Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

10-1-1994

Dist a distribution independent parallel programs
for matrix multiplication

Hyuk J. Lee
Purdue University School of Electrical Engineering

José A.B. Fortes
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Lee, Hyuk J. and Fortes, José A.B., "Dist a distribution independent parallel programs for matrix multiplication" (1994). ECE Technical

Reports. Paper 201.
http://docs.lib.purdue.edu/ecetr/201

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F201&utm_medium=PDF&utm_campaign=PDFCoverPages

DATA DISTRIBUTION INDEPENDENT
PARALLEL PROGRAMSFOR

MATRIX MULTIPLICATION

Hyuk J. LEE
Jost A.B.FORTES

TR-EE 94-32
OcCTOBER 1994

e

09" c‘"’g ScHOOL OF ELECTRICAL ENGINEERING
9 A= 3 PURDUE UNIVERSITY

f}" WEST LAFAYETTE, INDIANA 47907-1285

Data distribution independent parallel programs
for matrix multiplication*

Hyuk J. Lee and José A.B. Fortes
School o Electrical Engineering
Purdue University

W. Lafayette, IN 47907

"This research was partially funded by the National Science Foundation under grant number CDA-
9015696.

Abstract

This report considers the problem of writing data distribution independent
(DDI) programs in order to eliminate or reduce initial data redistribution over-
heads for distributed memory parallel computers. The functionality and execution
time of DDI programs are independent of initial data distributions. First, modu-
lar mappings, which can be used to derive many equaly optimal and functionally
equivalent programs, are briefly reviewed. Relations between modular mappings
and input data distributions are then established. These relations are the basis
of a systematic approach to the derivation o DDI programs which is illustrated
for matrix-matrix multiplication(c = a X b). Conditions on data distributions that
correspond to an optimal modular mapping are: (1) the first row of the inverse
of distribution pattern matrix of army 'a’ should ke equal to the second row of the
inverse of distribution pattern matrix of array ‘6’ (2) the second row of the in-
verse o distribution pattern matrix of array 'a’ should ke linearly independent o
the first row of the inverse of distribution pattern matrix of array 'b’, and (3) each
distribution pattern matrix of arrays 'a’, 6’, and 'c’ should have at /east one zero
entry, respectively. It is shown that only twelve programs suffice to accomplish
redistribution-free execution for the many input data distributions that satisfy the
above conditions. When DDI matrix multiplication programs are used in an algo-
rithm with multiple matrix products, haf of dataredistributions otherwise required
can be eliminated.

ii

Contents

1 Introduction 1

2 Modular time-space transformationsand modular data distributions 3

2.1 Modular time-space transformations. 4
2.2 Modular datadistributions e 8
3 DDI paralle programsfor matrix multiplication 12
3.1 Conditions of an optimal modular mapping for matrix multiplication .. 12
3.2 DDI program modulefor matrix multiplication. 14

4 Triple matrix product algorithm optimized by DDI matrix multiplica-
tion 16

5 Conclusions 20

A Appendix 23

i

1 Introduction

Optimized program modules such as basic subroutines, functions, macros, and intrinsic
operations are widely used to write efficient programs for parallel machines. In general,
these modules expect input data to be distributed across processor memories in a prede-
termined manner. Otherwise, it is necessary to carry a redistribution step which can be
very expensive in time. A systematic approach is proposed to design data distribution
independent (DDI) modules which eliminate or reduce the need for redistribution. The
approach is conveyed and illustrated by the design o DDI programs for matrix multi-
plication. Using the resulting DDI matrix multiplication modules, it is possible to halve
data redistribution costs in applications that require the product of 3™ matricesfor any
integer n.

A very large number of machines currently available or recently announced by major
manufacturers (see [1]) have a physically distributed memory (possibly but not neces-
sarily shared from a logic perspective, i.e. appearing as a single virtual address space
to all processors). In these machines, bad initial data distributions (i.e., mappings of
data into local processor memories) can dow down computations for reasons that are
not inherent to the algorithms. The topic of data distribution in distributed memory
machines has been extensively studied [2]-[11]. For some classes of programs techniques
have been developed to enable a compiler to optimize (i.e., "minimize") the extent o
data distribution/communication required to execute a program. However, this is an
NP-complete problem and heuristic approaches must be used in practical solutions [2, 3].

In order to eliminateor reduce initial dataredistributions, a new approach called data
distribution independent (DDI) parallel programming has been recently proposed [12].
Ideally, a DDI parallel programming paradigm would be based on libraries of DDI com-
putational modules. An ideal DDI computational module is a paralld program whose
execution time and functionality are independent o input data distribution. In addition,
ideal DDI module executes as fast as the fastest data distribution dependent (DDD)
module for the same function and a given fixed input data distribution. In practice,
this requirement might not be perfectly met by some DDI modules because o inevitable

overheads. However, even DDI modules that do not execute in minimal time and may
themselves implement some redistribution o data may yield better programs than their
DDI counterparts. A parallel program could then be written by involsing these modules
in some appropriate order without concern for how data is distributed. Such programs
would inherit the DDI property and could be invoked by other programs without violat-
ing the basic paradigm. Programs would be easily ported among machines with different
topologies as long as they have functionally equivalent DDI module libraries.

This report explores the possibility of a parallel programming paradigm that is data-
distribution independent (DDI) in the sense that the user would not be required to
program or even invoke data communication modules. The need for data redistribution
would either be eliminated or transparent to the user. Theemphasis o the work reported
here is on the design o computational modules so that there is no need to redistribute
input data. When this cannot be achieved, the cost o (automatic) reclistribution should
be minimized but this aspect o the problem is not addressed in this report. In this
context, source-to-source program transformations, called modular mappings [13], and
properties that allow commutative parallel processing are to be explored as techniques
and concepts that enable DDI computation. Commutative parallel processing exploits
severitl types of commutativity. Functional commutativity corresponds to the usual math-
ematical definition o commutativity which allows operands o an operation to exchange
position without impacting the final result. Structural commutativity is present among
computations that are independent, i.e., share no data - they can be scheduled and al-
located independently. Finally, architectural commutativity captures :symmetriesin the
target architecture that alow many virtual mappings o the processors and interconnec-
tion network into the same identical virtual architecture (thus "making" different data
distributions look the same for different mappings).

As an initial work towards DDI computation, a systematic derivation of DDI paral-
lel programs is provided for matrix-matrix multiplication. It should be clear from the
presentation that the methodology has a general nature and can be applied to a large
class o algorithms. In order to quantify and illustrate the improvement by DDI parallel
programs in common applications, a program for triple matrix product isoptimized using
DDI parallel programs for matrix multiplication.

Therest o the report is organized as follows. Section 2 discusses relations between
modular time-space transformationsand modular distributions. Conditions also are de-
rived that guarantee alignment o data and computations. Section 3 examines the con-
ditions on optimal modular mappings and distributions for matrix multiplication that
eliminate the need for input data redistribution. Based on these conditions, DDI parallel
programs for matrix multiplication are derived. Section 4 analyzes the improvement by
DDI matrix multiplication programs when they are used in programs that contain series
matrix multiplications. Section 5 concludes the report.

2 Modular time-space transfor mations and modu-
lar data distributions

Linear transformations o programs whose execution timeis mostly spent in loops have
been extensively studied and used for source-to-source program transformations in par-
alelizing compilers and systolic array design [15]-[21]. In this framework, a given com-
putation in a loop is represented by a vector j (of loop indices) and a linear mapping
of coinputation into a domain o time (t) and processor (z) specifies the schedule and
the allocation o the computation. The execution time d this computation is specified
by t = Iy while the processor executing this computation is determined by a = Sj
where II € Z1xdim(§) and § € Zdim(processor array)xdim(j) are caled the schedule and the
allocation o a linear mapping, respectively. Combining the schedule aad the allocation,

. . Imy . . .
a transformation matrix g is often used to represent a linear mapping. Extend-

ing the framework o linear algorithm transformations, this section considers modular
translormations which are described by linear transformations modulo a constant vector.
With modular mappings, time and processor are determined as with linear mappings
except that they are computed modulo T and modulo P if execution time and numbers
of processors are to be limited to T and P, respectively. Clearly, the programs that
result from such transformations have the same execution time T on the same number
d processors P. Hence, modular mappings can yield algorithm transformations that are
equally optimal. Basic definitions and results on modular mappings are reviewed next

(an extended treatment can be found in [13]).

2.1 Modular time-space transfor mations

Modular time-space transformationsare defined in terms of two operations, alinear trans-
formation and a 'mod' operation.

Definition 1 (modular function) A modular function, T, : Z" — Z*, is a mapping
of the form: B

T(l) : .Z(mod my)
= T(Q) * J(mod m3)

T’ﬁz(]) = (1)
T(k) - Jmod m)
T(1)
where T'(¢) is a row vector. The matrix T = : and vector ™ = (my,---,my)T
T(k)

are called the transformation matrix and modulus vector, respectively.

Definition 2 (modular transformation) A modular time-space transformation, Ty,
is a modular function that is injective when its domain is restricted to the index set J of
an algorithm, i.e., T : J — Z¥ is injective.

Any k X n transformation matrix T and ¥ dimensional modulus vector m can make
a modular function. However, in order for any modular function to be a modular
transformation of a given algorithm, T and m must be carefully chosen so that the
transformation is injective when its domain is restricted to the index set o the al-
gorithm. This section considers only the case when n = k. Let u and v be two
vectors with the same number of elements. The notation um.qc7) denotes a vector
((v1) (mod v1)» (¥2)(mod vy)s " + - » (Un)(mod va))- Therefore the modular function can be de-
scribed as T (3) = (T7)(mod m)-

Initial work on linear transformations concentrated on perfectly nested loops whose
body istreated as a single computation even if it contains multiplestatements. Thanks to
extensive work by many researchers, individual statementsin arbitrarily nested loops can
now be handled by using affine-by-statement mappings [19]. Modular affine-by-statement
mappings can aso be defined just as modular linear mappings were defined with respect
to linear mappings. For simplicity, the results discussed in this report are stated in terms
o modular linear mappings but are extensible to modular affine-by-statement mappings.

Linear mappings can be considered as particular cases o modular linear mappings
for large enough moduli and finite domains. It follows that it is possible to use modular
mappings to derive algorithms that cannot be derived by using linear mappings. Cannon's
algorithm for matrix multiplication is a good example of this fact (See Example 1).
Finally, regarding processor allocation, modular mappings are well suited for ring, torus
and other topologies where "wrap-around” links are mathematically captured by the
"mocl" operation.

Exarnple 1 Consider the matrix-matrix multiplication algorithm which computes ¢ =
a X b where a,b, and c are (5 x 5) matrices.

poi=0,4
Do j=0,4
po k=0,4
(i,)= cfi, J)+ ai, E) x bk,)
CONTINUE

Cannon's algorithm is particularly efficient and frequently used in actual parallel proces-
sors whose interconnection network is a torus/23/,/24]. 1t is not possible to use affine
mappings to derive Cannon's algorithm from the sequential matrix-matrix multiplication
algorithm. Instead, the following modular transformation is required:

-1 -1 1
TB(Zﬁ j’ k) = (]' 0 O (1" j’ k))(mOd (5’515)))' (2)
0 1 0

This modular transformation yields the following program:

5

pot=0,4
DOALL p; = 0,4
DOALL p, = 0,4
t=p
J=p2
k=(t+ p1+ p2)mods
oli, i) = eli, i) T ali, k) x b(k, 5)
CONTINUE

The modular mapping used to “derive” Cannon's algorithm is only one o many pos-
sible such mappings. However, not all modular mappings are acceptable. In addition
to being injective they must satisfy other conditions (soon to be discussed) that pre-
serve correctness. It is not trivial to derive conditions that assure injectivity of modular
mappings for arbitrary algorithms. However, sufficient conditions (which are necessary
in some cases) for injectivity of modular mappings rectangular algorithms (i.e. algo-
rithms whose index sets are bounded by constants) have been provided in [13] and one
d the main results is as follows:

Theorem 1 Let J; ke a rectangular index set with the boundary vector b. Let T; ke a
modularfunction o the index set J;. Let > be an arbitrarily order on the set {1,2,-..,n).
Ty isinjective if its transformation matrix T satisfies thefollowing equations:

1. t;; = %1, (3)
2. ti; =0 if 17 . (4)

For the case when all elements d b are identical, 7 is injective if T s unimodular.

In this theorem, the modulus vector o a modular function is the same as the boundary
vector of an index set, i.e. m isequal to b. This condition can be generalized to the case
when the modulus vector results from a permutation o the entries of the boundary
vector. For the particular cases when there exist some identical entries in the boundary
vector, it is possible to obtain more general conditions [13].

I:n addition to injectivity, valid modular mappings must also preserve dependencies
and, possibly, avoid broadcasts. These and other conditions have been well studied in the
context of affine mappings and can be captured similarly for modular mappings. However,
whern functional commutativity is present, these conditions should be changed to take
advantage of the possibility of reordering chains o computations. For example, consider
matriX-matrix multiplication. The condition for correctly sequencing computations and
removing data broadcasts is that every element of the schedule vector should be positive.
If functional commutativity is taken into account, the condition can be changed to a
weaker condition such that every element d the schedule vector should be different from
0. Infact, Cannon's algorithm does take advantage d addition commutativity and wrap-
around links and cannot be derived unless these properties are taken into consideration.
The :followingexample illustrates how a modular mapping other than Cannon's can be
selected for matrix multiplication using the conditions just discussed.

Exarnple 2 Consider the matrix-matrix multiplication algorithm of Example 1 again.
The modular transformation

1 -1 -1
Ts(ivjvk) = (0 1 0 (ivjak))(mod (5,5,5)))- (5)
0 O 1

yields the following program which is as efficient as Cannon's algorithm in the sense of
processor Utilization and neighborhood communication:

pot=0,4
DOALL py = 0,4
DOALL p; = 0,4
i= (4 p1+ P2)mods
J=p
k=p
(i, j)= (i, j)+ ali, k) x b(k,)
CONTINUE

2.2 Modular data distributions

In order to take advantage of modular mappings it is necessary to relate them to input
data distributionsthat eliminate or minimize misalignmentsd data during the execution
d the program (instead d only at the beginning of it). We consider distributions o data
arrays as mappings from array indices to processor coordinates d the general form

p(g7t) = (P?j +p+ '_yt)mod bx
where y isa dataarray index, t denotes execution time, P is the data distribution pattern
matrix, p is the data distribution offset,¥ is the data distribution mobility and b5 could
be any vector (of the right dimension) but is hereon assumed to have its components

correspond to the sizes d the processor grid along its dimensions. The initial data

aryay digtribytion is specified by p(y,0). For example, the data distribution p,(7,t) =
10 0

processor array at time zero and movesit right by one position every time unit (i.e., to

t)mod (5,5 Maps the array element a(1, j)into processor (ji) d a5x5

processor ((j+ t)mod 5,1) At timet). Program array referencesto any data array element
with index y are assumed to be o the form

g=Fj+f

where F is the indexing matrix, f is the index offsetand j is a point in the iteration
set d the (nested loop) program. For example, for the referencea(2:,j + 1) in the body

d two nested loops on ¢ and 3, the indexing matrix and offset are F' = (g ?) and

7=

.

[1)) ,respectively

Recall that, given a transformation matrix, the loop iteration point j is mapped onto

processor T at timet.

(t) = (TH)modm (6)

T
where the modulus vector m should be a permutation d the boundary vector o theloop
iteration domain, b. Let ' be the processor to which the index point ¥ o data array is
mapped at timet. Then,
' =Py+p+ yt. (7)

8

Recall that the first row o the transformation matrix is the scheclule vector II and,
therefore t is (I1)moas; Where by represents the modulus o the schedule, i.e., the first
entry of the modulus vector o a given time-space transformation. When the index set
of the algorithm is cubic (i.e., by isidentical to all entriesof bx). Then, Eq. 7 becomes:

Z=(PFj+Pf+p+3))modiy- (8)

To compute point j without need for communication, z should be equal to z’. Hence,
the following condition is obtained:

(T(2’3)3)modﬁz(2,3) = (PF.; + Pf_+[3+ :YH.;)mod bx? (9)

where T(2,3) denotes the second and third rows o matrix T and m(2,3) denotes the
secord and third elements o vector m. To satisfy above equation for arbitrary j, the
condition becomes:

T(2,3) = PF + 711, (10)
0=Pf+5p, (11)
m(2,3) = bx (12)

In the general case, when the index set is not cubic these conditions are also valid.
However, it is necessary to consider alarger classd distribution functions that allow for
replication o data and an additional condition isimposed on the number o array copies.
The general form of the distribution when there are C = [(H?n’"“‘J - Lin?r’]“‘"_(+ 1 copies
o the array along direction 7 is

P25, t) = (P§ + 5+ (¢ + kb)) moas, (13)

whert: k = [Lmb)"“"J, [(mb)’"‘”ﬁ—l,‘--, Lin—%ﬂj -1, [@z}&iﬂj. Lemma A.1 in theappendix
I 1 ™ ™
show:; that these distribution functions guarantee the alignment between data and com-
putations of a program that results from a modular mapping satisfying Equations 10- 12.
Assume that by divides al the entries in bx. Then, pi* and p}%, generate the same
data distribution where k., is the least common multiple o b;/b for all entries b; of bx.
Hence, in this case, at most k;.,,, data array copies are necessary instead d the number
C mentioned above. Depending on the value o 4, the number o copies can be further

9

reduced. In the case o a cubic index set, k.., = 1 and Eq. 13 particularizes to Eq. 9
(any singlevalue d k is acceptable including k = 0).

Eq. 10 shows the relation between the pattern distribution and the transformation
matrix and EQ. 11 shows the condition d the offset distribution. In this section, the
conditions o EQ. 11 and EqQ. 12 are assumed to be awayssatisfied, and only the condition
o Eq. 10 will be discussed.

Eq. 10 becomes

T(2,3) — Il = PF, (14)
_1 0 Il
T(3)
and

P! (—7 (1) (l)) = FT7!, (16)

Finally, the following conditions are obtained:
Pl = FT;3, (17)
y=-PFT{", (18)

where T, ! denotes thefirst columnd 7! and T % denotes the second and third columns
of T-1. These equations must be established for each variable used in the same statement
and solutions that satisfy all d them must be sought. From them conditions can be
derived on input data distributions that guarantee alignment d data. It is aso possble
to derive the transformation necessary to generate a "transformed” program that accepts
such data distributions.

Exarnple 3 Consider data distribution for Cannon's algorithm. The data distribution
p? of matrix'a’ and the data distribution p* of matrix 'b’ that satisfy conditions (17) and

(18) are
Pi(§ 1) = ((_11 (1)) + (_?1) t)mod (5.,5)

10

P1\pe 0 1 2 3 4
0 ao,o/bo,o 00,1/51,1 ao,2/b2,2 00,3/b3,3 a0,4/b4,4
1 01.1/51,0 01,2/52,1 01,3/53,2 111,4/54,3 al,O/l’0,4
2 a2,2/b2,0 (12,3/53,1 02,4/54,2 az,o/bo,a 02,1/51,4
3 a33/b3p0 | @3,4/bay | asp/boa | as1/bis | asz/bya |
4 | asa/bso | @a0/bos | 41/bra | Ga2/bas | as3/bss]

(a) Initial data distributions

pi\p2 0 1 2 3 4
0 ao,l/bl,o a0,2/b2,1 ao,z/bs,z 00,4/54,3 ao,o/bo,4
1 01,2/52,0 01,3/53,1 01,4/54,2 Gl,o/bo,s 01,1/51,4
2 02,3/63,0 02,4/b4,1 az,o/bo,z 02,1/51,3 02,2/52,4
3 03,4/54,0 as,o/bo,l 03,1/51,2 03,2/b2,3 03,3/53,4
4 (14,0/55,0 04,1/51,1 04,2/52,2 a4,3/bs,3 04,4/54,4

(b) Data distributions after one iteration

Figure 1. Data distributions o Cannon's algorithm..

P1\p2 0 1 2 3 4
0 ao,o/bo,o 01,1/51,0 (12,2/52,0 03,3/53,0 04,4/b4,o
1 01,0/50,1 02,1/51,1 03,2/62,1 04,3/53,1 00,4/5-4,1
2 02,0/b0,2 03,1/51,2 d4,2/bz,2 d0,3/ba,2 a1,4/b4,2
3 aso/bos | aa1/b13 | @o2/b2s | @1,3/b33 | az4/bs3
4 a4,o/bo,4 00,1/51,4 01,2/52,4 02,3/53,4 02,4/54,4

Figure 2. Initial data distributions different from those o Cannon's algorithm.
and
-1

P(,t) = (((1))) + (—01) Bmod (5,5)-

The initial data distributions (at t = 0) are shown in Fig. | a and the data distributions
after first iteration (att = 1) are shown in Fig. 1b. On the other hand, the initial data
distributions of the modular mapping in Example 2 are shown in Figure 2.

11

DDI paralld programs for matrix multiplication

31 Conditions of an optimal modular mapping for matrix
multiplication

This section investigates conditions o optimal modular mapping and data distribution for
matrix multiplication. Throughout this section, a mapping is optimal if it is as efficient
as Citnnon's mapping with respect to computation and communication time. Proofs of
Propositions given in this section appear in Appendix.

All modular mappings whose modulus vectors tightly bound the computation domain
are optimal in the sense of processor utilization. However, in the sense o communication,
not all of these mappings are optimal. Therefore, conditions for an optimal modular
mapping need to beinvestigated not only in the view of processor utilization but also with
regard to communication. Communication cost depends on the target architecture and,
in thissection, it is assumed that it has 4-way mesh with wrap-around interconnections.
In addition, it is also assumed that data movement between distant processors iS more
expensive than that between neighbor processors. The efficiency of' a given modular
mapping is estimated based on these assumptions.

The previous section investigated the relationship between a modular mapping and
an initial data distribution that allows the start o computation without initial data
relocation. Analgorithm o matrix multiplication contains two input data arrays, matrix
a and matrix b. In order to start computation without initial data movements, these two
data arrays should satisfy those conditions of Eq.17 and 18. To satisfy the condition o
Eq. 17, the data distributions of matrix a and b should satisfy the following relation of
Proposition 1.

Proposition 1 Let P* and P° be distribution pattern matrices of data arraya and b. If
P = F°T; % and PP = F*T}}, then

1. Po(2) = PP(1),

12

2. P27 (1) and P*7'(2) are linearly independent.
For the minimization o communication, the following should be satisfied.

Proposition 2 For a matrix multiplication algorithm, the choice of 7y that results in
mi nimum communication is either (£1,0,0)%, (0, £1,0)%, or (0,0, £1)T.

Cannon's algorithm has elementsd matrix 'a’ and ‘b’ moveto the next processors and
elementsd matrix ‘¢’ stay at the same processor throughout the computation. Hence, if
an algorithm for matrix multiplication requires the same amount of data movements, the
data distribution mobilities of ‘e’,*d’, and 'c', should be 0 (no communication), (+1, 0)T
(shift,vertically to the neighbor processor), or (0, 41)T (shift horizontally to the neighbor

processor).

Proposition 3 Let % be a distribution mobility of a data array. The optimal choice of
7 is0, (£1,0)T, or (0,%1)T.

Proposition 4 followsfrom Proposition 3 and Eq. 17.
Proposition 4 P2, P* and P° should have at least one zero entry, respectively.

Proposition 1 and Proposition 4 give conditions on the pattern distribution matrices and
consequently from Eq. 17 give conditions on 7 5. On the other hand, Proposition 2 and
Proposition 3 give conditions on distribution mobilities and therefore from Eq. 18 give
conditions on 7}, Consider T, 3 and corresponding P? and P based on the relation o
Eq. 17 that satisfy the conditions in Proposition 1 and Proposition 4. It is not difficult
to set: that such T % should belong to one of the following six types:

0 # 0 0 # 0 # # # #
O # |, | # # |, | # 0|, | # #|,|# 0|, |0 #]|,
0 # # # # 0 0 # # 0

when: #s denote arbitrary nonzero integers which are not necessarily identical.

13

To find the entire transformation matrix T, the next step is to find 7;"!. Consider
thefirst type of 75 5. It followsfrom Eq. 17 that the data distributions should be of the

form
a~?! # 0 b1 # # el # 0
Pt = P = P = ,
(5 4) (5 %) (55 19)
The inversed data patterns become:
a # 0 b # # # 0
P = Pt = Pt = .
(4 4)r=(82)m=(F 4 20)
Proposition 2 allows three possible choices of 77! (il,O,O)T._‘ (0,+1,0)7, and
(0,0,£1)T. If 7' = (£1,0,0)7, then y° = (# #)T,4% = (0,0)7,5 = (#,0)7. I
T7Y = (0,41,0)7, then 3¢ = (o 0)7,% = (#,#)7,7 = (o #)T If T = (0,0,41)7,
then ¥ = (0, #)7,7* = (#,0) = (0,0)T. Thefirst and the second choicesdo not sat-

isfy Proposition 3. Hence, the optlmal choiceis T7* = (0,0, +1)7. Similarly, the optimal
choice o 77! can be found for other pattern distributions resulting in the following six
types o the transformation matrices which guarantee that the corresponding programs
run as efficiently as Cannon's algorithm.

0 # 0 0 # 0 0
GE9) (350 (
1 # # 0 0 # +1

0 #
#0), (21)
#
0 0 # +1 # # 11 # #
(ﬂ##),(o#o),(o -
0 # 0 0 0 # 0 # 0

3.2 DDI program module for matrix multiplication

Consider an SIMD or SPMD program for matrix multiplication. Without loss o gener-

0 # 0
ality, consider the case when modular mappings are o the form (0 0 #) .
1 # #

Since T~ = (0,0, £1)7, there are four possible choices of optimal distribution mobil-
ities and corresponding data movements:

1. ¥ =(0,1)7,5" = (1,0)T — a: east, b: south.

14

pot=0,4 pot=0,4

c=c+ax*b c=c+axb
Move- WEST(") MOVE-WEST (;%)
MOVE_SOUTH(b) MOVE-NORTH(b)
CONTINUE CONTINUE
(@) 7* = (0,-1)",5* = (1,0)" (b) 7* = (0,-1)T, 3" = (~1,0)"
0 # 0
Figure 3: Programs for modular mappings with T o the form 0 0 # |.
\ # #)

2. 4 =(0,1)7,5 =(-1,0)T — a: east, b: north.
3. = (0,-1)T,% = (1,0)T — a: west, b: south.

4. ¥* = (0,-1)T,4* = (—-1,0)T — a: west, b: north

Among these four data movements, the first and the fourth movements generate the
same results. Similarly, the second and the third movements also generate the same
results. Thus, the first and the second cases can be discarded and only the third and
the fourth cases need to be kept. The programs for the third data movement and fourth
data movement are shown in Fig. 3. In thesefigures, variable a, b, ¢ are assumed to be
the appropriate elements o a(z,]), b(z,]), and c(z, j) ,respectively.

For each o the other five forms of modular mappings, only two programs are aso
sufficient. Hence, in total, twelve programs cover all possible optimal modular data
distributions. With these twelve optimal programs, a DDI parallel program module
(DDIPPM) for matrix multiplication can be built. For a given data distribution, an
optimal modular mapping can be found from the relation of Eq. 17 and EQ. 18. Then,
the program corresponding to this modular mapping can be selected among the twelve
programs in the DDIPPM.

Exarnple 4 Consider the initial distributions for Cannon’s algorithnz shown in Ezam-

15

pot=20,4
c=c+ax*b
MOVE-WEST(a)
MOVE-NORTH (b)

pot=20,4
c=cH+ax*xb
MOVE-NORTH ()
MOVE-WEST (¢)

CONTINUE CONTINUE
1 0 1 -1 1 -1 01
3o __ b __ a _ b
wr=(41)e-(3) we=(a 3)e=(00)
Figure 4. Optimal programs for a given initial data distribution.

ple 1. Data pattern distributions of a and b are

. {1 0 ,,_(1 -1

P_(_ll) and P*=\ 1) (22)
Hence, the inverses of data pattern distributions are

-1 (10 -1 _ 11)

P _(ll)andP —(01 (23)

It follows from Eq. 17 that

10
th—:13 = O]. .
11

From Eq. 21, 77! should be (0,0, £1)7. If T is chosen to ke (0,0,1)7, then 4° =
(0,—=1)7 and 4* = (- 10)7 are obtained. Hence, the program of Fig. 4a is derived. This
programis exactly the same as that in Example 1. Similarly, for the data distribution in
Fig. 2, the optimal program of Fig. 4b can ke derived.

4 Triple matrix product algorithm optimized by
DDI matrix multiplication

Thissection considers a program for a sequence o matrix multiplications and implements
this program by repeatedly invoking DDI parallel programs for matrix multiplication.

16

The number o data movementsin this program is compared to the program that uses
DDD programs for matrix multiplication.

Consider the triple matrix product:
Y =LXR

whereY, L, X and R are matrices whose sizes are assumed to be suitable for the computa-
tion. Digital signal processing and control theory applications that require triple matrix
prod-acts include discrete Fourier transform, discrete Lyapunov and Ricatti equations,
and Kalman filtering [26].

The program for triple matrix product can be described by the following pseudo code:

TRI_MAT_PROD(Y,L,X,R)
MATRIX Y,L,X,R;

MATRIX Z;
MATMUL (Z,X,R) ;
MATMUL(Y,L,Z);

I this program, keyword MATRIX represents a two dimensional array which is dis-
tributed .in a canonical manner, i.e., whose distribution can be described by p(7) =

(((1) (1)) J)mod vy~ This distribution is called a canonical distribution. For simplicity,

the sizesd matrices are not shown in this program, but it isimplicitly assumed that they
are appropriate for this computation. MATMUL is the subprogram for matrix multiplica-
tion which performs Cannon's algorithm with the assumption of canonically distributed
input/output matrices. Given that initial data distribution for Cannon's algorithm is
different from canonical array distribution (see Fig. 1), it iS necessary to redistribute
the input matrices. Hence, two array redistributions are necessary to start Cannon's
algorithm. The distribution of the output matrix & Cannon's algorithm is the same as
the canonical distribution. Hence, no redistribution is necessary for the output matrix.

17

Hence, subprogram MATMUL requires two data redistributions, and therefore, the entire
program requires four data redistributions.

Now, consider the DDI approach to optimize triple matrix product. Let
DDI_MATMUL(C, A,B, P,, P,, P,) represent the DDI version of matrix multiplication rou-
tine which computes ¢ = a X b, where P, and P, represent the initial distributions of
matrix a and b, respectively, and P. represents the output distribution of matrix c. The
initial distributions of matrix a and b must satisfy the conditions discussed in the previous
section, and one o the twelve optimal programs corresponding the initial distribution is
selected to compute matrix product. When DDI_-MATMUL is used for triple matrix prod-
uct, it is possible to select the program whose input data distribution matches initial
data distribution of TRI_.MAT_PROD (canonical distribution). Hence, data movementsfor
redistribution can be reduced. Consider the following program:

TRI.MAT_PROD(Y ,L,X,R)
MATRIX Y,L,X,R;

{
MATRIX Z;
1 -1 0 1 10
/*Pzz(o 1) P”‘(l —1)’ P’_(O 1)*/
DDI_MATMUL(Z, X,R, P, P;, P)
10 1 0
/*Py:(o 1)’ B_(_l 1)’ */
DDIMATMUL(Y, L, Z, P,, P, P)
}

In this program, P,,P;, P, P,, and P, represent distribution pattern matrices o
Z,X,R,Y, and L, respectively. These distributions are shown in Fig. 5. Since al matri-
ces are assumed to beinitially distributed in a canonical manner, matrix X and matrix

18

61

t—ily—iLi—ul = A
vewlg—ulgil = 1wl ‘gowlg-ilgul = (-l ‘genlg—elg-ul = 1-ul

e e = i - ‘PLELIL = EL “CLELLL =41
:mv_nlﬁmm\ﬂlﬁm — ﬁlz_mrN LI awﬁxm‘m\v‘v\ = HN_.NU nm‘v\N‘T\ﬁ,«\ = HJNU

:uoryeinduoo

sty} urojrad o A[pajyeadar jonpoid xuyew o[durg 1oy ureidordqgns o) asn 0} a[qssod st 4]
.:m«\. . N«\J\ =X
:A[reryuonbos por[dij[nuu s1e SAOIIJRUI ,¢ USYM 9B [RISUST 91} I9PISUO))

‘wrergoxd
-qns TAWLVI sest yey) weidoid o7y yiim Furreduwrod Usym pases 9q Urd SUOIINGLISIPOI
')RP OM) ‘9I0JoIoy], ‘wreifoid s1y) Ul AIRssodoU oI' SUOIIN]LIISIPAI B)eP OM) AJUO ‘90Ud]

"PRINQLI}SIPaI 9q O} 9ARY JOU OP X PUR Y XLIJeU ‘IeA0OMO}] "PoInNqLI}SIpal aq 0} pesU 7T

ureigoxd jonpoid xiiyews o9[di1} ® I10] SUOIINGLIJSIP ©)R(] G SINJI]

‘7 pue T4 (q)

v.mm\mi\v.ﬁ m.mm\m.d\m.g. N;N\dd\mhg ﬁ,ow\ohd\dvb. o,vw\vd\o,g ¥
v,mw\mﬁ\w,mm m;m\dm\\m,mm m.cm\ohmw\w.mm dvm\v,&\dma o,mm\mﬁ\o.mm e
v;N\dNN\v,g m,ow\oﬁ\m.g m.vw\vhﬁ\w.g H,mw\mﬁ\dg o.mm\n.ﬁ\o,g Z
v.cm\o_c\}m m.vm\vé\m;a. m,mm\md\m.S. H.uN\N.HN\H_S oJN\ﬁd\QS 1
vJN\v.ON\v;S. m,mw\m.oN\m_oa N.NN\QQN\N.HS. 15\1&\13 o_om\o,ow\o,om 0
¥ g 4 1 0 ed\1d _
Y pue X ‘7 ()
v.f\w.m&\v.mm mhf\v,ua\mhmm N_f\v;a\a;w df\v.oa\dow o.f\w.va\o.vn ¥
v.mk\mhm&\v,wm‘ m.mk\m_HH\m.ﬁN N,mk\m,onﬁ\m.om‘ H.m&\m.vﬁ\m.v\w o.m&\mhm.\n\ohm\w ¢
v.f\uga\w,ﬂm mhf\u.oe\mdm u.f\m,va\n.vn M,f\m,me\ﬂmn o,f\u.ma\o»mw Z
v_f\ﬁ_oe\v,ow m.f\ﬁ_va\m,wn Nhf\dms\m,mn H_C\H.Ne\ﬁmm o.f\za\o;m. I
v.f\o.ve\w,vn m,og\o,me\m,mm N.f\c_wa\m,mm ﬁ.f\o;a\fn o.f\o.oa\o_on 0

ﬁ

€

(4

1

0

2\ d

Therefore, a total of (37! +3n-2+ .3+ 1) triple matrix products are needed. Hence,
2(3™1 +3m-24 .. 3+1) data redistributions are necessary in this computation. Suppose
that {37! — 1) MATMUL subprograms are used for this computation. Then, 2 X (3" — 1)
data redistributions are necessary. Given that

231 432 4+...34+1) 1

2x3n~1 X

half of data redistributions are removed with the optimized triple matrix product sub-
program.

5 Conclusions

As an initial step towards DDI computation, a methodology has been proposed to sys
tematically derive DDI parallel programs for matrix multiplication. The resulting DDI
programs accept a large number d input data distributions to run as efficiently as Can-
non's algorithm. When the DDI parallel programs are used to multiply several matrices,
it is possible to save hdf of data redistributions needed by a non-DDI approach. Future
work will address the problem of handling input data distributions that are not accepted
by tke DDI programs derived in this report. In the derivation d DDI matrix multipli-
cation, it is assumed that the target machine has as many processors as needed. Future
work will address the case when data and algorithm need to be partitioned for execution
on arrays o fixed "small" size. The extent to which a DDI paradigm could replace ex-
isting approaches, complement them or merely apply to specia application domains is
unclear and this is another issue to be clarified by future research.

Refer ences

[1] Kai Hwang, Advanced computer architecture : parallelism, scalability, programma-
bility, New York, McGraw-Hill, 1993.

[2] Alain Darte and Yves Robert, "Communication-minimal mapping o uniform loop
nests onto distributed memory architectures,” in Proc. Int. Conf. Application-
Jecific Array Processors, pp. 1-14, Oct. 1993.

20

e

[3] Jingke Li and Marina Chen, "The data alignment phase in compiling programs for
distributed-memory machines," J. Parallel Distributed Computing, vol. 13, no. 2,
pp. 213-221, Oct. 1991.

[4] Siddhartha Chatterjee, John R. Gilbert and Robert Schreiber, *Mobile and repli-
cated alignment of-arrays in data-parallel programs,” in Supercomputing’93, pp.
420-429, Nov. 1993.

[5] J. Ramanujam, and P. Sadayappan, " Compile-time techniques for data distribution
in distributed memory machines,” IEEE Trans. Parallel Distributed Syst., val. 2,
no. 4, pp. 472-482, Oct. 1991.

[6] Paul Feautrier, "Toward automatic distribution,” Laboratoire MASI, Institut Blaise
Pascal, Tech. Rep. 92-95, Dec. 1992.

[7] Kathleen Knobe, Joan D. Lukas and Guy L. Steele Jr., "Data optimization: Alloca
tion of arrays to reduce communication on SIMD machines,” J. Parallel Distributed
Computing, vol. 8, no. 2, pp. 102-118, Feb. 1990.

[8] Edgar T. Kalns and Lionel M. Ni, "Processor mapping techniques toward efficient
data distribution," in Proc. 9’th Int. Parallel Processing Symp., .April 1994.

[9] Manish Guptaand Prithviraj Banerjee, "Demonstration o automatic data partition-
ing techniquesfor parallelizing compilers on multicomputers,” |EEE Trans. Parallel
Distributed Syst., vol. 3, pp. 179-193, Mar. 1992.

[10] Jennifer M. Anderson, and Monica Lam, "Global optimization lor parallelism and
locality on scalable parallel machines,” in Proc. ACM SIGPLAN '93 Conf. Program-
ming Language Desing Implementation, pp. 112-125, June 1993.

[11] We Li and Keshav Pingali, “Access normalization: Loop restructuring for NUMA
compilers,” Dep. Comput. Sci., Cornell Univ., Ithaca, NY, Tech. Rep. TR 92-1278,
April 1992.

[12] Robert D. Falgout, Anthony Skjellum, Steven G. Smith, and Charles H. Still, "The
multicomputer Toolbox approach to concurrent BLAS," in Proc. Scalable High Per-
formance Computing Conf., pp. 121-128, Apr. 1992.

[13] Hyuk J. Lee and José A.B. Fortes, "On the injectivity o modular mappings,” in
Proc. Int. Conf. Application-Specific Array Processors, pp. 236-247, Aug. 1994.

[14] Mar Le Fur, Jean-Louis Pazat and Francoise Andre, “Static domain analysis for
compiling commutative loop nests,” IRISA, Tech. Rep. 757, Sep. 1993.

[15] Sun-Yuan Kung, VLS| array processors, Prentice-Hall, 1988.

[16] Paul Feautrier "Some efficient solutions to the affine scheduling problem "Part I:
one-dimensional time," IBP/MASI, France, Tech. Rep. 92.28, May 1992.

[17] Guo-Jie Li and Benjamin W. Wah, "The design of optimal systolic arrays," 1EEE
Trans. Comput., vol. C-34, pp. 66-77, Jan. 1985.

21

18]

[19]

[20]

[21]
[22]

23]

24

[25]

[26]

Weijia Shang and José A.B. Fortes, "Time optimal linear schedules for algorithms
with uniform dependencies,” |[EEE Trans. Comput., vol. C-40, pp. 723-742, June
1991.

Alain Darte and YvesRobert, "Affine-by-statement scheduling of uniform loop nests
over parametric domains,” LIP, Ecole Normale Superieure de Lyon, France, Tech.
Rep. 92-16, April 1992.

Patrice Quinton and Vincent Van Dongen, "The mapping o linear recurrence equa-
tions on regular arrays,” Int. J. VLSI Sgnal Processing, vol. |, no. 2, pp. 95113,
1989.

Michael Wolfe, "Massive parallelism through program restructuring,” in Proc. 3rd
Symp. Frontiers Massively Parallel Computation, pp. 407-415, Oct. 1990.

L.E. Cannon, "A celular computer to implement the Kalman filter algorithm,"
Ph.D. dissertation, Montana State Univ., Bozeman, M T, 19609.

S. Lennart Johnsson, "Communication efficient basic linear algebra computations
on hypercube architectures,” J. Parallel Distributed Computing, vol 4, no. 2, pp.
132-172, April 1987.

P. Bjgrstad, F. Manne, T. Sgrevik, and M. Vajtersic, "Efficient matrix multiplication
on SIMD computers,” SIAM J. Matrix Anal. Appl., vol. 13, no. 1, pp. 386-401, Jan.
1992.

Jorge L. Aravena and William A. Porter, "Nonplanar switchable arrays,” Circuits
Systems and Signal Processing, val. 7, no. 2, pp. 213-234, 1988.

Jorge L. Aravena, "Triple matrix product architectures for fast signa processing,"
|IEEE Trans. Circuits Syst., vol. 35, no. 1, pp. 119-122, 1988.

22

A Appendix

Proposition 1

~——
o
My
o~
Il
o~
o
N—
=
N
=
@)
S
)
7
8
=
0
—_
~J
—
>0
2

. . 1
(Proof) Since F* = (0

3
Hence, the condition of P*~"(2) = P*"'(1) is obtained.
Eqg. 17 should aso hold for data array c. Hence,

P = FT;) (25)

1 00

0 10) , P™" ran be represented by P*~" and P*":

o _ [P
P = - 26
(Pmi) 9
Since P°”" should be nonsingular, P*~*(1) and P~ (2) should be linearly independent.
Proposition 2

(Proof) Suppose that T;' € Nuzi1(Fu)for a data array v where Null(Fu) denotes the
null space of matrix FuU. Then, ¥ = 0, i.e., data array v is not moving during the
computation. Hence, in order to minimize data movements, it is desirable to find 77!
that arein the null spacesd indexing pattern matricesd as many data, arrays as possible.
For matrix multiplication case, the indexing functions o three data arrays have distinct
null spaces. Hence, it isimpossibletofind 77! that arein the null space d more than one
data array indexing function. The best choiced T is a vector in the null space d one
data array. Since (c,0,0)T € NulZ(F"), (0,¢,0)7 € Null(F®), and (0,0,¢)T € Null(F°)
for ¢ € Z, these three vectors are equally optimal choices. If |¢| > 1, ¥ hasan entry whose
absolute value is larger than 1. This implies non-neigThbor communication. To eliminate
this possibility, (£1,0,0)7, (0,41,0)%, and (0,0,+1)" should be chosen as T;".

Proposition 3

(Proof) Suppose that all entriesdf P? are not equal to zero. Then, it isalso true that all
entriesdf P*”" are not equal to zero. If T, # (0,4+1,0)7, then no entry of ¥* isequal to
zero. Hence, this is not the optimal choice. Therefore, T; ! should be (0,+1,0)T. Since
P*7'(2)= P*7'(1), noentry in P"" (1) is equal to zero. Therefore, noentry in P? isequal
to zero. On the other hand, since F*Ty " = (0,41)7, no entry o 3° = PP F*T;! is equal
to zero. This results in non-neighbor communication in 4-way mesh interconnections.

Since F°* = (

23

Therefore, there should exist at least one entry equal to zero in P2. Similar derivation
can bring the same condition for P* and P¢, too.

Lemma A.l. Suppose that a data array has a finite number o data array copies whose
distribution is given by pi" where

P (F,t) = (Pg + P+ F(t + kb)) (mod5.)»

and k = l-gn.;)minJ’ I.(H—?Hmmj +1,--, Lf—)—m mez | _ 1, LK—LHiI;"”J. Given j € J,

by b

(i.) = (TJ)mod m;

where I denotes the index d the processor that executes computation with index J at
timet. Processor Z contains the correct dataelement § = Fj t f at timet if

T(2,3)j = PFj+ Pf + 5 + 7113,
and -
m(2, 3) = bx.
(Proof) It sufficesto show that thereexists pi* (g, t) such that (T(2,3)})med 5, = P (Fi+
fi). Let k =_L%‘#Jh_then P t) = (PFit PE+ 5+ 3t |52 moasy- Since t =
(Hj)mod bg — Hj - LFI}ZJ b,

PE(Fi+ fit) = (PFj+PF+p+3(t+ [12]bn))moa s
= (PFj + Pf + P +3(17))moatx
= (T(Z, 3)j)mod bx*

24

	Purdue University
	Purdue e-Pubs
	10-1-1994

	Dist a distribution independent parallel programs for matrix multiplication
	Hyuk J. Lee
	José A.B. Fortes

