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ACCURATE ~XPERIMENTAL DETERMINATION OF FREQUENCIES, MODE SHAPES 
AND DYNAMIC STRAINS IN PLATE VALVES OF RECIPROCATING COMPRESSORS 

Harsha K. Reddy, Engineer 
Advanced Reactors Division 

Westinghouse Electric Corporation 
Madison, Pennsylvania 

INTRODUCTION 

One of the components of a compressor which fails 
frequently is the valve, with most valve failures 
due to metal fatigue. It is important to have some 
method of predicting valve life under operating 
conditions. One method of predicting valve life is 
to determine the valve stress levels by computer 
simulation of the valve dynamics and relate these 
stress levels to the fatigue life.· 

The valve dynamics can be expressed as a linear 
combination of the normal displacement modes of 
vibration of the valve. The flexural strains in the 
valve can then be expressed as a linear combination 
of the first and second order spatial derivatives 
of the displacement modes. If the valve modes are 
derived analytically then the strain in the valve 
can be determined quite accurately. However, for 
all but the simplest valve geometries analytical 
derivation of the modes is extremely difficult, if 
not impossible, and one must resort to experimental 
methods to determine the displacement mode shapes. 
Since the strain values are proportional to the 
derivatives of the displacement modes, local 
inaccuracies in the experimental data are highly 
magnified especially in the regions of high strain 
gradients. A method to obtain directly modal strain 
values for the valves (l) is utilized here to 
overcome this problem. The size of the valves is 
usually so small that it is difficult to obtain the 
necessary accuracy in the modal information from 
experimental tests. A method is utilized in this 
work that uses scaled up models of the valves to 
obtain accurate modal data (2). 

MATHEMATICAL MODELING TECHNIQUE FOR RING VALVE 
PLATES 

The technique of the computer simulation is 
described in detail in (l) and (2).and will not be 
dealt in here. Most computer simulations utilize 
valve dynamics in terms of the modal expansion 
technique whereby the dynamic deflection, W(r,e,t) 
of the ring plate valve is given in polar 
coordinates, for example, by 

290 

James F. Hamilton, Professor 
Ray W. Herrick laboratories 

Purdue University 
Lafayette, Indiana 

W(r,e,t) = J: ¢ (r,e) . q (t) (l) n=l n n 
where ¢n(r,e) are the necessary displacement modes 
and qn(t) are the participation factors obtained 

from a typical modal equation 

.. • 2 Fn(t) 
qn(t)+2swnqn(t)+wnqn(t)= Mn 

where 

; = damping coeffient 
wn= natural frequency of the nth mode 

Fn(t)= generalized modal force 
Mn= generalized modal mass 

The dynamic strains in the tangential and radial 
directions are generally given as derivatives of 
the dynamic deflections as 

where 

+ _1 .1..\i..] 
r ar 

£
6
= strain in the tangential direction 

£ = strain in the radial direction r 
c = plate thickness 
r = radial coordinate 
W = deflection normal to the plate surface 
e = tangential coordinate 

(2) 

(3) 

(4) 

Substitution of Eqn.(l) in Eqn.(3) and Eqn.(4) 
presents the strains in terms of the derivatives of 
the deflection modes as 



az~ 1 a~n 
c;

8
(r,e,t) 

00 

qn(t) [1 _ n (5) -c l: r2ae2 + --;:-ar-J 
n:::l 

c;r(r,e,t) 
00 

q ( t) ~n ( r, e) (6) -c l: 
n=l n ar2 

STRAIN MODE RATIO 

Eqn. (5) can be rewritten as 

where 

~" (r,e) 
n 

= c E qn(t) ~~ (r,e) 
n=l e 

(7) 

Eqn. (7) shows that strain is a function of the 
first and second derivatives of the deflection 
function, ~ (r,e). For valve plates of such 
geometry an9 boundary conditions that analytical 
solutions to ~ (r,e) can be obtained, the 
calculation ofnstrain, c;, from Eqn.(7) poses no 
problem as far as accuracy is concerned. But if 
the valve confi~uration is such that an analytical 
solution for ~ (r,e) cannot be obtained, then the 
strain must bencalculated from experimentally 
measured deflection functios, ~ (r,e). [f the 
measurement of ~ (r,e) is sligh£ly in error, then 
any derivative o~ these ~ (r,e) will be in much 
greater error. In such ca~es it seems logical to 
measure strains on the surface of the plate valves 
experimentally. 

Adams (1) defined a nondimensionalized quantity 
called the Strain Mode Ratio as 

where 

s (r.,e.) 
n 1 1 

E (r.,e.) 
n 1 1 

h 

(8) 

= strain mode ratio which is 
characteristic oft~he location 
(r.,e.) for then mode 

= me!suted strain at location th 
(r.,e.) on the plate for then 

l l 

mode for a corresponding deflec­
tion W(r.,e.) at location (r.,e.) 

J J J J 
on the valve plate 

= thickness of plate, in. 
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u = characteristic dimension of the 
plate 

W (r.,e.) =measured deflection at location 
n J J (r., .) for the nth. mode 

J J 

The values of E and W are measured experimenta­
lly during the eQcitati8n of the valve at a natural 
frequency. 

Knowing the strain mode ratio for the particular 
valve plate and the modal deflections one can 
calculate the strain at a point on the valve plate. 

The modal deflection at the point (rj,ej) is 

The modal strain at the point, (r. ,e.) at which 
the strain mode ratio is known is 1 1 

Substituting Eqn.(9) in Eqn.(lO) 

(9) 

h c; (r.,e.,t) =- Sn(r.,e.)q (t) (r.,e.) (11) 
n 1 1 a 2 1 1 n n J J 

The total strain at (r.,e.) due to the contribution 
of all the 'modes is 1 1 

~ s (r.,e.)~ (r.,e.)q (t) 
a2 n 1 1 n J J n 

( 12) 

It can be seen that can _be computed if Sn(ri,ei) 

and t;(r.,e.) are known, where c; is either the 
J J 

radial or tangential strain. 

STOP FORCE RATIO 

In compressors with high flow rates the valve 
deflections can be excessively high. To limit the 
maximum deflections valve stops are provided. A 
simple configuration is shown in Fig. (1) for the 
case of a reed valve. During the history of its 
motion the valve can be in two states: 

1) valve lifts off the seat and is between seat 
and stop- state 1. 

2) valve hits the stop and remains against the 
stop - state 2. 

3) valve comes off the stop and is again between 
seat and stop - state l again 

In modeling the valve dynamics it is necessary to 
know at what point in time the boundary conditions 



change. It is necessary to know when the valve 
contacts the stop, which can be determined by moni­
toring the deflection at the stop point of the 
valve. When the deflection equals the stop depth it 
indicates that the valve has come in contact with 
the stop and the boundary conditions should be 
changed to r~flect the new valve dynamics. 

To find when the valve departs the stop it is nece­
ssary to monitor the shear force in the valve tip. 
The shear force can be calculated in terms of the 
third derivative of the deflections modes and thus 
requires extreme accuracy in the knowledge of the 
deflection modes. If the deflection mode informa­
tion is not extremely accurate the third derivative 
of such information will be highly inaccurate. 

In order to overcome this problem the shear force 
can also be measured experimentally, and similar to 
the strain mode ratio a nondimensionalized quantity 
called the "Stop Force Ratio" can be defined as: 

where 

a. 

D 

W (r.,e.) 
n J J 

( 13) 

measured force at the stop,(rk,ek) 
for the given mode, n and for a 
given displacement, Wn(rj,ej) at 
the location (rj ,ej) 

= characteristic dimension of the 
valve 

= modulus of rigidity of the valve 
material 

= measured modal deflection at the 
location (rj,ej) 

Knowing the stop force ratio, one can calculate the 
modal contribution to the force at the stop. The 
deflection at (r.,e.) due to then th. mode is 

J J 

w (r.,e.,t)=Tn(t).¢ (r.,e.) n J J n J J 
( 14) 

It is important to note here that Wn(r.,eJ.,t) is . ' J 
the deflection df the valve during the state of the 
valve against the stop. So are the participation 
factors Tn(t) and the mode shapes ¢n(rj,ej). 

The contribution of the nth mode to the total stop 
force is given by 

Fn(t) = F (rk,ek)._E__. W (r.,e.,t) (15) n a. 2 n J J 

Substituting Eqn. (14) in Eqn. (15) 

F (t) = F . _Q__. ¢ (r. ,e.) Tn(t) n n a.2 n J J 
(16) 
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The total stop force is the sum of the contribut­
ion of all the modes. So the total stop force is 
given by 

F(t) = _E_ 'f F.¢ (r.,e.).T (t) 
a.2 n=l n n J J n 

To determine the time at which the valve leaves 
the stop the force F(t) is monitored. When it 
becomes zero, the valve is leaving the stop. 

USE OF SCALING LAWS 

( 17) 

The actual valves are frequently too small on 
which to make the deflection and strain measure­
ments conveniently. It is difficult to properly 
simulate the boundary conditions in the experimen­
tal set up because of space limitations and the 
valves are usually of such stiffness that excita­
tion at their natural frequencies is difficult. 
The deflections which can be achieved are also 
small such that accuracy is adversely affected. 
To overcome this problem scaled models of the 
actual valves can be used. The measurements can be 
made on the larger scaled models instead of the 
actual valves. The scaled models of larger size 
and lower stiffness can be excited easier and the 
frequencies and mode shapes can be measured with 
greater accuracy. 

Frequency Scaling Law 

The relation between the natural frequencies of 
two geometrically similar plates is given by (3) 

where 

fl ,f2 

hl ,h2 
0:1 , 0:2 

El ,E2 
pl ,p2 

natural frequencies 

thickness of plates 
= characteristic dimension 

Young's modulus 
density of the two materialssof the 
plates 

( 18) 

= Poisson's ratio for the two materials 

In the case of ring plate valves the characteristic 
dimension could be either the inner or outer radius. 
For two geometrically similar valves it is implied 
that planar dimensions be similar, therefore 

k ( 19) 



where 

R. ( i=l ,2) 
1 

r. (i=l ,2) 
1 

k 

outer radii 

inner radii 

scaling factor 

It is not necessary for the thickness of the two 
valves to be of the same ratio for the valves to be 
geometrically similar. The thickness ratio may be 
chosen arbitrarily. 

If the material of the two valves is 

El = E2 

pl P2 

0:1 0:2 

then the frequency 1 aw reduces to 

h2 o:l 2 
f [ J [ J 
1 h 1 o:2 

the same 

(20) 

It is worth noting that Eqns. (18) and (20) apply 
to plates in general. The only requirement is that 
the two plates which are scaled be geometrically 
similar. 

The strain mode ratio and the stop force r~tio are 
both nondimensional quantities and are therefore 
invarient for corresponding locations on geometri­
cally similar valves. Scaled models of the actual 
valve can be used and the strain mode ratio and 
the stop force ratio can be measured much more 
accurately. 

COMPRESSOR VALVE DYNAMICS TEST DATA 

Experimental tests were performed on the particular 
compressor test valves in a scaled up version. 
Fig. (2) presents a schematic of the experimental 
test system for measuring the desired values of 
valve deflection, valve strain and valve stop force 
at a resonant frequency of the valve. Only the 
resonant frequency needed to be scaled back to the 
true size valve. 

The results of the frequency tests are shown in 
Table 1 where the experimental values are the fre­
quencies measured on the true size valves and the 
predicted values are scaled from the frequency 
measurements made on the scaled up valve.The higher 
values obtained on the true valve were probably due 
to the difficulty of maintaining the proper bound­
ary conditions at the support edges. 

The results of the strain mode ratio measurements 
are shown in Fig. (3), (4) and (5). One can see 
that more detailed data was obtained by using 
larger scaled models. 
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APPLICATION TO COMPUTER SIMULATION 

The modal data obtained from the scaled model was 
utilized to predict the valve strain using a com­
puter model of the compressor. Fig. (6) shows the 
experimentally measured strain and the strain 
predicted by using the computer model. The maximum 
level of strain could be predicted accurately, 
though it was impossible to predict strain point 
for point. The important parameter is the maximum 
strain to predict the valve life. The effect of 
fluid damping on the maximum valve strain was 
being studied in this analysis. 

SUMMARY AND CONCLUSIONS 

A method was presented for measuring accurate modal 
data of compressor valves utilizing scaled models. 

The modal data was used in a computer simulation 
to sucessfully predict valve strain. 

REFERENCES 

l) Adams,J.A., Hamilton,J.F.,"The prediction of 
dynamic strain in ring type compressor valves using 
experimentally determined strain modes", Procedings 
of the 1974 Purdue Compressor Technology Conference. 

2) Reddy,K.H.,"Computer simulation of a reciproca­
ting compressor with special emphasis on the pred­
iction of dynamic strains in ring type valves", 
Ph.D. Thesis, Purdue University, August, 1974. 

3) Soedel, w. ,"Similitude approximations for vibra­
ting thin shells", Journal of the Acoustic Society 
of America, Volume 49, No. S(part 2), May 1971. 



I 

'· 

Tabli! l 

Mod!!: 1 

Comparison of Ellper'i~tal and Predicted V"-lues of 
Frequencies of the Act.u~l V41lve 

-----.----- -~ -· ----------
Two Point Support Four Point Suppol"t 

Mode 2 Hode J Mode l Mode 2 

E)(per'imenta 1 465-485 1-il 2100 Hz 5900 Hl 1900Hz 4300 l-Iz 
I 
I 

Predic::ted 403 "' I 1820Hz SJiiSHz 1141 l-Iz .11184 H:~; 

V41Ye lifts off the 
s~at and h b@tween 
s.a&t and stop. 

V.alve ilgainst stop 

Vilve comes off stop 
and fs again between 
stop lhd U!lt 

Ffgure l V.iilve 111 Three Sbtes of Motfon 

Figur@' 2 lnstr~entltion for Force Measurement 

I (// 'i'-"' '.,Sco1ed "" 

\ Tru~ Si:z!! 

i / '\-/ '', 
// \-~ -- \ 

Degrees 

M:::~de: 3 

Mot Measured 

S487 Hz 

F'i43ure J CO!nplrfson of St.~.1in O..t .. Obt11'ined from Aetub.1 V,:.lve and Model Va1v~ 

294 

-• 

.3 

·' ~ 

j . .1 

~ 

- .0 . 
i-.l 
~ 

3 •• 

'· . 

~ 

~ 1.-
j! 

] 
0. 

1l 

~ -1., 

~ 
] 

.:;: -·-~ 

J 
r 
0. 

Ffgure • 

15 

'"""' t0-j; -\ .... 
I; -

l/ 

I 
/ 

COI!Ipuison of Srain Oat;;~ Obtll'ined frt;VJ~ Actu•l Valve 
and Sea led Valve 

30 <5 60 75 
D~rees 

90 

Figur-e 5 C~WPir'ison of Srain Ott& Obtained frcm Actual Valvi! and Hodel Valve 

3.0 llfSlb~ 1.DP1:1 
I'OTc~ PS1 
PSI;IT:S. l":ii 
!!TRAIN AT~ DEG. 

'·' 

.!5: 2.0. 

a 

Fi~~.:rc fJ P!'~..:.lctcJ "iJ";..fl1 Stra!:l- :n v~.l" i"O! :)]..:':c~·l:r.t ,·J:Ul'.:> ~~ 
:J .... j'lpin,c 


	Purdue University
	Purdue e-Pubs
	1976

	Accurate Experimental Determination of Frequencies, Mode Shapes, and Dynamic Strains in Plate Valves of Reciprocating Compressors
	H. K. Reddy
	J. F. Hamilton


