)) T bec.
exec

Consistent with the assumptions given above, Mexec(2%) < Nexee(2¥71) < 21 prec (25).
Thus, using either the nmc(2"‘1) information, if it is known, or the inequalities stated in the

previous paragraph, the expected rangefor TE’,E,EM is.

IM rrS ™ k
TCmpE.xec < TCmpExec < 2TCmpExec < 2M e (2°).

An execution-time estimate for the task redistribution recovery option is more difficult
than for the previous options. Consider a task executing on a submachine of size 2¥ in
MIMD mode. If a PE becomes faulty and its subtasks are distributed equally to the 2% - 1
fault-free PEs in the submachine, the remaining execution time is bounded asfollows:

TIR 2 2 —1| = 2 7™
CmpExec = 2k 1 Nexec 2k 1 CmpExec -

Consider the situation where the faulty PE’s subtasks cannot be distributed equally among
the fault-free PEs. In the worst case, al the faulty PE’s subtasks would be assigned to a sin-
gle PE and the remaining execution time could be twice that of the remaining execution time
on afault-free submachine.
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In generd, it is expected that TTcaanm sTEf,,f,Em because the fault-free subdivison
option can be thought of as a subset of the task redistribution option where the task is redis-
tributed to haf the PEs in the original submachine. Furthermore, it is expected that
T b > TomExec based on the earlier assumption that the original submachine size was
selected for minimum execution time. Therefore, therangeon T?,‘,,pgm isgiven by:

1M 1R FFS
TCmpExec < TCmpExec < TCmpExec-

In cases where an equal distribution of the task load among the fault-free PEs is possi-
ble, the upper bound of TE’,;E,M in the above inequality can be replaced by
min((24/2% - 1) T2 Eree, TompExecFS).- By combining the results of the inequalities for
remaining execution time determined in this subsection, the following ordering is esta
blished.

0< Tgfn’pExec' < T]C-'RmpExec < TE‘En%Exec < 2T|exec (2k)

Although the above inequality indicates that task migration is the best reconfiguration option
when the decision is based 0N Teppexe: bEINg the dominant factor, it has aready been shown
that task migration is not the best option when considering Tpy, and/or Tr,,e. Therefore,
thereis no clear choice based on the analysisthusfar.

7. Penalty for Wrong Choice

In the previous section, a quantitative framework was developed that attempts to relate
various reconfiguration parameters. Some of the parameterscan be predicted with good pre-
cision on real machines, while other parameters can only be coarsely bounded. The next step
isto determine if a heuristic can be found that is based on the information available. In this
section, a combination of probabilistic anadyss and worst-case analysis is used to develop
useful guidelines for choosing among reconfiguration options on real machinesin practica
Stuations.

Condder the relative magnitudes of nm(z"), Tpian, ad Trng. In generd, for tasks
with short execution times, it is better to restart the task when a PE becomes unusable rather
than permanently and sgnificantly increasing the execution time by including periodic
checkpointing. Therefore, dynamic reconfiguration is generdly not considered for tasks



unless the estimated execution time for the task, M ...(2%), is orders of magnitude larger than

TTrn.sfr and Tpgp.
One of the most common cumulative distribution functions assumed in reliability

models is the exponential distribution, F(t) = 1 — e~ [SiS82]. F (¢) represents the probabil-
ity that a PE fault will occur between time 0 and timet, inclusive. The parameter A describes
the rate at which failures occur in time.

Thereliability function, R (¢), is defined asR (t) = 1 - F(t) = e ™. For aparallel system
submachine of size 2* PEs, where all the PEs must be operational for the submachine to be
operational, the submachine reliability function, Rg,(¢), is the product of the individual PE

reliability functions.

Rop(t) = ﬁR ()= ﬁe-“ = ¢ 2M

i=1 i=1

Thus, the submachine-failure probability distribution function, Fg,(t), for a submachine of

size 2¥ PEs isgiven by:
Fon(t)=1-e 2™

Consider the conditional probability that a failure occurs at or before time .9m,,. (2*)
given that afailureoccurs at or before time My (25).

Prit < Megee (29 |1 < M erec QDIPrIE € M e 2]
Prit € Mg %]

Prt=< -9nexec(2k) |z < nexec(zk)] =

1- e—zkx'%tnc(zl)
ok X

This probability approaches 0.9 asM,x.(2*) approaches zero from the positive direction, and
it monotonically approaches 1 asM,..(2¥) increases. Therefore, when 1 ..(2¥) is 100 times
greater than Tr,.gq, there is a 0.9 or greater probability that a failure will occur by time
90T7,ng+, given that a failure occurs by the time the program has completed. Thus, for this
case, there is a high probability that <, the time the failure occurs, will be less than or equal
t0 90T Tynsfr» ANA TempExee = Nexec2¥) = T > 10T pyngs. FOr the case Where Mgz (2%) is more



than 100 times greater than Tr..g, there is an even greater probability that
T]M(2k)—'c > > Trengr- Thus, there is a high probability that Teompezec Will be much
greater than Tr,.g When afault occurs.

Consider the penalty of choosing the wrong reconfiguration option. The worst-case
penalty, TPwanys is defined to be the worst-case difference between the expected completion

time of atask after choosing a suboptimal reconfiguration option and the expected comple-
tion time of atask after choosing the optimal reconfiguration option. For example, if the task
redistribution option was chosen, but the task migration option would have resulted in the
earliest completion timefor the task, the worst-case penalty would be:

TE iy = max (Ths + TR + TCRpExec) — min(TPi, + TG + T pEsec),

where the maximum and minimum refer to the ranges for the parameters. Here, two cases
are considered: 1) the reconfiguration choice was made assuming that the remaining execu-
tion time was much greater than the time to transfer the task code and data
((nmc(z") - 1) > > T1rag), and 2) the reconfiguration choice was made assuming that the
remaining execution time was much less than the time to transfer the task code and data
(Mexec(2¥) = 1) < < Tryngy). The case where (efaexec(2¥) — 1) and Trmg are of the same
order isnot of interest in a worst-case anaysis.

First, consider the case where it was incorrectly assumed that (nem(z") = 1) > > Trngsr-
In this case, from the results of Subsection 4.4, the task migration option would have been
chosen. If the fault-free subdivision option is the optimal one, the worst-case penalty would
be:

Ty < max(Thih, + TThg) — min(Thhy, + T,

because the best expected time to complete execution on a fault-free subdivision is greater
than the expected time to complete execution after task migration. Furthermore, for
machines like PASM and nCUBE 2, TR, — THs, is negligible, and THs - T?,”_,ﬁf, is gen-
erally on the order of hundreds of milliseconds (see Table ). Thus, in thiscase, T, emz,, IS
on the order of TRy (recall THqs =0).

If instead the task redistribution option is the optimal choice for this example, the

worst-case penalty would be:



TRy < max(Thih, + TH ) — min(TH, + THug).

Again, the best expected time to complete execution after task redistribution is greater than
the expected time to complete execution after task migration. For PASM and nCUBE 2,
T Penaley iSON the order of TTH. (see Table1I).

Now, consider the case where it wasincorrectly assumed that (Mezec = 7) < < Tryngr- IN
this situation, either the fault-free subdivision or task redistribution option would have been
chosen. If the fault-free subdivision option was chosen when the task migration option
would have been better (because in actuality (Mexec — 1) > > T1yngpr), the penaty for making
the wrong choice is given by:

T Penatty = 0axX(Thin + Tihs + Tempxec) — min(Thie, + Tl + T oEeee)-

Substituting values from the analysis in Subsection 6.6.4, resultsin:

T Ponatty = max(Thh; + THs6) — min(THE, + T ) + QT Erec — TompExec)

= max(Thh, + Thhs) — min(Thle, + Thgs) + Nexec(25) — 1.

Recall the value of Mg (2%) is assumed to be much larger than T, When reconfiguration
options are to be considered. Thus, in the worst case, the penalty for incorrectly assuming
(Mexec — 2) < < Tty 1S Much greater than incorrectly assuming (Mexec = 2) > > Trpnger- A
similar analysis for the case where task redistribution was erroneously chosen over task
migration resultsin the same potential for alarge penalty.

To summarize this section, two conclusions are made: first, it isexpected that thereisa
high probability that Tcmpexee Will be much greater than Tr,. when a fault occurs, and
second, that the worst-case penalty for incorrectly assuming this is true is far less than the
worst-case penalty for incorrectly assuming the opposite. Therefore, a mathematical
justification for choosing a reconfiguration option by considering only the time required to
complete the task has been established. Combining this result with the results of Subsection
4.4, the choice of reconfiguration strategy becomes one of choosing to migrate the task if an
idle submachine exists. If this option is not available, the next best option is task redistribu-
tion. Finaly, if the task does not lend itself to redistribution, a fault-free subdivision can be
used to complete the task.
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The model parameter value ranges established in Section 6.6 are in some cases very
COASE, €.8., TempExee fOr tasks with data-dependent (nondeterministic) execution times, and
thereforedo not provide the information needed to determine the best reconfiguration option.
However, the andysis in this section has made it possible to establish a good set of
reconfiguration guidelines.

8. Summary

A quantitativemode of system reconfiguration due to a PE or PE memory module fault
was examined. Four fault recovery options were discussed and the parameters required to
determine their respective costs were identified. For the fault-free subdivision, task migra-
tion, and task redistribution recovery options (future work will add the remote memory
recovery option), the mode parameters were categorized into one of three categories. time
to plan for the reconfigurationoption (T'py,), time to move the task data and code (T7nsp),
and time to compl ete task execution after reconfiguration (Tempgzec). The relative times for
each reconfiguration option considered were examined for each category and the options
were ranked when possible. Actua parameters collected on the PASM experimenta proto-
type and the nCUBE 2 commercia machine were used to support the analysis.

For the system architectures considered, Tpy,, is generdly much smaller than Tryng -
Furthermore, when basing the reconfiguration decison only on T, (ignoring TempExec)»
the fault-free subdivision or task redistribution options will result in the smallest total execu-
tion time for the task. The choice between the fault-free subdivison and task redistribution
options will depend on the task being executed.

It was shown that for those tasks where dynamic reconfiguration should be considered,
there is a high probability that the expected value of Teppezee Will be greater than Ty
Thus, Tcmperec becomes the primary parameter to consider when choosing among
reconfiguration options. When Tcppgs.: is the dominant factor, the task migration option
resultsin the earliest task completion. Task redistribution is the next best option. However,
in the worgt case, task redistribution can require as much time as completing the task on a
fault-freesubdivision.

Task execution times used in the modd may be just expected vaues when execution
times are data dependent and therefore nondeterministic. Because of this, a wors case
anaysis was peaformed. An examination of the penalty for choosing the wrong
reconfiguration option provides further justification for basing the reconfiguration decison
ON TempErec- AN analysis of the wordt-case pendties revedls that the pendty for assuming



TcmpExec 10 be much greater than Tpya, and T, is much less than the penalty for assuming
otherwise. Thus, using a quantitative framework, it has been shown that task migration is the
best dynamic recovery option When Teppexe. iS expected to be much greater than Tpy,, and
Trrns» and when the execution time of a task is nondeterministic.
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