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ABSTRACT 

Salsaki, Reid Iwao. MSEE, Purdue University, August 1994. The Impact of 
Eltxtronic Ballast Compact Fluorescent Lighting on Power Distribution Systems. 
Major Professor: G.T. Heydt. 

Due to the high costs of expanding generation and transmission capacities, 

utilities have been initiating programs to reduce peak power demand by the customer. 

A number of these programs, which are commonly referred to as demand side 

management programs, have turned to the promotion of electronic ballast compact 

fluorescent lamps (CFLs) as an alternative to traditional incandescent lamps. These 

larnps provide a higher luminance and increased life as compared to their 

incandescent counterparts. Unfortunately, electronic ballast CFLs consume large 

arr~ounts of harmonic current which may prove detrimental to the power distribution 

system. This thesis presents an introduction to the electronic ballast CFL, including 

its theory of operation and its potential applications. The experimental results of a 

number of electronic ballast CFLs investigated are presented. A PSPICE simulation 

is then presented which models a typical distribution network and the electronic 

ballast CFL. The results of the simulation are then applied to investigate the derating 

of a typical distribution transformer, compliance of the system with various harmonic 

standards, and the derating of the distribution circuit due to triplen neutral currents. 

The simulation of the lamp is further used to investigate harmonic reduction 

techniques applied to the electronic ballast CFL. 





CHAPTER 1 

INTRODUCTION 

1 . 1  Motivation 

Over the past few years, the electric power utility industry has .been one of 

America's key industries [I]. With relatively low inflation and interest rates, 

manufacturing industries, such as the automobile, machinery, and steel industries, are 

increasing their production. This growth in gross national output causes an increase in 

consumption of electrical power used to produce those goods. In many cases, 

however, the annual growth rate of 1.5% has not warranted the expansion of installed 

gene:ration capacity. Because of the high costs of expanding generation and 

tran:;mission capacities, utilities have been initiating programs to reduce energy 

demi~nd by the customer, especially demand during peak periods. These programs, 

which are commonly referred to as demand side management @SM) programs, 

promote such methods as peak-shifting and the use of energy-efficient devices to 

reduce energy demand. Peak-shifting entails the shifting of loads by the customer 

during the utility's peak demand hours. By shifting large loads from the utility's peak 

to off-peak hours, the expansion of peak generation capacity is thus avoided. The cost 

of peak generation depends on how it is evaluated; however, the range 350-2000 

dollars/kilowatt is representative. The promotion of energy-efficient devices is aimed 

at tht: reduction of the total peak power demand. Although the use of these devices 

resul~s in lower revenues for the utility, the savings to utility occurs due to the 

additional generation and transmission capacity that can be avoided. With the advent 

of high-power solid-state components, manufacturers have been able to produce 

devices which are relatively efficient compared to their traditional counterparts. As an 



example, energy efficient drives have been promoted to replace conventional electric 

mo.:ors. Typical applications are heating, ventilation, air-conditioning equipment, 

pumps, and fans. Other energy efficient technologies include microwave drying, 

superconducting machines, and automatic power factor adjusting devices. Another 

area which has been targeted for energy efficiency has been lighting. This is the area 

considered in this thesis. 

Compact fluorescent lamps (CFLs) were introduced in the early 1980ts, 

promoting energy efficiency and long lamp life as compared to incandescent lighting. 

Available for the commercial, industrial, and residential markets, CFLs are available in 

a va-iety of shapes and sizes for both new and retrofit applications. Pvlanufacturers 

offer a number of lamp and ballast combinations which provide an dternative to 

incandescent and conventional fluorescent lamps. Compact fluoresceiits offer the 

energy-efficiency of the conventional fluorescent lamp, while having physical 

dimensions and luminance characteristics comparable to that of the incandescent lamp. 

Because of the relatively high prices of CFLs as compared to their traditional 

counterparts, their use in the residential sector has been, until recently, lirrdted [2]. To 

pronlote the use of these energy saving devices, utility companies have offered rebate 

programs as a part of their demand side management program Aimed at reducing 

energy demand by the utility customer, especially in the peak demand period, these 

rebale programs offer substantial rebates to customers who purchase CFLs. Many 

utilities are selling CFLs to their customers at prices significantly lower than the 

manufacturers suggested retail price. In some cases, the utility is actually giving 

sample CFLs gratis to their customers to promote them [3]. 

Although many customers are taking advantage of these rebate programs and 

thus reducing energy demand, utilities may actually encounter unexpected costs in the 

long run due to the use of these devices which consume and genera1.e harmonic 

current. When CFLs are a large percentage of the load on a utility's distribution 

network, losses in the distribution transformers occur due to the increased harmonic 

current. These losses lead to a decrease of the rated lifetime of the transformer, thus 

increasing the costs to the utility for the maintenance and replacement. 



Large harmonic content in a distribution system should also be a concern for 

hannonic producing customers and their neighbors. Harmonic presence in voltages 

and currents cause an increase in heating in the copper windings and iron of motors 

and other similar electromagnetic machinery [4]. A decrease in life e:xpectancy of 

these components will lead to increased costs to the utility custorner for their 

mai~~tenance and replacement. Harmonic voltage distortion may also lead to a 

misoperation of electronic equipment which are dependent of the relative 

zero-crossings of the supply phase voltages. 

1.2 Objectives 

The main objectives of this thesis are: 

To study the load characteristics of CFLs with electronic ballasts 

To model electronic ballast CFLs 

To quantifl the losses in the distribution system due to CFLs 

To assess the impact and true demand reduction for CFL loads 

To investigate harmonic filtering methods for CFLs. 

1.3 Literature summary - fluorescent lighting 

The fluorescent lamp may be categorized as a low pressure gas discharge lamp 

[5]. The discharge which takes place produces two resonance lines of the mercury in 

the ultraviolet (W) spectrum, specifically at 185.0 and 253.7 nm. When ii potential is 

applied across the electrodes of the tube, free electrons are emitted from the electrodes 

and bombard the mercury atoms. The collision between the electrons and the mercury 

atoms result in heat generation, excitation of the mercury atoms and its mc)lecules, and 

the ionization of the mercury atoms. Heat generation and the subsequent increase of 

the gas temperature is the result of elastic collisions that occur between the free 

electrons and the mercury atoms. The excitation of the mercury atoms and molecules 

is the result of collisions between the free electrons and the mercury atoms which 



cause electrons belonging to the mercury atom to move to a higher energy level. Due 

to the electrostatic force of the mercury atom, these electrons soon return to their 

normal energy level. The energy gained by the mercury atom from the electron upon 

its return path, known as the excitation energy, leaves the mercury atom in the form of 

elec1:romagnetic energy. This electromagnetic energy, which is in the form of UV 

radiation, is converted into visible light by means of a fluorescent power which coats 

the inside of the tube. The ionization of the mercury atoms is the result of collisions 

between the free electrons and mercury atoms which cause an electron of'the mercury 

aton1 to be completely removed from its orbit and subsequently become a free 

electron. The process in which electrical energy is converted into light in a fluorescent 

lamp is shown pictorially in the diagram below. 

Visible Radiation Ultraviolet Radiation 

_1 Fluorescent Mercury Electrons Electrode 
Powder Atom Cap --A 

I'igure 1.1 Conversion of electrical energy into light in a fluorescent lamp [4] 

The main factors which determine the' radiation of the two UV resonance lines 

are the mercury vapor pressure, the auxiliary gas, the current densi.ty, and the 

discharge tube dimensions. These are discussed in detail below. 

* Mercury vapor pressure. The fluorescent tube consist of a small amount of 

mercury necessary for the discharge in the lamp to occur [6] .  The satura1:ed mercury 

vapor pressure is dependent on temperature. In the case of the fluorescent lamp, the 

pressure of the mercury vapor is determined by the temperature of the coldest spot on 



the tube wall, otherwise known as the "cold spot". Because of this dependence, there 

exists an optimum pressure, and thus temperature, that a specific lamp must operate at 

for .the maximum efficiency of the UV resonance lines produced. If the vapor pressure 

is too low, the probability that the mercury atom is excited by a free electron decreases 

and results in a lower luminous output of the lamp. If the vapor pressure is too high, 

the self-absorption of the UV resonance lines increases and also results in a lower 

lumiinous output. 

* Auxiliary gas. When collisions between the free electrons and mercury 

aton~s occur, the electrons travel a certain distance. The distance covered by these 

elea:rons can be summarized as the mean free path length, which is defined as the 

mean distance covered by the electrons between two collisions. When the mercury 

vapor pressure is at its optimal level, the mean free path length of the electrons is so 

great that the probability of the excitation of the mercury atoms and its molecules is 

low. An auxiliary gas, usually krypton, is added to reduce the mean free path length of 

the r:lectrons and thus increase the excitation of the mercury atoms and subsequent UV 

emission [5]. Like the mercury vapor, the auxiliary gas also has an optimal pressure 

for the maximum luminous efficacy of the mercury discharge. If the ,auxiliary gas 

pressure is too low, the probability of the excitation of the mercury atonls decreases. 

If the auxiliary gas pressure is too high, the number of elastic collisions between the 

free czlectrons and the auxiliary gas increases and draws energy from the UV producing 

co1liz;ions between the free electrons and the mercury atoms. 

Current density. The energy consumed by the fluorescent tube and the tube 

wall temperature increase proportionally to an increase in lamp current [ 5 ] .  Ifthe tube 

wall temperature exceeds the optimal vapor temperature, there will be a decrease of 

UV emission. Given constant tube dimensions, an increase in lamp current translates 

into a higher current density in the tube. A higher current density leacls to both a 

decre,ase of the resonance levels due to an increase of excitation of the mercury atoms 

and also an increase of the absorption of the resonance radiation produced by the 



excitation of the mercury vapor. Both of these effects reduce the luminc~us efficacy of 

the lamp. 

* Discharge tube dimensions. Fluorescent lamp power is a hnction of both 

the ~zurrent through the tube and the lamp voltage, consisting of the volta.ge across the 

anotle electrode, the cathode electrode, and between the anode and cathode (i.e., the 

arc voltage) [6]. Given a constant tube diameter, there must be a proportionate 

increase in arc voltage with an increase in tube length to maintain the clptimum tube 

wall temperature and luminous efficacy. When the tube length is decreased, the tube 

diameter must be decreased to maintain the optimal luminous efficacy of the lamp. 

The decrease in tube diameter increases the electric field strength through the tube, 

thus creating a higher power dissipation per unit of discharge length in the tube. 

The literature of the various types of fluorescent lamps may be cittegorized as 

conv.entiona1 lamps, compact units, and electrodeless lamps. These are discussed in 

detail below. 

Conventional fluorescent lamps. The basic construction of a fluorescent 

tube consist of the discharge tube, the fluorescent powder, the  electrode;^, the filling, 

and the end-caps [5]. 

The discharge tube is cylindrical in form and serves to contain the filling gas 

and electrodes. The tube is constructed out of lime glass for straight-tube 

configurations (e.g. 24", 48", and 96" lengths) and lead glass fclr bent-tube 

confi,gurations (e.g. Circline and CFLs). The tube is classified by its diameter and 

physical configuration. The "T" stands for "Tube" while the number following 

corresponds to the diameter of the fluorescent tube in eighths of an inch (e.g. the 

comnlon "T12" stands for the 1 112" diameter straight-tube configuration) [2]. 

The fluorescent powder which coats the inner surface of the discharge tube 

serves to convert UV produced by the discharge of the lamp into visible: light. The 

visibll: light produced by the fluorescent powder, otherwise known as luminescence, 



can be subdivided into the fluorescence and phosphorescence properties of the 

powder. Fluorescence can be described as the light produced orlly when the 

fluorescent powder is being irradiated by the W radiation produced by the low 

pressure mercury discharge of the lamp. Phosphorescence can be described as the 

afterglow produced by the fluorescent powder after it has been irra'diated. It is 

required that the fluorescent powder used have the latter property due to the "dark 

period" which occurs in fluorescent lamps supplied by an alternating voltage source 

(e.g., 50 or 60 Hz). When the instantaneous voltage supplying the lanip is below a 

point where an arc across the electrodes can no longer be produced, current no longer 

flows through the tube and no W radiation is emitted. . .  . 

The electrodes of the fluorescent lamp allow the generation of fiee electrons 

inside of the discharge tube. The electrodes are constructed from tungs-ted wire and 

are doubly or triply coated with an emitter material. A metal screen which is 

e1ect:rically isolated from the electrodes often surrounds the electrodes to restrict the 

sputtering and evaporation of the electrode material, which appears as discharge tube 

"blackening" near the electrodes. 

The filling of the discharge tube consists of a small quantity of mercury and an 

auxiliary gas. When a voltage is applied across the electrodes. of thle lamp, free 

electrons are produced in the tube. These fiee electrons excite the merculy atoms and 

produce a discharge of UV radiation. 

The auxiliary gas are necessary for the discharge of the UV radiation anld also aid in 

the sbarting of the lamp by lowering the effective starting voltage. 

The end caps of the fluorescent lamp serve to enclose the tube cln both ends 

and allow connection to the fluorescent fixture. These caps come in many shapes and 

sizes and are fitted with either one or two contacts apiece. End caps fitted with one 

conta.ct are used in fixtures which only allow cold starting of the lamp while caps fitted 

with two contacts must be used in fixtures which preheat the electrodes prior to 

starti:ng (e.g., rapid start lamps). 



Compact fluorescent lamps. As its name suggests, the CFL is a compact 

version of the traditional fluorescent lighting fixture described above. CFL's are most 

conlmonly found in lengths no greater than approximately 25". Their design powers 

generally range from 7 to 40 watts and produce an illuminance comparable to 

incandescent and traditional fluorescent fixtures of higher power [7]. 

The physical construction of the CFL is similar to that of the conventional 

fluorescent lamp, consisting of the discharge tube, the fluorescent powder, the 

electrodes, the filling, and the end-caps. To reduce the overall size of the CFL, the 

length of the discharge tube is reduced significantly as compared to conventional 

fluorescent lamps. In order to keep the luminous flux of the lamp constamt (given the 

decrease in tube length), the diameter of the tube is also reduced in order to increase 

the strength of the electric field through the tube. In order to hrther reduce the size of 

the lamp, the discharge tube is literally folded in half The folding of !.he tube also 

allo~vs both end-caps to be enclosed in a single housing. It also allows the 

incorporation of the starter, base, and (in some cases) ballast in the same housing. 

CFLs are found in many types of physical configurations. One type is the 

single-ended twin-tube which is a U-shaped tube with filaments on both ends. Another 

type is the single-ended quad-tube which is similar to the twin-tube except that it 

consist of twice of the number of tubes. The twin- and quad-tube configurations are 

comnonly found in 112" and 518" diameters (designated as "T4" and "T5" sizes, 

respt:ctively) and have two-pin bases for connection to the ballast. Other types of 

CFL:; include square-shaped, globe-shaped, reflector, and Circline configurations. 

Finally, the integral CFL includes the lamp and the ballast housed in an Edison 

screw-in lamp base. The attributes for the various types of CFLs currently available 

are shown below in Table (1.1). 



Table 1.1 Attributes of various types of CFLs [8] 

Lamp Type 

I~~candescent 
- 

T-4 Twin-Tube 
- 
T-# Quad-Tube 

T-:j Twin-Tube 

Note:;: (1) Efficacy is defined as lumens output 1 system watts input 

(2) Lamp life in hours, based on 3 hours per start 

(3) Includes ballast power 

Integral Ballast 

Lamp 
- 

Circline 

Due to the vast number of possible of combinations of lamp shapes, powers, 

and base types, the National Electrical Manufacturers Association (NEMA) has 

developed a generic designation system for non-integral CFLs [9]. The 1-MA lamp 

product code for CFLs consists of the following elements: 

Ballast Type 

none 

magnetic 

magnetic 

magnetic 

CF [Lamp Shape] [Lamp Power] / [Base Designation] 

where 

[Lamp Shape] = "T" (twin-tube), "Q" (quad-tube), "S" (square shape), or "M" 

(miscellaneous shape not covered by the other designators), 

[Lamp Power] = power consumed by lamp, and 

[Base Designation] = manufacturer base designation code. 

electronic 

magnetic 

electronic 

magnetic 

electronic 

For example, the NEMA generic designation code for a typical 13-watt T-4 twin-tube 

CFL .would be CFT 13 W/GX23. 

Lamp Power 

25-150 

5-13 

9-26 

18-40 

18-40 

153 

17-273 

20-40 

22-30 

Efficacy' 

8-20 

25-50 

35-55 

50-60 

70-85 

45-50 

55-65 

35-60 

80-85 

Lamp LifeZ 

750-2,000 

10,000 

10,000 

<20,000 

Overall Length 

< 7" 

4-7.5" 

4.5-8" 

9-22.5" 

15,000 

9,000 

9,000-10,000 

12,000 

9,000 

9-22.5" 

6-9" 

. . 5-8" 

6.5-16" 

diameter 



One of the reasons for the high efficacy of CFLs is the rase earth (RE) 

phc'sphors used in the fluorescent powder used to coat the tube [lo]. These RE 

phosphors are able to produce high lumen output from CFLs which have a high power 

density in the small diameter tube used. The use of conventional hak~phosphors in 

CFLs would lead to a rapid and severe depreciation in luminance of the liimp. The RE 

phosphors used in CFLs also have excellent color rendering properties and various 

color temperatures which are obtainable by combining these phosphors. CFLs are 

available in several color temperatures for incandescent retrofit applications and 

special effect lighting applications. These color temperatures (expressed in Kelvins) 

range from 2700 K for a warm "incandescent" color rendering to 4100 E; for a cooler 

"bluish" color rendering. CFLs with a color temperature of 3500 IK produce a 

neutral-white light, similar to that of traditional fluorescent lamps. The quality of the 

lighi: produced by a CFL is measured by its Color Rendering Index (CRI) which is on a 

scale of 100. The CRI determines how "true" or "natural" colors appear under the 

light. As a reference, a standard incandescent bulb have a color temperature of 2800 

K artd a CRI of 93 [l 11. Typical color temperatures used for standard ClFLs and their 

corresponding CRIs and lumen equivalents are shown below in Table (1.2). The 

environmental impact of RE phosphors may be a concern if discarded CFLs are sent to 

con\,entional landfills. These phosphors are toxic and some attention has been given 

to alternative formulas for CFL phosphors. 



Table 1 .2  Color temperature options of standard CFLs [5] 

- - -  - - - I 2700 K 1 82 1 warm white, incandescent, white sodium PIPS) 1 
Color 

Temperature 

1 1100 K 1 85 (cool white, metal halide, other 4100 K fluorescent and H I D  lamps I 

Nominal 
CRI 

3000 K 

3500 K 

/ :5000 K' 1 85 I CID50 and all other high color temperature fluorescent and HID sources I 

Matches 

Note: 'not as many product available as other color temperatures 

85 

85 

Because of their relatively small physical size, high efficacy, and long life, the 

use of CFLs is being promoted in both the residential and commercial sectors. 

Suggested applications for CFLs are shown below in Tables (1.3) and (1.4) for the 

residential and commercial sectors, respectively. Typical commercial applications for 

specific types of CFLs are also shown below in Table (1.5). 

Warm white, incandescent, halogen, other 3000 K fluorestxnt and 
high-intensity discharge (HID) lamps ~ 
Halogen, other 3500 K fluorescent lamps 

Table 1.3 Suggested residential applications for CFLs [8] 

Kitchens 

:Recessed 
downlights 

Under cabinet 
lights 

Under cabinet 
lights 

Recessed 
downlights 

Wall washers 

Swing arm 

lamps 

Bathrooms 

Closet lights 

Mirror lights 

Recessed 
downlights 

Shower & tub 
lights 

Utility Areas 

Stairways 

Laundry rooms 

Attics 

Closets 

Crawl spaces 

Exterior 

Lanterns 

Garage lights 

I'ath lights 

Security lights 



Table 1.4 Suggested commercial applications for CFLs [8] 

General 
Lighting 
7 

liecessed 
dcswnlights 

Suspended 
h~minaires 

Indirect 
lighting 
systems 

Accent & Specialty 
Lighting 

Recessed & 
track-mounted wall 

washers 

Under cabinet lights 

Cove lights 

Case lsplay lights 

Modular strip 
outlining 

Sign and display 

- 

Decorative & 
Portable Lighting 

Wall sconces 

Chandeliers 

Table & floor lamps 

Makeup & dressing 
lights 

- - 

Lighting 

Step lights 

Exit signs 

Table 1.5 Commercial applications for specific types of CFLs [9] 

Pedestrian post 
top and bollard 

lights 

Step lights 

Task lighting 

Reflt~tor Unit 

Under rail - . 
lights 

Vandal 
resistant 

sr:curity lights 

++ Uniquely superior lamp choice 

+ Suitable lamp choice 

- Unsuitable lamp choice 



Electrodeless fluorescent lamps. One of the main causes of failure of 

flucrescent lamps is the degradation of lamp electrodes. Also, the glass-metal bonds 

required to introduce connections to lamp electrodes are costly and sometimes difficult 

to manufacture. For these reasons, an electrodeless design was developed for 

fluorescent lighting [12]. Referred to as the H-discharge method, the electrodeless 

design incorporates a lamp tube surrounded by an air-core coil. This coil is supplied by 

a hi,gh-frequency (e.g., 1-100 MHz) power source which produces an e1~:ctromagnetic 

fielcl inside the lamp tube. This field causes the mercury vapor in the tube to ionize 

and subsequently phosphors produce luminous output. 

Similar to the electronic ballast CFL, the electrodeless fluorescc:nt lamp is a 

compact electronic ballast mercury discharge light source. The electrodeless 

fluo.rescent consumes approximately the same power as a typical CFL (approximately 

25 .watts), while producing a comparable luminous output (approximately 1,000 

1umt:ns). The advantage of the electrodeless design is the relative long-lifie due its lack 

of electrodes. The power source for the electrodeless lamp comprises a 

rectifierlinverter circuit, similar to that of the CFL, to generate the high-frequency RF 

currc:nt required by the lamp. In 1994, electrodeless designs are expected to be 

introduced commercially. 

Two types of ballasts, electromagnetic and electronic, are available for use 

with fluorescent lamps. The ballast serves to provide the starting voltage to the lamp, 

limit the current consumed by the lamp, and help stabilize supply voltage variations 

[ 5 ] .  Ballasts are available in internal and external configurations, re:ferred to as 

integral and adapter ballasts, respectively. Both the electromagnetic arid electronic 

ballasts will be described in detail below. 

* Electromagnetic ballasts. Electromagnetic ballasts consists of a. wirewound 

coil connected in series with the lamp is available for use with conventional and 

compact fluorescent lamps [13]. These types of ballasts limit current to the fluorescent 

lamp by serving as a high impedance load in series with the lamp at line frequency. 



Due: to their inductive nature, electromagnetic ballasts consume approx:imately 15 to 

25 percent of the rated lamp power which is dissapated as heat. In addition, many of 

these types of ballasts suffer from a low displacement power factor (apprfoximately 0.5 

lagging power factor.) 

Electromagnetic ballasts are also responsible for both the gemeration and 

1imii:ation of harmonic current. Harmonic current is generated by the ballast due to its 

nodinear magnetic characteristics but is also limited by the ballast due to its inductive 

nature. A typical supply voltage and current for a fluorescent lacmp with an 

electromagnetic ballast is shown below. 

Figure 1.2 Supply voltage and current for a fluorescent lamp with an eledromagnetic 

ballast 

Electronic ballasts. Electronic ballasts consist of solid state devices used to 

create a high frequency ac voltage supplied to the lamp [14]. The line voltage supplied 

to the ballast is converted into a dc voltage using a full-wave bridge rectifier and a 

filter capacitor. Unlike the electromagnetic ballast which supplies the lamp with a line 

freqi~ency current of 50160 Hz, the electronic ballast provides the lamp with 25 to 50 

lcHz frequency current using an inverter. 

There are a number of advantages of using an electronic ballast as opposed to 

an electromagnetic ballast [9 ] .  When an electromagnetic ballast is used 1to energize a 

fluorescent lamp, the mercury discharge loses most of its electrons and ions when the 

currc:nt reverses through the tube. This is due to a de-ionization of the gas in the tube 



which is supplied with a 50160 Hz ac voltage source. Thus, the discharg~e needs to be 

re-ignited periodically, which requires additional power from the electromagnetic 

ballast. Alternatively, for fluorescent lamp energized with an electronic ballast (with a 

switching frequency greater than 10 kHz), the discharge occurring in the tube does not 

require periodic re-ignition. Because of the relatively high switching frequency of the 

electronic ballast, the gas in the discharge tube does not suffer from an appreciable 

de-ionization and a sufficient number of electron carriers required for discharge remain 

after current reversal. Thus, there is no power required to re-ignite the discharge, 

which results in a 10% increase in luminous flux produced by the discharge tube. 

Other advantages of using a electronic ballast instead of an electromagnetic ballast 

include decreased size and weight, increased efficacy (lumenslwatt), decreased 50160 

Hz hum, and increased lamp life. 

There are also disadvantages of using an electronic ballast as opposed to an 

electromagnetic ballast. Because the electronic ballast incorporates a bridge 

rectifierlfilter capacitor combination to convert the supply ac voltage into a dc voltage, 

a lar,ge amount of current distortion is injected into the voltage supply. The relatively 

small conduction time of rectifierlfilter capacitor combination creates a current 

wavc:form which is rich in odd harmonics and also has a relatively high crest factor. A 

typic,al supply voltage and current for a fluorescent lamp with an electronic ballast is 

shovm below. Another disadvantage of the electronic ballast is the radio frequency 

interference which is induced by the high switching frequency of the ballast's inverter. 

Figure 1.3 Supply voltage and current for a fluorescent lamp with an electronic ballast 



1.4 Literature summary - power quality 

The literature of electric power quality is voluminous. For purposes of 

assessing the impact of CFLs, it is convenient to examine power factor ant1 the various 

IEEE3 standards relating to power quality. These are discussed briefly below. 

Power factor. The power factor in the case of sinusoidal voltage and 

current waveforms can be defined as the ratio of the active power to ,the apparent 

power consumed by the load [15]. This can be expressed for the sinusoida:l case as, 

Active Power - 1 PF(sinusoida1) = dPF = tPF = Apparent Power - 

where 

P = V,, I,, cos 8 

S = v,, I,,. 

The values of V,, and I,, are the rms values of the terminal voltage and current, 

resp~:ctively. The angle 8, referred to as the power factor angle, is the phase 

difference between the voltage and current waveforms. When the current lags the 

voltilge, a lagging power factor is obtained and the load is referred to be inductive with 

a positive power factor angle (0 > 0). When the current leads the voltage, a leading 

power factor is obtained and the load is referred to be capacitive with a negative 

power factor angle (0 < 0). Note that inductive loads (0 < 0 < 90) causing a lagging 

power factor may be compensated to a unity power factor by adding a capacitor in 

parallel across the load terminals. For the sinusoidal voltage and current case, the 

power factor is the cosine of the angle between the current and voltage. This angle is 

also the angle between the hndamental v(t) and i(t). Therefore the displacement 

pourer factor and displacement factor also apply. In the sinusoidal case, the true 

pourer factor (tPF) and the displacement power factor (dPF) are the same and are 

simply termed "power factor". 



Switched electronic loads usually cause distortion in load currerrt [16]. This 

distortion is due to the non-continuous conduction of current through the load. This 

switching causes the load current to become nonsinusoidal and subseqi~ently affects 

the power factor. The term "power factor" for the nonsinusoidal case needs fbrther 

explanation. 

True power factor, tPF, is defined as 

where 

Displace~~ent power factor, dPF, is defined as 

where 

In the nonsinusoidal case, tPF can not always be corrected to unity through simple 

power factor correction (i.e., capacitors). For example, for the nonsinusoidal case 

v(t) = cos(t) + 0.01 cos(3t) 

i(t) = cos(t) + cos(3t), 

it can be easily shown that 

dPF = 1.0000 

tPF ~0 .7141 

In this case, power factor correction using capacitors is ineffective since the 

hndamental voltage and current are already in phase. 



IEEE Standard 5 19-1992 [4] - Practices and requirements for harmonic 

coni.ro1. IEEE Standard 5 19- 1992 provides recommended practices for electric power 

systems that are subjected to non-linear loads. The standard includes information on 

harrnonic generation, system response characteristics, the effects of harmonics, 

harrnonic control, and recommended practices for individual customers and utilities. 

The generation of harmonics in a power system can be attributed to the use of 

rect ~fiers, arc furnaces, static var compensators, inverters, electronic phase controllers, 

cycloconverters, switched mode power converters, and pulse width modulated drives, 

as defined in IEEE Standard 5 19- 1992. All of these devices may cause harmonics in 

the voltage and/or current waveshape provided by the utility. In the case of devices 

conlaining solid state components to achieve switching, voltage harmonics can be 

attributed to voltage notching due to commutation periods while current harmonics 

can be attributed to discontinuous conduction due to the switching of the solid state 

components. 

The system response characteristics to harmonic loads on a distribution system 

determines the effect of these loads. The flow of harmonic currents in a distribution 

network is dependent on the system short-circuit capacity, the placement and size of 

capacitor banks, the characteristics of the loads on the system, anti finally, the 

balanced/unbalanced conditions of the system. 

Normally in a distribution network, harmonic currents tend to flow between 

the harmonic load and the lowest system impedance. In most cases, this will be the 

utili~y source or point of generation. When capacitor banks and load characteristics 

are taken into effect, parallel and/or series resonant conditions may a.ppear in the 

distribution system, causing oscillations and further producing an increase in voltage 

distortion. Because of this fact, a thorough investigation of the characteristics of the 

installed capacitor banks and loads must be done to avoid resonances. 

Specifically, IEEE Standard 5 19- 1992 provides recommended practices for 

harn~onic control for both the utility and individual customer. Because of the wide 

range of harmonic- producing loads described above, three harmonic indices have been 



recommended for the individual customer to provide a meaningful insight of harmonic 

effects [4]. These indices include: 

(1) Depth of notches, total notch area, and distortion (RSS) of bus voltage 

distorted by commutation notches (low-voltage systems), 

(2) Individual and total voltage distortion, and 

(3) Individual and total current distortion. 

The development of Indices (2) and (3) will be discussed in detail below. Index (1) 

will not be discussed because it does not apply to a distribution lighting Feeder loaded 

with CFLs. The CFLs studied are single-phase line-to-neutral devices which do not 

cause voltage commutation notches. . . 

The harmonic voltage distortion on a distribution is a hnctior~ of the total 

injected harmonic current and the system impedance at each of the harmonic 

frequencies [4]. Because of this relation, current distortion limits have been developed 

to curtail voltage distortion produced by individual customers. The objectives of 

developing current distortion limits are to: 

(1) Limit the harmonic injection from individual customers so that they will 

not cause unacceptable voltage distortion levels for normal system 

characteristics, and 

(2) Limit the overall harmonic distortion of the system voltage supplied by 

the utility. 

Note that the total injected harmonic current is dependent on the number of individual 

customers injecting harmonic current and the size of each customer. Thus, the 

harmonic current limits developed are dependent upon customer size. The size of the 

customer is determined by its short-circuit ratio (SCR) at the point of common 

coupling (PCC) with the customer-utility interface. The SCR for a customer may be 

defined as 

where 

I,, = utility system short-circuit current capacity at the PCC 



I, = customers maximum demand load current (hndamental frequency 

component) at the PCC 

Note that the SCR is an indication of the "stifYness" of the bus at the PCC. Thus, 

cusi.omers which represent a relatively large portion of the utility's total system load 

will have a more stringent current distortion limit than smaller customers. 

The basis for current distortion limits are to limit the maximum individual 

frequency voltage harmonic to tolerable levels. These voltage harmoriic limits and 

corresponding SCRs are shown below in Table (1.6). 

Table 1.6 Basis for IEEE 519-1992 harmonic current limits p4] 

Dedicated system 

1-2 large custom,ers 

A few relatively large customers 

SCR at PCC 

I loo 1 0.5-1.0 I 5-20 medium size customers I 
L l.ooo I 0.05-0.10 I Many small custo:mers 

Maximum Individual Frequency 

Voltage Harmonic (%) 

Table (1.7) shows the current distortion limits for general distribution system 

(120 V through 69,000 V) for corresponding SCRs at the PCC. The index used to 

determine the maximum allowable harmonic current distortion allowable for a specific 

SCI: is the total demand distortion (TDD). The TDD is defined as the harmonic 

current distortion in percent of maximum demand load current. 

Related Assumpl.ion 



Table 1.7 IEEE 5 19- 1992 current distortion limits for general distribution 

systems (120 V through 69,000 V) [4] 

Maximum Harmonic Current Distortion in Percent of I ,  

Individual Harmonic Order (Odd Harmonics) 

TDD 

5.0 

8.0 

12.0 

. . 15.0 

Notes: (1) Total Demand Distortion (TDD) = harmonic current distortion in % of maximum 

demand load current (1 5 or 30 minute demand) 

(2) Even harmonics are limited to 25% of the odd harmonic limits above 

(3) Current distortions that result in a dc offset, e.g., half-wave converteis, are not 

allowed 

(4) *All power generation equipment is limited to these values of current distortion, 

regardless of actual IJ I ,  

IEC Standard 555-2 [17] - Disturbances in supply systerrls caused by 

household appliances and similar electrical equipment. The E C  Standard 555-2, 

which is practiced in European countries, is a standard focused on harnionic current 

content at the equipment level. Unlike IEEE Standard 519-1992 which focuses on 

harnlonic content at the utility system level, IEC 555-2 is an equipment specification 

stating the allowable amount of harmonic current produced by electronic devices. The 

equipment covered by IEC 555-2 is subdivided into "Classes" and is su~nrnarized in 

Table (1.8). Equipment considered in "Class DM are defined as having a current 

waveshape which falls below the envelope shown in Figure (1.4) for more than 95% of 

the positive half cycle. 



Table 1.8 IEC 555-2 defined equipment classes [17] 

h 3 a r r  I Description ~ x a m ~ l e s y  

A I Balanced 3-phase equipment and equipment not 
falling into another category 

I Portable and similar tools 

- 
C 

Small (< 15 HP) 3-phase ASDs 1 
Lighting equipment, including dimmer controls 

D 

Small (< 5 HP) 1-phase ASDs and 
appliances with ASDs 

Equipment having an input current which falls 
below the Class D defining envelope* for more 

than 95% of the ~ositive half cvcle 

Fluorescent lighting (other than 
compact) and lightin~g dimmers 

Computers, compact fluorescent 
lighting, controllers, consumer 

electronic:; 

Note: ' See Figure (1.4) for IEC 555-2 Class D defining envelope . .  - 

Waveform Angle (degrees) 

Figure 1.4 IEC 555-2 Class D defining envelope [17] 

The maximum harmonic current allowed is specified for the individual 

harrnonic orders. These limits are shown in Tables (1.9), (1.10), arid (1.11) for 

Classes A, C, and D, respectively. Note that these harmonic limits are for equipment 

supplied by 230 volts line to neutral or 400 V line to  line. If the equipment is supplied 



with a different voltage (i.e., 120 volts line to neutral or 208 volts line to line), the 

limits stated in Tables (1.9) through (1.1 1) must be multiplied by a factor equal to the 

actual supply voltage divided by 230 volts or 400 volts, respectively. 

Table 1.9 IEC 555-2 Class A harmonic limits [17] 

- .  - 

Even Harmonics 

Note: Harmonic current limits for Class A equipment and certain Class C equipment using 

phase-controlled lamp dimmers 



Table 1.10 IEC 555- 2  Class C harmonic limits [17] 

Note: Harmonic current limits for Class C equipment greater than 25 watts 

Table 1.1 1 IEC 555-2 Class D harmonic limits [17] 

Harmonic Order 
(n> 

2 

3 

5 

7 

9 

11 < n < 3 9  

Harmonic Order 

Odd Harmonics On1 

Even Harmonics 

Maximum Percent 
of rms current 

2 

30 

10 

7 

5 

3 

Notes: (1) Harmonic current limits for Class D equipment and Class C equipme:nt with input 

power less than 25 watts. 

(2) Relative limits apply to equipment with power consumption up to 300 watts. 

(3) Equipment with power consumption lower than 10 watts shall be treated as 10 

watts. 



* Green Seal Standards for CFLs [6 ] .  Due to potential effects of CFLs on 

the environment, Green Seal, an independent non-profit organization, hias provided a 

set of standards for CFLs. These standards are summarized in Table (1.12). Green 

Seal, which encourages consumers to purchase "environmentally preferable" products, 

test,$ various CFLs for their compliance with the standards. The Green Seal Standards 

for CFLs have been adopted by 19 utilities in the Northwest Residential Efficient 

Appliance and Lighting Group (NWREAL), Pacific Gas & Electric Co., and the 

Sac:ramento Municipal Utility District. 

Table 1.12 Green Seal Standards for CFLs [6] . .  

I Standard I Description 1 
Color Rendering Index t Color Temperature 

80 or greater I 
- 

2,600 to 3,100K unless otherwise specified on the package I 

Power Quality 

t Mercury 

Package Information 

No requirements for basic certification. 
Class A designation is given to products with these characteristics: 

* Power factor greater than 0.9 
* Harmonic distortion less than 33 percent 

20 milligrams maximum (drops to 10 milligrams in 1996) 

Information on packaging indicating characteristics of enclosed CFL 

System Efficacy 

Product Life 

Radioisotopes 

Starting 

Toxins in Packaging 

8,000 hours at 3 hours per start 

Zero by August 1, 1996 

4 seconds at minimum rated operating temperature 7 
Built-in ballast: 

less than 10 watts 
10 to 15 watts 
more than 15 watts 

Lamps alone: 
less than 7 watts 
7 to 9 watts 
9 to 13 watts 
13 to 18 watts 
more than 18 watts 

40 lumendwatt 
45 lumendwatt 
55 1umensJwatt 

40 lumendwatt 
50 lumendwatt 
55 1umensJwatt 
60 lumenslwatt 
62 1umensJwatt 

(Added together, the total concentration of lead, cadmium, mercury, 
and hexavalent chromium must not exceed 250 parts per million 
(drops to 100 parts per million on January 1, 1994) 



IEEE Standard C57.110- 1986 [18] - Transformer derating for harmonic 

loatls. This recommended practice set forth by the American IVational Standards 

Institute (ANSI) and the Institute of Electrical and Electronics Engineers (IEEE) 

establishes two methods for the current derating of power transfixmers when 

connected to loads which consume nonsinusoidal currents. The standard applies to 

nonsinusoidal load currents which have a harmonic load factor (which is defined as the 

ratio of the effective value of all the harmonics to the effective value of the 

fundamental harmonic) greater than 0.05 per unit. 

Transformer losses can be divided into no-load loss and loaid loss. The 

ANSI/IEEE C57.110- 1986 establishes a current derating factor . for- power 

transformers by accounting for the increased load loss due to nonsi~~usoidal load 

currents. Thus, no-load loss is not accounted for in the derating procedures. 

Two methods are given in ANSI/IEEE C57.1 10-1986 for the derating of 

power transformers subject to nonsinusoidal load currents. Both methods determine 

the current handling capability of power transformers without the loss of normal rated 

life expectancy. The first method, primarily for use by transformer design engineers, 

requires access to detailed information on loss density distribution within the 

transformer windings. The less-accurate second method, primarily for use by the 

transformer user, requires access to certified test report data only. It is assumed in 

both methods that the harmonic characteristics of the load current are known. The 

latter method for derating a transformer will be described below. 

With access to certified test report data, the following equation for the derating 

of a transformer may be used, 

where 

I,,,, (PU) Maximum permissible rms nonsinusoidal load current 

(per unit of rated rms load current) 

PLL, (pu) Load loss density under rated conditions 



(per unit of rated load 12R loss density) 

P,,-, (pu) Winding eddy-current loss under rated conditions 

(per unit of rated load 12R loss) 

fh Harmonic current distribution factor for harmonic "h" 

(equal to the harmonic "h" component of current divided by the 

hndamental60 Hz component of current for any given loading 

level) 

h Harmonic order. 

Using the above equation, it' is assumed that the nonsinusoidal load current 

applied to the transformer has an rms magnitude of 1.00 per unit. It is ,also assumed 

that the per unit rms current for harmonic order "h" is terms of the rated rms load 

current, I, (pu), is known. In other words, the harmonic distribution of the load 

current applied to the transformer is assumed to be known. 

The harmonic current distribution factor, f,, can be determined fbr a specific 

harmonic order, h, by dividing I, by the rms current at the hndamental frequency of 60 

Hz (h=l), I,. 

The per unit eddy-current loss in the region of highest loss density defined for 

60 Eli operation at rated current, P,, (pu), can be obtained from certified test report 

data for the individual transformer which is usually provided by the manufacturer. The 

maximum per unit local loss density under rated conditions, P,,-r (pu), can then be 

defined as 1 + P,, (pu). 

The maximum permissible per unit rms nonsinusoidal load current in terms of 

the rated rms load current, I,, (pu), is then obtained using the equation shown above. 

The maximum permissible rms nonsinusoidal load current can be obtained by 

multiplying I,, (pu) by the rms sine wave current under rated frequericy and load 

conclitions, I,. 

It should be noted that this procedure for the derating of a transformer when 

supplying nonsinusoidal load currents produces a conservative derating factor. This is 

due to the fact that procedure produces a derated current factor for a load current 

applied to the transformer which is 100% nonlinear. In most practical cases, the load 



applied to the distribution transformer will consist of a percentage of linear load which 

will not contribute to excessive losses in the transformer. 

1.5 Electronic ballast CFLs and the electric utility 

The major concern of the electronic ballast CFL on the utility distribution 

system is their low true power factor due to the large current harmonic distortion 

associated with them [19]. Most electronic ballast CFLs are notorious for the 

relalively large current harmonic distortion (> 100%) and large crest factors which 

they produce [20]. Unlike an incandescent lamp which has a power factor of 1.00, an 

e1eci:ronic ballast CFL produces a relatively low true power factor of approximately 

(0.513). Due to their low true power factor, electronic ballast CFLs consume nearly 

twice the amount of apparent power than real power (assuming a power factor of 

appt,oximately 50%.) This increase in apparent power consumption wit11 lead to an 

increased in cost to both the utility and large utility customers. 

Manufacturers of CFLs are stating that the use of a lower power CFL with an 

luminous output equivalent to that of an incandescent lamp will lead to large energy 

savings to its user. This statement is only true for the residential utility customer who 

is billed for their active power consumption only. In this case, the utility is actually at 

a disadvantage because it has support the increased consumption of reactive power by 

these devices by the use of power factor correction devices, such as capacitors and 

synchronous condensers. The utility is thus faced with the entire econon~ic burden of 

the purchase and maintenance of these devices. In addition, it should be noted that the 

previously mentioned power factor correction methods will only be effective for CFL 

loads with electromagnetic ballast. In many electronic ballast CFLs, the fundamental 

components of the voltage and current are nearly in phase, leading to a dPF close to 

unity. The low true power factor obtained is caused by the large harmoi?ic distortion 

in the current waveform and the application of capacitors may actually be detrimental 

to the power factor instead of improving it [21]. 



In the case of large utility customers who are often billed for -their apparent 

power consumption (instead of active power), the energy savings :stated by the 

manufacturer due to the use of CFL's must be derated to obtain the actual savings seen 

by the customer. To obtain the equivalence rating of a CFL to that of an incandescent 

lamp (e.g. 20 watts CFL equivalent to 75 watts incandescent), manufa~tu~rers often use 

an index of relative luminous efficacy which has dimensions of lux per vvatt. In other 

words, it is a measure of the luminous output of the lamp per one watt input to the 

lamp. Since CFL's consume relatively large amounts of apparent power. as compared 

to incandescent lamps (where apparent power equals active power), the relative 

luminous efficacy of a CFL must be in terms of lux per VA to account fcrthe reactive 

power consumed by the CFL [2]. By derating the equivalence rating stated by the 

mar~ufacturer, it will be found by the customer that the economic benefits of using 

CFI,s will not be as great as anticipated. 

Additional references on the impact of CFLs on distribution systems include: 

Residential load-shape data for incandescent lamps and CFLs ]:25], 

Harmonics from residential customers [26], 

* Voltage distortion forecasts for distribution feeders with nonlinear loads 

[271 Y 

Economic evaluation of harmonic effects on distribution feeders with 

nonlinear loads [28], and 

Identification of the true energy savings realized from high efficiency 

electronic loads [29]. 





CHAPTER 2 

MODELING OF COMPACT FLUORESCENT LAMPS 

AND THE DISTRIBUTION SUPPLY 

2.1 Introduction 

The investigation of the impact of electronic ballast CFLs on the distribution 

network was approached by simulating the model of a typical CFL and distribution 

network using PSPICE. This chapter discusses the various components of the model, 

which include: 

4 the electronic ballast CFL 

(consisting of the EM1 filter, bridge rectifier, HF oscillator,, and 

fluorescent tube) 

the distribution network 

(consisting of the distribution transformer, transmission line, and 

voltage source). 

The explanation of the components listed above will be described in detail in the 

secti.ons to follow. 

2.2 Modeling of the electronic ballast CFL 

The electronic ballast CFL consists of four sections: the electromagnetic 

interference (EM) filter, the bridge rectifier, the high-frequency oscillator, and the 

fluor-escent tube. These sections are shown pictorially for a typical electronic ballast 

CFL in Figure (2.1). In addition, each section will also be described in detail below. 



Figure 2.1 Schematic diagram of a typical electronic ballast CFL 

Electromagnetic interference (EMI) filter. The purpose of the EMI filter is 

to filter the current supplied by the source (connected to the input of the filter) from 

unwanted harmonic currents consumed by the load (connected to the output of the 

filter). In essence, the EMI filter is a two-port network, serving as a low-resistance 

path to the neutral leg for unwanted harmonic currents consumed by the source. 

Shown below is the schematic diagram for a typical EM1 filter used in electronic 

ballast CFLs. 

Figure 2.2 Typical EMI filter used in electronic ballast CFLs 

The series impedance, 2, which is on the phase leg, consists of a resistor, R, and an 

inductor, L, connected between the input and output of the filter. The shunt 

admittance, Y, which is on the output-side of the filter, consists of a capacitor, C, 

connected between the phase and neutral legs. 



The filter may be analyzed as a simple two-port network using the equation 

(written in matrix form): 

Ibus = Ybus Vbus 
where 

Note the negative sign preceding I,, due to the convention used in Figure (2.2). Also 

note that Y,, is the admittance matrix, where y,, and y,, are the sum of all admittances 

connected to nodes 1 and 2, respectively, and y,, and y,, are the negative of the 

admittances connecting nodes 1 and 2. Substituting the admittance parameters for the 

EM]: filter into Y, 

z = R + jwL andy = j d .  

Substituting Equation (2.2.2) into Equation (2.2.l), 

Rewriting Equation (2.2.3) in standard form, 

Solving Equation (2.2.5) for V,, 

v, = (yz+ l)V, +zI2. 



Substituting Equation (2.2.6) into Equation (2.2.4) and solving for I,, 

Rewriting Equation (2.2.6) and Equation (2.2.7) in matrix form, 

Thus, the frequency response of V, and I, at the input of the filter can be determined 

give11 the values of R, L, C, V,, and I,. . .  

Bridge rectifier. The purpose of the single-phase full-wave bridge rectifier 

is to convert the ac supply voltage into a dc voltage which is supplied to the 

high-,frequency oscillator. The construction of the full-wave bridge rectifier is based 

on the half-wave rectifier with a freewheeling diode [15]. A typical half-wave rectifier 

with a freewheeling diode is shown below in Figure (2.3). 

Figure 2.3 Half-wave rectifier with a freewheeling diode 

Note that the freewheeling diode D, allows the continuous conductiorl of current 

through the load R, during the period when Dl is not conducting. Tlie full-wave 

bridge rectifier consists of two half-wave rectifiers with freewhee:ling diodes 

conn~xted as shown below in Figure (2.4). The advantages of the full-wave 

confi,guration are that the ac source contains no dc component and for the same ac 

voltage source, the ripple on the dc voltage and the average output vo1ta:~e are equal 



to twice that of the half-wave configuration. The disadvantage of the full-wave 

configuration is that the ac source and the dc load cannot share the same ground since 

they have 40 common terminal. 

'Js sin(wt) 0 2/ " TVo1 

Figure 2.4 Full-wave bridge rectifier constructed fi-om two half-wave bridge rectifiers 

Since the two ac voltage sources used to construct the full-wav~e rectifier in 

Figure (2.4) are identical, the anode of D, and cathode of D, may bt: connected. 

Thus, only a single ac source is required, as shown in Figure (2.5). 

Figure 2.5 Equivalent circuit of a full-wave rectifier with a single supply 

The average output dc voltage of a single half-wave rectifier s h o w  in Figure 

(2.3) is 

The average output dc voltage of the full-wave bridge rectifier may be dlerived from 

Equation (2.2.9) and Figure (2.4), 



2v, (v.) = (v.,) - (v,) = g - (-g) = y- 

Although the full-wave bridge rectifier produces a dc ripple voltage with a 

fund.amental fiequency equal to twice that of the half-wave rectifier, the amount of 

ripple voltage is still significant. To reduce the ripple voltage content, a low-pass filter 

is placed between the output of the rectifier and the load. The low-pass filter may 

either be an inductor placed in series between the output of the rectifier and the load 

or a capacitor placed in parallel across the output of the rectifier and the load. In most 

cases, an electrolytic capacitor is used due to the relatively large size and high cost of 

inductors. . . 

When a low-pass capacitive output filter is added to the output of the bridge 

rectifier, the operating characteristics of the rectifier changes and the output voltage 

differs from that shown in Equation (2.2.10). Since the derivation of a bridge rectifier 

with a capacitive output filter is quite involved, the equations for a simple half-wave 

rectiier with a capacitive output filter and resistive load (shown below in :Figure (2.6)) 

will he presented. 

Figure 2.6 Full-wave bridge rectifier with a capacitive output filter 

Note that the purpose of the phase angle a is to shift the time axis t=O to the point 

wherc: the diode is just beginning to conduct. The angle at which the diodes ceases to 



conduct is designated as P. The output voltage and source current during the 

conduction period of the diode, t=O to t=P/o, can then be found to be [22] 

1 +(oRC) z 1, and 
RL -- 

R&L 
1 1 .  

The conduction period of the diode can be qualitatively viewed from a. plot of the 

output voltage and the supply voltage and current. As shown below in I'igure (2.7), 

the diode begins to conduct at time alo where the output voltage v,, across the 

capacitor is less than the supply voltage v,. The charging of the capacitor, as defined 

in Equation (2.2.12) for a resistive load, ceases at time P/o. It should be noted that 

the liirge harmonic current distortion which is produced by CFLs is due to the short 

conduction time (P-a)/o produced by this rectifier/capacitive output filter 

com1)ination. 

vs, is vo 

:Figure 2.7 Supply voltage and current and output voltage characterisi:ics of a 

full-wave bridge rectifier 



High-frequency oscillator. The purpose of the high-frequency oscillator of 

the electronic ballast is to supply a high-frequency AC voltage to the output circuitry 

and fluorescent tube. This is accomplished by placing two controlled solid-state 

switches in series across the output of the bridge rectifier. The output section for a 

single-tube configuration is connected between the positive and cornrnori terminals of 

the oscillator. In the case of a twin-tube configuration, the additional output section 

is cl~nnected between the negative and common terminals of the oscillator. Typical 

single- and twin-tube configurations are shown below in Figure (2.8). 

(a) Single-tube configuration 

(b) Twin-tube configurotion 

Figure 2.8 Typical high frequency oscillator configurations used in electronic ballast 

CFLs 



As shown in Figure (2.8), the oscillator consists of two controllal~le solid-state 

swilches to convert the rectified DC voltage into the desired high-fi-equency AC 

voltage supplied the output section of the CFL. Typically, power MOSFETs are used 

to implement the switching of the oscillator. Shown below in Figure (2.9), the power 

MOSFET is a controllable solid-state switch, capable of withstanding re:latively large 

"off1' state voltages and "on" state currents. 

0 Drain 

Gate a 
4 Source 

Drain 

Gate @ 
4 Source 

Figure 2.9 Schematic symbols for an n-channel MOSFET and HEXFET 

The MOSFET is a three-terminal solid-state device consisting of a gate, drain, 

and source terminal. It is essentially a "fill-on/fill-off' switch, controlled by the 

volts.ge applied across its gate and source terminals, vGs. When the applied vGs is 

below the threshold voltage of the MOSFET, the device supports the open-circuit 

drair-to-source voltage. When the applied vGs exceeds the threshold voltage, the 

device conducts and current is allowed to flow from the drain to the source terminal. 

In other words, the MOSFET supports a positive voltage across its drain and source 

terminals when off and allows a positive current to flow from its drain to source 

terminal when on. 

In applications where bi-directional current flow between the drairi and source 

is required, a rectifier diode (sometimes referred to as a "fieewheelinl;" diode) is 

placed across the drain and source terminals of the MOSFET. With the anode of the 

freewheeling diode connected to the source terminal and the cathode connected to the 

drain, current is also allowed to flow from the source to the drain te:rminal of a 

n-channel MOSFET. Some manufacturers incorporate both the MOSFET and 



freewheeling diode in a single package (e.g., International Rectifi~er's IRF624 

HEWET). The schematic symbol for a n-channel HEXFET is shown in Figure (2.9). 

The output section for a typical electronic ballast CFL consists of two 

capacitors, C, and C,, an inductor, L, and the fluorescent tube, such as that shown 

previously in Figure (2.8). If the fluorescent tube is modeled as a fixed resistor in the 

stealdy-state, an equivalent output section (with a resistance R,, substituted for the 

fluorescent tube) may drawn for the LOA 30 watt Circline CFL as shown below in 

Figure (2. lo). 

To HF oscillator 

Fluorescent Tube 

Figure 2.10 Equivalent output section of the LOA 30 watt Circline electronic ballast 

CFL 

The state equations for the output section shown in Figure (2.10) may be 

derived by defining 

as the state variables of the circuit. Applying KVL to the'circuit yields, 

VOSC = 41 +q2 +Q:. (2.-2.13) 



Applying KCL at node 2 yields, 

/ 1 -C1ql +@ +c2q: = 0 .  

Finally, applying KCL at node 2 yields, 

-c1q: = q3. 

Rewriting Equations (2.2.13) through (2.2.15) in matrix form yields, 

Solving Equation (2.2.16) for e/ yields, 

where 

* Fluorescent tube. The fluorescent tube consists of an inert gas and a small 

amount of mercury housed by a glass tube and end-caps. When a voltage is applied 

across the electrodes of the tube, mercury-discharge occurs and a number of the 

electrons in the tube emit UV radiation. This UV radiation reacts with thr: fluorescent 

coating on the inside of the tube and produces visible light. Furtlner detailed 

infonnation on the process in which electric energy is converted into light in a 

fluorescent lamp is given in Section (1.3). 



2.3 Modeling of the distribution network 

The distribution network modeled consists of three sections: the distribution 

trai~sformer, the transmission line, and the voltage source. These sections are shown 

pictorially in the schematic diagram below. In addition, each section will also be 

described in detail below. 

I R 1  X I I  x12' R2' 1 Rtx xtx 1 
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I 

Vo t a g e  Source 1 Distr~bution Tronsforrner I Lighting Feeder I 
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Figure 2.1 1 Schematic diagram of a typical distribution network 

Distribution transformer. The transformer is magnetically coupled circuit, 

consisting of a primary winding and a secondary winding magnetically coupled by an 

higli-permeability iron core [23]. When an alternating current is applied to the primary 

winding, an alternating mutual flux is produced in the iron core which induces an 

a1te:mating current to flow in the secondary winding. Depending on the ratio of 

prinlary to secondary windings, the transformer may step-up or step-down the voltage 

applied across the primary winding, which appears across the secondaqr winding. A 

simplified diagram of a transformer is shown below in Figure (2.12). 



Figure 2.12 Simplified diagram of a transformer 

Due to the conductive nature of the iron-core of the transformer, the mutual 

flux induced in the core also produces eddy currents to flow in the core. Because the 

iron-core has a resistance associated with it, these eddy currents produce losses 

appearing as heat dissipated from the core, otherwise known as 12R losse!s. To reduce 

eddy current losses, transformer cores are usually constructed from thin laminated 

sheets of iron. Two typical transformer core constructions are shown below in Figure 

(2.13). The core-type construction consists two "legs", with the primary and 

secondary windings wound on both legs, while the shell-type construction consists of 

three legs, with the primary and secondary windings wound on the center leg. 

As shown in Figure (2.12), both the primary and secondary windings have a 

leakage flux associated with them. Unlike the mutual flux which is confined to the 

core of the transformer and links both windings, the leakage flux travels largely in air 

and links only the winding it is associated with. To reduce the amount of' leakage flux 

produced by the windings, the primary and secondary windings are subdivided into 

sections and are placed as close together as possible. In the core-type c;onstruction, 

the primary and secondary windings are subdivided between the two core legs and are 

wound concentrically on the legs. In the shell-type construction, the primary and 

secoi~dary windings are subdivided into a number of "pancakes" and are alternately 

wound on the center leg. These winding methods are also shown in Figure (2.13) 

below. 



Core Core 

(a) Core-type 
Windings 1 

(b) Shell-type 

Figure 2.13 Typical transformer core constructions and winding methods 

. . 

Before deriving the equivalent circuit used to model the transformer, the 

follc~wing equations need defining, 

m e=-=&? dr dt 

where 

F = magnetomotive force (mmf) associated with winding, 

N = number of turns in winding 

I = current flowing through winding, 

h = flux linkage associated with winding, 

cp = flux associated with winding, and 

e = electromotive force (emf) associated with winding. 

When a time-varying voltage V, is applied across the primary winding, a 

leakage flux cp,, is produced such that Vl equals the sum of the voltage drop due to the 

primary resistance, RII,, the voltage drop due to the leakage reactance, ,?,I,, and the 

counter emf, E, . This can also be stated as, 



V1 =RlIl +XllIl +El 

where 

V, = primary terminal voltage, 

I, = primary winding current, 

R, = primary winding resistance, 

4, = primary winding leakage reactance ( = oL,, ), and 

El = primary counter emf. 

Equation (2.3.3) may be expressed pictorially as shown in Figure (2.14) below. Note 

that all voltages, currents, fluxes, and e d s  shown are phasors. 
. .  - 

Figure 2.14 Equivalent circuit for Equation (2.3.3) 

The mutual flux, 0 ,  which is confined to the iron-core and thus links both the 

primary and secondary windings, is created by the combined mmfs produced by the 

current flowing through the primary and secondary windings. The primary current I, 

must counteract the demagnetizing effect of the current flowing in tlne secondary 

winding and also must produce the mmf to obtain the resultant mutual flux 0. Thus 

I, may be rewritten as 

where 

I, = primary current, 

I,' = load current, and 

I9 = exciting current. 



The load current I,' is the component of the primary curreni: required to 

coui~teract the mmf of the secondary current I,. It is equal to the secondary current 

referred to the primary as in an ideal transformer. The exciting current is the 

component of the primary current required to produce the mrnf to obtain the mutual 

flux a. Due to the nonlinear magnetic properties of the iron-core, the waveform of 

the exciting current is nonsinusoidal. Since the exciting current is often small in 

comparison to the load current, it may be approximated as an equivalent sine wave 

which has the same rms value and fiequency and produces the same average power as 

the actual exciting current waveform. When this is done, the exciting current may be 

hrther resolved into a core-loss component and a magnetizing component. Thus, 

exciting current I, may be rewritten as 

I$, =Ic+Im 

where 

I9 = exciting current, 

I, = core-loss current, and 

I, = magnetizing current. 

The core-loss current I, flows through a resistance whose conductance is G,. The 

power dissapated in the core-loss conductance, E,G,, is responsible for eddy current 

1ossc:s in the core due to the mutual flux. The magnetizing current I, flows through an 

inductor whose susceptance is B,. The magnetizing susceptance B, va.ries with the 

saturation of the iron-core. The division of the exciting current into the core-loss and 

magnetizing branches is shown pictorially in Figure (2.15). 



- .. 

Figure 2.15 Equivalent circuit for Equation (2.3.5) 

The resultant mutual flux @ induces an emf E, which links both the primary 

and secondary windings. The emfs E, and E, may be represented pictorialLly as an ideal 

tran:jformer, as shown below in Figure (2.16). 

Figure 2.16 Equivalent transformer circuit including ideal transfo'rmer 

Similar to the primary winding, the secondary winding also has a winding resistance R, 

and leakage reactance X,,. The terminal voltage V, appearing across the secondary 

winding may be written as, 

V2 = -R212 - Xn12 + E2 
whe:re 

6 = secondary terminal voltage, 



I, = secondary winding current, 

R, = secondary winding resistance, 

X,, = secondary winding leakage reactance ( = oL,, ), and 

E2 = secondary counter emf. 

The transformer circuit shown in Figure (2.16) may be fbrther simplified by 

referring the secondary variables V2, I,, R,, and X, to the primary. The equivalent 

T-c:~rcuit for the transformer with all secondary variables referred to the primary 

winding is shown below in Figure (2.17). 

Figure 2.17 Equivalent T-circuit representation of transformer 

The values for the primary and secondary winding resistances and leakage 

reactances may be obtained experimentally by performing a short-circuit test on the 

transformer. This is done by short-circuiting the secondary winding of the transformer 

(usc~ally taken as the low-voltage side) and applying a relatively small .voltage (2 to 

12%; of rated) across the primary winding of the transformer (usually taken as the 

high-voltage side). The applied short-circuit voltage, V,, and resulting short-circuit 

current and power, Is, and Ps,, may be measured. The values for tlne equivalent 

winding impedance and its equivalent winding resistance and leakage reactance 

corr~ponents may be obtained from the following equations, 



where 

Z, = equivalent primary and secondary winding impedance, 

Reg = equivalent primary and secondary winding resistance, and 

X, = equivalent primary and secondary winding leakage reactance:. 

Note that Z,, R,, and X, are the equivalent impedance, resistance, and leakage 

reacttame of the primary and secondary windings combined The values of the 

independent primary and secondary winding resistances and leakage reactances may be 

obtained by assuming that R, = R, = 0.5 R, and X,, = X, = 0.5 X, when all 

impzdances are referred to the same side. 

The values for the core-loss conductance and the magnetizing susceptance may 

be obtained experimentally by performing a open-circuit test on the transformer. This 

is done by open-circuiting the secondary winding of the transformer (usually taken as 

the high-voltage side) and applying the rated voltage across the primary winding of the 

transformer (usually taken as the low-voltage side). The applied open-circuit voltage, 

V,, nnd resulting exciting current and power dissapated in the primary winding, IT and 

P,, may be measured, respectively. The values (referred to the primary winding) for 

the exciting admittance and its core-loss conductance and magnetizing susceptance 

components may be obtained from the following equations, 



* Transmission line. The equivalent circuit used to model the distribution 

lighting feeder was the short transmission line model [30]. Shown below in Figure 

(2.18), the single-phase short transmission line model consists of a series impedance, 

Z,, which includes the resistance, &, and reactance, X,, associated with .the line. 

Is - >  R t x  Xtx  Ir - >  
0 0 + + 

- 
Figure 2.18 Single-phase short transmission line model 

The sending end voltage, V,, and sending end current, I,, are located at the 

connection between the distribution transformer secondary and the lighting feeder. 

The receiving end voltage, V,, and receiving end current, I,, are located at the 

connection between the lighting feeder and the lighting bus. It should be noted that 

the sending and receiving end currents are equal, i.e., 

The voltage at the sending end may be expressed as 

* Voltage source. For purposes of simulation, an ideal voltage source was 

used to model the voltage bus supplying the distribution lighting feeder. For the 

single-phase case, a pure 60 Hz sinusoidal ac voltage source with a rms value of 120 

volts and zero phase shift was used to model the single-phase line-to-neutral voltage 

bus, i.e., 



For the three-phase case, three identical ac voltage sources phase shifted by 120 

degrees from each other was used to model the three-phase wye-connected voltage 

bus, i.e., 





CHAPTER 3 

EXPERIMENTAL RESULTS AND SIMULATION DEVELOPMENT 

3.1 Introduction 

The main objectives of this thesis are to identifl the harmonic current 

distc~rtion produced by commercially available electronic ballast CFLs and their effects 

on the power distribution system. Experimental data of a number of e1ec:tronic ballast 

CFLs is first presented to identifl the current distortion produced by these lamps. A 

simulation of the electronic ballast CFL is then developed for purposes of application 

in a distribution network model. 

The tests shown in Chapters 3 and 4 are organized as shown in Table (3.1). 

The test numbers generally begin with a lamp designation shown in Table (3.2). The 

designations "E" and "S" refer to "experimental" (i.e., laboratory measurements) and 

"simulation", respectively. Thus, Test 5E refers to the experimental results from Lamp 

5, the Phillips Earthlight SL18127; Test 8s refers to the simulation results from Lights 

of America 2030; etc. The designators "OM, "OP", and "VI" refer to the tube current 

char~~cteristics, tube power consumption, and tube voltage versus current 

char;%cteristics, respectively. Tests 1E through 8VIS are described in Chapter 3. The 

designator "B" refers to boost converter modifications to the electronic ballast 

described in Chapter 4. The designator "T" refers to three phase tests which are also 

described in Chapter 4. 



Table 3.1 Summary of experimental and simulation plots 

Figure Lamp No. Measured Simulated Phases 
No. Quantities 

3.2 1 X 1 k', I, FlT, 

Test No. 



Table 3.2 Incandescent lamps and CFLs evaluated 

Lamp I Manufacturer I Model # I Power 1 Average Lumen1 P- 
No. I I (watts) 1 output I (hours) 1 

I I I I I 
1 I General Electric I Soft White 1 15 1 110 1 2,500 1 
2 1 Sylvanin 1 Soft White I 60 1 810 1 7 0 7 1  

5 1 Phillips 1 Earthlight SL18127 1 18 1 Not available I Not available 1 

3 

4 

6 General Electric BIAX 20 1,200 8,000 
FLE20DBXISPX27 

7 1 General Electric I BIAXFXC26 1 26 1 1,500 1 10,000 1 

Sylvania 

Osram 

8 1 Lights of America I 2030 1 30 1 2,250 1 10,000 1 

3.2 Experimental results 

Energy Saver 

DULUX EL 15 W 

A large majority of the electronic ballast CFLs currently' available produce 

significant amounts of harmonic current distottion. To identi@ the cha:racteristics of 

the current distortion produced by these lamps, the voltage and current characteristics 

of a number of electronic ballast CFLs produced by various manufi~cturers were 

obtained experimentally. As a reference, three incandescent lamps were also 

evaluated. The manufacturer-provided data for each lamp is summarized in Table 

(3.2) shown previously. 

The circuit used to evaluate the lamps is shown below in Figure (3.1). A 

transformer was used to couple the voltage source and the lamp under .test to isolate 

the oscilloscope input from the line voltage. A single phase 240Vl12:OV 1.5 kVA 

distribution transformer with a 3.5% impedance was used to minimize the effect of 

harmonic filtering due to the transformer. 

67 

15 

1,080 

900 10,000 



Laboratory Power: Distribution Transformer: 
240 V line-to-line 1.5 kVA 240/240/120 V 
60 Hz AC 3.5% impedance 

Lamp Under Test: 

Tektronics 
Digital Storage Oscilloscope 

Tektronics 
Current Probe 

Figure 3.1 Circuit used for experimental evaluation of lamps 

The voltage and current waveforms obtained for each lamp from the 

Tektronics data acquisition unit was then fed into MATLAB and the results were 

plotted, as shown in Figures (3.2) through (3.9) on the following pages. For each 

lamp, the supply current waveform (solid) is shown on the top graph along with the 

scaled supply voltage waveform (dashed) shown as a reference. The fast Fourier 

tran;sform (FFT) of the supply current was computed by MATLAB and is shown on 

the l~ottom graph. In addition, MATLAB was also used to compute the rms values of 

the supply voltage and current (V, and I-), the kndamental supply voltage and 

current (V,, and I,-), the active and apparent power consumed by the lamp (P and 

S), the displacement and true power factor (dPF and tPF), the total harmonic 

distortion of the voltage and current (THDv and THD,) , and finally, the crest factor 

(CF:) of the current. The data obtained for each lamp is summarized in Table (3.3). 
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Figure 3.2 Test 1E: Plots of  experimental supply voltage and current obtained from 

General Electric 15 W incandescent lamp 
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Figure 3 .3  Test 2E: Plots of experimental supply voltage and current obtained from 

Sylvania 60 W incandescent lamp 



Timc (seconds) 

Frquency (hem) 

Figure 3.4 Test 3E: Plots of experimental supply voltage and current ot~tained from 

Sylvania 67 W Energy Saver incandescent lamp 



Figure 3.5 Test 4E: Plots of experimental supply voltage and current obtained fiom 

Osram DULUX ELI 5 W  15 W electronic ballast CFL 
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Figure 3.6 Test 5E: Plots of  experimental supply voltage and current obtained from 

Phillips Earthlight SL18127 18 W electronic ballast CFL 
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Figure 3.7 Test 6E: Plots of experimental supply voltage and current obtained from 

General Electric BIAX FLE20DBXlSPX27 20 W electronic ballast CFL 



Frequency (hem) 

Figure 3.8  Test 7E: Plots of experimental supply voltage and current obtained from 

General Electric BIAX FLC26 26 W electronic ballast CFL 



Frequency (hem)  

Figure 3.9 Test 8E: Plots of experimental supply voltage and current obtained from 

Lights of America 2030 30 W Circline electronic ballast CFL 



Table 3.3 Data obtained from experimental evaluation of lamps 

L P s ~ P F  ~ P F  THD" 
(amps) (watts) (VA) (%I 

Note: The MATLAB code used to calculate the data show in the table above may be found jn Appendix A. 

'THD, 
l(Y0) 

3.33 

3.19 

3.22 

147.1 

137.15 

187.27 

182.09 

153.04 

3.3 Simulation development 

CF 

1.36 

1.35 

1.37 

4.22 

3.63 

5.61 

5.37 

5.07 

In order to investigate the effects of the electronic ballast CFL on the 

distribution system, a simulation of a general electronic ballast CFL was developed, as 

descl-ibed in Section 2.2. The simulation of the electronic ballast CFL was based on 

the Lights of America (LOA) Model 2030 30 watt Circline electronic ballast CFL. 

The ~~xperimental supply and tube voltage and current characteristics of the LOA CFL 

served as a comparison to those obtained from the simulation. PSPICE was selected 

to simulate the LOA CFL because of the relatively large number of components 

contained in the electronic ballast circuit. 

Due to the unknown voltage versus current (V-I) characteristics of the 

fluorescent tube, the model used to simulate the tube was derived experimentally. The 

output section of a Lights of America (LOA) 30 watt Circline electronic ballast CFL is 

shoun below in Figure (3.10). The output section consists two capacitor:;, C, and C,, 

an inductor, L, and the fluorescent tube. Capacitor C, connects the terminal of one of 

the electrodes to the terminal of the other electrode. The remaining electrode of one 

the filaments is connected in series with C, to one of the output ternlinals of the 



high-frequency oscillator. The remaining electrode of the other filament is comected 

in series with L to the other output terminal of the oscillator. 

0.1 OuF 

760uH 

Figure 3.10 Output section of LOA 30 W Circline electronic ballas CFL 

The V-I characteristic of the fluorescent tube was determined by obtaining the 

steady-state voltage across two filaments on opposite ends of the tube and the 

steady-state current through the tube. The tube voltage, V,,, was obtained by 

measuring the voltage across the terminals of the tube connected to the electronic 

ballast. The tube current, It,,,, was obtained by measuring the current entering one of 

the terminals of a filament, I,,", and the current leaving the other tenminal of the 

filament, I,,*: and taking the difference of the two (i.e., I,, = I,," - I,?'). The 

currents I,,", I,,"', and I,, are shown in Figure (3.11). In addition, V,,, It",, and the 

tube power, P,,, are shown in Figure (3.12). Finally, the V-I characteristic of the 

tube is shown in Figure (3.13). 



Figure 3.11 Plot of experimental filament and tube currents obtained frorn LOA 30 W 

Circline electronic ballast CFL 



vtube ----- 
ItubexlOO ------ 
Ptube - 

Figure 3.12 Plot of experimental tube voltage, current, and power obtained from LOA 

30 W Circline electronic ballast CFL 



Figure 3.13 Plot of experimental tube V-I characteristic obtained-from LOA 30 W 

Circline electronic ballast CFL 



The V-I characteristic obtained by taking the measurements of the tube voltage 

and current in the steady-state (i.e., aRer the lamp had been on for at least 15 minutes) 

was nearly linear. Thus, the fluorescent tube was modeled as a resistor in the 

steady-state. The value of the resistor was determined by interpolating a line 

representing the resistance value on the V-I characteristic of the fluorescent tube. For 

the 'V-I characteristic of the LOA 30 watt Circline CFL shown in Figure (3.13), the 

equivalent steady-state fluorescent tube resistance was estimated to be 120 ohms. 

To determine the relationship between the switching of the high-frequency 

oscijllator and the component values of the output section, the equivalent output 

section of the LOA 30 watt Circline CFL was analyzed. Note that for negligible values 

of C;, the output section may be approximated as a series RLC circuit as shown below 

in Figure (3.14). A unit-step voltage was then applied to the series RL'C circuit and 

the current response shown below in Figure (3.15) was obtained fiom PSI'ICE. 

0.1 OuF 

---I From 
HF Oscillotor 

Figure 3.14 Output section of LOA 30 W Circline electronic ballast CFL 

approximated as a series RLC circuit (C, negligible) 



Figure 3.15 Unit-step response to RLC circuit obtained from PSIPICE 



From Figure (3.15), it is apparent that the unit-step current response of the 

approximated RLC circuit is underdamped. The underdamped response may be 

expressed as 

B,, B, = arbitrary constants selected to satis@ initial conditions, 

a = 5 (exponential damping coefficient), 
1 

Oo = - rn (resonant frequency), and 

ad = ,/- (natural resonant frequency). 

Whlzn the specific component values used in the LOA CFL are substituted, 

1 14,707.8 f -""=-- 
O - Zit Zit - 18.256 kHz 

To = = 5 4 . 7 8 ~  sec . 

The switching frequency of the LOA CFL was measured to be 

f=L=-- 38.461 kHz. 
T 26ps.e.c - 

Note that the switching frequency is approximately twice that of the resonant 

frequency of the approximated series RLC output circuit of the LOA CFL. The 

high-frequency oscillator of the electronic ballast allows the charging and discharging 

of t:he output circuitry. When M, is on (and M, is off), the oscillator charges the series 

RL(3 circuit. When M, is on (and M, is off), the series RLC circuit discharges and the 

current through the circuit exhibits an underdamped response. 

The schematic diagrams of a typical electronic ballast CFL and the LOA CFL 

are shown in Figures (3.16) and (3.17), respectively. The individual sections of the 



electronic ballast CFLs are denoted in each figure. The EMI filter and bridge rectifier 

sections were modeled in PSPICE exactly as shown in Figure (3.17). The output 

section of the CFL was also modeled as shown except for the fluorescent tube, which 

was modeled as a resistor (as described in Section 2.2). For purposes of' simulation, a 

pair voltage controlled switches and four diodes were used in place of t~he HEXFETs 

shown below in Figure (3.1 8). 

I I I I 

EM1 (Low-Parr l  Falter Rettrlier Ftlter Capatitor High Frequency Ostillotor 

Figure 3.16 General schematic for a typical electronic ballast C!FL 

Figure 3.17 Schematic for LOA 3 0 W Circline electronic ballast CFL 



Figure 3.18 PSPICE simulation schematic for LOA 30 W Circline 

electronic ballast CFL 

The listing used for the PSPICE simulation of the LOA electronic ballast CFL 

is sl~own below. The PSPICE source listing begins with the title of the file. All lines 

beginning with an asterisk ("*") are comment lines and are ignored by I'SPICE. The 

listing then continues with the nodal definition of the schematic diagram to be 

evaluated by PSPICE. The definition of a schematic component includes the 

conlponent name, the nodal connections of the component, and the value or 

description of the component. Note that the component names for resistors, 

inductors, capacitors, diodes, and voltage sources must begin with the letter R, L, C, 

D, imd V, respectively. 

* SINGLE-PHASE PSPICE SIMULATION 
* LOA 2030 CIRCLINE CFL 

* * * BEGIN SCHEMATIC DIAGRAM DEFINITION * * * 

* Voltage source, VS=169.7sin(wt) 
VS 0 1 SIN(0 169.7 60 0 0 0) 

* AC-side EMI filter 
R12 1 2 2.2 
L23 2 3 330uH 
C30 3 0 0.47uF 



* Rectifier diodes 
Dl  3 4 DDEFAULT 
D2 0 4 DDEFAULT 
D3 5 0 DDEFAULT 
D4 5 3 DDEFAULT 

* DC-side filter capacitance, C45 
C45 4 5 47uF 

* RC timing network 
*R420 4 20 220K 
*R47 4 7 220K 
*R421 4 21 22 
*C217 21 7 1nF 
*D207 20 7 DDEFAULT 
*C200 20 5 0.luF 

* HEXFET switching model 
DHFl 4 6 DDEFAULT 
SHFl 6 7 11 0 SMOD1 
DFWl 7 4 DDEFAULT 
DHF2 7 8 DDEFAULT 
SHF2 8 5 11 0 SMOD2 
DFW2 5 7 DDEFAULT 
VHF 11 0 PULSE(-1.01 1.01 0 lu  lu  15.0e-6 30.0e-6) 

* Fluorescent tube model 
C49 4 9 0.1OuF 
L710 7 10 760uH 
C910 9 10 18nF 
RTUBE 9 10 120 

* ** END SCHEMATIC DIAGRAM DEFINITION *** 

* Define part models 
.model DDEFAULT D 
.model SMODl VSWITCH [RON 0.01 VON 1 .O] 
.model SMOD2 VSWITCH [RON 0.0 1 VON - 1 .O] 

* Transient analysis 
.tran 1 2 . 5 ~  0.0666667 

* Define transient analysis options 
.options GMIN = 1 . 0 ~  ; *ipsp* 



.options ITL4 = 10000 

.options ITL5 = 0 

.options RELTOL = 0.01 

* Enable graphic processor 
.probe I(VS) 

* Print output table 
.print tran V(1,O) I(VS) 

The plot of the supply voltage and current obtained from the simulation is 

shown in Figure (3.19). Plots of the tube voltage, current, and power obtained from 

the simulation are shown in Figures (3.20) through (3.22). Note that Figures (3.20) 

through (3.22), obtained from the PSPICE simulation, correspond to Figures (3.11) 

through (3.13), which were obtained experimentally. 



Frequency (hem) 

Figure 3.19 Test 8s:  Supply voltage and current plots obtained from PSPICE 

simulation of LOA 2030 30 W Circline electronic ballast CFI, 



Ifil(in) - - - - - 
K1l(out) - - -- - - - 
Itube -- 

Figure 3.20 Plot of filament and tube currents obtained from PSPICE simulation of 

LOA 30 W Circline electronic ballast CFL 
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Figure 3.21 Plot of tube voltage, current, and power obtained from PSPICE 

simulation of LOA 30 W Circline electronic ballast CFL 



Figure 3.22 Plot of tube V-I characteristic obtained form PSPICE simulation of LOA 

30 W Circline electronic ballast CFL 



3.4 Main observations from Tests 1 E-8E 

In this section, general observations are summarized for the CFLs tested in the 

laboratory. The main points of this summary relate to: 

General remarks on the range of harmonic distortion, power fiictor, and 

crest factor 

Compliance with IEEE Standard 5 19- 1992 

Compliance with IEC Standard 555-2 

Compliance with Green Seal Standard for CFLs (power quality) 

Figure (3.23) shows a comparison of supply current THD for the various 

lamps tested. Figure (3.24) shows a comparison of the supply current crest factors 

between the various lamps tested. Figure (3.25) shows a comparison ofthe true and 

displacement power factors. Note that the true power factor of the CFLs are 

approximately 40% lower than the displacement power factor. Also note that the 

displacement power factors shown for the CFLs refer to the supply current leading the 

sup ply voltage. 

I 2 3 4 5 6 7 8 
Lamp Number 

Figure 3.23 Comparison of supply current THD obtained experimentally 



1 2 3 4 5 6 7 8 
Lamp Number 

True Displacement 

Figure 3.24 Comparison of true and dispacement power factors obtained 

experimentally 

ITigure 3.25 Comparison of supply current crest factors obtained experimentally 



Table (3.4) shows the compliance of each lamp tested with the: cited IEEE, 

IEC, and Green Seal standards. These standards are described in detail in Section 

(1.4). Note that all the CFLs tested violate the IEEE 519-1992, IEC 555-2, and 

Grem Seal standards; however, note that it is assumed that the entire electrical load is 

a CITL load. Also, a short circuit ratio of < 20 is assumed. 

Table 3.4 Lamp compliance with IEEE 5 19- 1992, IEC 555-2, and Green Seal 

standards (100% CFL load) 

Lamp 
IVo. 

I lEEE 519-1992 1 IEC 555-2 I Green Seal Standards I 
Maximum 
individual 
harmonic 
amplitude 

Complies 

Current 
total demand 

distortion 
(7-W 

Complies 

1 2' 1 Complies I Complies I Complies I Complies ( NIA I NIA I 

Maximum harmonic current 
(Class D) 

Power C)uality 
(Class A compliance) 

Complies 

Violated 

1 7 1 Violated / violated I Violated 1 Violated I Violated 1 Violated 1 

Violated 

Violated 

Complies 

Violated 

.Note: ' Incandescentlamps 

Green Seal Standards only applicable for CFLs 

Violated 

Violated 

L 8 I Violated 

Table (3.5) shows the harmonic standard compliance of each lamp tested with 

a combination of nonlinear and linear load. Unlike Table (3.4) which assumes a 

electrical load of 100% CFLs, Table (3.5) assumes a 50% diversity load factor. A 

50% diversity corresponds to a 1 to 1 ratio of CFL to linear (i.e., resistive) load. The 

definition of diversity load factor used in this case is the ratio of nonlinear rms load 

current to linear rms load current. For example, a circuit with a 50% diversity load 

Complies 

Violated 

Violated 

Violated 

Violated 

Complies 

Violated Violated Violated 

Violated 

Violated 

Violated 

Violated Violated 

Violated Violated 

Violated I Violated I Violated ~ 



factor would correspond to 1 amp of rms of CFL load and 1 amp rms of linear load. 

A short circuit ratio of < 20 is also assumed. 

Table 3.5 Lamp compliance with IEEE 5 19-1 992, IEC 555-2, and Green Seal 

standards (50% CFL load and 50% linear load) 

IEEE 519-1992 

5 Violated Violated Violated Violated 

6 Violated Violated Violated Violated 

7 Violated Violated Violated Violated Violated 

8 Violated Violated Violated Complies Violated Violated 

Notc:: Incandescent lamps 

Green Seal Standards only applicable for CFLs 

Note from Table (3.5) that all the CFLs tested violate each of the harmonic 

standards. By introducing a diversity load factor, the ratio of harmonic current to the 

total load current is reduced. Thus, the IEC 555-2 and Green Seal standards, which 

are focused at the equipment level, are unaffected by introducing a diversity load 

factor. These standards are concerned with the consumption of harmoriic current by 

the nonlinear device itself The IEEE 5 19-1992 Standard, which provides a harmonic 

current limit at the utility system level, is affected by introducing a diversity of load. 

The compliance with the maximum individual harmonic amplitudes specified by EEE 

519-1992 can be achieved for the CFLs tested with approximately a 10 to 1 ratio of 



1ine.sr to CFL load (i.e., 7.1% diversity factor of CFLIlinear load). Cornpliance with 

the current TDD limit can be achieved with approximately a 17 to 1 ratio of linear to 

CFI, load (i.e., 5.2% diversity factor of CFLIlinear load). 

3.5 Main observations from Tests 8E through 8VIE and 8 s  through 8VIS 

The purpose of this section is to confirm the validity of the PSPICE simulation 

developed for the LOA electronic ballast CFL. The accuracy of the simulation was 

determined by comparing simulation results obtained from PSPICE with those 

obtained experimentally. The comparison of the simulation and experimental results 

are presented both qualitatively and quantitatively. 

A comparison of the voltage, current, and power characteristics of the 

expl~rimental and simulated LOA electronic ballast CFL. Table (3.6).F'igures (3.26) 

through (3.28) show a comparison of the simulation and experimental tube 

chai-acteristics, V,,, I,,, and P,,, respectively. These plots provide an insight of the 

accuracy of the fluorescent tube modeled as a resistor in PSPICE. Figure (3.29) 

shows a comparison of the simulation and experimental supply current. 

Table 3.6 Comparison of supply voltage, current, and power charactcxistics of 

experimental and simulated LOA 30 W Circline electronic ballast CFL 



Experimental -- - - - - 
Simulated - 

Figure 3.26 Comparison of experimental and simulated tube voltage of LOA 30 W 

Circline electronic ballast CFL 
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Experimental -- - - - - 
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Figure 3.27 Comparison of experimental and simulated tube current of LOA 30 W 

Circline electronic ballast CFL 



Experime~~ltal -- - - - - 
Simulated - 

Figure 3.28 Comparison of experimental and simulated tube power of LOA 30 W 

Circline electronic ballast CFL 



Expe~nental -. - - - - 
Simulated - 

Figure 3.29 Comparison of experimental and simulated supply current of LOA 30 W 

Circline electronic ballast CFL 





CHAPTER 4 

SIMULATION APPLICATIONS 

4.1 Introduction 

In this chapter, various applications of the PSPICE simulation of the LOA 

electronic ballast CFL developed in Section 3.3 will be presented. Single-phase 

applications include the quantification of harmonic current throughout the distribution 

network, compliance with the various harmonic standards (IEEE 519-1992, IEC 

555-2, and Green Seal), distribution transformer derating (IEEE C57.110-1982), and 

harrnonic current reduction techniques. Three-phase applications include the 

quantification of neutral wire current flow and phase wire current capacity derating. 

4.2 Single-phase applications 

In this section, the electronic ballast CFL simulation developecLhi Section 3.3 

will be applied to a typical single-phase distribution network and fbrther simulated in 

PSPICE. The circuit used for simulation by PSPICE is shown in Figurls (4.1). The 

applications of the single-phase CFLIdistribution network simulation will be described 

below. 



R1 Lll LIZ R2 Rlr Llr 
e - ApvAV n - " -4 

6 26m 795m 7 95m 6 ZBm 1726m 1728m 

TO 
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G 
691 Zk 17 1% (Fqure (3 16)) 

Vonopr Source Dtslribulion Transformer Lqhting Feeder 

Figure 4.1 PSPICE simulation schematic for single-phase distribution network with 

LOA 30 W Circline electronic ballast CFL load 

Compliance with harmonic standards. One of the applications of the 

sim~ilation developed is to determine the effects of harmonic currents produced by 

CFI, loads on typical distribution networks. This application would be particularly 

effective in determining the effects of electronic ballast CFLs in a single-phase network 

befc~re their actual implementation. 

The compliance of the simulated LOA electronic ballast CFL ancl single-phase 

distiibution network with the various harmonic standards is shown in Table (4.1). 

Depending on the situation, the PCC may either be on the primary or sectmdary side of 

the distribution transformer. In most residential settings where a number of 

households are often served by 'a common feeder and distribution tramsformer, the 

PC(: is taken at the secondary side of the transformer. In the cornmercial and 

residential settings where the customer is often solely served by the feeder and 

distiibution transformer, the PCC is taken at the primary side of the transformer. 

Thus, the harmonic compliance is shown for the PCC taken at both the primary and 

secondary sides of the distribution transformer. Note that it is assumed I hat the entire 

electrical load is a CFL load. Also, a short circuit ratio of < 20 is assumed. 



Table 4.1 Simulation compliance with IEEE 5 19- 1992, IEC 555-2, andl Green Seal 

standards (100% CFL load) 

Point at 

amplitude 

IEC 555-2 I Green ~ea lS tandards1  

I Odd I Even ( tPF I THDi I 

- 

Masimum harmonic current 
(Class D) (Class A compliance) 

* Distribution transformer derating. The ANSIIIEEE (37.1 10- 1986 

standard is applied to the results obtained from the PSPICE simulation of the single 

phase distribution network loaded with a LOA 30 W Circline electronic: ballast CFL. 

Funher discussion of the ANSVIEEE C57.110-1986 standard can be found in Section 

(1.4). The distribution transformer used in this simulation has 7620/240/120 V, 25 

kVA, single phase, 1.8% rated values. The f i l l  load loss is assumed to be 3% of the 

kVri rating, or 750 VA. The core loss is assumed to be 10% of the f i l l  load loss, or 

75 'JA. The 12R loss of the transformer is assumed to be 90 W. Assuming the R21 loss 

of the transformer is referred to the 240 V secondary winding, the winding resistance 

of the secondary is 0.0083 ohms and the winding resistance of the primary is 7.4 ohms. 
c 

The required load current characteristics obtained from the PSPICE simulation are 

summarized in Table (4.2). Substituting the transformer and load curreni data into the 

equation for the derating of a transformer, 

Primary Violates Violates 

Secondary Violates Violates 

Note that for the specified transformer loaded 100% with the given magnitude of 

harmonic component, the transformer is capable of supplying only 45.63% of its f i l l  

load rated value. Although the ANSVlEEE C57.110- 1986 standard provides a 

Violates 

Violates 

Violates 

Violates NIA 



conservative derating for transformers, it can be concluded that a transformer with a 

significant electronic ballast CFL load needs to be oversized to avoid transformer 

overheating beyond design limits. 

Table 4.2 LOA 30 W Circline electronic ballast CFL current harmonic d.ata (obtained 

from PSPICE simulation) required for ANSVIEEE C57.110-1986 

Harmonic current reduction. Another potential application of the PSPICE 

simulation is the development of CFLs with reduced harmonic current (listortion. As 

an example of this application, a potential current harmonic reduction technique for 



electronic ballasts will be presented. It has been found that the introduction of a dc-dc 

boost converter into the electronic ballast circuitry significantly reduces the current 

harnlonic distortion produced by electronic ballast CFLs [22]. The boost converter, 

which is often used as a true power factor correction circuit, serves as an active filter, 

effectively filtering out harmonics caused by rectifier circuits with capa.citive output 

filters. The schematic for a typical boost converter is shown in Figure (4.12). 

Figure 4.2 Schematic for a typical dc-dc boost converter 

Lb Db 
N 0 - 1 - __O 

To reduce the consumption of harmonic currents by the electronic ballast CFL, 

the boost converter is incorporated into the electronic ballast between the 

rectitierlfilter capacitor and the high frequency oscillator. The simulated LOA 

electronic ballast CFL with the boost converter modification is shown in Figure (4.3). 

Because the oscillator contains the MOSFET and diode required by the boost 

converter, the boost converter can easily be integrated with the oscillator by adding a 

capacitor, C,, and inductor, L,, additionally required by the boost converter [lo]. A 

diodl?, D,, is also added in series between the output of the rectifier and the input of 

the boost converter to prevent the change of direction of current through the inductor. 

+ 
+ 

Output 

- 

+ 

C b l  Input 

- 
0 a - - - 4 

1, 7; Cb2 == 

* 



F:~gure 4.3 PSPICE simulation schematic for LOA 30 W Circline electronic ballast 

CFL with boost converter modification 

Because of the incorporation of the boost converter into the oscillator circuit, 

the boost converter operates at the same frequency as the oscillator with a duty ratio 

of 0.5. The high frequency harmonics which are consumed by the ballast are then 

filtered out by a low pass filter whose breakpoint is chosen as the geometric mean of 

the hndamental frequency consumed by the ballast (i.e., 60 Hz), f,, and the switching 

frequency of the converter/oscillator, f,. The supply voltage and current plots 

obtained from the PSPICE simulation of the LOA 30 W Circline electronic ballast 

CFI, with the boost converter modification is shown in Figure (4.4). 

Preliminary laboratory results confer that the boost converter modification 

reduces the supply current THD to approximately 10.48% and increase:; the tPF and 

dPF to (0.99) and (1.00), respectively. Although the current harmonic distortion is 

reduced significantly, it is at the expense of an increase in power consumption by the 

lamp. The rms supply current increased to approximately 1.87 A and tlie active and 

apparent power increased to 222.83 W and 224.12 VA, respectively. Further 

investigation of the boost converter modification in CFLs is required to obtain an 

optimal reduction in supply current THD and power consumption by the lamp. 



Frcqucncy (hcm) 

Figure 4.4 Supply voltage and current plots obtained from PSPICE sirnulation of 

LOA 30 W Circline electronic ballast CFL with boost converter modification 



4.3 Three-phase application 

In this section, the electronic ballast CFL simulation developed in Section (3.3) 

will be applied to a typical three-phase distribution network and hrtheir simulated in 

PSI'ICE. The circuit used for simulation by PSPICE is shown in Figure (4.5). The 

app'lication of the three-phase CFLIdistribution network simulation will be described 

below. 
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Rtro Xtro 

n n A r TWV\ 0 

Phose A LOA C F ~  Model (Phose A) 
(Fig. (3  18)) 
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Phose 0 

Phose C Conduclor 
Rtxc Xtxc 

To 
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(Fig (3  18)) 

17 .28m 17.28m To 
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(Fig (3  18)) 

Rtrn Xtxn 
2 P 

Lighting Bus 

1 7 2 8 m  1 7 2 8 m  

Lighling Feeder LOA CFL Loo,l . . 

Figure 4.5 PSPICE simulation schematic for three-phase distribution network with 

LOA 30 W Circline electronic ballast CFL load 

* Neutral conductor current. The presence of electronic loads which 

consume large amounts of harmonic current on three-phase four-wire distribution 

networks have been of increased concern due to their cause of an increased current 

flow in the neutral conductor. When harmonic current is present in the phase wires of 

the network, the harmonic "triplens" (e.g., n=3, 6, 9, 12, etc.) sum in the neutral 

conductor and contribute to the rms neutral conductor current. The plots of the Phase 

A voltage, neutral conductor current, and FFT of the neutral conductor current 

obt<Jned experimentally are shown in Figure (4.6). Similar plots obtained from the 

three-phase simulation are shown in Figure (4.7). Various data for the simulated and 

experimental three-phase case is shown in Table (4.3). 



Frcqucncy (hem) 

Figure 4.6 Plot of experimental neutral conductor current obtained from three-phase 

distribution network with LOA 30 W Circline electronic ballast CFL load 



Fraquurcy (hcm) 

Figure 4.7 Neutral conductor current plot obtained from PSPICE sirr~ulation of 

three-phase distribution network with LOA 30 W Circline electronic ballast CFL load 



Table 4.3 Data for simulated and experimental three-phase case 

1 I,, (amperes) I 0.53 I 0.47 1 
Vh, (volts) 

/ Circuit derating (%) 1 58.89 I 65.28 I 
Note: Circuit derating = IhJI,,, x 100 

Simulation 

120 

The National Electrical Code (NEC) is the code followed by electrical 

Experimental 

120.95 

engineers when designing electrical, illumination, and communication installations 

[24]. Its purpose is for the practical safeguarding of persons and property from 

hazards arising from the use of electricity. When designing for a feeder neutral load 

for a three-phase four-wire installation, the NEC requires a neutral conductor sized for 

a maximum net computed load between the neutral and any one ungrounded 

condl~ctor. In most cases, the neutral conductor is sized the same as the phase 

cond~~ctor. When harmonic loads such as electronic ballast CFLs are applied to the 

phase conductors, the neutral conductor may be undersized to handle the additional 

harmonic current present. From Table (4.3), it can be seen that a three-phase circuit 

loaded with one LOA electronic ballast CFL per phase, the rms neutral current is 

apprcximately 1.7 times the rms phase current. This corresponds to an approximate 

derating of the phase conductor current capacity by 72%. 

Table (4.4) shows the various sizes of phase and neutral conductors of a 

typicid three-phase lighting feeder loaded with LOA electronic ballast CFLs. This 

table gives the ampacities for different phase and neutral conductor sizes ranging from 

14 to 4 AWG. Note that the phase and neutral conductors are assumed to be sized the 

same (i.e., a circuit with 10 AWG phase conductors would have a 10 AWG neutral 

conductor). In addition, all phases are assumed 100% CFL load. This table shows the 

maxirnum phase current consumption by the lamps (and hence, the maxinium number 



of :lamps) allowable for a filly loaded neutral conductor. The phase conductor 

ampacity derating is also shown. 

Table (4.5) shows the sizing of the phase and neutral conductors of a typical 

three-phase lighting feeder loaded with LOA electronic ballast CFLs. This table gives 

the ampacities for different phase conductor sizes ranging from 14 to 4 AWG. Note 

that the sizing of the neutral conductor in this table accounts for the additional 

hannonic neutral current consumed by the lamps. In addition, all phases are assumed 

100% CFL load. 

Tirble 4.4 Derated phase conductors of a typical three-phase lighting feeder loaded 

with LOA electronic ballast CFLs [24] 

-- 
Phrise and 

nc:ut ral 
cortductor 

size 
(AWG) 

Ampacity* 
per phase 

(amperes) 

Phase current @ 
0.47 A per lamp 

per phase 
(amperes) 

Phase 
conductor 
ampacity 
derating 

(%I 

Note: ' Ampacities of single insulated conductors, rated 0 through 2000 volts, in free air, based on 

ambient air temperature of 30°C (86T). Also, ampacities based on conductor temperature 

rating of 75OC (167T), corresponding to conductor types FEPW, RH, RHW, 'W, THWN, 

XHHW, and ZW. 



Table 4.5 Increased size neutral conductor of a typical three-phase lighting feeder 

loaded with LOA electronic ballast CFLs [24] 

Note: Ampacities of single insulated conductors, rated 0 through 2000 volts, in frelz air, based on 

ambient air temperature of 30°C (86'F). Also, ampacities based on conductor temperature 

rating of 75OC (167'F), corresponding to conductor types FEPW, RH, RHW, INN', THWN, 

XHHW, and ZW. 





CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions 

The electronic ballast compact fluorescent lamp has drawn the attention of 

utilities and the residential, commercial, and industrial sectors. Although1 these lamps 

offer a higher efficacy and longer life as compared to conventional incandescent and 

flu01,escent lamps, they do consume large amounts of harmonic current which cause 

detrimental effects on the power distribution system. Experimental nleasurements 

take11 on a number of electronic ballast CFLs show that these lamps produce harmonic 

current THDs of approximately 150% and have true power factors of approximately 

(0.50). A simulation based on one of the electronic ballast CFLs tested was developed 

and used for the investigation of its effects on the power distribution system. These 

effects include: 

Compliance with harmonic standards 

Distribution transformer derating 

Harmonic current reduction 

Neutral conductor current. 

The PSPICE simulation of the electronic ballast CFL proved to be iiccurate and 

effective in its use for the applications noted above. For the simulatiorl of a single 

phase distribution network loaded with the modeled electronic ballast CITL, the large 

hamionic current distortion produced by the lamp exceeded the limits set forth by the 

IEEIi 5 19-1992 and Green Seal standards. Applying ANSUIEEE C57.110-1986, a 

typical 25 kVA distribution transformer was found to be derated to 45.63% of full 



load capacity. When a typical three-phase circuit loaded with electronic ballast CFLs 

was simulated, the neutral conductor current was found to be in excess of the 

individual phase current by approximately 140%. Although in all app1ic:ations it was 

assumed that the load was 100% CFL, the results obtained provide an insight of the 

effects of electronic ballast CFLs. These results depend on the CFL used and the 

given distribution circuit parameters; however, the results are believed to typifjr actual 

CFL, loads. 

5.2 Recommendations 

In certain cases, such as a dedicated three-phase lighting feeder retrofitted with 

electronic ballast CFLs, the applications presented provide results that are fairly 

accurate. It is recommended for these applications that an analytical investigation be 

performed before its actual implementation. The initiation of a preliminary 

investigation, such as those presented, may obviate detrimental effects of harmonic 

current distortion produced by electronic ballast CFLs on the powel- distribution 

system. 

To confirm the effects of electronic ballast CFLs in large-scale deployment on 

the power distribution system, it is recommended that detailed field tests be performed 

of a system highly loaded with electronic ballast CFLs. One such example would be of 

a lighting feeder retrofitted with CFLs. 

Since the problem of a significant amount of harmonic current distortion stems 

from the electronic ballast itself, it is recommended that harmonic reduction methods 

in the design of the electronic ballast be investigated. As discussed in Section (4.2), 

cost-effective harmonic reduction techniques for electronic ballast CFLs are available. 

The investigation of these techniques can easily be done with a simulation such the one 

presented. These techniques should also be applied to electrodeless CFl,s, which are 

the next generation of energy-efficient lighting. 
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APPENDICES 





Appendix A MATLAB function code 

% EXPFFT(T;V,I) Single-phase experimental 
% Plot the Y-point FFT of the current I versus the corresponding 
% frequency axis for the given sampling frequency Z. Also, plot 
% the voltage V and current I versus the corresponding time axis 
yo T. 

% Clear previous graph 

% Define number of points Y and sampling frequency Z 

% Calculate the Y-point FFT of the voltage V 

temp1 = fft(v,y); 
temp2 = temp l/(y/2*sqrt(2)); 
fftv == temp2(1 :(y/2)); 

% Ciilculate the Y-point FFT of the current I 

temp 1 = fft(i,y); 
temp2 = temp 1 /(y/2 * sqrt(2)); 
ffti = tempZ(1 :(y/2)); 

% C;ilculate the frequency axis for the Y-point FFT given the sampling frequency Z 

freqaxis = (z*(O:((y/2)- 1))Iy)'; 

% Pl'ot the voltage V and current I versus its corresponding time axis T 

subpl.ot(2 1 1); 
plot(.t,v/l00); 
hold on; 
plot(t,i); 
hold o q  
grid; 
title('Figure 3.x.x GE 26W Electronic Ballast CFL'); 



xlabel('Time (seconds)'); 
ylabel('Current (amps)'); 

% Plot the FFT of the current I versus its correspondingfrequency axis 

fftiplot = abs(ffti); 
subplot(2 12); 
semilogx(fieqaxis,fRiplot); 
grid: 
xlabel('Frequency (hertz)'); 
ylab~:l('Current (amps)'); 

% Calculate fbndamental current I1 rms, fbndamental voltage Vl  rms, 
% RMS current Irms, RMS voltage Vrms, active power P, apparent power S, 
% true power factor tPF, displacement power factor dPF, total harmonic 
% distortion of current THDi, total harmonic distortion of voltage TIIDv, 
% and crest factor CF 

sumv = 0.0; 
sumi = 0.0; 
sump = 0.0; 

% Fundamental current Ilrms and fbndamental voltgae Vlrms 

Vl  rrns = abs(fRv(4,l)) 
Ilrms = abs(fRi(4,l)) 

% &US current Irms and RMS voltage Vrms 

for n = 4:6:01/2), 
sumv = sumv + (abs(fftv(n, 1 )))A2; 
sumi = sumi + (abs(fRi(n, 1)))/'2; 
sump = sump + real(fftv(n, l)*conj(ffti(n, 1))); 
end 

Vrms = sqrt(sumv) 
Irms = sqrt(surni) 

% Active power P 

P = sump 

% Apparent power S 



% True power factor tPF 

% 1)isplacement power factor dPF 

% Total harmonic distortion of current THDi and total harmonic distortion of 
% voltage THDv 

sumvh = sumv-(ab~(fftv(4,1)))~2; 
sumiih = sumi-(ab~(ffti(4,1)))~2; 
THIh = sqrt(sumvh)/abs(fftv(4, I))* 100 
THIX = sqrt(sumih)/abs(ffti(4, I))* 100 

% Crest factor CF 

% EXPTUBE(TIMEyTUBEV,TUE3ECUR,TUBEC1,TUBEC2,PTYPE) 
% 
% Single-phase experimental - tube voltage and current 
Yo 
% Plot TIME, TUBEV, TUBECUR, TUBEC1, and TUBEC2 

% Clear previous graph 

% Plot TUBEC 1, 'IZTBEC2, AND TUBECUR versus TIME 

axis([0,2e-04,- 1,1]); 
plot(time,tubec 1 ,I--',time,tubec2,'-.',time,tubecur,'-'); 
grid; 
title('L0A 30W Circline CFL (Experimental - Tube)'); 



xlal)el('Time (seconds)'); 
ylat)el('Current (amps)'); 
axis; 

elseif ptype == 2, 

% I'lot TUBEV, TUBECUR, AND TUBEPWR versus TIME 

axis([0,2e-04,- 100,1001); 
plot(tiine,tubev,'--',time,tubecur* 100,'-.',time,tubev. *tubecur,'-'); 
gricl; 
title:('LOA 30W Circline CFL (Experimental - Tube)'); 
xla€~el('Time (seconds)'); 
ylal)el('Current (amps)'); 
axis,; 

end; 

% SIMFFT(FILE) 
Yo 
% Single-phase simulation - FFT of supply voltage and current 
Yo 
% Plot the Y-point FFT of the voltage V and the 
% current I versus the corresponding frequency axis 
% for the given sampling frequency 2. Also, 
% plot the voltage V and current I versus the 
% corresponding time axis T (given the input FILE) 

% Define total number of points in FILE 

pts := 5335; 

% Define number of evaluation points Y and sampling frequency Z 

% Clear previous graph 



% Ektract T, V, and I from input FILE 

for n = l:l:y, 
t(n, 1) = (n-1)* 1.25e-05; 

end 

for 11 = y:-1:l; 
v(n, 1) = file((pts-y)+n,2); 
i(n, 1) = file((pts-y)+n,3); 

end 

% Clalculate the Y-point FFT of the voltage V 

temp 1 = fR(v,y); 
temp2 = temp l/(y/2*sqrt(2)); 
fRv = temp2(1: (~12)); 

% C'alculate the Y-point FFT of the current I 

tern111 = fR(i,y); 
temp2 = temp 1/07/2*sqrt(2)); 
fRi == temp2(1 :(y/2)); 

% Calculate the frequency axis for the Y-point FFT given 
% the sampling frequency Z 

% Plot the voltage V and current I versus its corresponding time axis T 

subplot(2 1 1); 
plot(:t,v/75); 
hold on; 
plot(:t,i); 
hold off; 
grid; 
title('L0A 30W Circline CFL (PSPICE Simulation 
xlab(:l(Time (seconds)'); 
ylabel('Current (amps)'); 

% Plot the FFT of the current I versus its corresponding fiequency axis 



semilogx(fi-eqaxis,ffiiplot) 
grid 
xlabel('Frequency (hertz)') 
ylabel('Current (amps)') 

% Calculate fbndamental current I1 rms, fbndamental voltage Vlrms, 
% RMS current Irms, RMS voltage Vrms, active power P, apparent power S, 
% true power factor tPF, displacement power factor dPF, total harmonic 
% distortion of current THDi, total harmonic distortion of voltage THDv, 
% and crest factor CF 

sumv = 0.0; 
sumi = 0.0; 
sump = 0.0; 

% Fundamental current Ilrms and fbndamental voltgae Vlrms 

Vl nns = abs(fftv(4,l)) 
I1 mls = abs(Ri(4,l)) 

% RMS current Irms and RMS voltage Vrms 

for r~ = 4:6:01/2), 
sumv = sumv + (abs(&(n, l)))A2; 
sumi = sumi + (abs(Ri(n, l)))/\2; 
sump = sump + real(fi(n, l)*conj(ffti(n, 1))); 

end 

Vrms = sqrt(sumv) 
Irms = sqrt(sumi) 

% Active power P 

% Apparent power S 

% True power factor tPF 

tPF := PIS 

% Displacement power factor dPF 



deltav = atan2(imag(fftv(4,l)),real(fftv(4,1))); 
deltai = atan2(imag(ffti(4,l)),real(fRi(4, I))); 

% 'I'otal harmonic distortion of current THDi and total harmonic distortion 
% of voltage THDv 

% Crest factor CF 

% SIMTUBE(FILE) 
Yo 
% Single-phase simulation - tube voltage and current 
Yo 
% Extract TIME, TUBEV, TUBECUR, TUBEC I ,  and TIJBEC2 
% from input FILE and plot 

% Clear previous graph 

% Ektract TIME, TUBEV, TUBECUR, TUBEC 1, and TUBEC2 from input FILE 

extirne = file*[l;0;0;0;0]; 
extu.bev = file* [O; 1 ;O;O;O]; 
extubecur = file* [O;O; 1 ;O;O]; 
extu bec 1 = file* [O;O;O; 1 ;O]; 
extu bec2 = file* [0;0;0;0; 11; 

% Extract 160 pts (200 usec) starting at point 288 (360 usec) 

for n =  1:1:160, 
time(n, 1) = extime(n, 1); 
tubev(n, 1) = -extubev(n+277,1); 
tubecur(n, 1) = -extubecur(n+277,1); 



tubec 1 (n, 1) = -extubecl (n+277,1); 
tubec2(n, 1) = -extubec2(n+277,1); 

end 

% Plot TUBEC 1, TUBEC2, AND TUBECUR versus TIME 

plol:(time,tubec 1 ,I--',time,tubec2,'-.',time,tubecur,'-'); 
gricl; 
title:('LOA 30W Circline CFL (PSPICE Simulation - Tube)'); 
xlat)el('Time (seconds)'); 
ylat~el('Current (amps)'); 

e1se:if ptype = 2, 

% Plot TUBEV, TUBECUR, AND TUBEPWR versus TIME 

plol:(time,tubev,'--',time,tubecur* 100,'-.',time,tubev. *tubecur,'-'); 
gricl; 
title:('LOA 30W Circline CFL (PSPICE Simulation - Tube)'); 
xlat)el('Time (seconds)'); 
ylat)el('Current (amps)'); 

end; 

% SIMFFT3PO;ILE 1 ,FILE2) 
Yo 
% Three-phase simulation - FFT of neutral current 
% 
% Plot the Y-point FFT of the voltage V and the 
% current I versus the corresponding frequency axis 
% for the given sampling frequency Z. Also, 
% plot the voltage V and current I versus the 
% corresponding time axis T (given the input FILEs) 

% Define total number of points in FILEs 

pts = 5335; 

% Define number of evaluation points Y and sampling frequency Z 



% Clear previous graph 

% Extract T, V1, I(Vl), V2, I(V2), V3, I(V3), and I(NEUT) 
% from input FILE 

for 11 = l:l:y, 
t(n, I)  = (n-1)*1.25e-05; 

end 

for r i =  y:-l:l, 
v 1 (n, 1) = file 1 ((pts-y)+n,2); 
i 1 (n, 1) = filel ((pts-y)+n,3); 
v2(n, 1) = file 1 ((pts-y)+n,4); 
i2(n, 1) = filel ((pts-y)+n, j); 
v3(n, 1) = filel ((pts-y)+n,6); 
i3(n, 1) = file2((pts-y)+n,2); 
ineut(n, 1) = file2((pts-y)+n,3); 

2nd 

% Calculate the Y-point FFT of the voltage V 

temp1 = fi(v1,y); 
temp2 = temp l/(y/2*sqrt(2)); 
fftv := temp2(1 :(y/2)); 

% Calculate the Y-point FFT of the current INEUT 

temp 1 = fft(ineut,y); 
temp2 = temp l/(y/2*sqrt(2)); 
ffti =: temp2(1 :(y/2)); 

% Ct31culate the frequency axis for the Y-point FFT given 
% the sampling frequency Z 

freqaxis = (z*(O:((y/2)- 1 ))/y)'; 

% Plot the voltage V and current I versus its corresponding time axis T 



subplot(:! 1 1); 
plot(t,vl/75); 
hold on; 
plotl:t,v2/75); 
hold on; 
plot(t,v3/75); 
hold on; 
plotl:t,ineut); 
hold o q  
grid; 
tit1el:'LOA 30W Circline CFL (PSPICE Simulation - 3-phase supply)'); 
xlabel('Time (seconds)');' 
ylabel('Current (amps)'); 

% Plot the FFT of the current I versus its corresponding frequency axis 

subplot(212) 
seln ~logx(fieqaxis,fftiplot) 
grid 
xlabel('Frequency (hertz)') 
ylabel('Current (amps)') 

% Calculate fundamental current I1 rms, fbndamental voltage Vl rms, 
% RMS current Irms, RMS voltage Vrms, active power P, apparent .power S, 
% true power factor tPF, displacement power factor dPF, total'harmonic 
% distortion of current THDi, total harmonic distortion of voltage THDv, 
% and crest factor CF 

sumv = 0.0; 
sumi = 0.0; 
sump = 0.0; 

% Fundamental current Ilrms and f5ndamental voltgae Vlrms 

Vl rms = abs(fftv(4,l)) 
I1 rnls = abs(ffti(4,l)) 

% RMS current Irms and RMS voltage Vrms 

for 11 = 4:6:(y/2), 
sumv = sumv + (abs(fftv(n, l)))"2; 
sumi = sumi + (abs(ffti(n, l)))"2; 
sump = sump + real(fftv(n, 1 )* conj(ffti(n, 1 ))); 



end 

Vrms = sqrt(sumv) 
Irms = sqrt(surni) 

% Active power P 

% Apparent power S 

% T:rue power factor tPF 

% Displacement power factor dPF 

de1ta.v = atan2(imag(fftv(4,1)),real(fftv(4,1))); 
deltai = atan2(imag(ffti(4,l)),real(ffti(4,1))); 

% Total harmonic distortion of current THDi and total harmonic distortioil 
% of voltage THDv 

sumvh = sumv-(abs(fftv(4, 1)))A2; 
sumi h = sumi-(abs(ffti(4,1)))"2; 

% Crest factor CF 
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Appendix B. PSPICE simulation code 

* SINGLE-PHASE SIMULATION 
* LOA 2030 CIRCLTNE CFL 
* BOOST CONVERTER MODIFTC ATTON 

* * * BEGIN SCHEMATIC DIAGRAM DEFINITION * * * 

* Voltage source, VS=169.7sin(wt) 
VS 0 1 SIN(0 169.7 60 0 0 0) 

* A(:-side EM1 filter 
R12 1 2 2.2 
L23 2 3 33OuH 
C30 3 0 0.47uF 

* Rectifier diodes 
Dl  3 4 DDEFAULT 
D2 0 4 DDEFAULT 
D3 5 0 DDEFAULT 
D4 5 3 DDEFAULT 

* RC: timing network 
*R4:!0 4 20 220K 
*R4'7 4 7 220K 
*R4:!1 4 21 22 
*C217 21 7 1nF 
*D207 20 7 DDEFAULT 
*C200 20 5 O.luF 

* Boost converter 
D413 4 13 DDEFAULT 
L137 13 7 330uH 
C145 4 5 0.47uF 

* Fi1i:er capacitance 
C45 4 5 47uF 

* HEXFET switching model 
DHF1 14 6 DDEFAULT 
SHFl 6 7 11 0 SMOD1 



DF\Yl 7 14 DDEFALJLT 
DHY2 7 8 DDEFAULT 
SHF2 8 5 11 0 SMOD2 
DFW2 5 7 DDEFAULT 
VH17 11 0 PULSE(-1.01 1.01 0 lu lu 15.0e-630.0e-6) 

* Fh~orescent tube model 
C49 14 9 0.lOuF 
L710 7 10 760uH 
C910 9 10 18nF 
RTIJBE 9 10 120 

** * END SCHEMATIC DIAGRAM DEFINITION * * * 

* Define part models 
.model DDEFALJLT D 
.motlel SMODl VSWITCH [RON 0.01 VON 1.01 
.model SMOD2 VSWITCH [RON 0.0 1 VON - 1 .O] 

* Transient analysis 
.trar~ 12.51 0.0666667 

* Define transient analysis options 
.opti~ons GMIN = 1.011 ; "ipsp* 
.options ITL4 = 10000 
.opti.ons ITL5 = 0 
.options RELTOL = 0.01 

* Enable graphic processor 
.pro'be I(VS) 

* Print output table 
.pririt tran V(1,O) I(VS) 

* TIXREE-PHASE SIMULATION 
* LOA 2030 CIRCLINE CFL 

* * * BEGIN SCHEMATIC DIAGRAM DEFINITION * * * 



*** PHASE A *** 

* Voltage source, VA= 1 69.7sin(wt) 
VA 0 1 SIN(0 169,760000)  

* Neutral leg resistance 
RNIZUT 0 50 0.1 

* AC-side EM1 filter 
R12 1 2 2.2 
L23 2 3 330uH 
C350 3 50 0.47uF 

* Rectifier diodes 
DlPi 3 4 DDEFAULT 
D2Pi 50 4 DDEFAULT 
D3Pi 5 50 DDEFAULT 
D4Pi 5 3 DDEFAULT 

* DC-side filter capacitance 
C45 4 5 47uF 

* HIZXFET switching model 
DHI71A 4 6 DDEFAULT 
SHE'lA 6 7 11 0 SMOD1 
DFIVlA 7 4 DDEFAULT 
DH1:2A 7 8 DDEFAULT 
SHE2A 8 5 11 0 SMOD2 
DFKV2A 5 7 DDEFAULT 
VHI: 11 0 PULSE(-1.01 1.01 0 lu lu 15.0e-6 30.0e-6) 

* Fli~orescent tube model 
C49 4 9 0.1OuF 
L710 7 10 760uH 
C910 9 10 18nF 
RTIn3EA 9 10 120 

*** PHASE B *** 

* Voltage source, VB= 169.7sin(wt) 
VB 0 21 SIN(0 169.7600 0-120) 

* AC-side E M  filter 
R2122 21 22 2.2 
L2223 22 23 330uH 



* Rectifier diodes 
Dl13 23 24 DDEFAULT 
D213 50 24 DDEFAULT 
D313 25 50 DDEFAULT 
D413 25 23 DDEFALlrLT 

* DC-side filter capacitance 
C2425 24 25 47uF 

* HEXFET switching model 
DHFlB 24 26 DDEFAULT 
SHITIB 26 27 11 0 SMOD1 
DFINIB 27 24 DDEFAULT 
DHF2B 27 28 DDEFAULT 
SHI72B 28 25 11 0 SMOD2 
DF\Y2B 25 27 DDEFAULT 

* Fluorescent tube model 
C2429 24 29 0.lOuF 
L2730 27 30 760uH 
C2930 29 30 18nF 
RTIJBEB 29 30 120 

*** PHASE C *** 

* Voltage source, VC=169.7sin(wt) 
VC 0 31 SIN(0 169.7 60 0 0 -240) 

* AC-side EM1 filter 
R31:32 31 32 2.2 
L3233 32 33 33OuH 
C33:50 33 50 0.47uF 

* Rectifier diodes 
DlC 33 34 DDEFAULT 
D2C 50 34 DDEFAULT 
D3C 35 50 DDEFAULT 
D4C 35 33 DDEFAULT 

* DC:-side filter capacitance 
C3435 34 35 47uF 

* HElXFET switching model 



DHFlC 34 36 DDEFACILT 
SHFlC 36 37 11 0 SMOD1 
DF'WIC 37 34 DDEFAULT 
DHF2C 37 38 DDEFAULT 
SHF2C 38 35 11 0 SMOD2 
DF'W2C 35 37 DDEFAULT 

* Fluorescent tube model 
C3439 34 39 0.lOuF 
L3740 37 40 760uH 
C3940 39 40 18nF 
RT-LTBEC 39 40 120 

* * * END SCHEMATIC DIAGRAM DEFINITION * * * 

* Enable transient analysis 
.tran 12.511 0.0666667 

* Enable graphic processor 
.probe Z(RNEUT) 

* Print output table 
.print tran V(1,O) I(VA) V(2 1,O) I(VB) V(3 1,O) I(VC) I(RNEUT) 

* Define part models 
.model DDEFAULT D 
. mcldel SMOD 1 VSWITCH [RON 0.0 1 VON 1 .O] 
.model SMOD2 VSWITCH [RON 0.0 1 VON -1 .O] 

* Define transient analysis options 
.opi:ions GMIN = 1 . 0 ~  ; *ipsp* 
.opi:ions ITL4 = 10000 
.opi:ions ITL5 = 0 
.opi:ions RELTOL = 0.01 
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