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THE MAXIMUM LIKELIHOOD ESTIMATION OF 
SIGNATURE TRANSFORMATION (MLEST) ALGORITHM 

S. G. THADANI 
Lockheed Electronics Company, Inc. 

I. INTRODUCTION 

The original concept of the Large Area Crop 
Inventory Experiment (LACIE) called for the exten­
sive use of signature extension (i.e., the ability 
to use statistics "learned" from a given LACIE 
training segment to classify data from one or more 
LACIE recognition segments located in the same 
general crop growing region). The signature exten­
sion effort was generally unsuccessful because of 
the existence of significant differences between 
the training and recognition segment wheat/nonwheat 
signatures. These differences are caused primarily 
by atmospheric factors such as differences in Sun 
elevation and haze levels over the training and 
recognition segments and by target-related factors 
such as differences in soil moisture levels and 
soil colors between the training and recognition 
segments. 

It is well known1 that the atmospheric effects 
mentioned above can be modeled by a positive defi­
nite diagonal affine transformation operating on 
the training segment signatures. However, no suit­
able model exists for the target-related factors. 
This has led to the partitioning-signature­
correction approach to signature extension (i.e., 
the grouping of training and recognition segment 
pairs in order to minimize the effect of target­
related factors, followed by the estimation of 
affine transformations for the partitioned pairs). 

Various techniques have been proposed recently 
to estimate the optimal affine transformation with 
which to transform the training segment statistics 
before classifying the recognition segment. 1 ,2,3 
These techniques fall into two broad categories: 
The first consists of techniques that use physical 
models for haze level and Sun angle effects to 
estimate the affine transformation, the second con­
sists of techniques that attempt to match clusters 
from the training segment with corresponding recog­
nition segment clusters. The matched pairs of 

The material for this paper was developed 
under NASA Contract NAS 9-15200 and prepared for 
the Earth Observations Division, National-Aero­
nautics and Space Administration, Lyndon B. 
. Johnson Space Center, Houston, Texas~ 

clusters are then used to obtain an optimal affine 
transformation. 

The ~um Likelihood Estimation of Signature 
Transformation (MLEST) algorithm is a method of 
obtaining maximum likelihood estimates (MLE) of ~he 
affine transformation. The technique allows the 
computation of MLE estimates for the recognition 
segment wheat/nonwheat a priopi probabilities, fur­
ther, the technique can easily be extended to allow 
the estimation of completely general nondiagona1 
affine transformat'ions which possibly could model 
both atmospheric and target-related effects. 

II. MATHEMATICAL DESCRIPTION 

A. NOTATION 

The following notation is used in the mathe­
matical description of the MLEST algorithm. 

{x} - set of samples from the training segment. 

{y} = set of samples from the recognition segment. 

M = number of subclasses in the training segment. 

p = dimensionality of samples. 

~i = mean vector for training segment subclass i. 

B. 

- covariance matrices for training segment sub­
class 1. 

a ppiori probabilities of training segment 
subclass 1. 

a ppiopi probabilities of recognition segment 
subclass 1. 

ASSUMl;'TIONS 

The MLEST algorithm is based on the following 
major assumptions: 

1. The training and recognition segment samples 
are drawn from probability density functions that 
are mixtures of normally distributed subclasses • 
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2. The number of subclasses in the training seg­
ment is equal to the number of subclasses in the 
recognition segment. The training segment sub­
classes that do not exist in the recognition seg­
ment may be. represented in the model by zero 
a priori probabilities. 

3. The training segment subclass statistics (i.e., 
means and covariances) are related to the recogni­
tion segment subclass statistics by a positive 
definite affine transformation. -

C. MATHEMATICAL DEVELOPMENT 

Let PT(x/i), i s 1,2,···,M, represent the 
class conditional probability density functions 
for the training segment subclasses. Since the 
training segment subclasses are assumed to be 
normally distributed, 

PT(x/i) .. (1) 

The overall mixture density function for the train­
ing segment is given by 

M 

PT(x) '"' ~qiPT(x/i) 
i=l 

(2) 

By assumption 3, the training segment subclass 
statistics are related to the recognition segment 
subclass statistics by a positive definite affine 
transformation. This transformation may be repre­
sented by the (pXp) real positive definite matrix A 
and the (pXl) real vector B;- It follows that the 
recognition segment subclass statistics (means and 
covariance matrices) are given by 

(3) 

and i = 1,2,···,M (4) 

From equations (1), (2), and (3), it follows 
that the mixture density function for samples 
from the recognition segment is given by 

where 

M 

PRey) '"' ~qiPR(y/i) 
i=l 

T -1 
1 -1/2 (y-Ili) (Ei) (y-Ili) 

e 

and i R 1,2, ••• ,M. 

(5) 

(6) 

Next, suppose that one picks N statistically 
independent samples Yl'Y2'···'YN. from the recog­
nition segment. Then the likelihood function is 

given by 

N 

R.(Yl'Y2'···'YN) = IIpRI(Yk) 

k-l 

(7) 

The algebra is simplified considerably if one 
uses the logarithm of the likelihood function 

L 
N 

~loge PR(Yk) 
k'"'l 

(8) 

It may be shown that the partial derivatives 
of L with respect to the matrix A, the vector B, 
and the a priori probabilities qi are given respec­
tively by 

N M 
~ ~PR(i/Yk) (Ei)-l(Yk-lli) 

k=l i=l 

where i 1,2,···,M, I is the (pxp) identity 
p matrix, and 

(9) 

(10) 

(11) 

(12) 

The general MLEST algorithm obtains estimates 
of the (pXp) matrix A, the (pxl) vector B, and the 
a priori probabilities qi' i = 1,2,···,M, that 
maximize the logarithmic likelihood function L. 
Estimates obtained in this manner are called MLE 
estimates. 

In practice, the optimization indicated above 
is carried out by using the Davidon-Fletcher­
Powell (DFP) constrained optimization program. 4 
The DFP program uses equation (8) for the likeli­
hood function and equations (9) through (11) for 
its partial derivatives to modify A, B, and qi' 
i = 1,2,···,M, in such a manner that L is maxi­
mized. A useful feature of the DFP program is 
that it permits the optimization to be carried out 
subject to various user-input constraints. In 
general, these constraints are continuous differ­
entiable functions of the parameters A, B, and qi' 
i - 1,2,···,M. As an example of the use of con­
straints, the transformed means IIi, i = 1,2,···,M, 
may be restricted to be in a slab of thickness 't' 
that encloses the Kauth plane. other constraints 
on the affine transformation may be dictated by 
atmospheric models. 3 
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D. DISCUSSION 

Experience indicates that stable convergent 
iterations may not be obtained if all three sets 
of the parameters, i.e., A, B, and {q.}, are 
iterated on simultaneously. The most1 stable 
iteration sequence appears to be as follows: 

1. Iterate on the B-vector with A and {q.} held 
1 constant. 

2. Iterate on A and 

3. Iterate on A, B, 

B with {q.} held constant. 
1 

and {q.} simultaneously. 
1 

In some cases it may be desirable to replace 
step 3 with an iteration on {q. } only with A and 
B held constant. 1 

There are two approaches by which the {qi} 
iteration may be accomplished. In the first 
approach, the DFP algorithm could be used to maxi­
mize L using equations (8) and (11), subject to the 
constraints given in equations (13) and (14) below. 

i=-1,2,···,M (13) 

(14) 

In the second approach, the MLE estimates for 
the a priori probabilities may be obtained by a 
successive substitution procedure. The successive 
substitution equations are given below. 

i 1,2,···,M (lS) 

In the above, qi~+l) denotes the value of qi 
at the (~+l)th iteration. Equation (lS) may be 
derived using the Lagrange multiplier technique to 
maximize L with respect to qi' subject to the con­
straints given by equations (13) and (14). Equa­
tion (lS) is derived in appendix A. 

The relative merits of the two approaches out­
lined above are not presently known. However, the 
successive substitution scheme Ceq. (lS)1 has good 
convergence properties and does appear to be sim­
pler to apply than the first approach. 

III. THE MLEST PROGRAM 

The MLEST program is written in Fortran V and 
is available on the Univac Exec 8 system at the 
Lyndon B. Johnson' Space Center. The program may be 
executed either in batch mode or in demand mode. 
The program occupies approximately 16K words of 
core storage and is equipped to handle a maximum of 
20 subclasses and 20 constraints for 4-channel 
data. The present version of the MLEST progr;!llI 

does not include provisions for iterating on the 
a priori probabilities. 

The flow chart for MLEST is illustrated in 
figure 1. The MLEST program consists of three 
major sections: the DRIVER program, the DAVlDON 
program, and the LOGLIK program. 

r - - - - - - - - - - - - - - -, 

I .... ad training seq-.nt statistics I 
I 
I 
I 
I 
I 
I 

Read recogni ticn •• pent 
a prio~i probabiliti.a 

I Read recoqnitlon 8eq-lnent data I l ________________ J 

Read DAVlDON input parameter a 

• Initial A,B 

• Constraints. (A,B) .s 0 r-----' 
I 
I 

A,S Likelihood I 

L---~----~--------~L, ~, li !=;~!::ion. I 
I 

I I 
L _____ J 

Figure 1. Flow Chart for the MLEST Program. 

The DRIVER program reads the training segment 
statistics and the recognition segment initial 
a priori probabilities. In addition, the DRIVER 
reads the recognition segment data into core. The 
DAVlDON program performa the maximization of the 
logarithmic likelihood function with respect to A 
and B. A detailed flow chart of the DAVlDON pro­
gram may be found in reference 2. The LOGLIK pro­
gram computes the likelihood function and its 
derivatives as given in equations (8), (9), and 
(10). 

IV. EVALUATION OF THE MLEST ALGORITHM 

The MLEST algorithm was evaluated on three 
separate data sets. These were the simulated data 
set, the consecutive-day data set, and the geo­
graphical extension data set. The simulated data 
set consisted of four simulated training and recog­
nition segment pairs, with the statistics for each 
pair related by a known affine transformation. 
The consecutive-day data set consisted of LACIE 
data gathered from seven Landsat consecutive-day 
acquisitions over three intensive test sites in 
Kansas. The consecutive-day data set served to 
eliminate the effects of target-related factors 
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on differences between the training and recogni­
tion segment signatures. The geographi~al exten­
sion data set consisted of 27 LACIE training and 
recognition segment pairs from 1974-75 Kansas 
data, with approximately seven segment pairs per 
biowindow. 

The evaluation procedure for all three data 
sets consisted of two major steps. In step 1, 
MLEST signature extension runs were made for each 
segment pair to determine MLE estimates for each 
A-matrix and B-vector. In all of these runs, the 
individual subclass a priori probabilities were 
assumed equal and held constant. The Davidon 
iteration was initialized with A being the identity 
matrix and B being the null vector. Also, A was 
restricted to be diagonal in all runs. In step 2, 
the affine transformed training segment signatures 
were used to classify each recognition segment 
(using the LACIE maximum likelihood classifier). 
Classification accuracies were computed for wheat/ 
nonwheat over recognition segment training fields. 
OVerall classification accuracies were computed 
for each recognition segment using the formula 

P overall = 0.5(Pew)+0.5(PCNW) 

where 

Pew = wheat classification accuracy. 

PCNW = nonwheat classification accuracy. 

(16) 

The classification results were used to esti­
mate wheat proportions at threshold values of T = 0 
and 1 percent, respectively. The classification 
runs described above were repeated using untrans­
formed training segment training field statistics 
and recognition segment training field statistics. 
Henceforth, the affine transformed classification 
results will be referred to as MLEST results, the 
untransformed training segment classification 
results. will be referred to as UT results, and the 
recognition segment classification results will be 
referred to as LOCAL results. 

The simulated data set and consecutive-day 
data set test results have been reported else­
where5,6 and will not be detailed here. In 
essence, the MLEST alqor:Lthm successfully estimated 
the predetermined affine transformations for each 
of the four training and recognition segment pairs 
in the simulated data set. Also, the MLEST algo­
rithm significantly imProved upon UT classification 
accuracies and UT wheat proportion estimates on the 
consecutive-day data set. 

v. GEOGRAPHICAL EXTENSION RESULTS 

The MLEST program converged normally for 23 
out of the 27 signature extension runs attempted. 
However, successful optimization iteration 
sequences could not be established for four segment 
pairs. Analysis of the data for these four segment 
pairs revealed that the recognition segment data 
were located relatively far from the modes of the 

corresponding initial estimates (A. 14, B • 04) 
for the training segment mixture density functions 
in spectral space. This resulted in floating-point 
underflow prOblems in the likelihood function com­
putations, which in turn caused the Davidon opti­
mization iterations to abort. The MLEST program 
was rerun for these four segment pairs using the 
following initial values for the affine 
transformation 

where 

liT. mean value in channel i for the training 
l. segment. 

(17) 

(18) 

lIR s mean value in channel i for the recognition 
i segment. 

In other words, a mean level adjustment (MLA) was 
used for the initial B-vector. The reruns were 
successful, resulting in normal convergence for all 
four segment pairs. 

Table 1 ennumerates the classification accu­
racy results obtained with the geographical exten­
sion data set. 

Table 2 lists, by biowindow, the average 
improvement in MLEST classification accuracy over 
UT accuracy and the average slack between MLEST 
classification accuracy and LOCAL classification 
accuracy. The average improvement and average 
slack are defined below: 

Average imProvement - Avg(PMLEST-PUT)\ (19) 

where 

PMLEST - MLEST classification accuracy. 

PUT = UT classification accuracy. 

P
LOCAL 

= LOCAL classification accuracy. 

Referring to tables 1 and 2, one can make 
the following observations. 

(20) 

1. The MLEST classification accuracies improved 
upon UT classification accuracies for a majority 
of the signature extension segment pairs. Improve­
ments in overall classification a~curacy are indi­
cated for 22 of the 27 segment pairs. Improvements 
in the wheat/nonwheat classification accuracies are 
indicated for 17 of the 27 segment pairs. 
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Table 1. Classification Accuracy Results for the Geographical Extension Data Set. 

Segment 
pair 

1854/1025 

1031/1025 

1176/1170 

1889/1033 

1169/1033 

1168/1173 

1174/1033 

1882/1881 

1864/1025 

1882/1887 

1893/1891 

1153/1875 

1880/1887 

1178/1180 

1854/1852 

1877/1875 

1880/1875 

1163/1165 

1178/1165 

1172/1181 

1859/1861 

1032/1861 

1031/1027 

1892/1885 

1883/1884 

1888/1879 

1176/1177 

Wheat accuracy, % Nonwheat accuracy, % Overall accuracy, % 

UT MLEST LOCAL UT MLEST LOCAL UT MLEST 

Biowindow 1 

16.17 53.36 77.98 42.68 85.69 83.95 29.43 69.52 

73.76 91.37 98.82 95.15 98.94 96.47 84.45 95.16 

91.71 93.36 91. 04 57.61 62.20 83.73 74.66 77.78 

94.55 94.29 90.65 58.94 56.81 78.17 76.74 75.55 

68.44 79.11 90.96 89.95 82.89 92.44 79.20 81. 00 

62.22 50.20 97.46 43.51 73.21 95.33 52.86 61.70 

80.46 90.11 98.75 98.33 97.89 98.18 89.40 94.00 

Biowindow 2 

94.13 95.24 87.30 65.54 70.79 89.60 79.83 83.02 

70.89 73.39 93.07 83.22 81.20 89.71 77.06 77.29 

0 64.29 87.30 19.63 66.00 89.60 9.81 65.15 

53.60 53.60 82.53 68.84 70.55 84.13 61.22 62.07 

74.12 82.43 80.48 62.69 56.02 70.80 68.51 69.22 

.28 23.20 94.20 58.39 91. 41 88.40 29.33 57.30 

52.80 54.44 89.95 52.26 63.50 75.12 52.53 58.97 

Biowindow 3 

50.97 47.15 80.87 84.45 85.11 79.90 67.71 66.13 

28.41 41.47 67.97 71.99 87.38 77.92 50.20 64.43 

22.65 74.59 75.14 40.65 74.08 93.32 31. 65 74.33 

84.21 76.61 88.30 30.22 67.14 61.46 57.22 71. 87 

66.82 75.93 91. 82 52.16 52.83 89.82 59.49 64.38 

16.61 42.08 64.04 43.49 45.15 75.90 30.05 43.61 

Biowindow 4 

82.21 83.50 93.83 56.64 69.13 87.99 69.43 76.32 

56.76 69.23 86.49 74.45 73.68 92.24 65.60 71.46 

6.38 6.15 89.48 44.04 46.95 87.38 25.21 26.55 

53.97 52.98 97.02 78.06 76.18 97.53 66.01 64.58 

35.48 62.32 98.71 34.92 47.09 99.47 35.20 54.71 

92.31 89.35 95.46 96.14 95.64 93.77 94.22 92.50 

92.32 94.09 89.34 70.43 64.50 86.89 81.38. 79.29 

Table 2. MLEST Classification Performance Versus Biowindow 
for the Geographical Extension Data Set. 

Biowindow Overall Criterion 1 2 3 4 average 

Average improvement 

OVerall accuracy 9.71 13.53 14.74 4.05 10.35 

Wheat accuracy 9.21 14.40 14.69 5.46 10.80 

Nonwheat accuracy 10.21 12.70 14.79 2.
0

64 9.91 

Average slack 

Overall accuracy 11. 75 18.30 14.75 26.06 17.82 

Wheat accuracy 13.41 24.05 18.39 27.53 20.94 

Nonwheat accuracy 10.09 12.55 11. 33 24.59 14.76 
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80.97 

97.64 

87.39 

84.41 

91.70 

90.40 

98.47 

88.45 

91. 39 

88.45 

83.33 

75.64 

91. 30 

82.54 

80.38 

72.95 

84.23 

74.88 

90.82 

69.97 

90.91 

89.37 

88.43 

97.28 

99.09 

94.62 
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2. The average improvement (table 2) in either 
overall, wheat, or nonwheat classification accuracy 
is approximately 10 percent. The improvements in 
classification accuracy are particularly striking 
for segment pairs 1854/1025, 1882/1887, 1880/1887, 
1880/1875, and 1883/1884. The improvements in 
wheat classification accuracy for these segment 
pairs range from approximately 23 percent for seg­
ment pair 1880/1887 to approximately 64 percent 
for segment pair 1882/1887. 

3. The degradations (PUT-PMLEST) in classification 
accuracy resulting from the use of MLEST are rela­
tively insignificant. The average degradation 
(five segment pairs) in the overall accuracy is 
less than 2 percent. The average degradation in 
wheat classification accuracy (seven segment pairs) 
is less than 4 percent. The average degradation in 
nonwheat classification accuracy (nine segment 
pairs) is less than 3 percent. 

4. The improvements in classification performance 
do appear to depend on the biowindow (table 2) in 
which the data were collected. Average improve­
ments in classification accuracy are approximately 
14 percent for biowindows 2 and 3, approximately 
9-1/2 percent for biowindow 1, and approximately 
4 percent for biowindow 4. These results are 
reinforced by the well-known fact that biowindows 2 
and 3 provide maximum discrimination between wheat 
and nonwheat. 

5. The MLEST classification accuracies fall short 
of the LOCAL accuracies. The average slack between 
the MLEST and LOCAL accuracies is approximately 
18 percent for the overall accuracies, approxi­
mately 21 percent for wheat accuracies, and 
approximately 15 percent for nonwheat accuracies 
(table 2). However, the LOCAL classification 
accuracies are biased estimates since they were 
estimated over the same training fields that were 
used to train the classifier. By allowing approxi­
mately 10 percent to account for this bias, the 
MLEST accuracies would be within 10 percent of the 
"true" LOCAL accuracies. 

6. MIA starting values for the B-vector were used 
for segment pairs 1882/1887, 1880/1875, 1877/1875, 
and 1883/1884. Considerable improvements may be 
noted in MLEST classification performance for these 
sites. The effect of the MIA starting values was 
to place the initial mixture density function in 
the general neighborhood of the recognition segment 
data. It is conjectured that the use of MLA start­
ing values for the remainder of the signature 
extension data set would have resulted in better 
MLEST classification performance. 

Table 3 lists the UT, MLEST, and LOCAL wheat 
proportion estimates. Table 4 lists mean absolute 
differences between MLEST wheat proportion esti­
mates and LOCAL wheat proportion estimates and 
between UT wheat proportion estimates and LOCAL 

.wheat proportion estimates. These mean absolute 
differences are averaged separately for each bio­
window and collectively for the entire data set. 

Referring to tables 3 and 4, one can make the 
following observations. 

1. The MLEST proportion estimates are closer to 
the LOCAL proportion estimates than are the UT 
estimates in 14 segment pairs with 0 percent 
thresholding and 11 segment pairs with 1 percent 
thresholding. 

2. The extent of improvement is erratic, however, 
the MLEST estimates (table 4) are closer, on the 
average, to the LOCAL estimates than are the UT 
estimates. The average absolute differences com­
puted for each biowindow between MLEST and LOCAL 
and between UT and LOCAL indicate that the MLEST 
proportions represent improvements over UT propor­
tions for biowindows 1, 2, and 3. The MLEST pro­
portions represent degradations with respect to UT 
proportions for biowindow 4. This is reinforced by 
the classification accuracy results presented 
earlier which showed that the smallest improvement 
in classification accuracy .using MLEST was in 
biowindow 4. 

3. The average UT, MLES'l', and LOCAL wheat propor­
tion estimates (all 27 sites) at 0 percent thresh­
olding are approximately equal (within 1 percent of 
each other). The variances of these estimates are 
also essentially equal. At T - 1 percent, the 
average MLES'l' and LOCAL estimates are approximately 
equal, however, the average UT estimate differs 
about 5 percent from these estimates. 

4. The amount of thresholding with the MLEST clas­
sifications is significantly less than that 
obtained with the UT classifications. Drastic 
reductions in thresholding are indicated for seg­
ment pairs 1854/1025, 1168/1173, 1882/1887, 1880/ 
1887, 1880/1875, and 1172/1181. 

VI. CONCWSIONS 

On the basis of tests conducted thus far, the 
following conclusions can be made: 

1. The use of the MLES'l' algorithm leads to sig­
nificant improvements in classification accuracy. 

2. The MLEST wheat proportion estimates are, on 
the average, closer to the LOCAL wheat proportion 
estimates than are the UT wheat proportion 
estimates. 

3. In reference to the geographical extension 
results, the MLES'l' algorithm performs best on data 
from biowindows 1, 2, and 3. 

4. The use of the MLEST affine transformed train­
ing segment signatures for classification dras­
tically reduces the percentage of pixels 
thresholded. 

These results demonstrate the viability of 
MLEST as a signature extension algorithm, espe­
cially when one considers that the 'geographical 
extension data quality was marginal at best. It 
is the author's view that the use of MIA starting 
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Table 3. Proportion Estimation Results for the Geographical Extension Data Set. 

Wheat proportions, , 
Before Pixels 

Segment After thresholding 
pair 

thresholding thresho1ded, , 
UT MLEST LOCAL UT MLEST LOCAL UT MLEST LOCAL 

Biowindow 1 

1854/1025 27.0 38.7 47.8 10.1 37.4 47.4 59.5 4.0 0.7 

1031/1025 4.7 6.5 10.1 4.4 6.3 9.8 8.8 2.5 1.3 

1176/1170 61.0 58.9 44.7 59.1 58.2 44.4 7.4 2.6 1.7 

1889/1033 41.6 43.6 32.8 41.3 43.4 32.7 .9 .5 .4 

1169/1033 13.0 19.3 15.2 12.9 19.1 14.8 .8 1.3 2.0 

1168/1173 21. 8 14.1 15.2 15.4 9.8 14.6 23.7 9.6 3.0 

1174/1033 38.8 49.4 49.7 37.7 48.9 48.7 1.4 1.0 3.0 

Biowindow 2 

1882/1881 56.9 50.7 34.0 54.2 49.0 33.0 4.0 2.7 5.1 

1864/1025 29.1 28.2 36.0 23.8 23.5 32.5 8.9 9.6 6.5 

1882/1887 50.5 48.1 34.0 .1 47.9 33.0 86.9 1.3 5.1 

1893/1891 16.9 19.2 45.1 16.3 18.6 41.8 1.2 .8 3.4 

1153/1875 44.7 52.3 45.0 44.5 52.1 44.5 2.5 1.5 1.5 

1880/1887 26.0 18.7 19.0 6.0 17.9 18.0 41.4 5.0 8.3 

1178/1180 40.3 44.0 29.3 36.6 43.7 29.2 6.5 .8 2.3 

Biowindow 3 

1854/1852 33.5 30.3 48.2 31. 7 29.5 47.9 3.2 2.1 0.7 

1877/1875 29.3 18.0 54.4 27.0 17.3 51.0 4.5 3.4 4.1 

1880/1875 33.3 31.9 26.5 24.8 29.7 25.6 39.3 6.1 3.0 

1163/1165 65.5 32.3 40.8 65.4 32.2 40.4 1.0 1.4 1.4 

1178/1165 43.6 45.2 32.8 43.5 45.1 31.1 .4 .5 2.9 

1172/1181 34.0 52.8 53.7 17.8 51.2 42.7 47.6 2.1 1.3 

Biowindow 4 

1859/1861 33.6 41.5 31. 2 32.5 41. 0 30.3 6.8 1.4 2.5 

1032/1861 39.9 45.5 39.8 39.4 44.7 39.6 2.3 2.4 .4 

1031/1027 10.4 10.9 19.4 9.3 9.2 19.1 6.9 4.4 2.8 

1892/1885 34.4 34.6 30.4 32.4 33.2 29.0 3.8 2.8 1.7 

1883/1884 48.1 53.0 62.5 46.9 52.0 56.9 2.9 2.5 14.1 

1888/1879 52.2 48.1 62.3 50.9 46.4 58.7 5.1 5.7 5.4 

1176/1177 47.4 53.6 40.7 46.7 52.8 40.4 2.5 2.3 1.9 

Table 4. Mean Wheat Proportion Estimate Differences Versus Biowindow 
for the Geographical Extension Data Set. 

(}' thresholding U thresholding 

Biowindow IqL-qUTI fqL-qMLESTI I qL-qUT I IqL-qMLESTI 

(a) (a) (a) (a) 

1 10.14 6.17 11.39 6.76 

2 13.26 12.4 15.39 12.19 

3 16.97 13.58 18.88 13.32 

4 6.67 9.33 5.67 8~50 

Overall 11.57 10.25 12.61 10.08 
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vectors, physical constraints on A and B, and the 
iterative equations for the a priori probabilities 
would lead to even greater improvements in the 
performance of the MLEST algorithm. 
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APPENDIX A 

DERIVATION OF THE ITERATIVE MLE EQUATIONS 
FOR THE A PRIORI PROBABILITIES 

The MLE estimates for the a priori probabili­
ties qi' i = 1,2,···,M, are those estimates that 
maximize the logarithmic likelihood function L 
subject to the constraint 

1 (Al) 

The MLE estimates for q. = i = 1,2,···,M, may 
be determined by using the Llgrange multiplier 
technique. Define the augmented logarithmic like­
lihood function 

(A2) 

where ~ is the Lagrange multiplier and 

N M 

L = L loge LeIiPR (Yk/i ) 
k=l i=l 

Now the MLE estimates q. must satisfy 
l. 

a«> 0 
aeI

i 
= i=1,2,···,M 

a«> M 
Note that ax = 0 implies LeIi 

i=l 

(A3) 

(A4) 

(AS) 

1. Also, 

i 1,2,··· ,M (A6) 

where 

M 

LqiPR (Yk/i ) 
i=l 

• a«> 0 h SettJ.ng r = I we ave 
qi 

o i 1,2,···,M 

(A7) 

(AS) 

Multiplying the ith equation by qi and adding 
the resulting M equations yields 

But 

and 

M 

PR (Yk) Lqi PR (Yk/i ) 

i=l 

Hence, we have N+~O 

~ = -N 

(A9) 

(A10) 

(All) 

(A12) 
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Now let 

Then 

PR(yk/i) 

PR(Yk ) 

~iPR (Yk/i ) 

PR(Yk) 
i - 1,2,···,M (A13) 

i 1,2,···,M (A14) 

Substituting equations (A14) into equa­
tion (AS) with A = -N yields 

i = 1,2,···,M (A15) 

or 

i 1,2,···,M (A16) 

or 

i 1,2,··· ,M (A17) 

which is the required iterative system of equations 
for qi' 
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