New approaches for improving design and construction processes have been used recently. Innovative methods for managing the requirements and quality of these processes will be discussed. A systematic data centric approach will be discussed as well as the processes of separating progress from performance. It will discuss the integration of these processes in the planning, risk analysis, design, submission, construction, inspection, quality control and documentation phases.

Design and Construction Process Management

David Brown, PE
Delcan Corp.
d.brown@delcan.com

Submitted Abstract

New approaches for improving design and construction processes have been used recently. Innovative methods for managing the requirements and quality of these processes will be discussed. A systematic data centric approach will be discussed as well as the processes of separating progress from performance. It will discuss the integration of these processes in the planning, risk analysis, design, submission, construction, inspection, quality control and documentation phases.
Three Take Away Points...

1. Analog to Digital
2. Progress VS Performance
3. Requirements Management
1. **Analog to Digital**

2. Progress VS Performance

3. Requirements Management

In Design...

ANALOG

DIGITAL
1. **Analog to Digital**
2. Progress VS Performance
3. Requirements Management

In Construction...
WHY DO WE NEED TO ‘CHANGE’?

Understand WHAT needs to be Communicated?
1. Analog to Digital
2. Progress VS Performance
3. Requirements Management

WHY DO WE NEED TO ‘CHANGE’?

HOW will digital Improve Communications?
WHY DO WE NEED TO ‘CHANGE’?

Improvements Realized

Searchable Acceptance Record
Reduce Misunderstanding
Better Coordination
Precision

OWNER

VERIFIER

DESIGNER

BUILDER
1. **Analog to Digital**

2. Progress VS Performance

3. Requirements Management

HOW DO WE DO THIS?

Communicate requirements in a database format as opposed to a ‘novel’ format.

Deliver the design to the builder as a CADD model and let them figure out the best way to communicate it to their workers.

Leverage new technology to build with robotic precision where possible.

Embrace GPS enabled data collectors instead of hand written forms.
1. Analog to Digital
2. **Progress VS Performance**
3. Requirements Management

In Design...

Design Progress Tracker

October 2011

<table>
<thead>
<tr>
<th>Report Activities</th>
<th>Interim Design Activities</th>
<th>100% Design Activities</th>
<th>RFC Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Remaining</td>
<td>% Complete</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERFORMANCE

Monthly Design Performance Activity

- Conforming Observations
- Nonconformances (issued)
- Requirement Deficiencies (issued)
- Monthly Performance Rate

![Graph showing monthly design performance activity with data points for each month from July 2011 to January 2012.](image)
1. Analog to Digital
2. **Progress VS Performance**
3. Requirements Management

In Construction...

PROGRESS

PERFORMANCE
Why do we collect data on ...

PROGRESS
- Claim defense
- Let SR. management know something is happening
- Tell the ‘story’ of the project

PERFORMANCE
- Material test results
- Satisfy the FHWA
- Get enough tests to meet frequency guide
Issues with current practice ...

- Should be claim avoidance not defense
- Photos worth a 1000 words
- Boxes of paper don’t always tell the full story
- Majority of issues result of workmanship, not materials
- Frequency of testing not adjusted for past performance
Benefits to be realized ...

- Use trained and qualified inspectors to measure performance of work
- Use time lapsed cameras to monitor progress of work
- Fewer inspectors more focused on what they are trained to do – inspect completed work
- Digital photography can provide a full, time-stamped story of how the work was completed – cheaply
- Tracking performance can highlight areas performing well and areas under performing
‘Requirements Management’...
What is it???

“generally conforming to Contract requirements”

“requirement” = clearly communicated parameter
702.10 Pumping Concrete
If the Contractor elects to convey concrete by means of pumping, the concrete shall be handled so as to minimize disturbance to the concrete which significantly alters the properties of the concrete being pumped, especially the loss or variability of the air content. The pumping equipment shall be mechanically sound, suitable in kind, and adequate in capacity for the proposed work. The concrete shall not be pumped through aluminum or aluminum alloy pipe. All pipes used for pumping concrete shall be kept clean and free from coatings of hardened concrete. Pump lines shall not rest directly on epoxy coated reinforcing bars. The pumping equipment shall be located such that operational vibrations will not damage freshly placed concrete.

When placing concrete directly from a truck mounted boom, the concrete pump lines shall have a flexible end section at least 10 ft (3 m) long. Methods of placement shall be such as to result in a steady and continuous discharge. If necessary, this may require the use of a restrictive device at or near the end of the discharge tube, the laying the flexible end section horizontally, or other means. For the initial placement of concrete pours which are predominantly vertical, the discharge end of the flexible end section shall be within 2 ft (0.6 m) of the bottom of the pour.

The Contractor shall submit a description of the pumping procedures which it intends to use, and shall notify the Engineer as to the pumping procedure at least 24 h in advance of concrete placement.

702.11 Cold Weather Concrete
When it is necessary to place concrete at or below an atmospheric temperature of 35°F (2°C), or whenever it is determined that the temperature may fall below 35°F
1. Analog to Digital
2. Progress VS Performance
3. Requirements Management

To a Database.
1. Analog to Digital
2. Progress VS Performance
3. **Requirements Management**

Traditional Approach...

Section 700 – Structures – 233 pages

How many requirements????

(b) Chutes and Troughs

Concrete shall be placed so as to avoid segregation of the materials and the displacement of the reinforcement. Where steep slopes are required, the chutes shall be equipped with baffle boards or be in short lengths that reverse the direction of movement. Open troughs and chutes shall extend as nearly as possible to the point of deposit. Equipment made of or coated with aluminum alloys shall not be used to transport concrete. Pumping of concrete shall be in accordance with 702.10. When the discharge must be intermittent, a hopper or other device for regulating the discharge shall be provided. Placement of supplementary bins or hoppers may be ordered above the point where concrete is being deposited. The concrete shall be allowed to accumulate in these containers in considerable quantity and shall be discharged immediately through pipes extending from the bottoms of these bins or hoppers. All chutes, troughs, and pipes shall be kept clean and free from coatings of hardened concrete. The water used for flushing shall be discharged clear of the concrete already in place.

Concrete shall not be dropped in the forms a distance of more than 5 ft (1.5 m) except when confined by closed chutes or pipes. Each part of the form shall be filled...
3. **Requirements Management**

Requirements Management Approach...

<table>
<thead>
<tr>
<th>Technical Provisions</th>
<th>phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 3 DESIGN QUALITY ASSURANCE, QUALITY CONTROL, AND OVERSIGHT</td>
<td></td>
</tr>
<tr>
<td>2. 3.1 Designer Responsibilities</td>
<td></td>
</tr>
<tr>
<td>3. Developer shall verify pertinent dimensions in the field prior to the review of</td>
<td></td>
</tr>
<tr>
<td>Design Documents, Plans, and Construction Documents.</td>
<td></td>
</tr>
<tr>
<td>Design Documents, Plans, and Construction Documents shall be subject to IFA’s</td>
<td></td>
</tr>
<tr>
<td>Design Review before beginning construction work covered by the Plans, and shall</td>
<td></td>
</tr>
<tr>
<td>not be thereafter amended or altered without the prior approval of Developer’s</td>
<td></td>
</tr>
<tr>
<td>Designer and subsequent Design Review by IFA.</td>
<td></td>
</tr>
<tr>
<td>4. 3.2 Developer’s Design Organization and Obligations</td>
<td></td>
</tr>
<tr>
<td>5. 3.2.1 Designer</td>
<td></td>
</tr>
<tr>
<td>Developer shall appoint a suitably qualified and experienced Designer,</td>
<td></td>
</tr>
<tr>
<td>management</td>
<td></td>
</tr>
<tr>
<td>6. 3.2.2 Location of Developer’s Designer</td>
<td></td>
</tr>
<tr>
<td>the Key Personnel shall be assigned primarily to the Project Office</td>
<td></td>
</tr>
<tr>
<td>management</td>
<td></td>
</tr>
<tr>
<td>7. 3.2.4 Lead Engineer</td>
<td></td>
</tr>
<tr>
<td>Developer shall designate and assign a Lead Engineer to manage all Work performed</td>
<td></td>
</tr>
<tr>
<td>by Developer’s Designer (Lead Engineer).</td>
<td></td>
</tr>
<tr>
<td>management</td>
<td></td>
</tr>
<tr>
<td>8. The Lead Engineer shall be located in the East End Crossing vicinity as required</td>
<td></td>
</tr>
<tr>
<td>for the Design Work,</td>
<td></td>
</tr>
</tbody>
</table>

Identify individual requirements into a table format.
1. Analog to Digital
2. Progress VS Performance
3. **Requirements Management**

Build a database of requirements...

Dynamic checklists of discipline specific requirements

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1822</td>
<td>elastomeric bearing design - specify the method in the plans - DESIGN</td>
</tr>
<tr>
<td>1821</td>
<td>Design life for MSE walls - 100 years - DESIGN</td>
</tr>
<tr>
<td>1820</td>
<td>Shear connectors for composite steel beam and girders - provide shear connectors for the full length of the members - DESIGN</td>
</tr>
<tr>
<td>1519</td>
<td>Crossframes orientation - orient crossframes perpendicular to the main steel members regardless of the structure's skew angle - DESIGN</td>
</tr>
<tr>
<td>1818</td>
<td>Web of the primary members - detail lateral bracing to fit in the steel dead load condition with the webs of the primary members plumb - DESIGN</td>
</tr>
<tr>
<td>1817</td>
<td>Fatigue life - design all components and details for infinite life using the Fatigue I load combination - DESIGN</td>
</tr>
<tr>
<td>1816</td>
<td>Lateral ties - required for T-type and walltype piers (BDM 363.3.2.9) - DESIGN</td>
</tr>
<tr>
<td>1815</td>
<td>Minimum spacing of pretensioning strand - 2.0 inches, measured center-to-center of the strands - DESIGN</td>
</tr>
<tr>
<td>1814</td>
<td>Time-dependent fatigue life - In the absence of more precise data, for prestressed members without posttensioning, designers may assume the following ages:</td>
</tr>
<tr>
<td>1813</td>
<td>Top surface of composite prestressed concrete beams - reconditioned to an amplitude of 0.25 in. - DESIGN</td>
</tr>
<tr>
<td>1812</td>
<td>Modulus of elasticity for prestressing strand - assume 20,500 ksi unless more precise information is available - DESIGN</td>
</tr>
<tr>
<td>1811</td>
<td>Minimum inventory load rating - 1.0 for HL-93 - DESIGN</td>
</tr>
<tr>
<td>1810</td>
<td>Load rating - in accordance with BD&M 900 - DESIGN</td>
</tr>
</tbody>
</table>
3. **Requirements Management**

Assign attributes to requirements...

- Tactical level RISK
- PHASE of project delivery
- OWNER – applicable jurisdiction
- Estimated COST
- VERIFICATION responsibility
- Others...
3. **Requirements Management**

Requirements Management Approach...

Benefits to be realized ...

- Apply relevant attributes to requirements
- Measure performance over time
- Consistency in requirement selection and verification
- Reduce risk of misunderstanding expectations
Summarize Take Away Points...

1. Analog to Digital
2. Progress VS Performance
3. Requirements Management
Contact Information...

David Brown, PE
Delcan Corporation
26 West Dry Creek Circle, Suite 616
Littleton CO, 80126

d.brown@delcan.com
303-419-4696