A study of alloyed nanowires from two perspectives: Approximate dispersion and transmission

Gerhard Klimeck
Purdue University, gekco@purdue.edu

Timothy Boykin
Department of Electrical and Computer Engineering, University of Alabama

Mathieu Luisieir
Integrated Systems Laboratory

Neerav Kharche
Birck Nanotechnology Center and Purdue University, nkharche@purdue.edu

Andreas Schenk
Integrated Systems Laboratory

Follow this and additional works at: https://docs.lib.purdue.edu/nanopub
A Study of Alloyed Nanowires from Two Perspectives: Approximate Dispersion and Transmission

Gerhard Klimeck1,2, Timothy B. Boykin3, Mathieu Luisier4, Neerav Kharche1, Andreas Schenk4

1 Network for Computational Nanotechnology, Purdue University, West Lafayette, IN 47906, USA
2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
3 Department of Electrical and Computer Engineering, University of Alabama, Huntsville, AL 35899, USA
4 Integrated Systems Laboratory, ETH Zürich, 8092 Zürich, Switzerland

Abstract. Local atomic arrangement in heterostructures or disorder due to alloying, surface roughness and impurities strongly influence the bandstructure and charge transport. With decreasing diameters down to nanometer scales, disorder can no longer be treated in an average manner using the virtual crystal approximation (VCA) and the need for atomistic simulations arises. This work looks at the nanoscale devices from two different perspectives. The materials science perspective in which average bandstructure of the whole nanowire is computed using the nanoelectronic modeling tool (NEMO-3D) and the zone-unfolding algorithm. The device physics perspective, where the transmission coefficient is calculated with an atomistic non-equilibrium Green’s function (NEGF) approach. Both approaches use 20 band sp3d5s empirical tight-binding model with spin orbit coupling. The connection between dispersions and transmission coefficients of AlGaAs random alloy nanowires is highlighted. Both, transmission coefficients and average bandstructures show reduced bandgaps and noisy behavior. Their complimentary and mutually supporting nature provides a significant insight into the physics of charge transport through disordered systems.

Keywords: nanowire, tight binding, transmission, transport, NEGF, disorder, alloy

PACS: 71.20.-b, 71.23.-k, 73.21.Cd

INTRODUCTION AND APPROACH

Theoretical approaches to study transport through semiconductor nanostructures can be classified into two broad classes: bandstructure and transport. Most often effective-mass or kp models are used \cite{1}, however, more complete, multi-band calculations based on methods such as pseudopotentials\cite{2}tight-binding\cite{3}, or the bond-orbital model\cite{4} have appeared recently. Disorder is known to influence electronic structure at the nano-scale\cite{5}. To study the effects of alloy-disorder in nanowires we perform atomistic random-alloy calculations of approximate bandstructures as well as the transport characteristics of Al$_{0.15}$Ga$_{0.85}$As nanowires.

In this work, we calculate approximate bandstructure in freestanding [100] directed Al$_{0.15}$Ga$_{0.85}$As nanowires and compare them to transmission coefficient calculations. All calculations have been done in 20-band sp3d5s tight-binding model with spin-orbit coupling \cite{6}. The nanowire geometry is specified in terms of zincblende conventional unit cubes (lattice parameter $a_0=0.565$ nm) $n_x \times n_y \times n_z$, where n_i is the number of cubes in i-direction. Eigenspectrum (eigenvalues and wavefunctions) of $40 \times 6 \times 6$ Al$_{0.15}$Ga$_{0.85}$As nanowire supercell is computed using NEMO_3D \cite{5}. The supercell is periodic in the transport (x-direction) and the wire mantle surfaces are passivated \cite{7}. Small cell bandstructure for a $1 \times 6 \times 6$ cell is then projected out of the supercell eigenspectrum using our zone-unfolding method \cite{8}.

Transmission coefficients through the same nanowire are computed using a hybrid method combining a recursive NEGF method and a wavefunction calculation \cite{9}. In these calculations the semi-infinite emitter (collector) region is identical to the first (last) slab of the nanowire.

RESULTS

Figure 1(a) shows bandstructures of an Al$_{0.15}$Ga$_{0.85}$As random alloy nanowire calculated using conventional VCA method and unfolding $40 \times 6 \times 6$ supercell eigenspectrum. The random alloy
results in significantly lower conduction band minima than VCA calculation. Transmission coefficients through the same nanowire supercell are shown in figure 1(b). The VCA transmission shows an ideal step like behavior, however, the transmission coefficient from random alloy calculations shows a noisy behavior as a consequence of random placement of Al atoms in AlGaAs nanowire. Features in transmission are related to the approximate bandstructure and vice versa. Each band corresponds to two transmission channels for up and down spins. The lowest approximate band at $k=0$ produces a transmission turn on near 1.92 eV. More channels turn on at about 1.97 eV due to approximate bands near π/a_0.

Figure 2(a) shows the local conduction band minima for each slab (1x6x6 cell) and a density of states of the same 40x6x6 AlGaAs nanowire. The transmission spike at about 1.92 eV in figure 2(b) corresponds to a localized density of states seen in figure 2(a).

In summary, we have found that approximate bandstructures from random alloy supercell calculations and atomistic NEGF transport calculations are complimentary and mutually supporting. Both methods provide better insight into the disordered nanowire device physics.

ACKNOWLEDGMENTS

The work at Purdue was supported by the National Science Foundation, Grant No. EEC-0228390 and ONR. nanoHUB.org computational resources were used in this work. The work at UAH was supported by Jet Propulsion Laboratory, California Institute of Technology and ONR.

REFERENCES

