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ACCURATE EXPERIMENTAL DETERMINATION OF FREQUENCIES, MODE SHAPES
AND DYNAMIC STRAINS IN PLATE VALVES OF RECIPROCATING COMPRESSORS

Harsha K. Reddy, Engineer
Advanced Reactors Division
Westinghouse Electric Corporation
Madison, Pennsylvania

INTRODUCTION

One of the components of a compressor which fails
frequently is the valve, with most valve failures
due to metal fatigue. It is important to have same
method of predicting valve life under operating
conditions. One method of predicting valve Tife is
to determine the valve stress levels by computer
simulation of the valve dynamics and relate these
stress levels to the fatigue 1ife.

The valve dynamics can be expressed as a linear
combination of the normal displacement modes of
vibration of the valve. The flexural strains in the
valve can then be expressed as a linear combination
of the first and second order spatial derivatives
of the displacement modes. If the valve modes are
derived analytically then the strain in the valve
can be determined quite accurately. However, for
all but the simplest valve geometries analytical
derivation of the modes is extremely difficult, if
not impossible, and one must resort to experimental
methods to determine the displacement mode shapes.
Since the strain values are proportional to the
derivatives of the displacement modes, local
inaccuracies in the experimental data are highly
magnified especially in the regions of high strain
gradients. A method to obtain directly modal strain
values for the valves (1) is utilized here to
overcome this problem. The sjze of the valves is
usually so small that it is difficult to obtain the
necessary accuracy in the modal information from
experimental tests. A method is utilized jn this
work that uses scaled up models of the valves to
obtain accurate modal data (2).

MATHEMATICAL MODELING TECHNIQUE FOR RING VALVE
PLATES

The technique of the computer simulation is
described in detail in (1) and (2).and will not be
dealt in here. Most computer simulations utilize
valve dynamics in terms of the modal expansion
technique whereby the dynamic deflection, W(r,s,t)
of the ring plate valve is given in polar
coordinates, for example, by
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W(rae,t) = £ o (re) . q (t) ()
n=1

where ¢n(r,a) are the necessary displacement modes
and qn(t) are the participation factors obtained

n

from a typical modal equation

. F(t)
. 2
A (£)+28wq (t)+uqp (t)= —pt— (2)
n
where
£ = damping coeffient th
w,= natural frequency of the n™" mode
Fn(t)= generalized modal force

Mn= generalized modal mass

The dynamic strains in the tangential and radial
directions are generally given as derivatives of
the dynamic deflections as

1 52 1 W
e (rie,t) = ¢ — &2+ L =7 (3)
o rZ g% roar
2
eprio.t) = o 2 (4)
ar2
where
£g= strain in the tangential direction
€= strain in the radial direction

plate thickness

radial coordinate

deflection normal to the plate surface
tangential coordinate

T ENO
oo

Substitution of Eqn.(1) in Eqn.(3) and Eqn.(4)
presents the strains in terms of the derivatives of
the deflection modes as
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er(r,e,t) = -c L qn(t) flfn(r,e) (6)
n=1 ar?
STRAIN MODE RATIO
Eqn. (5) can be rewritten as
a@(r,e,t) = ¢} qn(t) o0 (r,e) (7)
n=1 8
where
8%¢ e
L1} 1
op (rse) = -[ — Ll

r2 382 r ar

Eqn. (7) shows that strain is a function of the
first and second derivatives of the deflection
function, ¢ _(r,8). For valve plates of such
geometry and boundary conditions that analytical
solutions to ¢ (r.e) can be obtained, the
calculation of''strain, ¢, from Eqn.(7) poses no
problem as far as accuracy is concerned. But if
the valve configuration is such that an analytical
solution for ¢ %r,e) cannot be obtained, then the
strain must be calculated from experimentally
measured deflection functios, ¢ (r,8). If the
measurement of ¢ {r,8) is slightly in error, then
any derivative of these ¢_(r,8) will be in much
greater error. In such cases it seems logical to
measure strains on the surface of the plate valves
experimentally.

Adams (1) defined a nondimensionalized quantity
called the Strain Mode Ratio as

E, (ri,ei).

h h.wn(rj,ej)

= strain mode ratio which is
characteristic oftﬁhe Tocation
(r;,0.) for the n= mode
medsuted strain at location

(ri’ei) on the plate for the nth

mode for a corresponding deflec-

tion w(r.,ej) at location (rj,ej)

on the valve plate
thickness of plate, in.
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characteristic dimension of the
plate

measured deflection at location
(rj, j) for the nth. mode

The values of E_ and W_ are measured experimenta-
11y during the elcitatibn of the valve at a natural
frequency.

o —

It

N
Wy (rys85)

Knowing the strain mode ratio for the particular
valve plate and the modal deflections one can
calculate the strain at a point on the valve plate.

The modal deflection at the point (rj,ej) is

Mo(rg055t) = ap(E).e(r.e5) (9)
The modal strain at the point, (r,,s.) at which
the strain mode ratio is known is !
p _ h

En(ri’ei’t) = Sn(ri’ei)'j;"wn(rj’ej’t) (10)
Substituting Eqn.(9) in Eqn.(10)

_h
e (ris05,t) == S (r0)q (¢) (ryey) (1)

a?

The total strain at (r.,ei) due to the contribution
of all the modes is

elrg,0p,t)s £ S (r,0 ), (ri05)a,(8) (12)

n=1 «a o3t

It can be seen that can be computed if Sn(ri,e.)

1

and e(r.,6.) are known, where ¢ is either the

radial or tangential strain.

STOP FORCE RATIQ

In compressors with high flow rates the valve
deflections can be excessively high. To limit the
maximum deflections valve stops are provided. A
simple configuration is shown in Fig. (1) for the
case of a reed valve. During the history of its
motion the valve can be in two states:

1) valve lifts off the seat and is between seat
and stop - state 1.

?2) valve hits the stop and remains against the
stop - state 2.

3) valve comes off the stop and is again between
seat and stop - state 1 again

In modeling the valve dynamics it is necessary to
know at what point in time the boundary conditions



change. It is necessary to know when the valve
contacts the stop, which can be determined by moni-
toring the deflection at the stop point of the
valve. When the deflection equals the stop depth it
indicates that the valve has come in contact with
the stop and the boundary conditions should be
changed to reflect the new valve dynamics.

To find when the valve departs the stop it is nece-
ssary to monitor the shear force in the valve tip.
The shear force can be calculated in terms of the
third derivative of the deflections modes and thus
requires extreme accuracy in the knowledge of the
deflection modes. If the deflection mode informa-
tion is not extremely accurate the third derivative
of such information will be highly inaccurate.

In order to overcome this problem the shear force
can also be measured experimentally, and similar to
the strain mode ratio a nondimensionalized quantity
called the "Stop Force Ratio" can be defined as:

2
_fn(rk,ek).a

F (r .6, ) = - (13)
nt k*k D.wn rj, b
where

fn(rk,ek) = measured force at thé stop,(rk,ek)
for the given mode, n and for a
given displacement, wn(rj,ej) at
the location (rj,ej)

o = characteristic dimension of the
valve

D = modulus of rigidity of the valve
material

wn(rj,ej) = measured modal deflection at the

location (rj,ej)

Knowing the stop force ratio, one can calculate the
modal contribution to the force at the stop. The
deflection at (rj,ej) due to the n th. mode is

W (r..e. (14)

(P a85)=T (€14, (rs6.)

It is important to note here that wn(rj,ej,t) is

the deflection of the valve during the state of the
valve against the stop. So are the particigation

factors Tn(t) and the mode shapes wn(rj,ej

The contribution of the nth

force is given by

mode to the total stop

_ D
Fn(t) = Fn(rk,ek)._;a. wn(rj,ej,t) (15)
Substituting Eqn. (14) in Egn. (15)
_ D
Falt) = Fro— - v (ryae) T () (16)
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The total stop force is the sum of the contribut-
ion of all the modes. So the total stop force is
given by

).T (t)

. (17)

Fit) =2 ¢ ¢,
2 n'n
2 e

r.,0.
h=1 by J
To determine the time at which the valve leaves
the stop the force F(t) is monitored. When it
becomes zero, the valve is leaving the stop.

USE OF SCALING LAWS

The actual valves are frequently too small on
which to make the deflection and strain measure-
ments conveniently. It is difficult to properly
simulate the boundary conditions in the experimen-
tal set up because of space limitations and the
valves are usually of such stiffness that excita-
tion at their natural frequencies is difficult.
The deflections which can be achieved are also
small such that accuracy is adversely affected.

To overcome this problem scaled models of the
actual valves can be used. The measurements can be
made on the larger scaled models instead of the
actual valves. The scaled models of larger size
and Tower stiffness can be excited easier and the
frequencies and mode shapes can be measured with
greater accuracy.

Frequency Scaling lLaw

The relation between the natural frequencies of
two geometrically similar plates is given by (3)

F.o= f .Ehgﬂ_ffl 2 jii fj_fl_: Yll
2 1 h-I oy E1' o5 (1 - “2)

f],f2 = natural frequencies

h1,h2 = thickness of plates

Gys0y * characteristic dimension

E1,E2 = Young's modulus

PrsPy = density of the two materialssof the
plates

VsV, = Poisson's ratio for the two materials

In the case of ring plate valves the characteristic
dimension could be either the inner or outer radius.
For two geometrically similar valves it is implied
that planar dimensions be similar, therefore

R,

i

— =k

(19)

*
a Ry ry



where
Ri (i=1,2) = outer radii
r; (i=1,2) = ‘inner radii
k = scaling factor

It is not necessary for the thickness of the two
valves to be of the same ratio for the valves to be
geometrically similar. The thickness ratio may be
chosen arbitrarily.

If the material of the two valves is the same

Ey = B
S )
o = o

then the frequency law reduces to

h o
_ 2 142
-fz - f] [h]] [az:l (20)

It is worth noting that Eqns. (18) and (20) apply
to plates in general. The only requirement is that
the two plates which are scaled be geometrically
similar.

The strain mode ratio and the stop force ratio are
both nondimensional quantities and are therefore
invarient for corresponding locations on geometri-
cally similar valves. Scaled models of the actual
valve can be used and the strain mode ratio and
the stop force ratio can be measured much more
accurately.

COMPRESSOR VALVE DYNAMICS TEST DATA

Experimental tests were performed on the particular
compressor test valves in a scaled up version.

Fig. (2) presents a schematic of the experimental
test system for measuring the desired values of
valve deflection, valve strain and valve stop force
at a resonant frequency of the valve. Only the
resonant frequency needed to be scaled back to the
true size valve.

The results of the frequency tests are shown in
Table 1 where the experimental values are the fre-
quencies measured on the true size valves and the
predicted values are scaled from the frequency
measurements made on the scaled up valve.The higher
values obtained on the true valve were probably due
to the difficulty of maintaining the proper bound-
ary conditions at the support edges.

The results of the strain mode ratio measurements
are shown in Fig. (3)., (4) and (5). One can see
that more detaiied data was obtained by using
larger scaled models.
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APPLICATION TO COMPUTER SIMULATION

The modal data obtained from the scaled model was
utilized to predict the valve strain using a com-
puter model of the compressor. Fig. (6) shows the
experimentally measured strain and the strain
predicted by using the computer model. The maximum
Tevel of strain could be predicted accurately,
though it was impossible to predict strain point
for point. The important parameter is the maximum
strain to predict the valve life. The effect of
fluid damping on the maximum valve strain was
being studied in this analysis.

SUMMARY AND CONCLUSIONS

A method was presented for measuring accurate modal
data of compressor valves utilizing scaled models.

The modal data was used in a computer simulation
to sucessfully predict valve strain.
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Table '  Comparisan of Experimental and Predicted Values of
Frequencies of the Actyal Valve
Twe Pafnt Support Four Point Support
Mode 1 Made 2 Mode 3 Mode 1 Mode 2 Made 3
| Experimentat|465-485 Hy 2700 Hz 5900 Mz 1900 Hz 4300 Hz Not Measured
Predicted 403 W 1820 Hz 5385 Hz 1141 Kz 4184 Hz 5487 Hz
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