
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

3-1-1994

Dynamic Barrier Architecture For Multi-Mode
Fine-Grain Parallelism Using Conventional
Processors Part 11: Mode Emulation
W. E. Cohen
Purdue University School of Electrical Engineering

H. G. Dietz
Purdue University School of Electrical Engineering

J. B. Sponaugle
Purdue University School of Electrical Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Cohen, W. E.; Dietz, H. G.; and Sponaugle, J. B., "Dynamic Barrier Architecture For Multi-Mode Fine-Grain Parallelism Using
Conventional Processors Part 11: Mode Emulation" (1994). ECE Technical Reports. Paper 179.
http://docs.lib.purdue.edu/ecetr/179

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F179&utm_medium=PDF&utm_campaign=PDFCoverPages

TR-EE 94-10
MARCH 1994

Dynamic Barrier Architecture For

Multi-Mode Fine-Grain Parallelism

Using Conventional Processors

Part 11: Mode mul la ti on?

W. E. Cohen, H. G. Dietz, and J. B. Sponar~gle

Parallel Processing Laboratory
School of Electtical Engineering

Purdue University
West Lafayette, IN 47907- 1285

hankd@ecn.purdue.edu

Table of Contents

1 . Introduction ..
.. 2 . Execution Models

2.1. Implementation Of MIMD Execution ...

2.2. Implementation Of VLIW Execution ..

... 2.3. Implementation Of SIMD Execution

2.4. Granularity ...

3 . Coding Strategy ...

3.1. Notation ..

3.2. The SPMD Worker Model ...

3.2.1. Parallel i f -else ..

3.2.2. Parallel while ...

3.3. The Structured SIMD Model ...

3.3.1. Parallel i f -else ..

3.3.2. Parallel While ...

... 3.4. The Unstructured SIMD Model

.. 3.4.1. Enable Mask Simulation

3.4.2. Parallel i f -else ..

3.4.3. Parallel While ...

4 . Conclusion ...

Abstract

Parallel computers constructed using conventional processors offer the potential to acheve
large improvements in execution speed at reasonable cost, however, these machlnes tend to
efficiently implement only coarse-grain MIMD parallelism. To achieve the best possible speedup
through parallel execution, a computer must be capable of effectively using all the different types
of parallelism that exist in each program. A combination of SIMD, VLW. and MIMD parallel-
ism, at a variety of granularity levels, exists in most applications; thus, hardware that can support

multiple types of parallelism can achieve better performance with a wider range of codes.

In the companion paper [CoD94], we present a new hardware barrier architecture that pro-
vides the full DBM functionality we discussed in [OKD90], but can be implemented with much
simpler hardware. In this paper, we show how this mechanism can be used to efficiently support
multi-mode moderate-width parallelism with instruction-level granularity (i.e., synchronization
cost is approximately one LOAD instruction).

Keywords: Dynamic Bamer Synchronization, MIMDNLIWISIMD Mixed-Mode Computation,
Execution Models, MIMDISIMD Coding Strategies, Instruction-Level Parallelism.

A ' This work was supported in part by the Office of Naval Research (ONR) under grant number
N00014-91-J-4013 and by the National Science Foundation (NSF) under award number
9015696-CDA.

Page 1

Part 11: Mode Emulation March 1994

1. Introduction

While the market for massively parallel supercomputers has remained limited, the

demand for more conventional computers has grown to the extent that many microprocessors are

now considered "commodities." The high sales volume for these parts has justified heroic design
and fabrication efforts, with the result that some microprocessors offer uniprocessor performance
that is simply beyond what can be achieved with the more modest resources available for design-

ing specialized processors for supercomputers. A similar argument applies to the development of
system software. Thus, building massively parallel supercomputers using standard microproces-

sors seems very attractive. The problem is simply that these chips were not designed to be used

in a speedup-oriented parallel configuration.

Nonetheless, using these microprocessors, it is easy to build a massively parallel system

that can achieve reasonable performance for very large-grain parallel applications; one might

even be able to use workstations connected by local area networks (LANs). The challenge is to

achieve good performance with fine-grain parallel applications. It is possible to build systems
that use standard chips yet yield good fine-grain performance; however, the system must be
designed very carefully to achieve this goal.

Some of the system attributes most important to achieving good fine-grain performance are:

[I.] Good processing element (uniprocessor) performance.

[2] Near-zero cost synchronization (and hence the flexibility of choice of execution

mode).

[3] High-performance communications with both low latency and high bandwidth.

[4] Compilers that can effectively use the system, a$ opposed to individual processors.

It is a relatively simple matter to use a commodity microprocessor to cheaply provide [I], but

cost-effective ways to achieve [2], [3], and [4] are surprisingly elusive. The key question is why?

Obtaining near-zero cost synchronization is difficult for a number of reasons. :Perhaps the

most fundamental cause is the propagation delay of electrical (or optical) signals in a parallel

machine; however, even the most distant processing elements within a massively-parallel

machine can be just tens of nanoseconds apart. Thus, the synchronization speed of most parallel

machines is not limited by distance, but rather by the inappropriateness of their synchronization

model. For example, synchronization methods that require synchronization signals to be

"routed" between processors are generally slow because dynamic routing implies delays due to

switching and propagation through active components.

Further, synchronization cannot be efficient if invoking each synchronization requires exe-

cution of an expensive sequence of instructions. Any synchronization operation across multiple

processors requires each processor to notify the processors that it should synchronize with and to

obtain an acknowledgement that the synchronization has completed; both of these operations

require off-chip communication. In modern microprocessors, the combination of a high internal

clock rate, deep pipelining, and out-of-order instruction execution, makes off-chip references

expensive and their timing imprecise. Thus, it is vital that the number and cost of off-chip

Page 2

Part 11: Mode Emulation March 1994

references needed to implement a synchronization operation be minimized.

From an engineering point of view, construction of high-performance communication

hardware is not particularly difficult; low latency and high bandwidth are both relatively easy to

obtain at reasonable cost. The problem lies not in actual communication of data, but in the
processes of sending, routing, and receiving data. Sending and receiving data must both require

execution of very few instructions; routing (including arbitration of shared paths) must be ma&

as efficient as possible.

Finally, compilers for single processing elements leave management of interactions

between processing elements to the application programmer, but the level of detail needed to

efficiently schedule these interactions is not accessible in a high-level language. Even if that

level of detail were visible to the programmer, making the best use of such a machine involves

complex VLIW-like code scheduling based on detailed machine-dependent timing analysis - a
burden that few programmers would be able to bear. Without a compiler that treats the system as

a system, the programmer can expect to spend a lot of time writing, and performance-tuning,
highly non-portable code.

In this paper, we suggest that all these problems can be cheaply solved by implementing a

very simple and fast barrier synchronization hardware mechanism. Relative to the above issues:

[I.] The new mechanism can efficiently use conventional processors as processing ele-

ments.

[2] This synchronization hardware is not PE-to-PE, but PE-to-synchronizer; therefore,
there is no routing. Using conventional processors, the cost of invoking a synchroni-

zation is essentially one off-chip operation (i.e., a LOAD operation). The result is that

fine-grain synchronization time is dominated by signal propagation delay.

[3] Because the synchronization is so precise, the communication mechanism can be stat-
ically scheduled. This can greatly simplify the system by minimizing routing and
arbitration hardware. It also improves performance by reducing the sendlreceive

software overhead, as was observed in the PASM prototype (see Section 4.4 of the

companion paper [CoD94] for a discussion of PASM's barrier mechanism) [BeS91].

[4] Although the compiler must aggressively use timing analysis to determine how to

optimally schedule code for such an architecture, the hardware allows the compiler to

view the machine as a much simpler target, e.g., as a straightforward partitionable

SIMD. Although some efficiency might be sacrificed, building a good compiler for

such a simple execution model is much easier than building a compiler to achieve

comparable performance for the more conventional, loosely-coupled, MIMD models.
The ability to switch execution modes on demand also allows For optimization of the

execution model to match the program structure.

Thus, the way to achieve a familiar environment with better performance and lower cost per

unit performance is to use compiler timing analysis and code scheduling technology in concert

with careful architectural design so that a set of commodity microprocessors can behave as a

Page 3

Part 11: Mode Emulation March 1994

tightly-coupled parallel system with a nominal amount of "glue logic." We suggest that the key

to this is the use of a particular type of hardware barrier synchronization in conjunction with com-

piler code scheduling.

In this paper, we ignore the "fancy" compiler technology [Di092]. The focus of this paper
is how the new barrier mechanism described in [CoD94] can implement various execution modes

that can be effectively used with conventional compiler technology.

2. Execution Models

As parallel processing has developed, the execution models used with different systems

have not converged. One is tempted to view this divergence as a sign of the field's immaturity;

however, we suggest that the use of a range of execution modes is primarily driven by the fact

that the relative performance of different system organizations is highly application-dependent

[Wat93]. Although the vast majority of parallel computers effectively support only a single exe-

cution mode - MIMD, VLIW, or SIMD - supporting multiple modes allows a relatively simple

compiler to target whichever mode is most expedient for each language, or even for each pro-

gram.

Just as languages and complete programs often exhibit strong execution mode preferences,
so too can individual functions within a single parallel program desire specific execution modes

[NiS90]. By constructing hardware that can rapidly switch between multiple execution modes,

one gains the opportunity to improve performance by using the execution mode that is most

appropriate for each portion of a program [Wat93].

In this section, we describe how the proposed barrier mechanism can be used to efficiently

implement three different execution modes: MIMD, VLIW, and SIMD. Note that the proposed

implementations also allow very rapid switching between modes. Finally, we discuss the issue of

granularity of execution.

2.1. Implementation Of MIMD Execution

MIMD (Multiple Instruction stream, Multiple Data stream) execution is essentially the

native execution mode for a machine that is constructed as a collection of conventional sequential

processors. Each processing element asynchronously executes code from its own local memory,

as shown in Figure 1. Most often, the same code image is replicated in each processor; this varia-

tion on MIMD is known as SPMD (Single Program, Multiple Data) execution.

Because processing elements are executing asynchronously, even if there are no external

reasons for processing elements to loose synchronization (e.g., no interrupts), w h i l e loops and

pipeline bubbles can cause significant differences in execution rates. When relative timing infor-

mation across processing elements is required, a barrier synchronization can be explicitly per-

formed to restore static time constraints.

Page 4

- ---7

Part 11: Mode Emulation March 1994

ProgO, InstO 1
ProgO, Instl I
ProgO, Inst2 m
ProgO, Instm I

Progl, InstO E I
Prog 1, Inst 1 L
Progl, Inst2 L1

Prog 1, Instm I

Progn, InstO

Progn, Instl

Progn, Inst2

Progn, Instm I
Figure 1: Memory Layout For MIMD Execution

There are a wide range of techniques that can be used by a processing element to signal its
arrival at a barrier, and to cause the processing element to wait until the barrier has fired. For
example, in our scheme, a barrier synchronization is accomplished in a single instruction by issu-

ing a LOAD from an address decoded as a barrier synchronization request. The memory refer-

ence does not complete until the barrier has fired.

2.2. Implementation Of VLIW Execution

VLIW, or Very Long Instruction Word, computation is based on use of a single instruction

sequence with an instruction format that allows a potentially different opcode for each function
unit. Treating each processing element as a function unit, genuine VLIW [El1851 [CoN88] execu-

tion can be obtained without any hardware changes. Each long instruction word is striped across

the various local (instruction) memories, as shown in Figure 2. I.e., the VLIW instruction at

address a is encoded by having address a in instruction memory P be the opcode field for func-

tion unit p.
Although synchronization would normally be maintained by the way the code is scheduled,

variable-time operations and interrupts could cause synchronization to be lost. This problem can

be averted by simply imposing a barrier before each instruction.

An additional feature that many VLIW scheduling techniques use is the ability to combine
multiple conditional-JUMP instructions into a single multi-way branch executed by all proces-

sors. There are a variety of possible implementations. In [BrN90], Brownhill and Nicolau dis-

cuss this problem in detail and propose "Setbit" hardware to accumulate the results of VLIW

branch conditions computed on various processors - the barrier architecture proposed in this

paper directly implements a superset of the Setbit functionality.

Page 5

- -7
- .

Part 11: Mode Emulation March 1994

InstO, OpO

Inst 1, OpO

Inst2, OpO

...

Instm, OpO

InstO, Opl

Instl, Opl

Inst2, Opl 1
Instm, Opl E l

InstO, Opn

Instl, Opn

Inst2, Opn El
Instm, Opn L_

Figure 2: Memory Layout For VLIW Execution

2.3. Implementation Of SIMD Execution

SIMD (Single Instruction stream, Multiple Data stream) execution is very similar to VLIW

execution. The primary difference is that, while VLIW instructions allow a different opcode for

each function unit (i.e., processing element), SIMD provides only one opcode field in each

instruction. There are two basic schemes by which this can be implemented:

[I 1 Treat SIMD as a "degenerate" form of VLIW. This is done by replicating the SIMD
instruction stream in each local memory and executing that program in VLIW mode

(Figure 2).

[2] Directly implement SIMD execution from a single copy of the instruction stream.

Rather than having processing elements fetch instructions from local memory, have
all processors fetch instructions from a shared "broadcast memory" (Figure 3), with

each instruction fetch implying a barrier synchronization. Because SIMD execution

implies that all the processing elements will be fetching from the same location at the

same time, the same broadcast memory address will be fetched by all processing ele-

ments, effectively broadcasting the opcode. In fact, since the fetch address must be

the same for all processing elements, the address could be ignored and the broadcast
memory could simply be a FIFO queue [SiN87] or even a single register that holds the

next broadcast instruction.

In addition to the SIMD concept of a single opcode, the SIMD execution model is generally

expected to provide support for enable masking: the ability to "turn off" selected processing ele-

ments for a sequence of operations.

Page 6

" - 1
-

Part 11: Mode Emulation March 1994

Figure 3: Memory Layout For SIMD Execution

There are a variety of simple and effective ways in which hardware could disable particular

processing elements, but the most practical implementation is probably to have all processing ele-

ments perform every operation, nulling the effects on the processing elements that should not

have been active. For example, some processors have conditional store instructions that would

allow "disabled" processing elements to perform computations, but not update variables with the

results. With somewhat greater cost, this nulling can even be done using conventional arithmetic;

for example, the parallel assignment:

Can be made to execute only when enabled is a bit mask containing all 1s (for true, as

opposed to 0 for false) by all processing elements simultaneously executing:

c = (((a + b) & enabled) I (c & "enabled));

Another implementation would be to simply JUMP over code for which enabled is false, but

this must be done very carefully to avoid accidentally skipping operations that should be exe-

cuted (enable mask operations, scalar code, function calls, etc.). Further, using JUMPS can cause

pipeline bubbles that seriously degrade performance.

There is also the issue of "stacking" enable status as nested constructs change the set of

enabled processors. Although the enabled status could simply be pushed on the stack for each
construct, perhaps the best method is that proposed by Keryell and Paris [KeP93]. In their

scheme, a counter in each processor is used to track the number of properly nested constructs for
which each processor has been disabled. If this counter is zero, the processor is enabled; other-
wise, the processor is disabled. This scheme is both fast and memory efficient, since entering a

new enable scope requires only update of the counter (presumably a register; thus implying no

memory references).

Just as enable masking does not require additional hardware, the fact that the traditional

view of SIMD incorporates a control unit (CU) does not require the hardware to have such a

Page 7

Part 11: Mode Emulation March 1994

processor. The primary function of the CU is to broadcast instructions; which is managed by the

mechanisms described earlier. The secondary function of the CU is to perform scalar computa-

tions. This also can be done without additional hardware by simply designating one processing

element to act as the CU. Alternatively, it is easy to add a processor to the broadcast memory
interface to act as a dedicated CU. In fact, most parallel computers have a serial front-end host

that could be treated as a dedicated CU.

2.4. Granularity

In the above discussion of execution modes, this paper refers to parallel execution of indivi-

dual operations or instructions. This seems to imply very fine grain: instruction-level parallel-

ism. However, there is no reason to require that an operation or instruction is an atomic function

for the hardware; it could instead be an entire subroutine or sequence of machine instructions.

In this light, it can be seen that the execution mode does not imply granularity. Normally

one thinks of MIMD as coarse-grain, and SIMD and VLIW as fine-grain, but any combination of

mode and granularity is possible. For example, one can imagine a coarse-grain SIMD machine,
in which each operation is actually an entire subroutine - yielding a grain size that could be tens

of thousands of machine cycles.

We define the granularity of a program's execution as the amount of time spent computing

locally before an interaction with another processing element is required. The simplest possible

interaction with another processing element is to synchronize with it; thus, a machine's grain size

is similarly defined to be the amount of time taken to perform a synchronization. Equivalently,

this is the maximum error in one processor's estimate of what another processor is currently exe-

cuting. As such, it forms the basic unit for (compile-time) code scheduling.

To simplify the discussion, consider a machine with grain size x that must execute a pro-

gram with grain size y (ycr. In such a case, the program will always execute at least a factor of

d y slower than the machine's peak speed due to interaction delays. Put another way, in order to

achieve a program grain size of x, one could attempt to pack d y grains of computation that

interact with each other onto each processing element. Thus, the d y factor also can be viewed as

a reduction in the usable parallelism width of the program, and a larger machine grain size

reduces the probability that programs will have enough parallelism to get good performance from

massively-parallel hardware.

The ideal grain size results when synchronization can occur at the level of simple data

movement, i.e., at the level of register moves or LOADISTORE instructions. This is the level of

the barrier mechanism presented in the current work. In contrast, for most machines, the grain

size ranges from hundreds of instructions (e.g., [TMC92]) to thousands of instructions (e.g.,

[Ncu90] or [Int92]); which severely restricts the class of programs that will be able to make effec-

tive use of the hardware.

Page 8

Part 11: Mode Emulation March 1994

3. Coding Strategy

As suggested in Section 1, the most efficient way to use the proposed hardware involves

detailed static timing analysis and compiler code scheduling [Di092]; however, reasonable per-

formance can be obtained for a wide range of programming models without resorting to such

complex compiler techniques. For this paper, we limit the discussion to three of the most com-

mon parallel programming models that are suitable for expressing scalable fine-grain parallelism:

[I] Programming models based on groups of worker processes that asynchronously obtain and
execute tasks from a worklist. A good example is The Force [Jor87]; however, most

SPMD-oriented languages follow these semantics.

[2] Programming models based on data parallelism with SIMD-oriented ordering constraints

and structured control of the active set of processing elements. A good example is C*

[RoS87]; however, most data-parallel languages, including most parallel dialects of Fortran

90 [ANS89] (CM Fortran, MasPar Fortran, etc.), follow these semantics.

[3] Programming models based on data parallelism with provision for unstructured control of

the active set of processing elements; this is essentially a variation on the SIMI) semantics

of [2]. A good example is MPL [MCC9 11 with its a 11 statement or the new C* [TMC90]
with its e v e r y w h e r e statement.

For each of these programming models, we present a simple description of the corresponding bar-

rier execution model and examples showing how common language constructs could be coded for

the target barrier machine. Since a wide range of programming languages and processor instruc-
tion sets can be supported, we have chosen to represent both the programming language con-

structs and the translated code in a notation based on C. The notation is described in the follow-

ing section.

3.1. Notation

Although each of the programming models provides a wide range of constructs, the basic

semantic differences between the models are effectively illustrated by examining the coding of a

parallel conditional construct (i f - e l s e) and a parallel lcwp construct (whi le) . Since we are

focusing on the semantic differences, the syntax of the language constructs is relatively unimpor-

tant; for the purposes of this paper, we will refer to the MPL syntax given in Listings 1 and 2.

i f (p a r ~ l l e l ~ e x p r) {

stat-u ;

1 else {
stat-b ;

1

Listing 1: Parallel i f -else

Page 9

-- -7

Part 11: Mode Emulation

whi 1 e (parallel-expr) {

stat ;

1

March 1994

Listing 2: Parallel while

The target barrier code for our examples is given as raw C code that would be replicated on

each of the processors. It is important to note that all variables referenced in the target code can

be placed in registers and that the macros WAIT () , WAIT-GATHER () , PUSH () , and
POP () are used only because they are more mnemonic than the instructions they represent:

WAIT ()

The WAIT (operation takes one argument, which is the barrier address containing the bit

vector that describes the processors to participate in the barrier synchronization. A process-
ing element will not continue past the WAIT () until all the processing elements participat-

ing in that barrier are executing corresponding WAIT () operations. The CARDBoard's

Am29050 processors implement WAIT () as a single LOAD instruction; the generic C

definition is:

#define WAIT (bar) * (bar)

WAIT-GATHER ()

The WAIT-GATHER () operation has two characteristics which differentiate it from the

WAIT () macro - it takes a one bit flag and returns a bit vector. The one bit flag can be

used to communicate information to the other processing elements participating in the bar-

rier, usually the result of a test operation. The value returned is a word value that looks like

the barrier address, except in that the bit vector contains the flag values gathered from each
processor rather than bits indicating which processors participate in the barrier. Return

value bit positions corresponding to processors not participating in the barrier have

undefined values. The CARDBoard's Am29050 processors implement WAIT-GATHER ()

as an OR instruction followed by a LOAD; however, many processors can implement this

operation using a single LOAD with an addressing mode that adds two registers to form the

data address. The generic C definition is:

#define WAIT-GATHER(bar, flag) *((bar) + (flag))

PUSH ()

The PUSH () operation simply saves its argument on the runtime stack.

POP ()

The POP () operation simply returns the value from the top of the runtime stack and

removes that value from the stack.

Thus, although the target code might appear to be invoking relatively expensive functions to per-
form barrier synchronizations, the actual cost of executing these macros is typically either one or
two instructions with at most one off-chip reference.

Page 10

Part 11: Mode Emulation March 1994

Throughout the code examples, we make use of the following variables:

barrier-address

This is the address to reference to cause a barrier across the currently selected set of proces-
sors, as discussed in Section 3.3.1 of the companion paper.

flag-vector-mask

This is a (machine-specific constant) mask that covers all the bits in the flag vector.

3.2. The SPMD Worker Model

Of the three programming models, the least constrained is the SPMD worker model, in

which barrier synchronizations are directly visible to the user as "barrier statements." In general,

barrier synchronizations are invoked only when the programmer explicitly calls for them; how-

ever, the system must automatically track which processors may synchronize with each other, and
this can introduce additional barriers for the purpose of broadcasting information about a new
partitioning of the workers.

Thus, we can imagine a parallel construct being used to partition the current set of workers

into two sets: those where some parallel expression evaluates as true and those in which the

expression evaluates as false. When such a construct is encountered, each processor executing

the construct can select which set will contain it. However, these sets are not fully specified until

all processors that will execute the construct have made their individual decisions. We suggest

that a single WAIT-GATHER () operation suffices to both ensure that the sets are fully specified
and to notify each of the participating processors of the complete membership for the set that con-

tains them. Because the WAIT-GATHER () operation returns bits for all processors, even those

that did not participate in the barrier, it is a simple matter of appropriately masking the return

value to convert the set membership information into a barrier mask for that set.

This semantic definition and coding technique covers the partitioning actions implied by

both if -else and while statements in a SPMD worker model. Notice that, if the constructs

did not imply partitioning, no barrier synchronization operations would be needed beyond those

explicitly requested by the user. The following sections detail the behavior and coding of these

partitioning constructs.

3.2.1. Parallel if -else

The semantics of an SPMD if - el se construct do not imply an ordering between the

"then" and the else clauses of the construct. In fact, the two alternatives are asynchronously
executed by mutually exclusive sets of processors. Thus, if such a construct is used to partition
processors into two independent groups that can synchronize within themselves independently,

code must be introduced to create the new barrier masks. Notice that this operation is a true par-

titioning of the previous barrier mask; each processor will join either the "then" barrier group or

the else barrier group. Further, notice that this partitioning cannot affect any processors that

were not a member of the original barrier group. A sample implementation of these semantics is

Page 11

Part 11: Mode Emulation March 1994

given in Listing 3.

PUs~(barrier-address);

t = parallel-expr;

gather-result = WAIT-GATHER(barrier-address, t);

if (t == 0) goto Else;

barrier-address &= gather-result;

stat-a ;

goto Exit;

Else:

barrier-addreaa &= (flag-vector-mask gather-result);

stat-b;

Exit :

barrier-address = POPO;

Listing 3: SPMD worker model SIMD parallel i f - el se

This code first saves the current barrier-address, because within the construct each

processor will use a barrier-address that is a subset of the original, yet the original must

be restored at the end of the construct (by the POP (1) . The next step is to evaluate

parallel-expr to determine whether the "then" or else clause should be executed; in either
case, using a WAIT-GATHER () , the result of this evaluation is also sent to other processing ele-

ments. Once within the appropriate clause, the gathered evaluation information is used to create

the new barrier-address by removing processors that selected the other clause. The only

remaining task is to execute the code within the selected clause.

Notice that all the code given in bold can be removed if the statement is not being used to

partition the current barrier group, i.e., if there are no nested references to barrier synchroniza-

tions using the partitioned barrier groups.

3.2.2. Parallel whi le

The semantics of a SPMD while allow each processor to asynchronously execute as

many iterations of the loop as it desires. However, if the while is being used to partition the

current barrier group, a synchronization must be inserted at the top of each iteration of the loop in

order to compute a new partition of the barrier group. Thus, there is only one c~ctive barrier group

within the loop, and that group monotonically decreases in size until it has no members, at which

time the original barrier group is restored. A sample implementation of these semantics is given

in Listing 4.

Page 12

Part 11: Mode Emulation March 1994

PUSH(barrier-address);

Loop :

t = parallel-expr;
gather-result = WAIT-GATHER(barrier-address, t);

barrier-address &= gather-result;

if (t == 0) goto Exit;

stat ;

got0 Loop;

Exit :

barrier-address = POPO;

Listing 4: SPMD worker model parallel whi 1 e loop

As for the i f - el se example, the looping code is enclosed by instructions saving and res-
toring the original barrier-address and WAIT-GATHER () is used to restrict the current

barrier-address. Notice that processors that exit the loop early will be given a

barrier-address that is a superset of those still executing within the loop; however, this

causes no conflicts. If one of these early processors attempts a barrier synchronization, the fact
that it is waiting will be ignored by the processors in the loop.

3.3. The Structured SIMD Model

Compared to the SPMD worker model, the structured SIMD model imposes an additional

ordering constraint: the execution of constructs is serially ordered such that operations that

appear later in the source program are executed only after all processors have moved past all ear-

lier code. This essentially corresponds to the concept of structured code being executed only

when the single program counter in a SIMD machine has reached that code. Notice, however,

that this model does not require that all processors actually execute all code.

The following section describes in detail the execution of the parallel if -else and the

parallel while statement for the structured SIMD model and how these constructs would be

implemented using the barrier mechanism.

3.3.1. Parallel i f -else

Structured SIMD semantics require an ordering that first evaluates parallel-expr, then

stat-a, and finally, stat-b. Thus, although processors may be waiting at the else clause as soon
as the first processors reach the "then" clause, barrier synchronizations ensure that there is no
overlap in the execution of these clauses. An implementation of these semantics is given in List-

ing 5.

Page 13

. .

- - 7
--

Part 11: Mode Emulation March 1994

PUSH(barrier-address);

t = parallel-eqr ;
gather-result = WAIT-GATHER(barrier-address, t);

if (t == 0) goto E l s e ;

barrier-address &= gather-result;

stat-a ;
barrier-address = POP (;

A: wAIT(barrier-address); / * pairs with B * /
goto E x i t ;

E l s e :

B: W~~T(barrier-address); / * pairs with A * /
barrier-address &= (flag-vector-mask gather-result);

stat-b ;
barrier-address = POP (;

E x i t :

 barrier-address); / * all processors here * /

Listing 5: Structured SIMD parallel i f - else

The first five lines of this code are identical to the code using the SPMD model because pro-

cessors are allowed to execute the "then" clause under the same conditions that applied for the

SPMD model. However, the remaining code must ensure that the else clause is not executed

until all processors that entered the i f are either ready to execute the else clause or have

completed executing the "then clause. Further, when that second bamer has fired, yet another

barrier must be imposed to ensure that the processors that executed the "then" clause will not

execute past the if statement until the last processor has completed executing the e:lse clause.

One might wonder why the effort of partitioning the barrier mask and executing two addi-

tional synchronizations would be desirable. The answer is in the code that is not in the

example - there is no SIMD-style enable masking needed to disable inactive processors. Simu-

lation of SIMD-style enable masking using conventional processors is likely to be slower than

performing these barrier operations (see Section 3.4).

3.3.2. Parallel While

Structured SIMD code differs from SPMD only in that it requires a complete ordering

between blocks of parallel code. Because the SPMD encoding of w h i 1 e enforces such an ord-

ering with just one exception, it is not surprising that the structured SIMD code can be nearly
identical. As seen in Listing 6, the one difference is that the structured SIMD code must ensure
that no processor can execute past the w h i l e until all processors that entered the loop have

completed the loop.

Page 14

Part 11: Mode Emulation March 1994

P~S~(barrier-address);

Loop :

t = parallel-expr ;
gather-result = WAIT-GATHER(barrier-address, t);

barrier-address &= gather-result;

if (t == 0) goto Exi t ;

stat ;
got0 Loop;

Exit :

barrier-address = POP();

WAIT(barrier-address);

Listing 6: Structured SIMD parallel w h i l e loop

3.4. The Unstructured SIMD Model

In most high level languages designed for SIMD machines, the programmer does not have

direct control of the enable status of the processors; rather, changes in the enable status are
implied by structured control constructs. The rule is that the code within a construct cannot be

executed by processors that were disabled at entry to the construct. Thus, the handling of enable

status for each processor acts as a stack where an enable status is recorded for each active scope

and the stack always has the property that once a disable is placed on the stack, all items placed
on the stack after that item will also be disables [KeP93]. These semantics yield the structured

SIMD model described above.

However, most SIMD hardware does not restrict processors to manage enable status in that

way. Thus, some SIMD languages provide features that allow "unstructured" changes to proces-

sor enable status. For example, MPL's a 11 construct enables all processing elements for execu-

tion of the following statement - enabling processors that were disabled at entry to the enclosing

region of code. In fact, a statement affected by an a 11 can be a compound statement that con-

tains additional structured and unstructured masking. Another example is MPL's proc con-

struct; proc [i I . j refers to the value of j on processor i, reguardless of whether processor

i was enabled in the enclosing region of code. Because disabled processing elements can be

enabled at any time, all processing elements must synchronously follow the same control flow

paths.

Thus, unlike the other two programming models, the set of processors in the barrier mask

never changes. All barriers are performed with the a 1 l s r o c e s so r s barrier address, which

represents a barrier mask including all processors in the portion of the machine that is executing

this program.

Since the barrier mask is not used to track the SIMD enable set (as it is in the structured

SIMD code), some other mechanism must be used. Thus, processors must simulate enable mask-

ing using one of the techniques described in Section 2.3. The next section defines how enable

Page 15

Part 11: Mode Emulation March 1994

masking is represented in the i f - el se and whi 1 e examples in the sections that follow.

3.4.1. Enable Mask Simulation

For simplicity, we will denote the current enable status of each processor as the value of the

variable enabled; this value is 0 if the processor is disabled, 1 if it is enabled. Although

there are a variety of different approaches to simulation of enable masking, there just three basic

operations needed to track the processor's enable status:

PUSH-ENABLED ()

This operation saves the current value of enabled onto the processor's stack.

TOP-OF-ENABLED-STACK()

This operation returns the enabled value on top of the stack, but does not remove that

value from the stack.

POP-ENABLED ()

This operation returns the enabled value on top of the stack, but also removes that value

from the stack.

Alternatively, the references to the enabled variable and these operations can be replaced by

the less intuitive, but more efficient, "activity counter" equivalents described in [KeP93]. Note

that the "activity counter'' technique by itself assumes that a processor cannot be enabled from

within a construct if it was disabled at entry to that construct, but constructs like MPL's all can

be correctly handled by stacking the "activity counter" value at entry to an all and unstacking
the value at exit.

In addition to tracking the processor's enable status, it is necessary to ensure that disabled

processors do not change the values of variables to reflect the results of operations in their path.

This is further complicated by the fact that disabled processors should not be prevented from exe-

cuting operations that may alter their enable status. Because the method used (e.g., arithmetic

nulling, as described in Section 2.3) can literally change how code is generated for every opera-

tion within a statement, we have chosen to simply indicate which regions of the generated code

must be processed by such a transformation. Any code within a EVAL-ENABLED (is to be

generated such that operations not involved in computing enable status have no effect if

enabled is 0 (false).

3.4.2. Parallel i f -else

Unlike the other execution models, the unstructured SIMD semantics do not make a parallel

i f - el se construct change the control flow of the program. Rather, the construct changes

enableldisable status of processors as all the processors pass through the code for both the "then"

and else clauses.

Although both the new C* [TMCBO] and MPL [MCC91] use unstructured SIMI) execution,

the C* language more literally adheres to the principle that control flow cannot be altered by a

parallel construct. Even if no processors are enabled, C* semantics suggest that the complete

Page 16

Part 11: Mode Emulation March 1994

code sequence should be "executed." In contrast, MPL semantics suggest that code for which no
processor is enabled should not be "executed." Thus, before each section of conditionally-
executed code, MPL inserts instructions that jump over the code if no processors would be
enabled for its execution. This difference in semantics is reflected by the fact that the code of
Listing 7 implements the MPL semantics as is, and implements the new C* semantics if the
bold code is removed.

PUSH-ENABLEDO;

t = 0;

EVAL-ENABLED (t = parallel-enpr) ;

enabled = t;

any = WAIT-GATHER(allgrocesaors, enabled);

if ((any & flag-vector-mask) == 0) goto Else;

EVAL-ENABLED (stat-n) ;

Else :

enabled = TOP-OF-ENABLED-STACKO;

enabled &= "t;

any = WAIT-GATHER(allgrocessors, enabled);

if ((any & flag-vector-mask) == 0) goto Exit;

EVAL-ENABLED (stat-b) ;

Exit :

enabled = POP-ENABLEDO;

Listing 7: Unstructured SIMD parallel if -else

3.4.3. Parallel Whi le

Because the new C* does not allow control flow to be altered by a parallel construct, there
is no parallel while in C*. However, there is a parallel while construct in MPL. This con-

struct is implemented by the code given in Listing 8.

Page 17

-

-----I

Part 11: Mode Emulation March 1994

PUSH-ENABLED () ;

Loop :

t = 0;

EVAL-ENABLED (t = pfrrallel-expr) ;
enabled = t;

any = W ~ ~ ~ - ~ ~ ~ ~ ~ ~ (a l l g r o c e s s o r s , enabled);

if ((any & flag-vector-mask) == 0) goto Exit;

EVAL-ENABLED (stflt) ;
got0 Loop;

Exit :

enabled = POP-ENABLEDO;

Listing 8: Unstructured SIMD parallel while

4. Conclusion

Although the use of conventional processors to construct parallel computers has become

commonplace, very few designs provide support for fine-grain parallelism or for an execution

mode other than MIMD. We suggest that there is no reason for parallel machines based on con-

ventional processors - or even distributed machines comprised of ordinary workstations - to

suffer these restrictions.

In the companion paper [CoD94], we presented a very simple and inexpensive hardware
barrier mechanism and described in detail how that mechanism can be interfaced to conventional

processors. In this paper, we show how the new hardware allows each portion of the machine to

independently select any of a variety of execution modes including MIMD, VLIW, and SIMD

models. Detailed coding strategies for three commonly used execution modes are presented: a

SPMD worker model, a structured SIMD model, and an unstructured SIMD model. Reguardless

of execution model, grain sizes as small as a few instructions are efficiently supported - because

barrier synchronization cost is just a single LOAD instruction.

We are currently working on more sophisticated compiler techniques based on timing
analysis [Di092].

Page 18

. .

-7
- .

Part 11: Mode Emulation March 1994

References

[ANS89] American National Standard for Information system.^ Programming Language For-
tran, Draft S8, Version 1 12, June 1989.

[BeS91] T.B. Berg and H.J. Siegel, "Instruction Execution Trade-offs for SIMD vs. MIMD
vs. Mixed Mode Parallelism," 5th International Parullel Processing Symposium,
April 1991, pp. 301-308.

[BrN90] C.J. Brownhill and A. Nicolau, Percolation Scheduling for Non-VLIW Machines,
Technical Report 90-02, University of California at Irvine, Irvine, California, Janu-
ary 1990.

[CoD94] W. E. Cohen, H. G. Dietz, and J. B. Sponaugle, "Dynamic Barrier Architecture For
Multi-Mode Fine-Grain Parallelism Using Conventional Processors; Part I: Barrier
Architecture," Submitted to Int '1 Con$ on Parallel Processing, 1994.

[CoN88] R. P. Colwell, R. P. Nix, J. J. O'Domell, D. B. Papworth, and P. K. Rodman, "A
VLIW Architecture for a Trace Scheduling Compiler," IEEE Truns. on Computers,
vol. C-37, no. 8, pp. 967-979, Aug. 1988.

[Di092] H. G. Dietz, M.T. O'Keefe, and A. Zaafrani, "Static Scheduling for Barrier MIMD
Architectures," The Journal of Supercomputing, vol. 5, pp. 263-289, 1992.

[El1851 J. R. Ellis, Bulldog: A Compiler .for VLIW Arclzitecture.~. Cambridge, MA: MIT
Press, 1985.

[Int92] Intel Corporation, Paragon Supercomputers: Parugon XP/S Supercomputer, Litera-
ture packet, Intel Corporation, Beaverton, Oregon, 1992.

[Jor87] H. F. Jordon, The Force, Technical Report, University of Colorado, January 1987.
[KeP93] R. Keryell and N. Paris. "Activity Counter: New Optimization for the Dynamic

Scheduling of SIMD Control Flow, Proc. Int'l Conf Par~illel Processing, pp. I1
184-187, August 1993.

[MCC91] MasPar Computer Corporation, MusPar Progrl~mming Lcmguagc~ (ANSI C compati-
ble MPL) Reference Manual, Sqftwtire Version 2.2, Document Number 9302-0001,
Sunnyvale, California, November 199 1.

[Ncu90] nCUBE Corporation, nCUBE 2 Programmer's Guide, nCUBE Corporation, Beaver-
ton, Oregon, December 1990.

[NiS90] M. A. Nichols, H. J. Siegel, and H. G. Dietz, "Data Management and Control-Flow
Aspects of an SIMDISPMD Parallel LanguageJCompiler,' ' Frontiers '90: The Third
Symposium on the Frontiers of Mussively Parc~llel Coml)utution, pp. 397-406,
October 1990.

[OKD90] M. T. 0' Keefe and H. G. Dietz, "Hardware barrier synchronization: static barrier
MIMD (DBM)," Proc. of 1990 Int'l Conf on Parcillel Processing, St. Charles, IL,
pp. 143-46, August 1990.

[RoS87] J. Rose and G. Steele, C*: An Extended C Languc~e ,for Datu Prlrullel Program-
ming, Thinking Machines Corporation, Technical Report PL87-5, Cambridge, Mas-
sachusetts, April, 1987.

[SiN87] T. Schwederski, W. G. Nation, H. J. Siegel, and D. G. Meyer, "The Implementation
of the PASM Prototype Control Hierarchy," Proc. of Second Irzt'l Conf on Super-
computing, pp. 1418-427, 1987.

[TMC90] Thinking Machines Corporation, C* Progrclmming Guide, Thinking Machines Cor-
poration, Cambridge, Massachusetts, November 1990.

[TMC92] Thinking Machines Corporation, Connection Muchine CM-5 Technical Summary,
Thinking Machines Corporation, Cambridge, Massachusetts, November 1992.

Page 19

- -7

Part 11: Mode Emulation March 1994

[Wat93] D. W. Watson, Compile-Time Selection qf P~amllel Modes in an SIMD/SPMD
Heterogeneous Parallel Environment, Ph.D. Dissertation, Purdue University School
of Electrical Engineering, August 1993.

Page 20

-7-
- - -.

	Purdue University
	Purdue e-Pubs
	3-1-1994

	Dynamic Barrier Architecture For Multi-Mode Fine-Grain Parallelism Using Conventional Processors Part 11: Mode Emulation
	W. E. Cohen
	H. G. Dietz
	J. B. Sponaugle

