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Abstract

In this paper, we present a novel wire duplication-based interconnect modeling technique. The proposed modeling

technique uses the original inductance to exploit the sparsity of theL�1 matrix, whereL is the inductance matrix,

and construct a sparse and stable equivalent RLC circuit out of the windowed inductance matrices. The model

avoids matrix inversions. Most important, it is more accurate and more efficient than many popular techniques in the

literature.
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1 Introduction

With the continual increasing of clock frequency and global interconnect length and decreasing of signal transition

time, accurate modeling of inductance effects become increasingly more important. The partial inductance matrixL

obtained from the PEEC model [8] is extremely large and dense. Direct simulation of the fullL matrix is very time-

consuming and memory-consuming. To make the simulation more efficient, sparsification ofL andL�1 matrices has

been considered in [7, 5, 3, 6, 1, 2].

One sparsification approach is to discard the mutual coupling terms that are below some threshold. However, the

resulting inductance matrix may not be positive definite; that leads to an unstable circuit. The shift-truncate method

proposed in [7, 5] can guarantee that the generated sparse inductance matrix is positive definite. However, the accuracy

is not satisfactory [3, 6].

[3] demonstrates the locality ofL�1. It shows that the matrixL�1 has a similar locality property as the capacitance

matrix. Hence, theL�1 matrix can be easily sparsified by dropping small entries while stability is guaranteed. Thus,

modeling the inductance with the truncatedL�1 matrix (denoted by Ł�1) instead of theL matrix can reduce the

coupling elements and speed up the simulation. In [6], a new circuit elementK, which is defined as the inverse of

inductance, is introduced and is incorporated in a simulation tool (known asK method). To avoid theK element in

simulation, We can invert the truncatedL�1 matrix to obtain a new inductance matrix (denoted by Ł). As Ł is also

a dense matrix, direct simulation of Ł (referred to as Ł method) is not efficient. [1] performs sparsification on the

Ł matrix(known as the double-inverse inductance model). Essentially, the double-inverse inductance model requires

two approximation (sparsification) steps. [2] calculates the sparse inductance matrix directly by using exponential

potentials and matrix inversions are avoided.

In this paper, we present a novelwire duplicationinterconnect modeling technique. This technique is motivated by

the mathematical property that only a subset of the entries of the the double-inverse Ł matrix is required to reconstruct

the Ł�1 matrix. Consequently, we can construct an circuit that is equivalent to the Ł�1 matrix out of the subset of Ł

by wire duplication. It is stable, sparse and as accurate as theK method [3, 6]. Furthermore, we can apply the wire

duplication technique to the original inductances directly. Thus, matrix inversions are avoided. Most important, the

accuracy is improved.

The following notation is used in the paper:

� L: The original partial inductance matrix.

� L�1: The inverse ofL.

� Ł�1: TruncatedL�1.

� Ł: The double-inverse inductance matrix; the inverse of truncatedL�1.

� Ł method: The method that uses Ł instead ofL in the simulation.

� WD/Ł: The wire duplication model using the double-inverse inductance matrix Ł.
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� WD/L: The wire duplication model using the original inductance matrixL.

2 Mathematical Background

Here we present the mathematical property that the Ł matrix contains redundant information. Consequently, we may

use only the central band of Ł to reconstruct the Ł�1 matrix. That is the key to the proposedwire duplicationmethod.

The theorems and the proofs behind the mathematical property are given in the appendix.

LetA be aN�N band matrix with bandwidth equal to 2b+1, andB=A�1. We take rowsi�b to i+b and columns

i�b to i+b of B to form a sub-matrix. Then, the center row and center column of the inverse of the sub-matrix are

identical to theith row andith column of theA matrix:

A(i; i�b : i+b) = (B(i�b : i+b; i�b : i+b))�1(b+1; :);

A(i�b : i+b; i) = (B(i�b : i+b; i�b : i+b))�1(:;b+1): (1)

Here we use the following notation:A(i : j;m: n) refers to the sub-matrix at the intersection of rowsi to j and columns

m to n of A; A(:;m) refers to columnmandA(i; :) refers to rowi; A(:;m: n) refers to columns fromm to n andA(i : j; :)

refers to rows fromi to j. The index of the matrix begins at 1. Ifi�b< 1 or i+b> N, we use 1 orN instead.

We illustrate the mathematical property using a layout of 7 parallel and aligned wires. The wire length is 100µm,

and the cross section is 0:5µm�1µm. The separation between the wires is 0:5µm. TheL matrix and its inverse (L�1

matrix) are:

L = 10�11�2
6666666666666664

10:8 8:51 7:22 6:45 5:90 5:47 5:13

8:51 10:8 8:51 7:22 6:45 5:90 5:47

7:22 8:51 10:8 8:51 7:22 6:45 5:90

6:45 7:22 8:51 10:8 8:51 7:22 6:45

5:90 6:45 7:22 8:51 10:8 8:51 7:22

5:47 5:90 6:45 7:22 8:51 10:8 8:51

5:13 5:47 5:90 6:45 7:22 8:51 10:8

3
7777777777777775

;

L�1 = 1010�
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2
6666666666666664

2:54 �1:68 �0:13 �0:12 �0:08 �0:06 �0:11

�1:68 3:65 �1:60 �0:05 �0:07 �0:04 �0:06

�0:13 �1:60 3:65 �1:60 �0:05 �0:07 �0:08

�0:12 �0:05 �1:60 3:66 �1:60 �0:05 �0:12

�0:08 �0:07 �0:05 �1:60 3:65 �1:60 �0:13

�0:06 �0:04 �0:07 �0:05 �1:60 3:65 �1:68

�0:11 �0:06 �0:08 �0:12 �0:13 �1:68 2:54

3
7777777777777775

:

If we drop the small off-diagonal terms inL�1, we obtain a band matrix with bandwidth 3:

Ł�1 = 1010�2
6666666666666664

2:54 �1:68

�1:68 3:65 �1:60

�1:60 3:65 �1:60

�1:60 3:66 �1:60

�1:60 3:65 �1:60

�1:60 3:65 �1:68

�1:68 2:54

3
7777777777777775

:

If we invert the Ł�1 matrix, we obtain the Ł matrix:

Ł = 10�11�2
6666666666666664

6:73 4:20 2:49 1:48 0:90 0:57 0:38

4:20 6:32 3:75 2:23 1:35 0:86 0:57

2:49 3:75 5:92 3:52 2:13 1:35 0:90

1:48 2:23 3:52 5:81 3:52 2:23 1:48

0:90 1:35 2:13 3:52 5:92 3:75 2:49

0:57 0:86 1:35 2:23 3:75 6:32 4:20

0:38 0:57 0:90 1:48 2:49 4:20 6:73

3
7777777777777775

:

Note that Ł is a full dense matrix, but from the theorem, we know that we can reconstruct the Ł�1 matrix from

only the boldface entries in the Ł matrix. Here we illustrate how we can reconstruct the 1st and 3rd rows (columns) of

the Ł�1 matrix. In the rest of the paper, we drop the orders of Ł�1 and Ł for a more concise presentation.
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To obtain the 1st row and column of the Ł�1 matrix, we use the (1:2,1:2) window of Ł:

l = Ł(1 : 2;1 : 2) =

2
4 6:73 4:20

4:20 6:32

3
5 :

Invertingl , we obtain

l�1 =

2
4 2:54 �1:68

�1:68 2:70

3
5 ;

whose first row and column correspond to the first row and column of the Ł�1 matrix.

Similarly, for the 3rd row and column of the Ł�1 matrix, we use the (2:4,2:4) window of Ł:

l = Ł(2 : 4;2 : 4) =

2
6664

6:32 3:75 2:23

3:75 5:92 3:52

2:23 3:52 5:81

3
7775 ;

l�1 =

2
6664

2:53 �1:60 �0:00

�1:60 3:65 �1:60

�0:00 �1:60 2:69

3
7775 :

Thus, the central band (with bandwidth 4b+1) of the Ł matrix contains all the information in the Ł�1 matrix.

3 Wire Duplication Model

In the previous section we demonstrated that the information of Ł�1 is contained in the central band of Ł. The next

step is to build an equivalent circuit out of the entries in this band and ignore the remaining entries.

The following equation describes the magnetic couplings between the wires in the layout example in the previous

section with the Ł�1 matrix:

d
dt

2
6666666666666664

I1

I2

I3

I4

I5

I6

I7

3
7777777777777775

=

2
6666666666666664

2:54 �1:68

�1:68 3:65 �1:60

�1:60 3:65 �1:60

�1:60 3:66 �1:60

�1:60 3:65 �1:60

�1:60 3:65 �1:68

�1:68 2:54

3
7777777777777775

2
6666666666666664

Vl1

Vl2

Vl3

Vl4

Vl5

Vl6

Vl7

3
7777777777777775

: (2)

whereVlk andIk refer to the voltage drop due to the inductance and the current in the wirek respectively.
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We can rewrite the preceding equation in terms of the double-inverse inductance matrix Ł:

2
6666666666666664

Vl1

Vl2

Vl3

Vl4

Vl5

Vl6

Vl7

3
7777777777777775

=

2
6666666666666664

6:73 4:20 2:49 1:48 0:90 0:57 0:38

4:20 6:32 3:75 2:23 1:35 0:86 0:57

2:49 3:75 5:92 3:52 2:13 1:35 0:90

1:48 2:23 3:52 5:81 3:52 2:23 1:48

0:90 1:35 2:13 3:52 5:92 3:75 2:49

0:57 0:86 1:35 2:23 3:75 6:32 4:20

0:38 0:57 0:90 1:48 2:49 4:20 6:73

3
7777777777777775

d
dt

2
6666666666666664

I1

I2

I3

I4

I5

I6

I7

3
7777777777777775

:

Now, we shall show how an equivalent circuit can be constructed out of the windows of the Ł matrix. For example,

if we take the window corresponding to the (2:4,2:4) sub-matrix of the Ł matrix, and apply them to wires 2, 3 and 4,

we have:

2
6664

Vl2

Vl3

Vl4

3
7775=

2
6664

6:32 3:75 2:23

3:75 5:92 3:52

2:23 3:52 5:81

3
7775

d
dt

2
6664

I2

I3

I4

3
7775 ; (3)

or

d
dt

2
6664

I2

I3

I4

3
7775=

2
6664

2:53 �1:60 �0:00

�1:60 3:65 �1:60

�0:00 �1:60 2:69

3
7775

2
6664

Vl2

Vl3

Vl4

3
7775 : (4)

Among the three circuit equations forI2, I3, andI4 in Eqn.( 4), only the following equation

dI3
dt

=�1:60Vl2+3:65Vl3�1:60Vl4 (5)

matches that in Eqn.( 2). Hence, we can model wire 3 correctly, provided thatVl2 andVl4 are correct. However, the

equations forI2 andI4 in Eqn.( 4) do not match those in Eqn.( 2), i.e., wires 2 and 4 are not correctly modeled. Thus,

their voltagesVl2 andVl4 are incorrect. To provide a remedy to this problem, we can model these two wires correctly

somewhere else and use the correctVl2 andVl4 values for the modeling of wire 3 here.

Figure 1 shows the modeling of signal 3. In this figure, the diamond sign3 stands for voltage controlled voltage

source (VCVS) element. The two VCVSs provide the correct voltages forL2 andL4. The inputs of the VCVSs come

from the correct modelings ofL2 andL4. SinceL2 andL4 here are controlled by their corresponding correct modelings,

they are just dummy copies. We call such copiesdummy wiresand draw them in dashed lines. In contrast, if a wire
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Figure 1: Modeling of wire 3.

is correctly modeled, we call it areal wire and draw it in solid lines. Here wire 3 is a real wire and wires 2 and 4 are

dummy wires. The real wire and the dummy wires form agroup. The total number of wires in a group is called the

group sizeor window size. Figure 1 shows such a group, which models wire 3 correctly. Similarly, we can construct

a group that includes dummy copies of wire 1 and wire 3 to model wire 2 correctly. In the group that models wire 4

correctly, dummy copies of wire 3 and wire 5 are included. Real wires 2 and 4 in these two groups provide the correct

voltagesVl2 andVl4 for the VCVSs in Figure 1.

In general, only one wire is correctly modeled in one group; so we needN groups forN wires in the simulation.

There are one real wire and 2b dummy wires in each group if the bandwidth of Ł�1 is 2b+1 (the groups at two ends

are special cases).

In each group, every pair of wires (including both real and dummy ones) are inductively coupled, and there is

no inductive coupling among groups. LetL̃ be the partial inductance matrix for the wire duplication model, thenL̃

is block diagonal and each block corresponds to one group.L̃�1 is also block diagonal. If we remove the rows for

dummy wires and utilize the fact that dummy wires have the same voltages as the corresponding real wires, we get

back the Ł�1 matrix, which is positive-definite [6, 1, 2]. Thus, the circuit obtained by wire duplication is stable.

We use HSPICE to verify the correctness of thiswire duplicationmodel. We refer to the wire duplication model

using Ł matrix as the WD/Ł model. Two sets of simulation are carried out: one set uses Ł method, the other uses the

WD/Ł model. They produceexactlythe same results (See Section 6 for details). It indicates that the WD/Ł model is

also numerically equivalent to the Ł model. This is expected, as they are physically and mathematically equivalent.

Since Ł model andK model [3] are equivalent, the wire duplication model is also equivalent to theK model [3].

4 Optimize the Group Size

In the wire duplication model described in the previous section, there are 2b+1 wires in each group (less than 2b at the

two ends). There are altogether aboutN � (2b+1) �b inductive couplings, whereas the full inductance matrix contains
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+

-

vl2 vl3

L2 +

-

R2

L3

vl1

L1 +

-

R1

Figure 2: Modeling of wires 1 and 2.

N � (N�1)=2 couplings. Ifb� N, the wire duplication technique will produce an equivalent circuit of a smaller size.

There are two methods to reduce the circuit size even further. The first method merges the groups at the ends. The

following window captures the modeling of wire 2:

l = Ł(1 : 3;1 : 3) =

2
6664

6:73 4:20 2:49

4:20 6:32 3:75

2:49 3:75 5:92

3
7775 ;

l�1 =

2
6664

2:54 �1:68 0:00

�1:68 3:65 �1:60

0:00 �1:60 2:70

3
7775 :

We can see that wire 1 is also correctly modeled. It means that wire 1 and 2 can share one group, as shown in

Figure 2. Similarly, wiresN�1 andN can share one group.

Such an improvement is marginal; the second method, which uses larger windows, can achieve more reduction.

For example, if we use a window of size 4, for the (1:4,1:4) window, the corresponding matrices are:

l = Ł(1 : 4;1 : 4) =

2
6666664

6:73 4:20 2:49 1:48

4:20 6:32 3:75 2:23

2:49 3:75 5:92 3:52

1:48 2:23 3:52 5:81

3
7777775
;
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l�1 =

2
6666664

2:54 �1:68 0:00 �0:00

�1:68 3:65 �1:60 �0:00

0:00 �1:60 3:65 �1:60

�0:00 �0:00 �1:60 2:69

3
7777775
:

In this case, wires 1, 2, and 3 are correctly modeled in this group with a dummy copy of wire 4.

With larger windows, fewer groups are needed to model all the wires. However, this reduction is at the expense

of more couplings within each group; the number of couplings in each group increases quadratically with the window

size. We discuss the trade-off in the remainder of this section.

For simplicity, we assume that all the groups are of the same sizeB. The number of wires commonly found in two

adjacent groups should be 2b. Let n be the number of groups needed. Then,

n �B�2b(n�1)= N) n=
N�2b
B�2b

(6)

The number of total wires used isB �n; the number of total couplings isB�(B�1)
2 n. The purpose of this study is to

build an equivalent circuit with a smaller size. It includes both wires and the coupling elements. As a rough estimate,

we useB2 �n=2 as the circuit size and try to minimize it. We can easily conclude thatB2
�n

2 = B2(N�2b)
2(B�2b) is minimized

when

B= 4b; (7)

and the minimal value ofB2 �n=2 is

(B2 �n=2)min= 4b(N�2b): (8)

For the circuit example in Section 6, we set the bandwidth ofL�1 to be 5, i.e.,b= 2, and perform wire duplication

simulations for different window sizes (from 5 through 12). The run times are shown in Figure 3. We can see that the
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circuit obtained with a window size of 8, which is 4b, has the smallest run time. That coincides with our estimation.

Although the circuit sizes at different window sizes are different, all the resulting circuits are physically and

mathematically equivalent. The simulation results for all of them areexactlythe same.

WhenB= 4b, there are about(4b� 1)(N� 2b) inductive couplings and 2(N� 2b) wires (N� 4b of them are

dummy wires). Note that theK method has aboutb �N couplings and requires no dummy wires. Therefore, the wire

duplication technique uses about four times couplings required in the K method and an additionalN� 2b dummy

wires. This is the price that we pay for RLC simulation instead of RKC simulation.

5 Wire Duplication Using L Matrix

In the previous sections, we use the double-inverse inductance Ł in the wire duplication model. It turns out that we can

use the original inductanceL directly in the modeling to avoid matrix inversions. An additional and more significant

benefit is that the accuracy is also improved. We refer to the wire duplication model usingL matrix as the WD/L

model.

The use of windowed Ł matrix is based on strict mathematical property. That mathematical property can also

explain the validity of using windowed original matrixL to a certain extent, asL�1 is almost a band matrix. From an

engineering point of view, we can use windowedL matrix to calculate the Ł�1 [6, 2]. It means that a window of theL

matrix can also capture the magnetic couplings as the Ł matrix. We have shown that WD/Ł is stable. For WD/L, we

can also prove its stability in a similar way.

There is another benefit of using theL matrix instead of the Ł matrix: it is more accurate. If we use the 4b

window size (as suggested in Section 4), we can capture about 4b� 1 inductive couplings between each wire and

its neighbors. In contrast, the WD/Ł model can only capture 2b. Although some of the extra coupling captured by

WD/L may not be very accurate, it is better than ignoring them. Figure 4 plots the eigenvalues for the full matrix,
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the equivalent inductance matrices for WD/Ł, and WD/L. The bandwidth of Ł�1 and window size used in the wire

duplication methods are 5 and 8, respectively. We can see that the eigenvalues of the equivalent inductance matrix

for WD/Ł diverges earlier from that of the full matrix. In contrast, the equivalent matrix for WD/L matches better.

Simulation results validate this conclusion (see Section 6 for details).

In the wire duplication method, using original inductance is more accurate than using double-inverse matrix only

when the window sizeB is larger than its minimum value 2b+ 1. If B = 2b+ 1, usingL does not capture more

couplings. Indeed, it may not capture the correct Ł�1 values due to the small window size. Since using minimum

window size (B= 2b+1) is not efficient, a large window size is always preferred. Thus, we should always use the

original inductance matrixL instead of Ł.

Recall that the simple truncation method also uses a portion of the original inductance matrix to model the in-

terconnects. But the two methods are radically different. The key difference is that in the WD/L method, dummy

wires are added. Thus, stability is guaranteed and inductance effect is captured accurately. It exploits the sparsity of

L�1, whereas simple truncation tries to exploit the sparsity ofL matrix, it is not accurate and may not be stable. In

the previous example, the simple truncation method that captures the same inductance terms as the wire duplication

method has negative eigenvalues. It is not as accurate as the wire duplication model even when it is stable.

6 Experiment Results

We demonstrate the wire duplication technique on a bus with 128 signals. Shields are inserted after every four signals.

The wire length is 1mm, the cross-section is 1�1µm, and the separation between wires is 1µm. The wires are divided

into 5 segments along the length. The driver resistance is 30Ω and the load capacitance is 40f F.

Different modelings are studied: the full matrix method, the Ł method, WD/Ł, WD/L, simple truncation, shift-

truncate [7, 5], and the double-inverse inductance model [1, 2]. Because Ksim [6] is not available to us, we cannot

performK method directly. Instead, we use the Ł method, which is mathematically equivalent to theK method. (Note

that Ł method is different from the double-inverse inductance model). The bandwidth of Ł�1 is 5, and the window

size for wire duplication is 8.

A 1V 20ps ramp input is applied to the first signal, and the rest are quiet. The waveforms for the first, second

that third signals are shown in Figures 5, 6, and 7 respectively. In each figure, results from the Ł method and the wire

duplication methods are shown on the left; and results from the shift-truncate and double-inverse methods are shown

on the right. As a reference, full matrix modeling appears at both sides. The truncation only method is not stable and

not shown.

The first conclusion we can draw from these figures is that WD/Ł is equivalent to the Ł method. These two methods

matchexactlyon all figures. The second conclusion is that WD/L is more accurate than WD/Ł. Although both of them

match very well with the full matrix method, the results of using original matrix are closer. The difference between

these two methods for the aggressor response (Figure 5) is insignificant, but we can still see that WD/L (which overlaps

with the full matrix) is more accurate than WD/Ł. The differences between them in the victim responses (Figure 6 and
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Figure 5: Simulation results for signal 1.
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Figure 6: Simulation results for signal 2.
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Figure 7: Simulation results for signal 3.
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Table 1: Run time and memory usage.
Method Memory(MB) Run Time(s)

full L matrix 812.3 4:74�105

Ł method 230.2 2:30�104

double-inverse (1% cutoff) 97.1 897
double-inverse (2.2% cutoff) 44.3 357

shift-truncate 38.5 283
wire duplication 15.3 58

7) are more pronounced.

In the double-inverse method [1, 2], the same cutoff percentage is used for theL�1 matrix and the Ł matrix. Both

the double-inverse method with 2.2% cutoff and the shift-truncate method have similar number of mutual inductances

as the wire duplication methods, while the double-inverse method with 1% cutoff has about twice as many mutual

inductances. We can see that they perform worse than WD/L.

Table 1 lists the memory and time usage for different methods. Both wire duplication methods use the same time

and memory. We can see that although there are additional dummy wires in wire duplication method, it uses much

less memory and runs much faster. Although the number of wires and couplings contribute directly to run time of

simulation, the convergence rate, which depends on how well-conditioned the matrices are, is also very important.

We can see that the wire duplication methods are faster and require less memory even than the shift-truncate method

and the double-inverse method (2.2% cutoff), despite the fact that their circuit sizes are actually larger (due to the

additional dummy wires). We believe that the reason is that the inductance matrices of the wire duplication model are

well-conditioned and they are block-diagonal, contributing to faster simulation times.

7 Summary and Conclusion

In this paper, we propose a new interconnect modeling technique—wire duplication. With this technique, we can

generate stable, sparse and yet accurate inductance models for on-chip interconnects. It uses a very small portion of

the original inductance matrixL and discards the rest. The wire duplication model using the double-inverse inductance

matrix is physically and mathematically equivalent toK method. However, we exploit the sparsity ofL�1 by using

inductances in the simulation. Although it is not as sparse as theK simulation, it avoids using the new circuit element

K. Using original inductance instead of double-inverse inductance makes the wire duplication model even more

accurate. Moreover, it avoids matrix inversions.

A common theme in theK method, double-inverse inductance model, and the wire duplication model are that

they all exploit the sparsity ofL�1 by windowed inductance matrix. TheK method and the double-inverse inductance

model do it at the inductance extraction level, while the wire duplication model does it at the simulation level. The

wire duplication model is more efficient than the double-inverse inductance model. We have no chance to compare its

efficiency toK method. It has several other advantages:

� It is compatible with most of the existing simulators; we use inductance in the simulation.
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� It is compatible with existing inductance extractors; we use the original inductance.

� It requires no matrix inverse.

� It is potentially more accurate.

8 Appendix

Theorem 1 Suppose A is a n� n non-singular matrix, and B is the inverse of A. Mm is a minor of A with order m

formed by rows i1; i2; � � � ; im and columns j1; j2; � � � ; jm. Nn�m is the matrix remained in matrix B after deleting rows

i1; i2; � � � ; im and columns j1; j2; � � � ; jm. Then,

jNn�mj= (�1)∑(ik+ jk)jMmj=jAj: (9)

Proof: We first consider the special case thatik = jk = k (1� k�m). Thus,Mm is at the top left corner ofA and

Nn�m is at the bottom right corner ofB. We can re-write A and B in block format:

A=

2
4 A11 A12

A21 A22

3
5 ; B=

2
4 B11 B12

B21 B22

3
5 ;

whereA11 andB11 arem�mmatrixes;A22 andB22 are(n�m)� (n�m)matrixes.

SupposejA11j 6= 0, we have [4]:

jB22j= 1=jA22�A21A
�1
11 A12j (10)

and,

jAj= jA11jjA22�A21A
�1
11 A12j (11)

Therefore,

jB22j= jA11j=jAj (12)

If jA11j= 0, thenjB22j should also be zero. Otherwise, ifjB22j 6= 0, sinceA= B�1, following similar step, we can

also argue thatjA11j= jB22j=jBj 6= 0, a contradiction. SojB22j= jA11j=jAj for all cases.

Now we extend the conclusion to general case. By making(i1�1)+ (i2�2)+ � � �+(im�m) = (i1+ i2+ � � �+

im)�m(m+1)=2 successive interchanges of adjacent rows, and( j1�1)+( j2�2)+ � � �+( jm�m) = ( j1+ j2+ � � �+

jm)�m(m+1)=2 successive interchanges of adjacent columns inA, we can shiftMk into the top left corner ofA. We

should also interchanges the corresponding columns and rows inB, in order to maintain the inverse relation between

A and B. As a result,Nn�k is shifted to the bottom right corner of matrixB.

Let A0 andB0 be the resulting matrixes (hereA0 does not stand for the transpose ofA, same forB0).
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jA0j= (�1)i1+i2+���+im+ j1+ j2+���+ jm�m(m+1)jAj (13)

The relative positions of the elements inMk andNn�k are preserved, so we have

A0

11= Mm; and B022= Nn�m (14)

Then,

jNn�mj= jB
0

22j= jA
0

11j=jA
0j= (�1)∑(ik+ jk)Mm=jAj (15)

Theorem 2 Suppose A is a n� n non-singular matrix, and B is the inverse of A. For the rth row of A matrix, only

the entries at columns i1; i2; � � � ; im are non-zero, the rest are zeroes. Let Nm be the sub-matrix of B formed by rows

i1; i2; � � � ; im and columns j1; j2; � � � ; jm. If there exists p,1� p�m such that jp = r, then the pth row of the inverse of

Nm is equal to the rth row of A (omitting the zero entries in the latter):

N�1
m (p; :) = A(r; :): (16)

Similar conclusion holds for the columns of A.

Proof: For 1� q�m,

N�1
m (p;q) = (�1)p+qjNm(q;p)j=jNmj (17)

HerejNm(q;p)j means the minor of element(q; p) of Nm. From Theorem 1, we know that

jNm(q;p)j= (�1)∑k6=q ik+∑k6=p jkjMn�m+1j=jAj; (18)

and

jNmj= (�1)∑ ik+∑ jk jMn�mj=jAj; (19)

whereMn�m+1 refers to the sub-matrix ofA formed by deleting columnsi1; � � � ; iq�1; iq+1; � � � ; im and rows j1; � � � ;

j p�1; j p+1; � � � ; jm; Mn�m refers to the sub-matrix ofA formed by deleting columnsi1; � � � ; im and rowsj1; � � � ; jm. The

(r � (p� 1))th row of Mn�m+1 comes from therth row of A, but there is only one non-zero element in it. It is the

(r� (p�1); iq� (q�1)) entry (or the(r; iq) entry ofA). Using Laplace Expansion [4] on this row:

jMn�m+1j= (�1)r�(p�1)+iq�(q�1)A(r; iq)jMn�mj: (20)

We obtain,

N�1
m (p;q) = A(r; iq): (21)
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Theorem 3 Suppose A is a n�n non-singular band matrix with bandwidth2b+1, and B is the inverse of A. Let N be

the sub-matrix of B formed by rows i�b to i+b and columns i�b to i+b. Then the central row and central column

of the N�1 are identical to the ith row and ith column of matrix A, respectively:

A(i; i�b : i+b) = N�1(b+1; :);

A(i�b : i+b; i) = N�1(:;b+1): (22)

If i �b< 1 or i+b> n, use1 or n instead.

Proof: If we apply Theorem 2 to theith row andith column ofA at the same time, we will reach this conclusion

immediately.

Similar conclusion holds for the case thati � b or i+b� n. For example, ifi � b, theN matrix should be formed

by rows 1 toi+b and columns 1 toi+b of B, and

A(i;1 : i+b) = N�1(i; :);

A(1 : i+b; i) = N�1(:; i): (23)
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