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Abstract

In this paper, we present a novel wire duplication-based interconnect modeling technique. The proposed modeling
technique uses the original inductance to exploit the sparsity of thematrix, whereL is the inductance matrix,
and construct a sparse and stable equivalent RLC circuit out of the windowed inductance matrices. The model

avoids matrix inversions. Most important, it is more accurate and more efficient than many popular techniques in the
literature.



1 Introduction

With the continual increasing of clock frequency and global interconnect length and decreasing of signal transition
time, accurate modeling of inductance effects become increasingly more important. The partial inductande matrix
obtained from the PEEC model [8] is extremely large and dense. Direct simulation of thenfiallrix is very time-
consuming and memory-consuming. To make the simulation more efficient, sparsificatiamof ~1 matrices has

been consideredin [7, 5, 3, 6, 1, 2].

One sparsification approach is to discard the mutual coupling terms that are below some threshold. However, the
resulting inductance matrix may not be positive definite; that leads to an unstable circuit. The shift-truncate method
proposedin [7, 5] can guarantee that the generated sparse inductance matrix is positive definite. However, the accuracy
is not satisfactory [3, 6].

[3] demonstrates the locality &f 1. It shows that the matrik—1 has a similar locality property as the capacitance
matrix. Hence, th&.—1 matrix can be easily sparsified by dropping small entries while stability is guaranteed. Thus,
modeling the inductance with the truncated! matrix (denoted by £') instead of thel matrix can reduce the
coupling elements and speed up the simulation. In [6], a new circuit eleiemhich is defined as the inverse of
inductance, is introduced and is incorporated in a simulation tool (knovwhragthod). To avoid th& element in
simulation, We can invert the truncated! matrix to obtain a new inductance matrix (denoted by t). As t is also
a dense matrix, direct simulation of £ (referred to as £ method) is not efficient. [1] performs sparsification on the
£ matrix(known as the double-inverse inductance model). Essentially, the double-inverse inductance model requires
two approximation (sparsification) steps. [2] calculates the sparse inductance matrix directly by using exponential
potentials and matrix inversions are avoided.

In this paper, we present a nowéle duplicationinterconnect modeling technique. This technique is motivated by
the mathematical property that only a subset of the entries of the the double-inverse £ matrix is required to reconstruct
the £~! matrix. Consequently, we can construct an circuit that is equivalent tothenatrix out of the subset of £
by wire duplication It is stable, sparse and as accurate aktmeethod [3, 6]. Furthermore, we can apply the wire
duplication technique to the original inductances directly. Thus, matrix inversions are avoided. Most important, the
accuracy is improved.

The following notation is used in the paper:

L: The original partial inductance matrix.

L1 The inverse of..

t =1 Truncated_—1.

t: The double-inverse inductance matrix; the inverse of truncatéd

t method: The method that uses t. instead.afi the simulation.

WD/L: The wire duplication model using the double-inverse inductance matrix t..



e WD/L: The wire duplication model using the original inductance madtrix

2 Mathematical Background

Here we present the mathematical property that the £ matrix contains redundant information. Consequently, we may
use only the central band of £ to reconstruct thé imatrix. That is the key to the proposeite duplicationmethod.
The theorems and the proofs behind the mathematical property are given in the appendix.
LetAbe aN x N band matrix with bandwidth equal tdo2- 1, andB = A~1. We take rows—btoi+band columns
i —btoi+ b of Bto form a sub-matrix. Then, the center row and center column of the inverse of the sub-matrix are

identical to thd'™™ row andit" column of theA matrix:

Ali,i—b:i+b)=(B(i—b:i+b,i—b:i+b)) (b+1,),
A(li—b:i+Db,i)=(B(i—b:i+b,i—b:i+b)™(:,b+1). 1)

Here we use the following notatioA{i : j,m: n) refers to the sub-matrix at the intersection of rows | and columns
mto nof A; A(:,m) refers to colummandA(i, ;) refers to rowi; A(:,m: n) refers to columns frormtonandA(i : j,:)
refers to rows fromi to j. The index of the matrix begins at 1.ilf-b < 1 ori+b> N, we use 1 oN instead.

We illustrate the mathematical property using a layout of 7 parallel and aligned wires. The wire lengtparig 100
and the cross section isSmx 1um. The separation between the wires iSpn. Thel matrix and its inversel(!

matrix) are:

L = 10x

108 851 722 645 590 547 513
851 108 851 722 645 590 547
7.22 851 108 851 722 645 590
6.45 722 851 108 851 722 645 |,
590 645 722 851 108 851 722
547 590 645 722 851 108 851
513 547 590 645 722 851 108

Lt = 109%



254 -168 -0.13 -012 -0.08 -0.06 -0.11
-168 365 —-160 -0.05 -0.07 —-0.04 -0.06
-013 -160 365 -160 -0.05 -0.07 -0.08
-012 -0.05 -160 366 —-160 -0.05 -0.12
-0.08 -0.07 -005 -160 365 -160 -0.13
—-0.06 -0.04 -0.07 -0.05 -160 365 -168
-0.11 -0.06 -0.08 -012 -0.13 -1.68 254

If we drop the small off-diagonal terms I, we obtain a band matrix with bandwidth 3:

b7t = 109
[ 254 —168 ]
_168 365 —160
_160 365 —160
~160 366 —160
~160 365 —160
_160 365 —168

-168 254

If we invert the =1 matrix, we obtain the £ matrix:

b = 10x

[ 673 420 249 148 090 057 038
420 632 375 223 135 086 057
249 375 592 352 213 1.35 090
1.48 223 352 581 352 223 148
090 135 213 352 592 375 249
0.57 086 135 223 375 632 420

| 038 057 090 148 249 420 673

Note that t is a full dense matrix, but from the theorem, we know that we can reconstructthmatrix from
only the boldface entries in the £ matrix. Here we illustrate how we can reconstruct ted13¢ rows (columns) of

the £~ matrix. In the rest of the paper, we drop the orders of and £ for a more concise presentation.



To obtain the ¥ row and column of the £ matrix, we use the (1:2,1:2) window of .:

6.73 420
=£(1:21:2) = .
420 632

Invertingl, we obtain
L 254 -168
I~ = ,
-168 270
whose first row and column correspond to the first row and column of tHenatrix.

Similarly, for the 39 row and column of the £* matrix, we use the (2:4,2:4) window of &

6.32 375 223
|=+(2:42:4)=| 375 592 352 |,
223 352 581

253 —1.60 —0.00
I71=1] —160 365 —160
—0.00 —-1.60 269

Thus, the central band (with bandwidth#L) of the £. matrix contains all the information in the . matrix.

3 Wire Duplication Model

In the previous section we demonstrated that the informatiorréfig contained in the central band of £.. The next
step is to build an equivalent circuit out of the entries in this band and ignore the remaining entries.
The following equation describes the magnetic couplings between the wires in the layout example in the previous

section with the £1 matrix:

Iy 254 —1.68 Vi
2 -1.68 365 —1.60 Viz
. I3 -160 365 —1.60 Via
gl e | = -160 366 -1.60 Via | - (2)
Is -1.60 365 —1.60 Vis
lg -1.60 365 —1.68 | | Ve
7] -168 254 | | Vi7 |

whereVjk andly refer to the voltage drop due to the inductance and the current in thévwaspectively.



We can rewrite the preceding equation in terms of the double-inverse inductance matrix t.:

Vie | [ 673 420 249 148 090 057 038 [ |
Viz 420 632 375 223 135 086 Q57 I,
Vis 249 375 592 352 213 135 090 I3
Via | =| 148 223 352 581 352 223 148 % Iy
Vis 0.90 135 213 352 592 375 249 Is
Vie 057 086 135 223 375 632 420 le
[ Viz | | 038 057 090 148 249 420 673 | |17 |

Now, we shall show how an equivalent circuit can be constructed out of the windows of the £ matrix. For example,

if we take the window corresponding to the (2:4,2:4) sub-matrix of the £ matrix, and apply them to wires 2, 3 and 4,

we have:
Vio 6.32 375 223 I
d
Vis | = | 375 592 352 | = s | )
Via 2.23 352 581 4
or
2 253 —1.60 —0.00 Viz
d
at I3 | = —1.60 365 -1.60 Viz | - (4)
l4 —0.00 —-1.60 2.69 Via

Among the three circuit equations fir, I3, andl4 in Eqn.( 4), only the following equation

% = —1.60Vi2+3.65Vj3— 1.60V4 (5)
matches that in Egn.( 2). Hence, we can model wire 3 correctly, provided theatdV,4 are correct. However, the
equations fot, andls in Eqn.( 4) do not match those in Eqn.( 2), i.e., wires 2 and 4 are not correctly modeled. Thus,
their voltaged/, andV,4 are incorrect. To provide a remedy to this problem, we can model these two wires correctly
somewhere else and use the corkggtaindV,4 values for the modeling of wire 3 here.

Figure 1 shows the modeling of signal 3. In this figure, the diamond&igtands for voltage controlled voltage
source (VCVS) element. The two VCVSs provide the correct voltagdsfandL4. The inputs of the VCVSs come
from the correct modelings &f andL4. Sincel, andL4 here are controlled by their corresponding correct modelings,

they are just dummy copies. We call such coglammy wiresand draw them in dashed lines. In contrast, if a wire



Figure 1: Modeling of wire 3.

is correctly modeled, we call it @al wire and draw it in solid lines. Here wire 3 is a real wire and wires 2 and 4 are
dummy wires. The real wire and the dummy wires formraup. The total number of wires in a group is called the
group sizeor window size Figure 1 shows such a group, which models wire 3 correctly. Similarly, we can construct
a group that includes dummy copies of wire 1 and wire 3 to model wire 2 correctly. In the group that models wire 4
correctly, dummy copies of wire 3 and wire 5 are included. Real wires 2 and 4 in these two groups provide the correct
voltagesvi, andV,4 for the VCVSs in Figure 1.

In general, only one wire is correctly modeled in one group; so we hegibups forN wires in the simulation.
There are one real wire anéh 2Bummy wires in each group if the bandwidth oftis 2b+ 1 (the groups at two ends
are special cases).

In each group, every pair of wires (including both real and dummy ones) are inductively coupled, and there is
no inductive coupling among groups. Lietoe the partial inductance matrix for the wire duplication model, then
is block diagonal and each block corresponds to one graup.is also block diagonal. If we remove the rows for
dummy wires and utilize the fact that dummy wires have the same voltages as the corresponding real wires, we get
back the £ matrix, which is positive-definite [6, 1, 2]. Thus, the circuit obtained by wire duplication is stable.

We use HSPICE to verify the correctness of thise duplicationmodel. We refer to the wire duplication model
using £ matrix as the WD/L model. Two sets of simulation are carried out: one set uses £ method, the other uses the
WD/L model. They producexactlythe same results (See Section 6 for details). It indicates that the WD/t model is
also numerically equivalent to the £ model. This is expected, as they are physically and mathematically equivalent.

Since £ model and&k model [3] are equivalent, the wire duplication model is also equivalent t& timedel [3].

4 Optimize the Group Size

In the wire duplication model described in the previous section, therdoard 2vires in each group (less thah &t the

two ends). There are altogether abbut{2b+ 1) - binductive couplings, whereas the full inductance matrix contains



Figure 2: Modeling of wires 1 and 2.

N- (N —1)/2 couplings. Ifb < N, the wire duplication technique will produce an equivalent circuit of a smaller size.
There are two methods to reduce the circuit size even further. The first method merges the groups at the ends. The

following window captures the modeling of wire 2:

6.73 420 249
|=£(1:31:3)=| 420 632 375 |,
2.49 375 592

254 —1.68 0.00
I71=1] —168 365 —160
000 —160 270

We can see that wire 1 is also correctly modeled. It means that wire 1 and 2 can share one group, as shown in
Figure 2. Similarly, wiredN — 1 andN can share one group.
Such an improvement is marginal; the second method, which uses larger windows, can achieve more reduction.

For example, if we use a window of size 4, for the (1:4,1:4) window, the corresponding matrices are:

6.73 420 249 148

420 632 375 223
l=t(1:41:4) = ,

249 375 592 352

148 223 352 581



350

Run Time (s)

Window Size

Figure 3: Simulation times for different window sizes.

254 -168 0.00 -0.00
-168 365 —-1.60 -0.00
0.00 -160 365 -1.60
—0.00 -0.00 —-160 2.69

In this case, wires 1, 2, and 3 are correctly modeled in this group with a dummy copy of wire 4.

With larger windows, fewer groups are needed to model all the wires. However, this reduction is at the expense
of more couplings within each group; the number of couplings in each group increases quadratically with the window
size. We discuss the trade-off in the remainder of this section.

For simplicity, we assume that all the groups are of the samddsizhe number of wires commonly found in two

adjacent groups should bb.4_etn be the number of groups needed. Then,

N-—2b
B—-2b

n-B—2b(n—1)=N= n= (6)

The number of total wires used & n; the number of total couplings %'(Bz;l)n. The purpose of this study is to

build an equivalent circuit with a smaller size. It includes both wires and the coupling elements. As a rough estimate,

we useB?-n/2 as the circuit size and try to minimize it. We can easily concludei%at: E;%“__zik;) is minimized
when
B = 4b, )
and the minimal value d82-n/2 is
(B2-n/2)min = 4b(N — 2b). (8)

For the circuit example in Section 6, we set the bandwidthdfto be 5, i.e.b = 2, and perform wire duplication

simulations for different window sizes (from 5 through 12). The run times are shown in Figure 3. We can see that the
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circuit obtained with a window size of 8, which i®4has the smallest run time. That coincides with our estimation.
Although the circuit sizes at different window sizes are different, all the resulting circuits are physically and
mathematically equivalent. The simulation results for all of themeaeetlythe same.
WhenB = 4b, there are aboutdb — 1)(N — 2b) inductive couplings and (& — 2b) wires (N — 4b of them are
dummy wires). Note that thi€ method has aboutt- N couplings and requires no dummy wires. Therefore, the wire
duplication technique uses about four times couplings required in the K method and an addlitieBaldummy

wires. This is the price that we pay for RLC simulation instead of RKC simulation.

5 Wire Duplication Using L Matrix

In the previous sections, we use the double-inverse inductance t in the wire duplication model. It turns out that we can
use the original inductandedirectly in the modeling to avoid matrix inversions. An additional and more significant
benefit is that the accuracy is also improved. We refer to the wire duplication modellusiagrix as the WD/L

model.

The use of windowed £ matrix is based on strict mathematical property. That mathematical property can also
explain the validity of using windowed original matiixto a certain extent, ds ! is almost a band matrix. From an
engineering point of view, we can use windowerhatrix to calculate the £! [6, 2]. It means that a window of the
matrix can also capture the magnetic couplings as the £ matrix. We have shown that WD/L is stable. For WD/L, we
can also prove its stability in a similar way.

There is another benefit of using thematrix instead of the £ matrix: it is more accurate. If we use the 4
window size (as suggested in Section 4), we can capture albeutldnductive couplings between each wire and
its neighbors. In contrast, the WD/t model can only capture Rlthough some of the extra coupling captured by

WD/L may not be very accurate, it is better than ignoring them. Figure 4 plots the eigenvalues for the full matrix,
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the equivalent inductance matrices for WD/t., and WD/L. The bandwidthdfand window size used in the wire
duplication methods are 5 and 8, respectively. We can see that the eigenvalues of the equivalent inductance matrix
for WD/t diverges earlier from that of the full matrix. In contrast, the equivalent matrix for WD/L matches better.
Simulation results validate this conclusion (see Section 6 for details).

In the wire duplication method, using original inductance is more accurate than using double-inverse matrix only
when the window sizé is larger than its minimum valueb2+ 1. If B=2b+ 1, usingL does not capture more
couplings. Indeed, it may not capture the correct kalues due to the small window size. Since using minimum
window size B = 2b+ 1) is not efficient, a large window size is always preferred. Thus, we should always use the
original inductance matrik instead of L.

Recall that the simple truncation method also uses a portion of the original inductance matrix to model the in-
terconnects. But the two methods are radically different. The key difference is that in the WD/L method, dummy
wires are added. Thus, stability is guaranteed and inductance effect is captured accurately. It exploits the sparsity of
L~1, whereas simple truncation tries to exploit the sparsity afiatrix, it is not accurate and may not be stable. In
the previous example, the simple truncation method that captures the same inductance terms as the wire duplication

method has negative eigenvalues. It is not as accurate as the wire duplication model even when it is stable.

6 Experiment Results

We demonstrate the wire duplication technique on a bus with 128 signals. Shields are inserted after every four signals.
The wire length is tnm, the cross-section isxX. 1um, and the separation between wirespsml The wires are divided
into 5 segments along the length. The driver resistanceCisa88@ the load capacitance is 40

Different modelings are studied: the full matrix method, the £ method, WD/t, WD/L, simple truncation, shift-
truncate [7, 5], and the double-inverse inductance model [1, 2]. Because Ksim [6] is not available to us, we cannot
performK method directly. Instead, we use the £ method, which is mathematically equivalent€atie¢hod. (Note
that £ method is different from the double-inverse inductance model). The bandwidthta$ 5, and the window
size for wire duplication is 8.

A 1V 20ps ramp input is applied to the first signal, and the rest are quiet. The waveforms for the first, second
that third signals are shown in Figures 5, 6, and 7 respectively. In each figure, results from the £ method and the wire
duplication methods are shown on the left; and results from the shift-truncate and double-inverse methods are shown
on the right. As a reference, full matrix modeling appears at both sides. The truncation only method is not stable and
not shown.

The first conclusion we can draw from these figures is that WD/L is equivalent to the £ method. These two methods
matchexactlyon all figures. The second conclusion is that WD/L is more accurate than WD/L. Although both of them
match very well with the full matrix method, the results of using original matrix are closer. The difference between
these two methods for the aggressor response (Figure 5) is insignificant, but we can still see that WD/L (which overlaps

with the full matrix) is more accurate than WD/t.. The differences between them in the victim responses (Figure 6 and
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Table 1: Run time and memory usage.

Method Memory(MB) | Run Time(s)
full L matrix 812.3 474%x10°
£t method 230.2 2.30x 10*
double-inverse (1% cutoff) 97.1 897
double-inverse (2.2% cutoff 44.3 357
shift-truncate 38.5 283
wire duplication 15.3 58

7) are more pronounced.

In the double-inverse method [1, 2], the same cutoff percentage is used for'theatrix and the . matrix. Both
the double-inverse method with 2.2% cutoff and the shift-truncate method have similar number of mutual inductances
as the wire duplication methods, while the double-inverse method with 1% cutoff has about twice as many mutual
inductances. We can see that they perform worse than WD/L.

Table 1 lists the memory and time usage for different methods. Both wire duplication methods use the same time
and memory. We can see that although there are additional dummy wires in wire duplication method, it uses much
less memory and runs much faster. Although the number of wires and couplings contribute directly to run time of
simulation, the convergence rate, which depends on how well-conditioned the matrices are, is also very important.
We can see that the wire duplication methods are faster and require less memory even than the shift-truncate method
and the double-inverse method (2.2% cutoff), despite the fact that their circuit sizes are actually larger (due to the
additional dummy wires). We believe that the reason is that the inductance matrices of the wire duplication model are

well-conditioned and they are block-diagonal, contributing to faster simulation times.

7 Summary and Conclusion

In this paper, we propose a new interconnect modeling technique—wire duplication. With this technique, we can
generate stable, sparse and yet accurate inductance models for on-chip interconnects. It uses a very small portion of
the original inductance matrixand discards the rest. The wire duplication model using the double-inverse inductance
matrix is physically and mathematically equivalenttanethod. However, we exploit the sparsitylof! by using
inductances in the simulation. Although it is not as sparse aK thienulation, it avoids using the new circuit element

K. Using original inductance instead of double-inverse inductance makes the wire duplication model even more
accurate. Moreover, it avoids matrix inversions.

A common theme in th& method, double-inverse inductance model, and the wire duplication model are that
they all exploit the sparsity df~! by windowed inductance matrix. Themethod and the double-inverse inductance
model do it at the inductance extraction level, while the wire duplication model does it at the simulation level. The
wire duplication model is more efficient than the double-inverse inductance model. We have no chance to compatre its

efficiency toK method. It has several other advantages:

e Itis compatible with most of the existing simulators; we use inductance in the simulation.
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e Itis compatible with existing inductance extractors; we use the original inductance.
e |t requires no matrix inverse.

e Itis potentially more accurate.

8 Appendix
Theorem 1 Suppose A is a R n non-singular matrix, and B is the inverse of AyhN& a minor of A with order m
formed by rowsii,iz, - -,im and columns 4, j2,---, jm. Nn—m IS the matrix remained in matrix B after deleting rows
i1,i2,-+-,imand columnsyj, j2,---, jm. Then,

Nl = (=1)2 ) M| /|A. )

Proof: We first consider the special case that jx = k (1 < k < m). Thus,Mp, is at the top left corner oA and
Nn_m is at the bottom right corner &. We can re-write A and B in block format:
A1 A B B
A— 11 12 : B— 11 12 :
A1 Az Bo1 B2
whereA;1 andB1; arem x mmatrixes;Az2 andB;, are(n — m) x (n—m) matrixes.

SupposéA;1| # 0, we have [4]:

|Baz| = 1/|A22 — An1AT A1 (10)
and,
Al = |Ad1]|A22— Az1A A (11)
Therefore,
B22| = [Aaal/|A (12)

If |A11| = 0, then|Bg,| should also be zero. Otherwise|;| # 0, sinceA = B2, following similar step, we can
also argue thatdi1| = |B2y|/|B| # 0, a contradiction. S{By,| = |A11|/|A| for all cases.

Now we extend the conclusion to general case. By making 1) + (i2—2)+---+ (im—m) = (i1 +i2+--- +
im) —m(m+ 1)/2 successive interchanges of adjacent rows,(gnd 1)+ (j2o—2)+ -+ (jm—m) = (j1+ jo+--- +
jm) —m(m+ 1)/2 successive interchanges of adjacent columus ime can shiftMy into the top left corner oA. We
should also interchanges the corresponding columns and rasnrorder to maintain the inverse relation between
A and B. As a resultN,_ is shifted to the bottom right corner of matiix

Let A’ andB' be the resulting matrixes (hefé does not stand for the transposefoame foB').
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|Al| — (_1)i1+i2+---+im+j1+j2+'-'+jm*m(m+l) |A|

(13)
The relative positions of the elementshfy andN,_k are preserved, so we have
Aél.l = Mm, and %2 = Nn_m (14)
Then,
Nl = [Bhol = |Ap|/|A| = (=1)2 (i M/ [A (15)

Theorem 2 Suppose A is a r n non-singular matrix, and B is the inverse of A. For th&mow of A matrix, only
the entries at columngiiz,---,in are non-zero, the rest are zeroes. Let be the sub-matrix of B formed by rows

i1,i2,-+,im and columnsyj, j2,-- -, jm. If there exists p1 < p < m such that j =r, then the g row of the inverse of
Nm is equal to the ' row of A (omitting the zero entries in the latter):

Nt (p,:) = A(r,2). (16)
Similar conclusion holds for the columns of A.

Proof: For 1< q<m,

N (P, @) = (= 1)+ 9Ny, |/ [N (17)

Here|Nyq,p) | means the minor of eleme(d, p) of Nm. From Theorem 1, we know that

Ningq,p)| = (=1)Zralkct Zisp kM _mya|/|A, (18)

and

Nm| = (=1)2 2| Mn_m| /A, (19)

whereMp_my1 refers to the sub-matrix oA formed by deleting columng,---,ig-1,ig+1,---,im and rowsjy,---,
ip-1,Ipt1, > Jm Mn_m refers to the sub-matrix o& formed by deleting columnis, - - - ,im and rowsjz, - -, jm. The
(r — (p—1))" row of Mp_m1 comes from the'" row of A, but there is only one non-zero element in it. It is the

(r—(p—1),iqg— (gq—1)) entry (or the(r,iq) entry of A). Using Laplace Expansion [4] on this row:

IMn_mya| = (—1)" =P+ @D AL ig) [Mp_p]. (20)

We obtain,

Nyt (P, @) = A(r,ig). (21)
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Theorem 3 Suppose A is a r n hon-singular band matrix with bandwid#o+ 1, and B is the inverse of A. Let N be
the sub-matrix of B formed by rows-ib to i+ b and columns+ b to i+ b. Then the central row and central column

of the N-1 are identical to the'l' row and " column of matrix A, respectively:

Alii—b:i+b)=N"1(b+1,),

Ali—b:i+b,i)=N"1(b+1). (22)

Ifi —b< 1ori+b>n, uselorninstead.

Proof: If we apply Theorem 2 to th#" row andit" column ofA at the same time, we will reach this conclusion
immediately.
Similar conclusion holds for the case that b ori+ b > n. For example, if < b, theN matrix should be formed

by rows 1 toi + b and columns 1 to+ b of B, and

A(i,1:i+b)=N7%G,),
A(l:i+b,i)=N"1(,0). (23)
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