Selection for Non-Remote Storage

Steve Alleman

University of Missouri - Kansas City, allemans@umkc.edu

Follow this and additional works at: http://docs.lib.purdue.edu/charleston
An indexed, print copy of the Proceedings is also available for purchase at: http://www.thepress.purdue.edu/series/charleston.
You may also be interested in the new series, Charleston Insights in Library, Archival, and Information Sciences. Find out more at: http://www.thepress.purdue.edu/series/charleston-insights-library-archival-and-information-sciences.

http://dx.doi.org/10.5703/1288284314904

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
Selection for Non-Remote Storage

Steve Alleman, Head of Collections, University of Missouri – Kansas City

Abstract:
University of Missouri – Kansas City Built a storage facility adjacent to the main library with automated retrieval and designed it to hold approximately 80% of its physical collection. Formulas using date of purchase and frequency of circulation and/or date of last circulation were used to determine which books were stored in The Robot. Issues raised by the unusually large percentage of materials going into storage and by the quick retrieval time are discussed.

All libraries, unless they have completely static collections, have or will have space issues. Unfortunately funding for traditional libraries with plentiful stacks is increasingly unlikely, and the trend toward electronic resources will not solve the space problem soon enough. Unless we make our collections smaller, through weeding, for example, storage is the only solution available to us.

Because its stacks were becoming increasingly filled, in the mid-2000s the Miller Nichols Library at the University of Missouri – Kansas City began planning for a traditional library expansion with more stacks space. That plan was rejected by university administration as too costly. Consequently plans were developed for a storage facility adjacent to the current library with an automated storage and retrieval system (A.S.R.S.) called The Robot. This addition was to be funded primarily with private donations, and groundbreaking on the addition took place in late 2007. The library plans to use the space vacated by the stacks for computer labs, interactive learning spaces, upgraded special collections facilities, etc.

Unlike most storage plans, the vast majority of the library’s print holdings—80%—will go into the Robot. In general the university community was not pleased with the plan to store most of the print collection, but the faculty were told that they would determine what materials would stay out on the browsing shelves. During 2008 and 2009 academic departments were visited to try to gain support and assuage fears.

After this consultation period, it was determined that all bound journals would be stored in the Robot. Volumes duplicated in JSTOR collections subscribed to by UMKC were deaccessioned before the print journals were loaded. Before the Robot, the journal collection was not classified, and it was shelved separate from books, arranged by main entry. Once the bound journals were loaded into the Robot, unbound serials were classified and integrated with the print book collection. In general, loading the serials was not hugely controversial, because the transition to electronic access has been largely successful in that format.

Books have been more contentious, even though circulation statistics show that 40% of our book collection has had no measurable usage. If you were to move 20% of your books into storage, older books that have never circulated or have not circulated in a long time, opposition may be less severe. But if you move 80% of the books to storage, some books that have been used will no longer be browsable. Book circulation and shelf browsing have declined, but faculty who have a more traditional view of the library are unaware of the extent of these changes in usage patterns and resistant to acknowledging them.

If we had not built The Robot, our only option would have been remote storage. Non-remote storage allows us to retrieve stored materials in less than ten minutes. Discovery becomes an issue for books that cannot be browsed. Enhancing catalog records with tables of contents improves access, but not every record is enhanced. Whether patrons can reliably identify books in the catalog and find books on the shelf by call number has always been open to question. Shelf proximity may be over-rated as a discovery tool, but some patrons feel dependent on it.

Selection for storage is determined by what data your ILS can give you. Browsableity is not quantifiable, so time and usage become the most appropriate data points. Data on received/cataloged date
allows you to leave the most recent couple of years on the shelves. UMKC uses Innovative’s ILS, and it saves total number of circulations and date of latest circulation, but not the date of each circulation.

External considerations may determine the order in which materials go into storage. In our case journals were removed for storage first, and space for the books in the Q-Z call number ranges was the next area that had to be cleared. A formula combining currency and usage was used: current books (books added in the last two years) + highly used books (any book circulated at least 5 times) = approximately 20%, which was our target. Since the sciences are less dependent on books, few complaints have arisen since those books were loaded into the Robot.

The formula used for Q–Z books was based on our understanding of Innovative’s capabilities at the time. When the time came to load A–P books, it became apparent that most recent usage was probably a better measure than total uses. A new formula was developed: current books (added in the last two years) + recently used books (any book circulated at least once in the last four years) = approximately 20%. Humanities and social sciences librarians preferred recent usage over total usage.

There were some exceptions to these formulas. For photography (TR) books there was a preference for books of photographs rather than books about photography, which led to the use of size to select books for the browsing collection. Since books containing photographs tend to be the larger quarto-sized volumes, those were the ones the faculty specializing in that area chose to keep out of the Robot. Some classifications covering subjects not taught at UMKC (e.g., S, or agriculture) went into the Robot in toto. Interest in keeping ‘primary resources’ browsable was expressed by Philosophy, History, and English, but only English was willing to go to the great lengths required to create pull-lists that net their narrow set of requirements. This approach has generated some controversy which is still unresolved, because the P section will be the last loaded into the Robot.

Because the project is still being implemented many questions still remain. There is the issue of sustainability. Since we are continuing to add new books, at some point we will have to cull the browsing collection to make room for the additions. We will have to decide at some point whether we will use the same formulas as were used in the original selection process. With the increased acceptance of e-books we assume that the addition of print books will slow down, but we don’t know how this trend will affect the need for more shelf space. Once patrons get used to the convenience of requesting books from the Robot (no need to bother with LC call numbers), will usage patterns shift towards the Robot? All other things being equal, will users choose the convenience of picking up books at the desk over browsability? We would argue that a smaller collection is actually more browsable than a large research collection, but we really don’t know how important browsing is when it comes to finding books or to what extent the process is different from discipline to discipline.

There are some larger questions as well. We hope that non-remote storage, with less than ten minute retrieval, will make patrons more comfortable with a larger percentage of the collection in storage, but of course we have no way of making a direct comparison. We chose the direction of allowing different disciplines to choose different approaches to selection for storage. Obviously one formula would have been easier for the library to manage, but we don’t know the effect of this approach on the user. We also don’t know whether our ability to provide more modern but non-traditional library facilities will make up for the ill will created by moving materials to storage. And thinking long-term, will we find that building and managing a storage facility was worth the effort for a legacy collection that will see less and less use in the coming years?