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Abstract

Parallel computers constructed using conventional processors offer the potentia to achieve
large improvements in execution speed at reasonable cost, however, these machines tend to
efficiently implement only coarse-grain MIMD parallelism. To achieve the best possible speedup
through parallel execution, a computer must be capableof effectively using al the different types
of parallelism that exist in each program. A combination of SIMD, VLIW, and MIMD parallel-
ism, a a variety of granularity levels, existsin most applications; thus, hardware that can support
multiple types of parallelism can achieve better performance with a wider range of codes.

In the companion paper {CoD94), we present a new hardware barrier architecture that pro-
vides the full DBM functionality we discussed in [OKD90], but can be implemented with much
simpler hardware. In this paper, we show how this mechanism can be used to efficiently support
multi-mode moderate-width paralelism with instruction-level granularity (i.e., synchronization
costis approximately one LOADinstruction).

Keywords: Dynamic Bamer Synchronization, MIMD/VLIW/SIMD Mixed-Mode Computation,
Execution Models, MIMD/SIMD Coding Strategies, Instruction-Level Parallelism.

i This work was supported in part by the Office of Naval Research (ONR) under grant number
N00014-91-J4013 and by the Nationa Science Foundation (NSF) under award number
9015696-CDA.
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1 Introduction

While the market for massively parale supercomputers has remained limited, the
demand for more conventional computers has grown to the extent that many microprocessorsare
now considered ** commodities.” The high sales volume for these parts has justified heroic design
and fabrication efforts, with the result that some microprocessorsoffer uniprocessor performance
that is simply beyond what can be achieved with the more modest resources available for design-
ing specialized processorsfor supercomputers. A similar argument appliesto the devel opment of
system software. Thus, building massively parallel supercomputersusing standard microproces-
sors seems very attractive. The problem is simply that these chips were not designed to be used
in aspeedup-oriented parallel configuration.

Nonetheless, using these microprocessors, it is easy to build a massively parallel system
that can achieve reasonable performance for very large-grain parald applications; one might
even be able to use workstations connected by loca area networks (LANs). The chalengeis to
achieve good performance with fine-grain parallel applications. It is possible to build systems
that use standard chips yet yield good fine-grain performance; however, the system must be
designed very carefully to achievethisgoal.

Some of the system attributes most important to achieving good fine-grain performanceare:
[1] Good processing element (uniprocessor) performance.

[2] Near-zero cost synchronization (and hence the flexibility of choice of execution
mode).

[3] High-performancecommunicationswith both low latency and high bandwidth.
[4] Compilersthat can effectively use the system, as opposed to individual processors.

It is arelatively ssimple matter to use a commodity microprocessor to cheaply provide [1], but
cost-effective waysto achieve[2], [3]1, and [4] are surprisingly elusive. The key questionis why?

Obtaining near-zero cost synchronizationis difficult for a number of reasons. :Perhapsthe
most fundamental cause is the propagation delay of electrical (or optical) signalsin a parallel
machine; however, even the most distant processng elements within a massively-parallel
machine can be just tens of nanosecondsapart. Thus, the synchronization speed of most paralel
machinesis not limited by distance, but rather by the inappropriatenessof their synchronization
model. For example, synchronization methods that require synchronization signals to be
"routed" between processorsare generally slow because dynamic routing implies delays due to
switching and propagation through active components.

Further, synchronization cannot be efficient if invoking each synchronization requires exe-
cution of an expensive sequence of instructions. Any synchronization operation across multiple
processors requires each processor to notify the processorsthat it should synchronize with and to
obtain an acknowledgement that the synchronization has completed; both of these operations
require off-chip communication. In modern microprocessors,the combination of a high interna
clock rate, deep pipelining, and out-of-order instruction execution, makes off-chip references
expensive and their timing imprecise. Thus, it is vita that the number and cost of off-chip
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references needed to implement a synchronization operation be minimized.

From an engineering point of view, construction of high-performance communication
hardwareis not particularly difficult; low latency and high bandwidth are both relatively easy to
obtain at reasonable cost. The problem lies not in actual communication of data, but in the
processes of sending, routing, and receiving data. Sending and receiving data must both require
execution of very few instructions; routing (including arbitration of shared paths) must be ma&
asefficient aspossible.

Finally, compilers for single processing elements leave management of interactions
between processing elements to the application programmer, but the level of detail needed to
efficiently schedule these interactions is not accessible in a high-level language. Even if that
level of detail were visible to the programmer, making the best use of such a machine involves
complex VLIW-like code scheduling based on detailed machine-dependent timing analysis — a
burden that few programmerswould be able to bear. Without acompiler that treats the system as
a system, the programmer can expect to spend a lot of time writing, and performance-tuning,
highly non-portablecode.

In this paper, we suggest that all these problems can be cheaply solved by implementing a
very simple and fast barrier synchronization hardware mechanism. Relativeto the aboveissues:

[I] The new mechanism can efficiently use conventional processors as processing ele-
ments.

[2] This synchronization hardware is not PE-to-PE, but PE-to-synchronizer; therefore,
thereis no routing. Using conventional processors, the cost of invoking a synchroni-
zation isessentially one off-chip operation (i.e., a LOAD operation). Theresultisthat
fine-grain synchronizationtimeis dominated by signal propagation delay.

[3] Becausethesynchronizationis so precise, the communi cation mechanism can be stat-
ically scheduled. This can greatly simplify the system by minimizing routing and
arbitration hardware. It aso improves performance by reducing the send/receive
software overhead, as was observed in the PASM prototype (see Section 4.4 of the
companion paper [CoD94] for adiscussion of PASM’s barrier mechanism) [BeS91].

[4] Although the compiler must aggressively use timing analysis to determine how to
optimally schedule code for such an architecture, the hardware allows the compiler to
view the machine as a much simpler target, e.g., as a straightforward partitionable
SIMD. Although some efficiency might be sacrificed, building a good compiler for
such a simple execution modd is much easier than building a compiler to achieve
comparable performance for the more conventional, loosely-coupled, MIMD models.
The ability to switch execution modes on demand also alows for optimization of the
execution model to match the program structure.

Thus, theway to achieve afamiliar environment with better performanceand lower cost per
unit performanceisto use compiler timing analysis and code scheduling technology in concert
with careful architectural design so that a set of commodity microprocessors can behave as a
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tightly-coupled parallel system with a nominal amount of **gluelogic.”" We suggest that the key
tothisisthe useof aparticular typeof hardwarebarrier synchronizationin conjunction with com-
piler code scheduling.

In this paper, weignore the **fancy* compiler technology [Di092]. Thefocusof this paper
is how the new barrier mechanism describedin [CoD94] can implement various execution modes
that can beeffectively used with conventional compiler technology.

2. Execution Models

As pardlel processing has developed, the execution models used with different systems
have not converged. Oneis tempted to view this divergence as a sign of the field's immaturity;
however, we suggest that the use of a range of execution modesis primarily driven by the fact
that the relative performance of different system organizations is highly application-dependent
[Wat93]. Although the vast majority of parallel computers effectively support only a single exe-
cution mode — MIMD, VLIW, or SIMD — supporting multiple modes allows arelatively smple
compiler to target whichever mode is most expedient for each language, or even for each pro-
gram.

Just as languages and complete programs often exhibit strong execution mode preferences,
so too can individual functions within asingle parallel program desire specific execution modes
[NiS90]. By constructing hardware that can rapidly switch between multiple execution modes,
one gains the opportunity to improve performance by using the execution mode that is most
appropriatefor each portion of a program [Wat93].

In this section, we describe how the proposed barrier mechanism can be used to efficiently
implement three different execution modes. MIMD, VLIW, and SIMD. Note that the proposed
implementations also allow very rapid switching between modes. Finally, we discuss theissue of
granularity of execution.

21 Implementation Of MIMD Execution

MIMD (Multiple Instruction stream, Multiple Data stream) execution is essentially the
native execution mode for a machine that is constructed as acollection of conventional sequential
processors. Each processing element asynchronously executes code from its own local memory,
as shownin Figure 1. Most often, the same codeimageis replicatedin each processor; this varia-
tionon MIMD is known as SPMD (Single Program, Multiple Data) execution.

Because processing elements are executing asynchronously, even if there are no externa
reasons for processing elements to loose synchronization(e.g., no interrupts), w hi |l e loops and
pipeline bubbles can cause significant differencesin execution rates. When relative timing infor-
mation across processing elements is required, a barrier synchronization can be explicitly per-
formed to restore static time constraints.
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Memo Mem] Memn
Prog0, InstO0 Prog1, Inst0 Progn, Ingt®
ProgO, Inst1 Progl, Inst] Progn, Tnstt
Prog0, Inst2 Prog]l, Inst2 Progn, Inst2
ProgO, Instm Progl, Instm Progn, Instm

Figure1l: Memory Layout For MIMD Execution

There are a wide range of techniques that can be used by a processing element to signal its
arrival at a barrier, and to cause the processing element to wait until the barrier has fired. For
example, in our scheme, a barrier synchronization is accomplished in asingleinstruction by issu-
ing a LOAD from an address decoded as a barrier synchronization request. The memory refer-
ence does not complete until the barrier has fired.

2.2. ImplementationOf VLIW Execution

VLIW, or Very Long Instruction Word, computation is based on use of a singleinstruction
sequence with an instruction format that allows a potentially different opcode for each function
unit. Treating each processing element as a function unit, genuine VLIW [EI85] [CoN88] execu-
tion can be obtained without any hardware changes. Each long instruction word is striped across
the various local (instruction) memories, as shown in Figure 2. Le., the VLIW instruction at
address ais encoded by having address ain instruction memory B be the opcode field for func-
tion unit 3.

Although synchronization would normally be maintained by the way the code is scheduled,
variable-time operations and interrupts could cause synchronization to belost. This problem can
be averted by simply imposing a barrier before each instruction.

An additional feature that many VLIW scheduling techniques useis the ability to combine
multiple conditional-JUMP instructions into a single multi-way branch executed by al proces-
sors. There are a variety of possible implementations. In [BtN90], Brownhill and Nicolau dis-
cuss this problem in detail and propose “‘Setbit’” hardware to accumulate the results of VLIW
branch conditions computed on various processors — the barrier architecture proposed in this
paper directly implements asuperset of the Setbit functionality.
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Memo Mem1 Mem n
InstO, Op0 IngO, Opl ngtO, Opn
Inst1, Op0 Instl, Opl Instl, Opn
Inst2, Op0 Inst2, Opl Inst2, Opn
Instm, Op0 Instrm, Opl Instm, Opn

Figure 22 Memory Layout For VLIW Execution

2.3. Implementation Of SIMD Execution

SIMD (Single Instruction stream, Multiple Data stream) execution is very similar to VLIW
execution. The primary difference is that, while VLIW instructions allow a different opcode for
each function unit (i.e., processing element), SIMD provides only one opcode field in each
instruction. Therearetwo basic schemes by which this can beimplemented:

[1] Treat SIMD as a " degenerate’ form of VLIW. Thisisdone by replicating the SIMD
instruction stream in each local memory and executing that program in VLIW mode
(Figure 2).

[2] Directly implement SIMD execution from a single copy of the instruction stream.
Rather than having processing elements fetch instructions from local memory, have
all processors fetch instructions from a shared ** broadcast memory** (Figure 3), with
each instruction fetch implying a barrier synchronization. Because SIMD execution
implies that al the processing elements will be fetching from the same location at the
same time, the same broadcast memory address will be fetched by all processing ele-
ments, effectively broadcasting the opcode. In fact, since the fetch address must be
the same for al processing elements, the address could be ignored and the broadcast
memory could simply be aFIFO queue [SiN87] or even a single register that holdsthe
next broadcast instruction.

In addition to the SIM D concept of asingle opcode, the SIMD execution model is generally
expected to provide support for enable masking: the ability to *"turn off" selected processing ele-
ments for a sequence of operations.
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Mf:m0 Mem1 Memn BCastMem

InstO

Instl

Inst2

Instm

Figure3: Memory Layout For SIMD Execution

There are a variety of simple and effective ways in which hardware could disable particular
processing elements, but the most practical implementationis probably to have al processingele-
ments perform every operation, nulling the effects on the processing elements that should not
have been active. For example, some processors have conditional store instructions that would
allow *"disabled"* processingelementsto perform computations, but not update variables with the
results. With somewhat greater cost, this nulling can even be done using conventiona arithmetic;
for example, the parallel assignment:

cC =a + b;

Can be made to execute only when enabl ed is a bit mask containing al 1s (for true, as
opposedto 0 for false) by all processing elementssimultaneously executing:

C = (((a+Db) &« enabled) | (¢ &« "enabled));

Another implementation would beto simply JUMP over codefor which enabl ed is false, but
this must be done very carefully to avoid accidentally skipping operations that should be exe-
cuted (enable mask operations, scalar code, function calls, etc.). Further, using JUMPs can cause
pipeline bubblesthat seriously degrade performance.

There is also the issue of **stacking™ enable status as nested constructs change the set of
enabled processors. Althoughthe enabl ed status could smply be pushed on the stack for each
construct, perhaps the best method is that proposed by Keryell and Paris [KeP93]1. In their
scheme, a counter in each processor is used to track the number of properly nested constructsfor
which each processor has been disabled. If this counter is zero, the processor is enabled; other-
wise, the processor is disabled. This schemeis both fast and memory efficient, since entering a
new enable scope requires only update of the counter (presumably a register; thus implying no
memory references).

Just as enable masking does not require additional hardware, the fact that the traditional
view of SIMD incorporates a control unit (CU) does not require the hardware to have such a
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processor. The primary function of the CU is to broadcast instructions; which is managed by the
mechanisms described earlier. The secondary function of the CU is to perform scalar computa-
tions. This aso can be done without additional hardware by simply designating one processing
element to act as the CU. Alternatively, it is easy to add a processor to the broadcast memory
interface to act as adedicated CU. In fact, most parallel computers have a serial front-end host
that could betreated as adedicated CU.

24. Granularity

In the above discussion of execution modes, this paper refersto parallel execution of indivi-
dua operations or instructions. This seems to imply very fine grain: instruction-level parallel-
ism. However, thereis no reason to require that an operation or instruction is an atomic function
for the hardware; it could instead be an entire subroutineor sequenceof machineinstructions.

In thislight, it can be seen that the execution mode does not imply granularity. Normally
one thinks of MIMD as coarse-grain, and SIMD and VLIW asfine-grain, but any combination of
mode and granularity is possible. For example, one can imagine a coarse-grain SIMD machine,
in which each operation is actually an entire subroutine— yielding agrain size that could betens
of thousandsof machinecycles.

We define the granularity of a program's execution as the amount of time spent computing
locally before an interaction with another processing element is required. The simplest possible
interaction with another processing element is to synchronize with it; thus, a machine's grain size
is similarly defined to be the amount of time taken to perform a synchronization. Equivaently,
thisisthe maximum error in one processor's estimate of what another processor is currently exe-
cuting. Assuch, it formsthe basic unit for (compile-time) code scheduling.

To simplify the discussion, consider a machine with grain size x that must execute a pro-
gram with grain sizey |y<x. In such acase, the program will always execute at least afactor of
x/y slower than the machine's peak speed due to interaction delays. Put another way, in order to
achieve a program grain size of x, one could attempt to pack x/y grains of computation that
interact with each other onto each processingelement. Thus, the x/y factor also can be viewed as
a reduction in the usable parallelism width of the program, and a larger machine grain size
reduces the probability that programswill have enough parallelismto get good performancefrom
massively-parallel hardware.

The ideal grain size results when synchronization can occur at the level of simple data
movement, i.e., at thelevel of register movesor LOAD/STORE instructions. Thisisthelevel of
the barrier mechanism presented in the current work. In contrast, for most machines, the grain
size ranges from hundreds of instructions (e.g., [TMC92]) to thousands of instructions (e.g.,
[Ncu9Q] or [Int92]); which severely restrictsthe classof programsthat will be ableto make effec-
tive use of the hardware.
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3. Coding Strategy

As suggested in Section 1, the most efficient way to use the proposed hardware involves
detailed static timing analysis and compiler code scheduling [Di092]; however, reasonable per-
formance can be obtained for a wide range of programming models without resorting to such
complex compiler techniques. For this paper, we limit the discussion to three of the most com-
mon parallel programming modelsthat are suitable for expressing scalable fine-grain parallelism:

[1] Programming models based on groups of worker processesthat asynchronously obtain and
execute tasks from a worklist. A good example is The Force [Jor87]; however, most
SPM D-oriented languages follow these semantics.

[2] Programming models based on data paralelism with SIMD-oriented ordering constraints
and structured control of the active set of processing elements. A good example is C*
[RoS87]; however, most data-parallel languages, including most parallel dialects of Fortran
90 [ANS89] (CM Fortran, MasPar Fortran, etc.), follow these semantics.

[3] Programming models based on data parallelism with provision for unstructured control of
the active set of processing elements; thisis essentially a variation on the SIMD semantics
of [2]. A good exampleis MPL [MCC91] withits all statement or the new C* [TMC90]
withits everywher e statement.

For each of these programming models, we present a simple description of the corresponding bar-
rier execution model and examples showing how common language constructs could be coded for
the target barrier machine. Since a wide range of programming languages and processor instruc-
tion sets can be supported, we have chosen to represent both the programming language con-
structs and the translated codein a notation based on C. The notation is described in the follow-
ing section.

3.1. Notation

Although each of the programming models provides a wide range of constructs, the basic
semantic differences between the models are effectively illustrated by examining the coding of a
parallel conditional construct (if -else) and a parallel loop construct (while). Since we are
focusing on the semantic differences, the syntax of the language constructsis relatively unimpor-
tant; for the purposes of this paper, we will refer to the MPL syntax givenin Listings 1 and 2.

i f  (parallel_expr) {
Stat_da;
yel se{
stat_b;
}

Listingl: Paralel i f-else
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whi le(parale -expr) {
stat ;

}

Listing 2 Parallel whi | e
The target barrier code for our examplesis given as raw C code that would be replicated on
each of the processors. It isimportant to note that all variablesreferenced in the target code can

be placed in registers and that the macros WAI T (), WAI T- GATHER(), PUSH(), and
POP () are used only becausethey are more mnemonic than theinstructionsthey represent:

WAI T ()
The WAI T () operation takes one argument, which is the barrier address containing the bit
vector that describes the processorsto participatein the barrier synchronization. A process-
ing element will not continue past the WAI T () until al the processing elements participat-
ing in that barrier are executing corresponding WAI T () operations. The CARDBoard’s
Am29050 processors implement WAI T () as asingle LOAD instruction; the generic C
definitionis:
#define WAIT(bar) *(bar)

WAl T- GATHER()

The WAI T- GATHER() operation has two characteristics which differentiate it from the
WAI T () macro — it takes a one bit flag and returns a bit vector. The one bit flag can be
used to communicate information to the other processing elements participating in the bar-
rier, usually the result of atest operation. The valuereturned is aword valuethat looks like
the barrier address, except in that the bit vector contains the flag values gathered from each
processor rather than bits indicating which processors participate in the barrier. Return
value bit positions corresponding to processors not participating in the barrier have
undefined values. The CARDBoard’s Am29050 processorsimplement WAl T- GATHER()

asan ORinstruction followed by a LOAD; however, many processors can implement this
operation using asingle LOAD with an addressing mode that adds two registersto form the
data address. The generic C definitionis:

#defi ne WAIT_GATHER(bar, flag) *((bar) + (flag))

PUSH()
The PUSH () operation simply savesits argument on the runtime stack.

POP ()
The POP () operation simply returns the value from the top of the runtime stack and
removes that value from the stack.

Thus, athough the target code might appear to beinvoking relatively expensive functions to per-
form barrier synchronizations, the actual cost of executing these macrosis typically either one or
two instructions with at most one off-chip reference.
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Throughout the code examples, we make use of the following variables:

barri er - addr ess
Thisisthe addressto referenceto cause abarrier across the currently selected set of proces-
sors, as discussed in Section 3.3.1 of the companion paper.

f1 ag- vect or - mask
Thisis a(machine-specificconstant) mask that coversal the bitsin the flag vector.

3.2. TheSPMD Worker Mode

Of the three programming models, the least constrained is the SPMD worker model, in
which barrier synchronizations are directly visibleto the user as " barrier statements.”* In general,
barrier synchronizations are invoked only when the programmer explicitly calls for them; how-
ever, the system must automatically track which processors may synchronize with each other, and
this can introduce additional barriers for the purpose of broadcasting information about a new
partitioning of the workers.

Thus, we can imagine a parallel construct being used to partition the current set of workers
into two sets: those where some paralel expression evaluates as true and those in which the
expression evaluates as false. When such a construct is encountered, each processor executing
the construct can select which set will containit. However, these sets are not fully specified until
al processorsthat will execute the construct have made their individual decisions. We suggest
that asingle WAl T- GATHER( ) operation suffices to both ensurethat the sets are fully specified
and to notify each of the participating processorsof the complete membership for the set that con-
tains them. Becausethe WAl T- GATHER() operation returns bits for all processors, even those
that did not participate in the barrier, it is a simple matter of appropriately masking the return
value to convert the set membershipinformationinto a barrier mask for that set.

This semantic definition and coding technique covers the partitioning actions implied by
both i f-el se and whi | e statementsin aSPMD worker model. Noticethat, if the constructs
did not imply partitioning, no barrier synchronization operations would be needed beyond those
explicitly requested by the user. The following sections detail the behavior and coding of these
partitioning constructs.

3.21. Paralld if-el se

The semantics of an SPMD i f -el se construct do not imply an ordering between the
"then' and the el se clauses of the construct. In fact, the two alternativesare asynchronously
executed by mutualy exclusive sets of processors. Thus, if such a construct is used to partition
processors into two independent groups that can synchronize within themselves independently,
code must be introduced to create the new barrier masks. Notice that this operationis atrue par-
titioning of the previous barrier mask; each processor will join either the **then™ barrier group or
the el se barrier group. Further, notice that this partitioning cannot affect any processors that
were not a member of the original barrier group. A sampleimplementation of these semanticsis
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givenin Listing 3.

PUSH({barrier_address);
t = padld-eqr;
gather-result = WAIT_GATHER(barrier_address, t);
if (¢ == 0) goto E se;
barrier- address &= gather-result;
da-a;
goto Exit;
El se:
barrier- addreaa &= (flag- vector- nask =~ gather_ result);
sta-b
Exit:
barri er- address = POP();

Listing3 SPMD worker model SIMD paralel i £-el se

This code first saves the current bar ri er - addr ess, because within the construct each
processor will usea barri er - addr ess that is a subset of the original, yet the original must
be restored a the end of the construct (by the POP()). The next step is to evaluate
pard | d -eqr to determine whether the "*then™ or el se clause should be executed; in either
case, usinga WAl T- GATHER (), theresult of thisevaluationis also sent to other processing ele-
ments. Once within the appropriate clause, the gathered evaluationinformation is used to create
thenew barri er - addr ess by removing processorsthat selected the other clause. The only
remaining task is to execute the code within the selected clause.

Noticethat al thecode givenin bol d can beremovedif the statement is not being used to
partition the current barrier group, i.e., if there are no nested referencesto barrier synchroniza-
tions using the partitioned barrier groups.

322 Paralld while

The semantics of a SPMD whi | e allow each processor to asynchronously execute as
many iterations of the loop asit desires. However, if the whi | e is being used to partition the
current barrier group, a synchronization must be inserted at the top of each iteration of theloopin
order to compute a new partition of the barrier group. Thus, thereis only one active barrier group
within the loop, and that group monotonically decreasesin size until it has no members, at which
time the original barrier groupisrestored. A sampleimplementation of these semanticsis given
inListing 4.
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PUSH(barrier_address);
Loop:
t = parallel-expr;
gather-result = WAIT GATHER(barrier_ address, t);
barrier- address &= gather-result;
if (¢t = 0) goto Exit;
stat ;
goto Loop;
Exit :
barrier- address = POPO;

Listing 4 SPMD worker model parallel whi 1e loop

Asforthe if -el se example, the looping codeis enclosed by instructions saving and res-
toring the original barri er - address and WAl T- GATHER() is used to restrict the current
barrier- address. Notice that processors that exit the loop early will be given a
barri er - address that is a superset of those still executing within the loop; however, this
causes no conflicts. If one of these early processors attempts a barrier synchronization, the fact
that it iswaiting will beignored by the processorsin theloop.

33 TheStructured SIMD Model

Compared to the SPMD worker model, the structured SIMD mode imposes an additional
ordering constraint: the execution of constructs is serialy ordered such that operations that
appear later in the source program are executed only after al processors have moved past dl ear-
lier code. This essentially corresponds to the concept of structured code being executed only
when the single program counter in a SIMD machine has reached that code. Notice, however,
that this modd does not requirethat all processorsactually execute al code.

The following section describes in detail the execution of the parald if - el se and the

paralel whi | e statement for the structured SIMD model and how these constructs would be
implemented using the barrier mechanism.

331 Parallel if-el se

Structured SIMD semantics require an ordering that first evaluates parallel-expr, then
stat-a, and finaly, stat-b. Thus, although processorsmay be waiting & the el se clause as soon
as the first processors reach the *""then' clause, barrier synchronizations ensure that there is no
overlap in the execution of these clauses. Animplementationof these semanticsisgivenin List-
ing 5.
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PUSH (barrier_address);
t = parallel_expr;
gather-result = WAIT_GATHER(barrier_ address, t);

if (t == 0) goto Else;
barrier- address &= gather-result;
Stat-a;

barri er- address = POP();
A: WAIT(barrier_address); /* pairs with B */
goto EXxit;
Else:
B: WAIT(barrier_address); /* pairs with A */
barri er- address &= ( flag- vector- nask ~ gather_result);
stat-b;
barrier- address = POP():
Exit:
WAIT (barrier_address); /* all processors here */

Listing5: Structured SIMD parallel i f -el se

Thefirstfivelinesof this code areidentical to the code using the SPMD model because pro-
cessors are allowed to execute the ""then™ clause under the same conditions that applied for the
SPMD model. However, the remaining code must ensure that the el se clauseis not executed
until all processors that entered the i f are either ready to execute the el se clause or have
completed executing the **then clause. Further, when that second bamer has fired, yet another
barrier must be imposed to ensure that the processors that executed the **then™ clause will not
execute past the i f statement until the last processor has completed executingthe else clause.

One might wonder why the effort of partitioning the barrier mask and executing two addi-
tional synchronizations would be desirable. The answer is in the code that is not in the
example — there is no SIMD-style enable masking needed to disable inactive processors. Simu-
lation of SIMD-style enable masking using conventional processorsis likely to be slower than
performing these barrier operations (see Section 3.4).

3.3.2. Parallel Wil e

Structured SIMD code differs from SPMD only in that it requires a complete ordering
between blocks of paralel code. Becausethe SPMD encoding of while enforces such an ord-
ering with just one exception, it is not surprising that the structured SIMD code can be nearly
identical. As seenin Listing 6, the one differenceis that the structured SIMD code must ensure
that no processor can execute past the while until al processorsthat entered the loop have
completed the loop.
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PUSH(barrier_ address);
Loop:
t = paralle-expr;
gather-result = WAIT GATHER(barrier_address, t);
barrier- address &= gather-result;
if (£t == 0) goto Exit;
stat;
goto Loop;
Exit:
barri er- address = POP();
WAIT (barrier_ address);

Listing 6: StructuredSIMD parallel while loop

34. TheUnstructured SIMD Model

In most high level languages designed for SIMD machines, the programmer does not have
direct control of the enable status of the processors; rather, changes in the enable status are
implied by structured control constructs. The rule is that the code within a construct cannot be
executed by processorsthat were disabled at entry to the construct. Thus, the handling of enable
status for each processor acts as a stack where an enable statusis recorded for each active scope
and the stack always has the property that once a disableis placed on the stack, al items placed
on the stack after that item will aso be disables [KeP93]. These semantics yield the structured
SIMD mode described above.

However, most SIMD hardwaredoes not restrict processors to manage enable statusin that
way. Thus, some SIMD languages providefeaturesthat allow " unstructured'* changesto proces-
sor enable status. For example, MPL’s all construct enablesall processingelementsfor execu-
tion of thefollowing statement — enabling processors that weredisabled at entry to the enclosing
region of code. In fact, a statement affected by an all can be a compound statement that con-
tains additional structured and unstructured masking. Another example is MPL’s proc con-
struct; proc[i].j refersto the valueof 3j on processor i ,reguardiess of whether processor
i was enabled in the enclosing region of code. Because disabled processing elements can be
enabled at any time, all processing elements must synchronoudy follow the same control flow
paths.

Thus, unlike the other two programming models, the set of processorsin the barrier mask
never changes. All barriers are performed with the all_processors barrier address, which
represents a barrier mask including all processorsin the portion of the machine that is executing
this program.

Since the barrier mask is not used to track the SIMD enable set (as it is in the structured
SIMD code), some other mechanism must be used. Thus, processors must simulate enable mask-
ing using one of the techniques described in Section 2.3. The next section defines how enable
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masking isrepresentedinthe if -el se and whi 1eexamplesin the sectionsthat follow.

34.1. Enable Mask Simulation

For simplicity, we will denote the current enable status of each processor as the value of the
variable enabl ed; this valueis 0 if the processor is disabled, 1 if it is enabled. Although
there are a variety of different approachesto simulation of enable masking, there just three basic
operations needed to track the processor's enabl e status:

PUSH- ENABLED( )
This operation saves the current value of enabl ed onto the processor's stack.

TCP- COF- ENABLED- STACK()
This operation returnsthe enabl ed value on top of the stack, but does not remove that
valuefrom the stack.

PCP- ENABLED()
This operation returnsthe enabl ed value on top of the stack, but also removesthat value
from the stack.

Alternatively, the referencesto the enabl ed variable and these operations can be replaced by
the less intuitive, but more efficient, " activity counter' equivalentsdescribed in [KeP93]. Note
that the " activity counter” technique by itself assumesthat a processor cannot be enabled from
within a construct if it was disabled at entry to that construct, but constructslike MPL’s al | can
be correctly handled by stacking the **activity counter'* value at entry toan al | and unstacking
the value at exit.

In addition to tracking the processor's enable status, it is necessary to ensure that disabled
processorsdo not change the values of variables to reflect the results of operations in their path.
Thisis further complicated by the fact that disabled processorsshould not be prevented from exe-
cuting operations that may alter their enable status. Because the method used (e.g., arithmetic
nulling, as described in Section 2.3) can literally change how code is generated for every opera-
tion within a statement, we have chosen to simply indicate which regions of the generated code
must be processed by such a transformation. Any code within a EVAL_ENABLED () isto be
generated such that operations not involved in computing enable status have no effect if
enabl edis 0 (false).

342. Pardlel if-else

Unlike the other execution models, the unstructured SIMD semantics do not make a parallel
if -el se construct change the control flow of the program. Rather, the construct changes
enable/disable status of processorsas al the processors pass through the code for both the ** then™*
and el se clauses.

Although both the new C* [TMC90] and MPL [MCC91] use unstructured SIMD execution,
the C* language more literaly adheresto the principle that control flow cannot be atered by a
parallel construct. Even if no processors are enabled, C* semantics suggest that the complete
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code sequence should be " executed.”" In contrast, MPL semantics suggest that code for which no
processor is enabled should not be "*executed.” Thus, before each section of conditionally-
executed code, MPL inserts instructions that jump over the code if no processors would be
enabled for its execution. This difference in semanticsis reflected by the fact that the code of
Listing 7 implements the MPL semantics as is, and implements the new C* semantics if the
bol d codeisremoved.

PUSH- ENABLEDG;
t = 0;
EVAL- ENABLED(t = parallel_expr) ;
enabled = t;
any = WAIT GATHER(all_processors, enhabl ed);
if ((any & flag_vector_mask) = 0) goto EHl se;
EVAL- ENABLED(stat-n) ;

El se:
enabl ed = TOP- OF- ENABLED- STACKG,
enabl ed &= "t;
any = WAIT_GATHER (all_processors, enabl ed);
if ((any & flag- vector- nmask) == 0) goto Exit;
EVAL- ENABLED(stat_b) ;

Exit :
enabl ed = POP- ENABLEDG;

Listing 7: Unstructured SIMD parallel i f - el se

343 Parald Wi le

Because the new C* does not alow control flow to be atered by a pardld construct, there
isno parallel whi | e in C*. However,thereisaparald whi | e constructin MPL. This con-
struct is implemented by thecode givenin Listing 8.
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PUSH- ENABLED() ;
Loop:
t =0;
EVAL_ENABLED(t = parallel_expr) ;
enabled = t;
any = WAIT_ GATHER (all_processors, €nabled);
if ((any & flag_vector_mask) == 0) goto EXit;
EVAL- ENABLED(stat) ;
goto Loop;
Exit :
enabl ed = POP- ENABLEDG,

Listing 8: UnstructuredSIMD parale whi | e

4. Conclusion

Although the use of conventional processorsto construct parallel computers has become
commonplace, very few designs provide support for fine-grain parallelism or for an execution
mode other than MIMD. We suggest that thereis no reason for parallel machines based on con-
ventional processors— or even distributed machines comprised of ordinary workstations— to
suffer these restrictions.

In the companion paper [CoD94], we presented a very simple and inexpensive hardware
barrier mechanism and described in detail how that mechanism can be interfaced to conventional
processors. In this paper, we show how the new hardware allows each portion of the machineto
independently select any of a variety of execution modes including MIMD, VLIW, and SIMD
models. Detailed coding strategies for three commonly used execution modes are presented: a
SPMD worker model, a structured SIMD model, and an unstructured SSIMD model. Reguardless
of execution model, grain sizesas small as afew instructions are efficiently supported — because
barrier synchronization cost is just asingle LOAD instruction.

We are currently working on more sophisticated compiler techniques based on timing
anaysis[Di092).
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