1-1-2007

Reinforced Cage Robot for Concrete Beams and Columns

Purdue ECT Team
Purdue University, ectinfo@ecn.purdue.edu

DOI: 10.5703/1288284315890

Follow this and additional works at: http://docs.lib.purdue.edu/ectfs
Part of the Civil Engineering Commons, and the Construction Engineering and Management Commons

Recommended Citation
http://dx.doi.org/10.5703/1288284315890

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Reinforced Cage Robot for Concrete Beams and Columns

The Need
Improved field productivity is needed as a hedge against the labor shortages that are beginning to occur in the market. Machines improve safety and enhance the quality of the construction working environment. There are also competitive reasons behind these technological developments. In order to compete companies must maintain a level of quality equivalent to other international competitors.

The Technology
The robot or machine, which builds reinforcing cages required for concrete beams and columns, places the longitudinal bars on a jig, then places and ties the hoop reinforcing bars to the longitudinal bars automatically. All the operator must do is turn the machine on, align the hoop bars on the machine, and attach the necessary rigging to the cage for removal after the machine has finished.

The Benefits
This machine replaces two of the three craftsmen required to construct a twenty-foot-long reinforcing bar cage and is able to complete the cage fabrication in approximately 30 minutes at about one half of the original cost.

Figure 1 Automated construction of building (Ohbayashi Corporation)
STATUS
Prototype already developed and in use by Taisei Corp. (Japanese firm).

BARRIERS
Capital costs of initial investment must be considered. High initial disbursement can be offset by associated economies of scale or mass production to reduce costs, recover the investment and have profitable operations. Since U.S. contractors typically rely upon steel fabricators to provide reinforcement, little interest has been shown in cutting costs in this area.

POINT OF CONTACT
Taisei Corp. Japan.
R. W. Nielsen. Bechtel Group, Inc., 50 Beale Street, P.O. Box 3965, San Francisco, CA, USA.
R. L. Tucker. Construction Industry Institute, College of Engineering, The University of Texas at Austin, TX 78705-2650, USA.

REFERENCES

REVIEWERS
Peer reviewed as an emerging construction technology

DISCLAIMER
Purdue University does not endorse this technology or represents that the information presented can be relied upon without further investigation.

PUBLISHER
Emerging Construction Technologies, Division of Construction Engineering and Management, Purdue University, West Lafayette, Indiana