Estimation of Circuit Activity Considering Signal Correlations and simultaneous Switching

Tan Li Chou
Purdue University School of Electrical Engineering

Kaushik Roy
Purdue University School of Electrical Engineering

Sharat Prasad
Texas Instruments Inc.

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
ESTIMATION OF CIRCUIT ACTIVITY
CONSIDERING SIGNAL
CORRELATIONS AND
SIMULTANEOUS SWITCHING

TAN-LI CHOU
KAUSHIK ROY

TR-EE 94-13
APRIL 1994

SCHOOL OF ELECTRICAL ENGINEERING
PURDUE UNIVERSITY
WEST LAFAYETTE, INDIANA 47907-1285
Estimation of Circuit Activity Considering Signal Correlations and Simultaneous Switching

Tan-Li Chou and Kaushik Roy
Electrical Engineering
Purdue University
West Lafayette IN 47907-1285

Sharat Prasad
Texas Instruments Inc.
13510 N. Central Expressway
Dallas, TX 75243

Contact person: Kaushik Roy
Ph: 317-494-2361
Fax: 317-494-6440
e-mail: kaushik@ecn.purdue.edu
Estimation of Circuit Activity Considering Signal Correlations and Simultaneous Switching

Abstract

This paper presents accurate estimation of signal activity at the internal nodes of combinational logic circuits. The methodology is based on stochastic model of logic signals and takes correlations and simultaneous switching of signals at logic gate inputs into consideration. In combinational logic synthesis, in order to minimize spurious transitions due to finite propagation delays, it is crucial to balance all signal paths and to reduce the logic depth [4]. As a result of balancing delays through different paths the inputs to logic gates may switch at approximately the same time. We have developed and implemented two algorithms to calculate signal probability and switching activity. The first technique considers signal correlations without considering the effect of simultaneous switching of inputs to logic gates, while the latter considers such switching. Experimental results for the first technique show that the switching activities of the internal nodes can be off by more than 100% compared to simulation based techniques. However, the latter technique is within 5% of logic simulation results. Formal proof of correctness of our method has also been presented.

This research was supported in part by IBM Corporation
1 Introduction

With the recent trend toward portable computing and communications systems there has been an increasing thrust toward considering power dissipation during VLSI design [4, 3, 14, 12, 11, 13]. In order to design circuits for low power and reliability, accurate estimation of power dissipation is required. In CMOS circuits majority of the power dissipation is due to charging and discharging of load capacitance of logic gates. Such charging and discharging occurs due to signal transitions. The problem of determining when and how often transitions occur at a node in a digital circuit is difficult because they depend on the applied input vectors and the sequence in which they are applied. Therefore probabilistic techniques have been resorted to. All reported methods of estimating the probability of a transition at a circuit node involve estimation of signal probability which is the probability of a signal being logic ONE. Computing signal probabilities has attracted much research [1, 6, 7, 8]. Most of these methods trade-off accuracy for time. Research directed at estimating signal activity for combinational logic are reported in [2, 5, 9]. However, such methods fail to consider the effect of “near simultaneous” signal switching at logic gate inputs. SPICE simulation result for the circuit of Figure 1 shows that the spurious switching will disappear at node V_6 and is negligible at node V_5 if the two primary inputs have a rising and a falling transition respectively, within 3ns of each other. The spurious pulses try to charge or discharge the capacitances associated with the nodes of a circuit. If such pulses are not wide enough to charge or discharge the capacitances, they disappear. The above example shows that if the inputs to a logic gate switch within a period of At, spurious transitions do not occur at the output. At is a function of the inertial delay of the gate and the load capacitances associated with the gate.

The effect of simultaneous switching at the inputs of a logic gate can be best understood by considering the example of Figure 2. If the signals at the inputs of a two input XOR logic gate are switching as shown in the figure, the output switching activity will be zero, even though the signal transition rates at the inputs are high. In this paper, we consider such effects in estimating signal activities at the internal nodes of a multilevel circuit. Total probability theorem [15] is applied to consider the probability that a node of a circuit will switch if one or more inputs are switching. Experimental results show that if simultaneous
switching at the inputs to logic gates is not taken into consideration, then the activities of
the internal and the output nodes of a circuit can be off by more than 100% compared to
logic simulation results. On the other hand, by applying the method proposed in this paper
the estimation is within 5% of logic simulation results.

The paper is organized as follows. Section 2 gives the basic definitions and a brief review
of signal probability, activity, and power dissipation in CMOS logic. Section 3 considers
efficient calculation of signal probability. Section 4 presents the formal proof of our method to
accurately calculatesignal activity considering signal correlations and simultaneous switching
of inputs to logic gates. An approximate formula is also presented in this section. A technique
to derive activities at the internal nodes of a circuit from its signal probability is given in
Section 5. Section 6 gives the implementation details and experimental results to show that
our technique is accurate and applicable for large circuits. The conclusions are given in
Section 7.

2 Preliminaries and Definitions

In this section we describe the representation of multi-level circuits, followed by a brief dis-
cussion on signal probability, activity, and power dissipation in CMOS.

Multi-level Logic Representation: Multilevel logic can be described by a set \(\mathcal{F} \) of com-
pletely specified Boolean functions. Each Boolean function \(f \in \mathcal{F} \), maps one or more inputs
and intermediate signals to an output or a new intermediate signal. A circuit is represented as a Boolean network. Each node has a Boolean variable and a Boolean expression associated with it. There is a directed edge to a node \(g \) from a node \(f \), if the expression associated with node \(g \) contains in it the variable associated with \(f \) in either true or complemented form. A circuit is also viewed as a set of gates. Each gate has one or more input pins and (generally) one output pin. Several pins are electrically tied together by a signal. Each signal connects to the output pin of exactly one gate, called the driver gate.

Signal Probability and Activity:

This section briefly describes the model used in [2] for estimation of signal activity. The primary inputs to a combinational circuit are modeled as mutually independent SSS mean-ergodic \(0-1 \) processes. Under this assumption, the probability of the primary input logic signals \(x_i(t), i = 1 \ldots n \), assuming the logic value ONE at any given time \(t \) becomes a constant, independent of time, and is called the equilibrium probability of the random signal \(x_i(t) \). This is denoted by \(P(x_i) \). The activity \(A(x_i) \) at a primary input \(x_i \) of the module is defined as \(\lim_{T \to \infty} \frac{n_{x_i}(T)}{T} \) and equals the expected value of \(\frac{n_{x_i}(T)}{T} \). The variable \(n_{x_i} \) is the number of switching of \(x_i(t) \) in the time interval \([-T/2, T/2] \). Since digital circuits can be thought of as non-linear but time-invariant systems, the signals at the internal and output nodes of the circuit are also SSS and mean-ergodic. Further, the Boolean functions describing the outputs of a logic module are decoupled from the delays inside the module by assuming the signals to have passed through a special delay module prior to entering the module under consideration. Therefore, the task of propagating equilibrium probabilities through the module is transformed into that of propagating signal probabilities. Also the activities \(A(y_j) \) at the nodes \(y_j \) of the module are given by

\[
A(y_j) = \sum_{i=1}^{n} P(\frac{\partial y_j}{\partial x_i}) A(x_i) \tag{1}
\]

Here \(\frac{\partial y}{\partial x} \) is the Boolean difference of function \(y \) with respect to \(x \) and is defined by

\[
\frac{\partial y}{\partial x} = y \bigg|_{x=1} \oplus y \bigg|_{x=0} = y(x) \oplus y(\bar{x}) \tag{2}
\]

Though equation 1 considers signal correlations within a logic module, it does not take simultaneous switching into account. Hence, this method results in errors in estimating ac-
activities of a circuit. Let us consider Figure 3 as an example. Let us assume that the four inputs, x_1, \ldots, x_4 are mutually independent with signal probabilities of 0.5 and activities of 1.8×10^6 transitions per unit time. According to equation 1, the activities of the output $A(x_7)$ should be 7.2×10^6 transitions per unit time. However, logic simulation using 10,000 input vectors (conforming to the given signal probabilities and activities) show a signal activity $A(x_7)$ of 4.16×10^6 transitions per unit time — a difference of almost 75%! We will observe in Section 4 that this difference is mainly due to "near simultaneous" switching of signals at the inputs to logic gates.

Power Dissipation in CMOS:

Of the three sources of power dissipation in digital CMOS circuits - switching, direct-path short circuit current, and leakage current - the first one is by far the dominant. Ignoring power dissipation due to direct-path short circuit current and leakage current, the average power dissipation in a CMOS logic is given by

$$\text{POWER}_{av} = \frac{1}{2} V_{dd} \sum_i C_i A(i)$$

where V_{dd} is the supply voltage, $A(i)$ is the activity at node i, C_i is the capacitive load at that node and is approximately proportional to the fanout at that node. The summation is taken over all nodes of the logic circuit. We define normalized power dissipation measure Φ
\[\Phi = \sum_i \text{fanout}_i \cdot a(i) \]

where \(\text{fanout}_i \) is the number of fanouts at node \(i \), and \(a(i) \) is the normalized activity obtained by dividing activity \(A(i) \) by the clock frequency. Normalized activity will be more formally defined in Section 4. \(V_{dd} \) is the supply voltage and is assumed to be constant. Hence, \(\Phi \) is proportional to the average power dissipation of a circuit. We will use \(\Phi \) as a measure to compare the results of different algorithms.

In this paper, we assume delay-free modules. The primary inputs are also assumed to be mutually independent.

3 Signal Probability calculation

The proposed methodology uses signal probability measure to accurately estimate activity. Therefore, it is very important to accurately calculate signal probabilities for further use in estimating activity. In the following section we present a technique to accurately calculate signal probabilities.

3.1 Definitions and Theorems

A Boolean function \(f \), representing an internal node or an output node of a logic circuit, can always be written in a canonical sum of products of primary inputs. It has been shown in [1] that the signal probability \(P(f') \), can be expressed as a sum of primary input signal probability product terms \(\sum_{i=1}^{m} \alpha_i \cdot (\prod_{j \in I_i} P(s_j)) \), where \(s_j \) is \(x_j \) or \(\overline{x}_j \), and \(\alpha_i \) is some integer. \(I_i \) is some index set. The sum has \(m \) product terms. For convenience, this form will be referred to as the sum of probability products in this paper. Assume the inputs \(x_i, i = 1, \ldots, n \), of a zero-delay logic module are mutually independent SSS mean-ergodic \(0-1 \) process. The signal probability of a logic signal \(x_i \) is expressed as \(P(x_i) \). Furthermore, \(P(\overline{x}_i) = 1 - P(x_i) \). For primary inputs, which are mutually independent, we also define \(P(\overline{x}_i) = 1 - P(x_i) \).

We introduce the following definitions to explain our methodology.

Definition 1 \(S \) is an operator, which performs exponent suppression on a sum of probability
products $\sum_{i=1}^{m} \alpha_i(\prod_j P(s_j))$. That is,

$$S[\sum_{i=1}^{m} \alpha_j(\prod_j P^{k_j}(s_j))] = S[\sum_{i=1}^{m} \alpha_j(\prod_j P(s_j))]$$

where $k_j > 0$ and $s_j = x_j$ or \bar{x}_j.

We will use s_i to represent x_i or \bar{x}_i. From the definition it follows that

$$S[P(x_i)P(\bar{x}_i)] = S[P(x_i)(1 - P(x_i))] = S[P(x_i) - P^2(x_i)] = P(x_i) - P(x_i) = 0$$

where x_i is a primary input of the module concerned. Therefore, whenever a probability product term within the suppression operator contains both $P(x_i)$ and $\overline{P(x_i)}$, the product term equals zero and can be eliminated. Obviously,

$$S[S[\sum_{i=1}^{m} \alpha_j(\prod_j P(s_j)^{k_j})]] = S[\sum_{i=1}^{m} \alpha_j(\prod_j P(s_j))]$$

Also it is easy to see that the following expression holds.

$$\sum_{i=1}^{m} \alpha_{j_1}(\prod_{j_1} P(s_{j_1})^{k_{j_1}}) + \sum_{i=1}^{m} \alpha_{j_2}(\prod_{j_2} P(s_{j_2})^{k_{j_2}})$$

where b is a constant. By defining $S^n[P(f)]$ as performing Suppression Operation S on $P(f)$, n times, we have the following lemma.

Lemma 1 S is linear and $S^n = S$, where n is a positive integer.

Definition 2 Let f_1 and f_2 be two arbitrary Boolean expressions and $P(f_i), i = 1, 2$ be expressed in terms of sums of input signal probability products. Let P_I be defined as follows.

$$P_I(f_1 + f_2) = P(f_1) + P(f_2) - P(f_1)P(f_2)$$

$$P_I(f_1f_2) = P(f_1)P(f_2)$$

Given the above definition, the following theorem is just a generalization of [1] and can be easily proved by induction:

Theorem 1 (Suppression Theorem) Let f_1 and f_2 be defined as above and let $P(f_1)$ and $P(f_2)$ be expressed as sums of probability products. Then,

$$P(f_1f_2) = S[P_I(f_1f_2)]$$

$$P(f_1 + f_2) = S[P_I(f_1 + f_2)]$$
3.2 Algorithm for Calculating Signal Probability

There has been much work on bounding or estimating the signal probabilities to balance accuracy and computation time. Since correct signal probabilities is important to both algorithms we propose in this paper, we choose the general algorithm proposed in [1] and adopt a data structure similar to [3]. Details of the data representation will be given in the implementation section.

Algorithm: Compute Signal Probabilities

Inputs: Circuits, signal probabilities of all the input

Output: Signal probabilities for all nodes of the circuit

Step 1: For each input signal and gate output in the circuit, assign a unique variable.

Step 2: Starting at the inputs and proceeding to the outputs, write the expression for the output of each gate as a function (using standard expressions for each gate type for probability of its output signal in terms of its mutually independent input signals) of its input expressions.

Step 3: Suppress all exponents in given expression to obtain the correct probability for that signal.

The following example shows the use of suppression theorem to calculate signal probability.

Example 1 Given $y = x_1x_2 + x_1x_3$, where $x_i, i = 1,2,3$, are mutually independent. Then $P(y)$ can be determined as follows:

By suppression theorem, $P(y) = S[P(x_1x_2) + P(x_1x_3) - P(x_1x_2)P(x_1x_3)]$. But we know that $P(x_1x_2) = P(x_1)P(x_2)$ and $P(x_1x_3) = P(x_1)P(x_3)$. Hence,

$$P(y) = P(x_1)P(x_2) + P(x_1)P(x_3) - P(x_1)P(x_2)P(x_3).$$

4 Activities Considering Simultaneous Switching

When more than one primary input, say x_i and x_j, are switching simultaneously, the Boolean differences $\frac{\partial y}{\partial x_i}$ and $\frac{\partial y}{\partial x_j}$ are undefined at those time instants. Hence, the proof in [2] that leads to equation 1 is no longer valid for this situation. As we have discussed earlier, switchings
of different inputs to a node or a module can happen around the same time. Let us assume, without any loss of generality, all primary inputs to the module switch only at the leading edge of the clock. Let a node y of a module be observed at a point in the clock cycle which is separated from the leading edge of the clock by a long enough interval to allow the logic level at this node to reach its stable value. If one selects a clock cycle at random, the probability of having a switching at the leading edge of this clock cycle at node y is $A(y)/f$. Here $A(y)$ is the activity at this node and f is the clock frequency [10]. We define the normalized activity $a(y)$ as $A(y)/f$. The following definition will be useful in understanding our approach to estimating activity.

Definition 3 (Generalized Boolean Difference) Let y be a Boolean expression and $x_i, i = 1 \ldots n$ be mutually independent primary inputs of y. We define,

$$
\frac{\partial^k y}{\partial x_i \partial x_{i_2} \cdots \partial x_{i_k}} |_{b_{i_1} b_{i_2} \cdots b_{i_k}} = y |_{x_{i_1} = b_{i_1}, x_{i_2} = b_{i_2}, \ldots, x_{i_k} = b_{i_k}} \oplus y |_{x_{i_1} = \bar{b}_{i_1}, x_{i_2} = \bar{b}_{i_2}, \ldots, x_{i_k} = \bar{b}_{i_k}},
$$

where k is a positive integer, b_{i_j} is logic value ONE or ZERO and $x_{i_j}, j = 1 \ldots k$ are distinct mutually independent primary inputs of y.

Let us examine the above definition closely. Because the operator \oplus is commutative,

$$
\frac{\partial^k y}{\partial x_i \partial x_{i_2} \cdots \partial x_{i_k}} = \frac{\partial^k y}{\partial x_{i_1} \partial x_{i_2} \cdots \partial x_{i_k}}
$$

(5)

It follows from the definition that if the generalized Boolean difference is logic ONE, then the simultaneous transitions at $(x_{i_1}, x_{i_2}, \ldots, x_{i_k})$ from $(b_{i_1}, b_{i_2}, \ldots, b_{i_k})$ to $(\bar{b}_{i_1}, \bar{b}_{i_2}, \ldots, \bar{b}_{i_k})$ or from $(\bar{b}_{i_1}, \bar{b}_{i_2}, \ldots, \bar{b}_{i_k})$ to $(b_{i_1}, b_{i_2}, \ldots, b_{i_k})$ will cause a transition at y.

Under the assumption that the primary inputs are mutually independent and the logic signals can be modeled as strict-sense stationary (SSS) mean-ergodic 0-1 stochastic processes with logic modules having zero delays, the following theorem holds.

Theorem 2 (3-inputs) If y is a Boolean expression and $x_i, i = 1 \ldots 3$ are mutually independent primary inputs of y, then

$$
a(y) = \sum_{i=1}^{3} P(\frac{\partial y}{\partial x_i})(a(x_i) \prod_{1 \leq j \leq 3, j \neq i} (1 - a(x_j))) + 1/2 \sum_{1 \leq i < j \leq 3} (P(\frac{\partial^2 y}{\partial x_i \partial x_j} |_{00}) + P(\frac{\partial^2 y}{\partial x_i \partial x_j} |_{11}))(a(x_i)a(x_j) \prod_{l \in \{1, 2, 3\} \setminus \{i, j\}} (1 - a(x_l))))
$$
Proof: Because we assume that the module under consideration has zero-delay and the primary inputs switch only at the leading edge of the clock cycle, switching time can only be discrete time points which coincide with some leading edges of the clock signal.

At time t, which is some leading edge of the clock signal, let B_0 be the event that none of the inputs are switching. Let B_i, $i = 1, 2, 3$, be the events that only x_i is switching, $B_{i,j}$, $(i,j) = (1,2), (2,3), (1,3)$, be the events that only x_i and x_j are switching, and finally, $B_{1,2,3}$ be the event that all three inputs are switching at the same time t. According to the above definitions, the union of all these events is the sample space. All the events are also mutually exclusive (or disjoint). Therefore, they form a partition of the sample space. Because x_1, x_2, x_3 are mutually independent

$$P(B_0) = (1 - a(x_1))(1 - a(x_2))(1 - a(x_3)).$$

Similarly,

$$P(B_i) = a(x_i) \prod_{1 \leq j \leq 3, j \neq i} (1 - a(x_j)), i = 1, 2, 3,$$

$$P(B_{i,j}) = a(x_i)a(x_j)(1 - a(x_l)), 1 \leq i \leq 3, i \neq j,$$

and

$$P(B_{1,2,3}) = a(x_1)a(x_2)a(x_3).$$

Let A be the event that y is switching at time t. Using total probability theorem of [15], we derive

$$P(A) = P(A \mid B_0)P(B_0) + \sum_{i=1}^{3} P(A \mid B_i)P(B_i) + \sum_{1 \leq i < j \leq 3} P(A \mid B_{i,j})P(B_{i,j}) + P(A \mid B_{1,2,3})P(B_{1,2,3}).$$

However, we know that if no primary inputs are switching at time t, y cannot be switching. If only x_i is switching at time t, the probability $P(A \mid B_i)$ that y is switching is $P(\frac{\partial y}{\partial x_i})$. Since
a rising transition at any node has to be followed by a falling transition and vice-versa, we have,

\[P(x_i = \uparrow x_j = \uparrow) = P(x_i = \downarrow x_j = \downarrow) = P(x_i = \downarrow x_j = \uparrow) = P(x_i = \uparrow x_j = \downarrow) = 1/4 P(B_{i,j}), \]

where \(\uparrow \) denotes a rising transition and \(\downarrow \) a falling one. If three inputs are switching at the same time, they have similar property. Therefore, all the conditional probabilities are as follows:

\[
P(A \mid B_0) = 0
\]

\[
P(A \mid B_i) = \mathcal{P}(\frac{\partial y}{\partial x_i})
\]

\[
P(A \mid B_{i,j}) = 1/2 \left(\mathcal{P}(\frac{\partial^2 y}{\partial x_i \partial x_j}) + \mathcal{P}(\frac{\partial^2 y}{\partial x_i \partial x_j}) \right)
\]

\[
P(A \mid B_{1,2,3}) = 1/2 \left(\mathcal{P}(\frac{\partial^3 y}{\partial x_1 \partial x_2 \partial x_3}) + \mathcal{P}(\frac{\partial^3 y}{\partial x_1 \partial x_2 \partial x_3}) \right) + \mathcal{P}(\frac{\partial^3 y}{\partial x_1 \partial x_2 \partial x_3}) + \mathcal{P}(\frac{\partial^3 y}{\partial x_1 \partial x_2 \partial x_3})
\]

After substituting the above expressions into equation 7 and using equation 5 we obtain equation 6 of Theorem 2. \(\Box \)

The generalization of Theorem 2 for n-inputs is given below. The proof is very similar to the proof of Theorem 2 and is omitted for brevity.

Theorem 3 (n-inputs) If \(y \) is a Boolean expression and \(x_i, i = 1 \ldots n \) are mutually independent primary inputs \(\alpha \) \(y \). Then

\[
a(y) = \sum_{i=1}^{n} \mathcal{P}(\frac{\partial y}{\partial x_i})(a(x_i) \prod_{1 \leq j \leq n, j \neq i} (1 - a(x_j)))
\]

\[
+1/2(\sum_{1 \leq i < j \leq n} (\mathcal{P}(\frac{\partial^2 y}{\partial x_i \partial x_j}) + \mathcal{P}(\frac{\partial^2 y}{\partial x_i \partial x_j}))(a(x_i) a(x_j) \prod_{l \in \{1,2,\ldots,n\} - \{i,j\}} (1 - a(x_l))))
\]

\[
+1/2(\mathcal{P}(\frac{\partial^3 y}{\partial x_1 \partial x_2 \partial x_3}) + \mathcal{P}(\frac{\partial^3 y}{\partial x_1 \partial x_2 \partial x_3})) \cdots
\]

\[
+P(\frac{\partial^3 y}{\partial x_1 \partial x_2 \partial x_3}) \prod_{i=1}^{n} a(x_i)).
\]
4.1 Approximate Methods Based on Theorem 3

Theorem 3 gives an exact method of determining signal activity. The computation of all the generalized Boolean difference probabilities grows exponentially with the number of independent inputs. If one assumes that the probability of having more than two inputs to a logic gate switching at the same time is very small, the higher order terms can be ignored. For such a condition the following results can be obtained.

\[a(y) = \sum_{i=1}^{n} P(\frac{\partial y}{\partial x_i}) (a(x_i)) \prod_{1 \leq i < j \leq n} (1 - a(x_j)) + \frac{1}{2} \sum_{1 \leq i < j \leq n} (P(\frac{\partial^2 y}{\partial x_i \partial x_j}) + P(\frac{\partial^2 y}{\partial x_i \partial \overline{x}_j}))(a(x_i)a(x_j) \prod_{l \in \{1, 2, \ldots, n\} - \{i, j\}} (1 - a(x_l)))) \]

5 Derivation of Activities from Signal Probabilities

In order to calculate the activity \(A(y_j) \) using equation (1) we need to evaluate \(P(\frac{\partial y}{\partial x_i}) \). However, one can calculate this directly from \(P(y_j) \) if it is expressed as a sum of probability products \(\sum_{i=1}^{n} (\alpha_i \prod_j P(s_j)) \), where \(P(s_j) \) is the probability of the primary input signal \(x_i \) or \(\overline{x}_j \). The following theorem enables us to calculate \(P(\frac{\partial y}{\partial x_i}) \) which in turn can be used to determine activity.

Theorem 4 Let \(y \) be a Boolean expression and \(P(y) \), \(P(y(x_i)) \), and \(P(y(\overline{x}_i)) \) be expressed in terms of sum of probability products, where \(P(y(x_i)) \) and \(P(y(\overline{x}_i)) \) are the probabilities of the cofactors of \(y \) with respect to \(x_i \). Then

\[P(\frac{\partial y}{\partial x_i}) = S[P(y(x_i)) + P(y(\overline{x}_i)) - 2P(y(x_i))P(y(\overline{x}_i))]. \]

Proof: By Shannon’s expansion:

\[y = x_iy(x_i) + \overline{x}_iy(\overline{x}_i). \]

Since \(x_i\overline{x}_i = 0 \),

\[P(y) = P(x_i)P(y(x_i)) + P(\overline{x}_i)P(y(\overline{x}_i)). \] (8)
On the other hand \((y(x_i)y(x_i))(y(x_i)y(x_i)) = 0\). Hence, we have

\[
P(\frac{\partial y}{\partial x_i}) = P(y(x_i) \oplus y(x_i))
\]

\[
= P(y(x_i)y(x_i) + y(x_i)y(x_i))
\]

\[
= P(y(x_i)y(x_i) + P(x_i)y(x_i))
\]

However, by the suppression theorem we have,

\[
P(y(x_i)y(x_i)) = S[P(y(x_i))P(y(x_i))]
\]

\[
= S[P(y(x_i))(1 - P(y(x_i)))]
\]

\[
= S[P(y(x_i)) - P(y(x_i))P(y(x_i))]
\]

and similarly

\[
P(y(x_i)y(x_i)) = S[P(y(x_i)) - P(y(x_i))P(y(x_i))].
\]

Since \(S\) is linear, we can write,

\[
P(\frac{\partial y}{\partial x_i}) = S[P(y(x_i)) - P(y(x_i))P(y(x_i))] + S[P(y(x_i)) - P(y(x_i))P(y(x_i))]
\]

\[
= S[P(y(x_i)) + P(y(x_i)) - 2P(y(x_i))P(y(x_i))].
\]

Hence, one can calculate \(P(\frac{\partial f}{\partial x_i})\) by first solving for the probabilities of the cofactors of \(y\) with respect to \(x_i\). Then the above theorem can be applied to calculate \(P(\frac{\partial y}{\partial x_i})\).

Example 2 Let \(f = \overline{abc} + \overline{ab}\). Assume \(a, b, c\) are independent inputs. The activity \(A(f)\) can be calculated as follows using equation 1.

In order to calculate the activity at \(f\), we first calculate \(P(\overline{\frac{\partial f}{\partial A}}), P(\overline{\frac{\partial f}{\partial B}}), \) and \(P(\overline{\frac{\partial f}{\partial C}})\) using Theorem 4. Using the suppression theorem and Shannon's expansion we can write,

\[
P(f) = S[\overline{P_a P_b} + P_a \overline{P_b} P_c]
\]

\[
= S[P_a(P_b + \overline{P_b})] = S[P_a(P_a + \overline{P_a})] = S[P_a(P_a \overline{P_b} + \overline{P_a} P_b) + \overline{P_c} P_a P_b]
\]

where \(\overline{P_x} = 1 - P_x, x = a, b, c\). Therefore,

\[
P(\frac{\partial f}{\partial a}) = S[(\overline{P_b} P_c) + (P_b) - 2(\overline{P_b} P_c)(P_b)] = (P_b + \overline{P_b} P_c)
\]

12
\[
P(\frac{\partial f}{\partial b}) = S[(P_a + (P_a P_c) - 2(P_a P_c)] = (P_a + P_a P_c)
\]

\[
P(\frac{\partial f}{\partial b}) = S[(P_a P_b + P_a P_b) + (P_a P_b) - 2(P_a P_b + P_b P_b)(P_a P_b)] = P_a P_b
\]

As a result,

\[
A(f) = (P_b + P_b P_c)A(a) + (P_a + P_a P_c)A(b) + (P_a P_b)A(c).
\]

Note here that in order to calculate \(P(\frac{\partial f}{\partial b})\), we decompose \(P_a P_b\) into \(P_a P_b P_c\) and \(P_a P_b P_c\) by using the fact that \(P_a + P_a P_c = 1\).

The following theorem can be used to calculate \(\frac{\partial^2 y}{\partial x_i \partial x_j}\) and \(\frac{\partial^2 y}{\partial x_i \partial \bar{x}_j}\) to determine activities under simultaneous switching of signals at gate inputs. The proof is similar to Theorem 4 and is omitted for brevity.

Theorem 5 Let \(y\) be a Boolean expression. \(P(y)\), \(P(y(x_i, x_j))\), \(P(y(\bar{x}_i, \bar{x}_j))\), \(P(y(\bar{x}_i, x_j))\) and \(P(y(x_i, \bar{x}_j))\), are expressed in terms of sum of probability products, where

\[
y(x_i, x_j) = y \mid x_i = 1, x_j = 1, \ y(x_i, \bar{x}_j) = y \mid x_i = 0, x_j = 1, \ldots \text{etc.}
\]

Then

\[
P(\frac{\partial^2 y}{\partial x_i \partial x_j}) = S[P(y(x_i, x_j)) + P(y(\bar{x}_i, x_j)) - 2P(y(x_i, x_j))P(y(\bar{x}_i, x_j))].
\]

\[
P(\frac{\partial^2 y}{\partial x_i \partial \bar{x}_j}) = S[P(y(x_i, \bar{x}_j)) + P(y(\bar{x}_i, x_j)) - 2P(y(x_i, \bar{x}_j))P(y(\bar{x}_i, x_j))].
\]

6 The Algorithms

After having gone through all the theoretical foundations, now we are ready to present the algorithms to estimate signal activity. The first algorithm is based on Theorem 4, the derivation of which does not consider simultaneous switching. The second algorithm that is based on Theorem 5. Both algorithms use the method described in Section 3 to calculate symbolic probabilities.
6.1 Algorithm 1

Since this algorithm is based on Theorem 4, which uses equation 1 for activity calculation, its accuracy is the same as Najm's method [2].

Algorithm 1: Compute Signal Probabilities And Activities
Input: Circuit, signal probabilities and activities of all the inputs
Output: Signal probabilities and activities for all nodes of the circuit
Step 1: Use the algorithm in section 2 to calculate the symbolic probabilities of a node.
Step 2: Apply Theorem 4 to calculate activity at this node
Step 3: evaluate the value of this symbolic probability and get rid of this symbolic probability.
Step 4: Continue Step 1 to 3 until all the nodes are calculated.

6.2 Algorithm 2

This algorithm is similar to Algorithm 1 except step 2. In step 2 we apply Theorem 5 instead of Theorem 4.

Algorithm 2: Compute Signal Probabilities And Activities
Input: Circuit, signal probabilities and activities of all the inputs
Output: Signal probabilities and activities for all nodes of the circuit
Step 1: Use the algorithm in section 2 to calculate the symbolic probabilities of a node.
Step 2: Apply Theorem 5 to calculate activity at this node
Step 3: evaluate the value of this symbolic probability and get rid of this symbolic probability.
Step 4: Continue Step 1 to 3 until all the nodes are calculated.

7 Implementation and Results

The algorithms to estimate activities at the internal nodes of a CMOS logic circuit have been implemented in C under the Berkeley SIS environment. We assume that the primary input signal probabilities and activities are available to us through system level simulation of the environment that the circuit will be working in. The data structure used to represent symbolic probabilities in PAS (Probability and Activity Simulator) is memory efficient and allows us to
perform the necessary operations fast. In this representation we have taken advantage of the
fact that exponents have been suppressed and therefore a signal probability expression may
contain a variable (assigned to one of the inputs) raised to power 1 or may not contain it. So
each product term may be regarded as a set with variables as its elements. The multiplication
of two product terms can be achieved by taking the union of the corresponding sets. The
primary inputs of the circuit under consideration are arbitrarily ordered and assigned indices.
Let x_j, $0 \leq j < M$, be the primary input signals. Let p_j be the signal probability variable
assigned to input x_j, i.e. $P(x_j = 1) = p_j$. A product term Q_j is represented as a pair $(\alpha_j; \beta_j)$, where both α_j and β_j are integers. α_j is called the coefficient of the term and may be
negative or positive. β_j is regarded as a bit string. Bit j of β_j, written β_{jj}, is 1 if and only
if the corresponding product term contains the variable p_j and is 0 otherwise. When two
product terms Q_i and Q_j are multiplied, the resulting product term Q_k is given by (α_k, β_k),
where $\alpha_k = \alpha_i \cdot \alpha_j$ and $\beta_{kl} = \beta_{il} \land \beta_{jl}$. It is easy to see that we can define a full order
relation on the set of all possible product terms. $Q_i < Q_j$ if $\beta_i < \beta_j$, where Let \b_1 and \b_2
are interpreted as integers. Each probability expression is represented as an ordered list of its
product terms, i.e., $P(G) = (Q_1, Q_2, ..., Q_{n_G})$. It is obvious that the sum of two expressions
$P(G)$ and $P(H)$ can be determined in $O(n_G + n_H)$ time and the product in $O(n_G \cdot n_H)$ time.

We present a number of test cases that show the accuracy and efficiency of these two
algorithms. In order to assess the accuracy of the results, we use a logic simulator with
zero-delay model. We generated 10,000 random primary inputs (conforming to the given
probabilities and activities) for logic simulation to determine the activities at the internal
nodes of a circuit. The primary input signal probabilities and activities of the circuit were
used in PAS to generate probabilities and activities at internal nodes using Algorithm 1
and Algorithm 2. Table 1 shows the detailed results of applying the algorithms to an MCNC
benchmark example (parity). All inputs were assigned a signal probability of 0.5. All primary
inputs were assigned the same activity (though the inputs were all different) as shown in the
table. Φ represents the normalized power dissipation measure introduced in Section 2 and is
used to compare Algorithm 1 and 2 with logic simulation technique (Sim). The percentage
error represents the deviation from the simulation results. The CPU times are also shown in
table for a SPARC 4 workstation. It can be observed that the power dissipation measure
Table 1: Detailed result for MCNC benchmark example parity

<table>
<thead>
<tr>
<th>Activity</th>
<th>Sim</th>
<th>Algorithm 1</th>
<th>Algorithm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Φ</td>
<td>CPU (sec)</td>
<td>Φ</td>
</tr>
<tr>
<td>0.05</td>
<td>3.15</td>
<td>232</td>
<td>3.89</td>
</tr>
<tr>
<td>0.1</td>
<td>5.35</td>
<td>270</td>
<td>7.63</td>
</tr>
<tr>
<td>0.2</td>
<td>8.42</td>
<td>407</td>
<td>14.49</td>
</tr>
<tr>
<td>0.3</td>
<td>10.59</td>
<td>422</td>
<td>20.69</td>
</tr>
</tbody>
</table>

Φ can be off by more than 95% for Algorithm 1 which calculates the activities based on [2], while the results for Algorithm 2 are remarkably close to the simulation results. This accuracy can be attributed to the fact that Algorithm 2 considers simultaneous switching of signals at the input to logic gates.

In general, the problem of calculating exact signal probability is NP-hard. Without partitioning the circuit into smaller modules, the ordered list representing the sum of probability products can become extremely large. Even for a small circuit like MCNC benchmark example parity, which consists of 15 XOR's and has 16 inputs (a total of 31 nodes), the primary output has 2^{15} ($\approx 32,000$) probability product terms. This implies that the exact method of calculation may not be feasible for certain types of circuits in terms of memory space and computational time. We will continue to work on partitioning to improve speed while maintaining accuracy. In the test cases shown in Table 1 and Table 2, we used the "lowest level partitioning" [2] in which every logic gate was represented as a separate Boolean module. Results show that with such a partitioning scheme Algorithm 2 produced accuracy within 5% of simulation results within reasonable CPU time.

Figure 4 shows the accuracy of activity calculation for the parity example. The x-axis represents the different nodes of the circuit, while the y-axis represents the normalized activities associated with each node. Node 0 through 15 are the primary inputs. Nodes 16 through 30 are either intermediate nodes or primary outputs. It can be easily observed that the Algorithm 2 closely follows simulation results, while the errors introduced by Algorithm 1 can be large.

Table 2 shows the result on a large number of ISCAS and MCNC benchmarks. Results
Table 2: Results on ISCAS and MCNC benchmarks

<table>
<thead>
<tr>
<th>Example</th>
<th>Activity</th>
<th>Sim</th>
<th>Algorithm 1</th>
<th>Algorithm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CPU (sec)</td>
<td>% Error</td>
</tr>
<tr>
<td>C432</td>
<td>0.1</td>
<td>37.24</td>
<td>53.82</td>
<td>39.56</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>82.19</td>
<td>146.25</td>
<td>90.63</td>
</tr>
<tr>
<td>C499</td>
<td>0.1</td>
<td>102.39</td>
<td>250.49</td>
<td>106.86</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>144.33</td>
<td>679.74</td>
<td>148.66</td>
</tr>
<tr>
<td>C880</td>
<td>0.1</td>
<td>79.92</td>
<td>86.81</td>
<td>73.68</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>136.84</td>
<td>165.7</td>
<td>126.6</td>
</tr>
<tr>
<td>apex6</td>
<td>0.1</td>
<td>91.43</td>
<td>97.71</td>
<td>93.37</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>229.31</td>
<td>262.72</td>
<td>237.28</td>
</tr>
<tr>
<td>apex7</td>
<td>0.1</td>
<td>26.29</td>
<td>28.91</td>
<td>27.87</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>69.32</td>
<td>78.96</td>
<td>73.44</td>
</tr>
<tr>
<td>b9</td>
<td>0.1</td>
<td>24.06</td>
<td>25.13</td>
<td>24.21</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>62.13</td>
<td>68.33</td>
<td>62.82</td>
</tr>
<tr>
<td>i3</td>
<td>0.1</td>
<td>18.57</td>
<td>18.91</td>
<td>18.59</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>48.92</td>
<td>51.33</td>
<td>49.11</td>
</tr>
<tr>
<td>i4</td>
<td>0.1</td>
<td>31.04</td>
<td>32.25</td>
<td>31.1</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>81.07</td>
<td>87.73</td>
<td>81.65</td>
</tr>
<tr>
<td>i5</td>
<td>0.1</td>
<td>59.77</td>
<td>63.12</td>
<td>59.7</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>153.7</td>
<td>171.62</td>
<td>152.15</td>
</tr>
<tr>
<td>i6</td>
<td>0.1</td>
<td>98.85</td>
<td>100.18</td>
<td>97.11</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>261.67</td>
<td>277.73</td>
<td>259.63</td>
</tr>
<tr>
<td>i7</td>
<td>0.1</td>
<td>123.36</td>
<td>126.20</td>
<td>122.05</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>326.49</td>
<td>349.37</td>
<td>326.33</td>
</tr>
<tr>
<td>x2</td>
<td>0.1</td>
<td>6.31</td>
<td>6.60</td>
<td>6.38</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>16.18</td>
<td>17.81</td>
<td>16.70</td>
</tr>
<tr>
<td>x3</td>
<td>0.1</td>
<td>123.66</td>
<td>128.03</td>
<td>124.43</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>317.07</td>
<td>344.91</td>
<td>326.09</td>
</tr>
<tr>
<td>x4</td>
<td>0.1</td>
<td>64.81</td>
<td>67.23</td>
<td>65.57</td>
</tr>
<tr>
<td></td>
<td>0.3</td>
<td>169.57</td>
<td>183.84</td>
<td>176.30</td>
</tr>
</tbody>
</table>
Figure 4: Node Activities for example parity (input activities = 0.3)

show that the activity or power dissipation measure Φ determined by Algorithm 2 is within 5% of logic simulation results.

8 Conclusions

In this paper we have shown that the activities at the internal nodes of a CMOS circuit can be estimated accurately by considering signal correlations and "near simultaneous" switching of inputs to logic gates. Results show that the activity measures are remarkably close to the simulation results. We have also shown that if such switchings are not considered, activities at the internal nodes can be off by more than 100%. The formal proof of our estimation technique has also been presented in the paper.

By partitioning the circuit properly, it is possible to achieve large speed-up in the estimation algorithm. Hence, this technique can be efficiently used in a synthesis environment to estimate power dissipation.

References

