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Abstract

Several important problems in control theory can be reformulated as semidefinite programming

problems, i.e., minimization of a linear objective subject to Linear Matrix Inequality (LMI) con-

straints. From convex optimization duality theory, conditions for infeasibility of the LMIs as well

as dual optimization problems can be formulated. These can in turn be re-interpreted in control

or system theoretic terms, often yielding new results or new proofs for existing results from con-

trol theory. We explore such connections for a few problems associated with linear time-invariant

systems.
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1 Introduction

Over the past few years, convex optimization, and semidefinite programming2 (SDP) in particular,

have come to be recognized as valuable numerical tools for control system analysis and design. A

number of publications can be found in the control literature that survey applications of SDP to the

solution of system and control problems (see for example [BEFB94, SI95, BE, DP00, EN00]). In

parallel, there has been considerable recent research on algorithms and software for the numerical

solution of SDPs (for surveys, see [NN94, Ali95, LO96, VB96b, VB96a, WSV00]). This interest

was primarily motivated by applications of SDP in combinatorial optimization but, more recently,

also by the applications in control.

Thus far, the application of SDP in systems and control has been mainly motivated by the

possibilities it offers for the numerical solution of analysis and synthesis problems for which no

analytical solutions are known [GNLC95, GDN95, WB96]. In this paper, we explore another

application of SDP: We discuss the application of duality theory to obtain new theoretical insight

or to provide new proofs to existing results from system and control theory. Specifically, we discuss

the following applications of SDP duality.

� Theorems of alternatives provide systematic and unified proofs of necessary and sufficient

conditions for solvability of LMIs. As examples, we investigate the conditions for the exis-

tence of feasible solutions to Lyapunov and Riccati inequalities. As a by-product, we obtain

a simple new proof of the Kalman-Yakubovich-Popov lemma.

Several of the results that we use from convex duality require technical conditions (so-called

constraint qualifications). We show that for problems involving Riccati inequalities these

constraint qualifications are related to controllability and observability. In particular, we will

obtain a new criterion for the controllability of an LTI system realization.

� The optimal solution of an SDP is characterized by necessary and sufficient optimality con-

ditions that involve the dual variables. As an example, we show that the properties of the

solution of the LQR problem can be derived directly from the SDP optimality conditions.

� The dual problem associated with an SDP can be used to derive lower bounds on the optimal

value. As an example, we give new easily computed bounds on the H∞-norm of an LTI

system, and a duality-based proof of the Enns-Glover lower bound.

Several researchers have recently applied notions from convex optimization duality toward the

re-interpretation of existing results and the derivation of new results in system theory. Rantzer

[Ran96] uses ideas from convexity theory to give a new proof of the Kalman-Yakubovich-Popov
2We shall use SDP to mean both “semidefinite programming”, as well as a “semidefinite program”, i.e., a semidef-

inite programming problem.
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Lemma. Henrion and Meinsma [HM01] apply SDP to provide a new proof of a generalized form

of Lyapunov’s matrix inequality on the location of the eigenvalues of a matrix in some region of

the complex plane. Yao, Zhao, and Zhang [YZZ99] apply SDP optimality conditions to derive

properties of the optimal solution of a stochastic linear-quadratic control problem. Our work is

similar in spirit to these; however, the scope of our paper is wider, as we present (and in many

cases generalize) some of the results in these papers.

The notation and terminology are standard. R (R � ) denotes the set of real (nonnegative real)

numbers. C denotes the set of complex numbers. The matrix inequalities A � B and A � B mean

A and B are square, Hermitian, and that A � B is positive definite and positive semi-definite, re-

spectively. ℜ ����� and ℑ ����� denote respectively the real and imaginary parts of a complex scalar,

vector or matrix. L2 is the Hilbert space of square-integrable signals defined over R � (see for

example [DV75]). L2e denotes the extended space associated with L2.

2 Duality

Let Sn denote the set of Hermitian n 	 n matrices with an associated inner product 
��
����� Sn . While

the development in this section and the sequel are applicable to any inner product on S n, we will

assume that the standard inner product, given by 
 A � B � S n � TrA � B � Tr AB is in effect. Let S
denote the set of block diagonal Hermitian matrices with given dimensions, S � S n1 	�������	 SnL ,

with inner product 
 diag � A1 ��������� AL ��� diag � B1 ��������� BL ��� S � ∑L
k � 1 Tr AkBk.

Suppose that V is a finite-dimensional vector space with an inner product 
��
����� V , A : V � S
is a linear mapping and A0 � S . Then, the inequality

A � x ��� A0 � 0 (1)

is called a Linear Matrix Inequality or LMI. We let Aadj denote the adjoint mapping of A . That is,

Aadj : S � V such that for all x � V and Z � S , 
 A � x ��� Z � S � 
 x � Aadj � Z ��� V �

2.1 Theorems of alternatives

We first examine criteria for solvability of different types of LMIs. We consider the following three

feasibility problems.

� Strict feasibility: there exists an x � V with A � x ��� A0 � 0.

� Nonzero feasibility: there exists an x � V with A � x ��� A0 � 0 (i.e., positive semidefinite and

nonzero).

� Feasibility: there exists an x � V with A � x ��� A0 � 0.

2



By properly choosing A we will be able to address a wide variety of LMI feasibility problems. For

example, when V � Rm, we can express A as

A � x � � x1A1 � x2A2 � ����� � xmAm � (2)

where Ai � S are given. With this parametrization, the three problems described above reduce to

the following three basic LMIs:

A0 � x1A1 � x2A2 � ������� xmAm � 0 � (3)

A0 � x1A1 � x2A2 � ������� xmAm � 0 � (4)

A0 � x1A1 � x2A2 � ������� xmAm � 0 � (5)

There exists a rich literature on theorems of alternatives for generalized inequalities (i.e., in-

equalities with respect to nonpolyhedral convex cones), and linear matrix inequalities in particu-

lar. For our purposes the following three theorems will be sufficient. We refer to [BI69, BBI71,

CK77, BW81] for more background on theorems of alternative for nonpolyhedral cones, and to

[Wol81, Las95, Las97] for results on linear matrix inequalities.

Theorem 1 (ALT 1) Exactly one of the following statements is true.

1. There exists an x � V with A � x ��� A0 � 0.

2. There exists a Z � S with Z � 0, Aadj � Z � � 0, and 
 A0 � Z � S � 0.

We refer to Appendix A for a proof of this theorem and the other theorems in this section.

Theorem ALT 1 is the first example of a theorem of alternatives. The two statements in the

theorem are called strong alternatives, because exactly one of them is true.

Example 1 The adjoint Aadj
0 : S � Rm of the mapping defined by (2) is given by

Aadj
0 � Z � ��� TrA1Z TrA2Z ����� Tr AmZ � T �

Theorem ALT 1 therefore implies that either there exists x � Rm such that LMI (3) holds, or there

exists Z � S with Z � 0 such that TrAiZ � 0, i � 1 � 2 ��������� m, and Tr A0Z
�

0.

Example 2 As an example of an application of Theorem ALT 1 in matrix algebra, consider

Finsler’s Theorem [Fin37, Jac77], which states that given F � Cn � m with rank r � n, and G � S n,

the condition that there exists µ � R such that µFF � � G � 0 � is equivalent to � F � ��� GF ��� 0,

where F � is a full-rank matrix whose columns span the left nullspace of F , i.e., � F � � � F � 0.

Let A : R � Sn be defined by A � µ � � µFF � , and let A0 � � G. Then Aadj : Sn � R is given

by Aadj � Z � � Tr � F � ZF � . Then, there does not exist µ � R such that A � µ � � A0 � 0, if and only

if there exists a Z � S n with Z � 0, Tr � F � ZF � � 0, Tr � ZG � � 0. Factoring Z as Z � ∑k
i � 1 λiuiu �i ,
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where λi � 0, we must have for some i, u �i F � 0 and u �i Gui � 0, which immediately means

� F � � � GF � � 0 is violated. Conversely, if � F � � � GF ���� 0, then for some nonzero u � Cn, we

must have u � � F � ��� GF � u � 0. Then, with Z � � F � u ��� F � u ��� , it is readily verified that Z � 0 and

Tr � F � ZF � � 0.

Theorem 2 (ALT 2) At most one of the following statements is true.

1. There exists an x � V with A � x ��� A0 � 0.

2. There exists a Z � S with Z � 0, Aadj � Z � � 0, and 
 A0 � Z � S � 0.

Moreover, if A0 � A � x0 � for some x0 � V , or if there exists no x � V with A � x � � 0, then exactly

one of the two statements is true.

The theorem gives a pair of weak alternatives, i.e., two statements at most one of which is true. It

also gives additional assumptions under which the statements become strong alternatives. These

additional assumptions are called constraint qualifications.

Remark 1 Note that if A0 � A � x0 � for some x0, the theorem can be paraphrased as follows: Ex-

actly one of the following statements is true.

1. There exists an x � V with A � x � � 0.

2. There exists a Z � S with Z � 0 and Aadj � Z � � 0.

If in addition the mapping A has full rank, i.e., A � x � � 0 implies x � 0, then the first statement is

equivalent to A � x � � 0, x �� 0. �
Example 3 Theorem ALT 2 implies that at most one of the following are possible: either there

exists x � Rm such that LMI (4) holds, or there exists Z � S with Z � 0, Tr AiZ � 0 for i � 1 ��������� m,

and TrA0Z
�

0. However, it is possible that neither condition holds. As an example, take S � S 2

and

A0 �
�

0 0
0 � 1 � � A1 �

�
1 0
0 0 � �

The LMI A0 � xA1 � 0 is infeasible. The alternative is that there exists Z � S 2 with

Z �
�

z11 z12

z �12 z22 � � 0 � z11 � 0 � z22 � 0

which is also infeasible.

Theorem 3 (ALT 3) At most one of the following statements is true.

1. There exists an x � V with A � x ��� A0 � 0.
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2. There exists a Z � S with Z � 0, Aadj � Z � � 0, and 
 A0 � Z � S � 0.

Moreover, if A0 � A � x0 � for some x0 � V , or if there exists no x � V such that A � x � � 0, then

exactly one of the two statements is true.

Again, the theorem states a pair of weak alternatives, and additional assumptions under which the

statements are strong alternatives.

Note that the theorem is trivial if A0 � A � x0 � for some x0: the first statement is true because

we can take x � � x0; the second statement is obviously false because Aadj � Z � � 0 implies that


 A0 � Z � S � 
 A � x0 ��� Z � S � 
 x0 � Aadj � Z ��� V � 0 �

Example 4 Theorem ALT 3, applied to the linear mapping (2), implies that at most one of the

following are possible: either there exists x � Rm such that LMI (5) holds, or there exists Z � S
with Z � 0 such that Tr AiZ � 0, i � 1 � 2 ��������� m, and TrA0Z � 0. It is possible that neither condition

holds. Consider the following example, taken from [BI69, p.378]), where S � S 2 and

A0 �
�

0 1
1 0 � � A1 �

�
0 0
0 1 � �

Then, the LMI A0 � xA1 � 0 is infeasible. The alternative is that there exists

Z �
�

z11 z12

z �12 z22 � � 0 � with z22 � 0 and z12 � z �12 � 0

which is also infeasible.

For each of the theorems of alternatives ALT 1–ALT 3, we can formulate a version with equal-

ity constraints. Let W be a finite-dimensional vector space with the inner product 
�� ��� � W . Let

B : V � W be a linear mapping, and let B adj denote the adjoint mapping of B . Then, we have the

following theorems.

Theorem 4 (ALT 4) Exactly one of the following statements is true.

1. There exists an x � V with A � x ��� A0 � 0 and B � x � � 0.

2. There exists a Z � Sn with Z � 0, and w � W , with Aadj � Z � � Badj � w � � 0, and 
 A0 � Z � Sn
�

0.

Theorem 5 (ALT 5a) Exactly one of the following statements is true.

1. There exists an x � V with A � x � � 0 and B � x � � 0.

2. There exists a Z � Sn with Z � 0, and w � W , with Aadj � Z ��� Badj � w � � 0.

Theorem 6 (ALT 5b) At most one of the following statements is true.
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1. There exists an x � V with A � x ��� A0 � 0 and B � x � � 0.

2. There exists a Z � Sn with Z � 0, and w � W , with Aadj � Z � � Badj � w � � 0, and 
 A0 � Z � Sn
�

0.

Moreover if there exists no x � V with A � x � � 0 and B � x � � 0, then exactly one of the two state-

ments is true.

Theorem 7 (ALT 6) At most one of the following statements is true.

1. There exists an x � V with A � x ��� A0 � 0 and B � x � � 0.

2. There exists a Z � Sn with Z � 0, and w � W , with Aadj � Z � � Badj � w � � 0, and 
 A0 � Z � Sn � 0.

Moreover if there exists no x � V with A � x � � 0 and B � x � � 0, then exactly one of the two state-

ments is true.

2.2 Semidefinite programming duality

A semidefinite programming problem (SDP) requires minimizing a linear function subject to an

LMI constraint:
minimize 
 c � x � V
subject to A � x ��� A0 � 0

(6)

From convex duality, we can associate with the SDP the dual problem

maximize � 
 A0 � Z � S
subject to Aadj � Z � � c � Z � 0

(7)

where the variable is the matrix Z � S . In the context of duality we refer to the SDP (6) as the

primal problem associated with (7).

The following theorem relates the optimal values of the primal and dual SDPs. Let popt be the

optimal value of (6) and dopt the optimal value of (7). We allow values � ∞: popt � � ∞ if the primal

problem is infeasible and popt � � ∞ if it is unbounded below; dopt � � ∞ if the dual problem is

unbounded above, dopt � � ∞ if it is infeasible.

Theorem 8 popt � dopt. If the primal problem is strictly feasible, (i.e., there exists x with A � x ���
A0 � 0), or the dual problem is strictly feasible (i.e., there exists Z � 0 with Aadj � Z � � c), then

popt � dopt.

The first property (popt � dopt) is called weak duality. If popt � dopt, we say the primal and dual

SDPs satisfy strong duality. A proof of Theorem 8 is given in Appendix B.

Theorem 8 is the standard Lagrange duality result for semidefinite programming. An alterna-

tive duality theory, which does not require a constraint qualification, was developed by Ramana,

Tunçel, and Wolkowicz [RTW97].
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2.3 Optimality conditions

Suppose strong duality holds. The following facts are useful when studying the properties of the

optimal solutions of the primal and dual SDP.

� A primal feasible x and a dual feasible Z are optimal if and only if � A � x � � A0 � Z � 0. This

property is called complementary slackness.

� If the primal problem is strictly feasible, then the dual optimum is attained, i.e., there exists

a dual optimal Z.

� If the dual problem is strictly feasible, then the primal optimum is attained, i.e., there exists

a primal optimal x.

A proof of this result is given in Appendix C

We combine these properties to state necessary and sufficient conditions for optimality. For

example, it follows that if the primal problem is strictly feasible (hence strong duality obtains), then

a primal feasible x is optimal if and only if there exists a dual feasible Z with � A � x ��� A0 � Z � 0.

Note that complementary slackness between optimal solutions is only satisfied when strong

duality holds. Consider the following example from [VB96b], where V � R2 and S � S 3, and the

primal SDP is
minimize x1

subject to

��
0 x1 0
x1 x2 0
0 0 x1 � 1

��
� 0 �

This problem is not strictly feasible. Its optimal value is popt � 0, and any x � R2 with x1 � 0,

x2 � 0 is optimal. The dual SDP is

maximize � z33

subject to z22 � 0 � z12 � z �12 � z33 � 1 �
��

z11 z12 z13

z �12 z22 z23
z �13 z �23 z33

��
� 0 �

This problem is not strictly feasible, because of the constraint z22 � 0. This constraint also implies

that z23 � z12 � 0, and hence, z33 � 1. All feasible Z therefore have the form

Z �
��

z11 0 z13

0 0 0
z �13 0 1

��

with z11 � 0 and z11 ��� z13 � 2. The optimal value is dopt � � 1. Comparing the two optimal solutions

x1 � x2 � 0 and z11 � z13 � 0, we note that complementary slackness is not satisfied.

7



2.4 Some useful preliminaries

We will encounter four specific linear mappings several times in the sequel. For easy reference,

we define these here, and derive the expression for their adjoints.

Example 5 Let A1 : Sn � Sn be defined by A1 � P � � � � A � P � PA � . Then, it is easily verified that

Aadj
1 : Sn � Sn is given by Aadj

1 � Z � � � � ZA � � AZ � .

Example 6 Let A2 : Sn � Sn 	 Sn be defined by A � P � � diag ��� � A � P � PA ��� P � , Then, it is

easily verified that A adj
2 : Sn 	 Sn � Sn is given by Aadj

2 � Z � � � � Z1A � � AZ1 � Z2 � , where Z �
diag � Z1 � Z2 � .

Example 7 Let A3 : Sn � Sn � m be defined by

A3 � P � � �
�

A � P � PA PB
B � P 0 � �

Then, it is easily verified that Aadj
3 : Sn � m � Sn is given by

Aadj
3 �
�

Z11 Z12

Z �12 Z22 � � � � Z11A � � AZ11 � BZ �12 � Z12B � �

Example 8 Let A4 : Sn � Sn � m 	 Sn be defined by

A4 � P � � diag ���
�

A � P � PA PB
B � P 0 � � P ���

Then, it is easily verified that Aadj
4 : Sn � m 	 Sn � V is given by

Aadj
4 � diag �

�
Z11 Z12

Z �12 Z22 � � Z2 ��� � � Z11A � A � Z11 � BZ �12 � Z12B � � Z2 �

3 Lyapunov inequalities, stability, and controllability

As our first application of the theorem of alternatives to the analysis of linear time-invariant (LTI)

systems, we consider the LTI system

ẋ � Ax � (8)

where A � Cn � n. Lyapunov equations, i.e., equations of the form A � P � PA � Q � 0, and Lyapunov

inequalities, i.e., LMIs of the form A � P � PA � 0 or A � P � PA
�

0 play a fundamental role in

establishing the stability of system (8); see any text on linear systems, for instance, [Rug96].

We consider some well known results on Lyapunov inequalities. Although these results are

readily proved using standard techniques, we give a proof using SDP duality to illustrate the tech-

niques that will be used later in the paper.

8



3.1 Strict Lyapunov inequalities

Proposition 1 Exactly one of the following two statements is true.

1. There exists a P � Sn such that A � P � PA � 0.

2. A has an imaginary eigenvalue.

Proof. With A1 as in Example 5 and with A0 � 0, the first statement of the theorem is equivalent to

the existence of P � Sn such that A1 � P � � A0 � 0. Then, applying Theorem ALT 1, the alternative

is that there exists a Z � S n with

Z � 0 � AZ � ZA � � 0 � (9)

We now show that this condition is equivalent to A having imaginary eigenvalues, establishing the

proposition.

Suppose A has an imaginary eigenvalue, i.e., there exist nonzero v � Cn, and ω � R with

Av � jωv. It is easily shown that Z � vv � satisfies (9).

Conversely, suppose that (9) holds. Let Z � UU � where U � Cn � r and RankU � RankZ � r.

From (9), we note that AZ is skew-Hermitian, so that we must have AUU � � USU � where S is

skew-Hermitian. Therefore AU � US � The eigenvalues of S are all on the imaginary axis because

S is skew-Hermitian. Therefore, the columns of U span an invariant subspace of A associated with

a set of imaginary eigenvalues. Thus A has at least one imaginary eigenvalue. �

Remark 2 In Proposition 1, it is easy to show directly that both statements cannot hold; this

is the “easy” part. For instance, if A has an imaginary eigenvalue, i.e., if Av � jωv for some

ω � R and nonzero v � Cn, it is easy to show that A � P � PA � 0 cannot hold for any P � Sn.

(In the proof, we prove this “easy” implication with the second alternative.) The hard part is the

converse, and the theorems of alternatives give a “constructive” proof: We exhibit the eigenspace

of A corresponding to one or more imaginary eigenvalues. It is also worthy of note that (numerical)

convex optimization algorithms operate similarly: Given a convex feasibility problem, they either

find a feasible point, or provide a constructive proof of infeasibility.

Proposition 1 is representative of most of the results in the sequel, with an easy part and a hard

part, with the theorems of alternatives providing a constructive proof of the hard part. �
Proposition 2 Exactly one of the following two statements is true.

1. There exists a P � Sn such that P � 0 and A � P � PA � 0.

2. A has an eigenvalue with non-negative real part.

Remark 3 This is a restatement of the celebrated Lyapunov stability theorem for LTI systems. �
9



Proof. With A2 as in Example 6 and with A0 � 0, the first statement of the theorem is equivalent to

the existence of P � Sn such that A2 � P � � A0 � 0. Then, applying Theorem ALT 1, the alternative

is that there exist Z1 � Sn and Z2 � � Sn with

diag � Z1 � Z2 � � 0 � Z1A � � AZ1 � Z2 � 0 � (10)

We now show that this condition is equivalent to A having eigenvalues with non-negative real part,

establishing the proposition.

Suppose that A has an eigenvalue with non-negative real part, i.e., there exist nonzero v � Cn,

σ � 0 and ω � R with Av � � σ � jω � v. It is easily shown that Z1 � vv � , Z2 � 2σvv � satisfy (10).

Conversely, suppose that (10) holds. We can write Z1 � UU � with U � Cn � r and RankU �
RankZ � r. From (10), we note that the symmetric part of AZ1 is positive semidefinite, so that

we must have AUU � � USU � where S is the sum of a skew-Hermitian and a positive semidefinite

matrix. Then, AU � US � The eigenvalues of S are all in the closed right-half plane because S is

the sum of a skew-Hermitian and a positive semidefinite matrix. Therefore U spans a (nonempty)

invariant subspace of A associated with a set eigenvalues of A with non-negative real part. �

Remark 4 Theorem ALT 1, besides offering a simple proof to Lyapunov’s theorem, also enables

the extension of Proposition 2 to more general settings. Consider the problem of the existence of

P satisfying

P � 0 � A �1P � PA1 � 0 � A �2P � PA2 � 0 � (11)

The matrix P can be interpreted as defining a common or simultaneous quadratic Lyapunov func-

tion [BY89, BEFB94, SN98, SN99, SN00] that proves the stability of the time-varying system

ẋ � A � t � x � A � t � � λ � t � A1 � � 1 � λ � t ��� A2 � λ � t � � �
0 � 1 � for all t �

An application of Theorem ALT 1 immediately yields a necessary and sufficient condition for (11)

to be feasible: There do not exist Z1 � Z2 � Sn such that

diag � Z1 � Z2 � � 0 � Z1A �1 � A1Z1 � Z2A �2 � A2Z2 � 0 � (12)

It is easy to show that if A1 � σA2 has a nonnegative eigenvalue for some σ � C, then (12) is fea-

sible, or there does not exist P satisfying (11). References [SN98, SN99, SN00] explore sufficient

conditions, using algebraic techniques, for the existence of P satisfying (11) for the special case

when the matrices Ai are 2 	 2 and real.

3.2 Nonstrict Lyapunov inequalities

We saw in � 3.1 that the alternatives to strict Lyapunov inequalities involving a matrix A are equiv-

alent to a condition on some eigenvalue of A. We will see in this section that the alternatives to

nonstrict Lyapunov inequalities result in conditions that are to be satisfied by all eigenvalues of A.

10



Proposition 3 Exactly one of the following two statements is true.

1. There exists P � Sn such that A � P � PA � 0 �
2. A is similar to a purely imaginary diagonal matrix.

Proof. With A1 as in Example 5 and with A0 � 0, the first statement of the theorem is equivalent to

the existence of P � Sn such that A1 � P � � A0 � 0. Then, applying Theorem ALT 2, the alternative

is that there exists a Z � S n with Z � 0 � AZ � ZA � � 0 � We now show that this condition is

equivalent to A being similar to a purely imaginary diagonal matrix.

Suppose A is similar to an imaginary diagonal matrix, i.e., there exists V such that A � VΛV � 1

with Λ diagonal and imaginary. Then Z � VV � � 0 and AZ � ZA � � 0.

Conversely, suppose that there exists Z � 0 with AZ � ZA � � 0, i.e., AZ � S where S is skew-

Hermitian. Therefore A � SZ � 1, which has the same eigenvalues as Z � 1 � 2SZ � 1 � 2, i.e., A has n non-

defective imaginary eigenvalues. In fact, a similarity transformation that maps A to an imaginary

diagonal matrix is easily constructed from Z. Let a Schur decomposition of the matrix Z � 1 � 2AZ1 � 2

be given by Z � 1 � 2AZ1 � 2 � WTW � , where W � W � WW � � I and T is upper triangular. From

AZ � ZA � � 0, we have W � Z � 1 � 2 � AZ � Z � A � � Z � 1 � 2W � T � T � � 0 � Therefore T must be diag-

onal, with purely imaginary diagonal elements. In other words, if we define V � Z1 � 2W , then the

matrix V � 1AV � T is a purely imaginary diagonal matrix. �

Proposition 4 Exactly one of the following two statements is true.

1. There exists P � Sn such that A � P � PA
�

0 � P � 0

2. The eigenvalues of A are in the open right half plane.

Proof. With A2 as in Example 6 and with A0 � 0, the first statement of the theorem is equivalent to

the existence of P � Sn such that A2 � P � � A0 � 0. Then, applying Theorem ALT 2, the alternative

is that there exists a Z � S n with Z � 0 � AZ � ZA � � 0 � From Proposition 2 this is true if and only

if A has no eigenvalue with non-positive real part, i.e., if all eigenvalues of A are in the open right

half plane. �

3.3 Generalized Lyapunov inequalities

Propositions 1–4 deal with the issue of whether the eigenvalues of A lie in or on the boundary of

the left-half complex plane. Standard techniques can be used to extend these results to handle more

general regions in the complex plane; an indirect route is through conformal mapping techniques

from complex analysis (see for instance, [Con78]). For example, the mapping A �� � I � A ��� I � A ��� 1

can be used to derive theorems of alternatives that address whether the eigenvalues of A lie in or on

11



the boundary of the unit disk in the complex plane; the underlying control-theoretic interpretation

then concerns the stability of discrete-time linear systems.

We now demonstrate how Proposition 2 can be directly extended to handle generalized complex

half-planes and generalized circles.

Proposition 5 For some θ � �
0 � 2π � and β � R, consider the complex half-plane

Hθ � β �
�

s � C � ℜ � e jθs � β � � 0 � �
Then, exactly one of the following two statements is true.

1. There exists a P � Sn such that

P � 0 � e � jθA � P � PAe jθ � 2βP � 0 � (13)

2. A has an eigenvalue that does not lie in Hθ � β.

Proof. It is readily verified that A has an eigenvalue that does not lie in Hθ � β if and only if Ã �
Ae jθ � βI has an eigenvalue with nonnegative real part. Using Proposition 2, we have that Ã does

not have an eigenvalue with nonnegative real part if and only if there exists P satisfying

P � 0 � Ã � P � PÃ � 0 �
which is equivalent to (13). �

Proposition 6 For some ρ � 0 and s0 � C, consider the disk

Cρ � s0 ��� s � C � � s � s0 � 2 � ρ2 � �
Then, exactly one of the following two statements is true.

1. There exists a P � Sn such that

P � 0 � A � PA � s0A � P � s �0PA � � ρ2 � � s0 � 2 � P � 0 � (14)

2. A has an eigenvalue that does not lie in Cρ � s0, that is, A has an eigenvalue λ that satisfies� s � s0 � 2 � ρ2.

Proof. Let θ � �
0 � 2π � be such that � A � s0I � e jθ � ρI is nonsingular. Then, it is readily verified that

A has an eigenvalue λ that satisfies � s � s0 � 2 � ρ2 if and only if

Ã � ��� A � s0I � e jθ � ρI � � 1 ��� A � s0I � e jθ � ρI �
has an eigenvalue with nonnegative real part. Using Proposition 2, we have that Ã does not have

an eigenvalue with nonnegative real part if and only if there exists P satisfying

P � 0 � Ã � P � PÃ � 0 �
which, after routine manipulations, yields (14). �
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Remark 5 It is straightforward to derive other results similar to the above two, using Proposi-

tions 1, 3, and 4. �
Remark 6 Consider the subset of the complex plane

D ��� s ����
�

1
s � � � a b

b � c � � 1
s � � 0 � �

where b � C and a � c � R with c � 0. LMI conditions that are necessary and sufficient for the

eigenvalues of a given A � Sn to lie in D are given in [HM01].

Note that when c � 0, D equals Hθ � β with a � 2β and b � e jθ. When c � 0, D equals Cρ � s0

with s0 � b̄ � c and ρ ��� � b � 2 � ac � � c � . Thus, the development in this section serve to provide an

alternate proof and to extend the results in [HM01]. �
3.4 Lyapunov inequalities with equality constraints

We next consider an LTI system with an input:

ẋ � Ax � Bu � (15)

where A � Cn � n and B � Cn � m. The pair � A � B � is said to be controllable if for every initial

condition x � 0 � , there exists an input u and T such that x � T � � 0. While, there are several equivalent

characterizations and conditions for controllability of � A � B � (see for example [Rug96]), we will

use the following: The pair � A � B � is not controllable if and only if there exists a left eigenvector v �
of A such that v � B � 0.

If � A � B � is controllable, then given any monic polynomial a : C � C of degree n with complex

coefficients, there exists K � Cm � n such that det � sI � A � BK � � a � s � for all s � C. In other words,

with “state-feedback” u � Kx in (15), the eigenvalues of A � BK can be arbitrarily assigned. When

� A � B � is not controllable, there exists a nonsingular matrix T � Cn � n such that

T � 1AT �
�

A11 A12

0 A22 � � T � 1B �
�

B1

0 � � (16)

where A11 � Cr � r and B1 � Cr � m, with r � n and � A11 � B1 � being controllable. (This is called the

“Kalman form”.) The eigenvalues of A22 are called the uncontrollable modes. An uncontrollable

mode is called nondefective if its algebraic multiplicity as an eigenvalue of A22 equals its geometric

multiplicity. The matrix T in (16) has the interpretation of a state coordinate transformation x̄ �
T � 1x such that in the new coordinates, only the first r components of the state are controllable.

Proposition 7 Exactly one of the following two statements is true.

1. There exists P � Sn satisfying A � P � PA � 0 � PB � 0 �
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2. All uncontrollable modes of � A � B � are nondefective and correspond to imaginary eigenval-

ues.

Proof. With A3 as in Example 7 and with A0 � 0, the first statement of the theorem is equiv-

alent to the existence of P � S n such that A3 � P � � A0 � 0. Then, applying Theorem ALT 2, the

alternative is that there exists Z � S n � m such that

Z �
�

Z11 Z12

Z �12 Z22 � � 0 � AZ11 � Z11A � � BZ �12 � Z12B � � 0 �

Defining K � Z �12Z � 1
11 , we can write this equivalently as

Z11 � 0 � � A � BK � Z11 � Z11 � A � BK � � � 0 � (17)

In other words, the first statement of the Proposition is false if and only if there exist K � Rn � m
and Z11 � Sn that satisfy (17). We now establish that this condition is equivalent to the second

statement. We will assume, without loss of generality, that � A � B � is in Kalman form, and that K

and Z11 are appropriately partitioned as

K � � K1 K2 � � Z11 �
�

Z̃11 Z̃12
Z̃ �12 Z̃22 � � (18)

Suppose that the uncontrollable modes of � A � B � (if any) are nondefective and correspond to

imaginary eigenvalues. We will establish that we can find Z11 � 0 and K satisfying (17). By

assumption A22 is similar to a purely imaginary diagonal matrix. The pair � A11 � B1 � is controllable,

so there exists K1 such that the eigenvalues of A11 � B1K1 are distinct, purely imaginary, and

different from the eigenvalues of A22. Therefore there exist V11 and V22 such that

V11 � A11 � B1K1 � V � 1
11 � Λ1 � V22A22V � 1

22 � Λ2

where Λ1 and Λ2 are diagonal and purely imaginary. The spectra of Λ1 and A22 are disjoint, so the

Sylvester equation � Λ1V12 � V12A22 � � V11A12 has a unique solution V12 (see [HJ91, Th. 4.4.5]).

If we take K2 � 0, it is easily verified that V �
�

V11 V12

0 V22 � satisfies

V � A � BK � V � 1 �
�

V11 V12

0 V22 � � A11 � B1K1 A12 � B1K2

0 A22 � � V11 V12

0 V22 � � 1

�
�

Λ1 0
0 Λ2 � �

i.e., A � BK is similar to a purely imaginary diagonal matrix. We can now proceed as in the proof

of Proposition 3 and show that the matrix Z11 � VV � satisfies (17).

Conversely, suppose that Z11 and K satisfy (17). In particular, Z̃22 � 0, and A22Z̃22 � Z̃22A �22 �
0 � As in the proof of Proposition 3 we can construct from Z̃22 a similarity transformation that

makes A22 diagonal with purely imaginary diagonal elements. Hence all the uncontrollable modes

are nondefective and correspond to imaginary eigenvalues. �
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Proposition 8 Exactly one of the following two statements is true.

1. There exists P � Sn satisfying

P � 0 � A � P � PA
�

0 � PB � 0 � (19)

2. All uncontrollable modes of � A � B � correspond to eigenvalues with positive real part.

Proof. With A4 as in Example 8 and with A0 � 0, the first statement of the theorem is equivalent to

the existence of P � Sn such that A4 � P � � A0 � 0. Then, applying Theorem ALT 2, the alternative

is that there exists Z11 � Sn, Z12 � Cn � m, Z22 � Sm, and Z2 � Sn with�
Z11 Z12

Z �12 Z22 � � 0 � Z2 � 0 � Z11A � � AZ11 � BZ �12 � Z12B � � Z2 �

Defining K � Z �12Z � 1
11 this is equivalent to the existence of Z11 and K such that

Z11 � 0 � Z11 � A � BK � � � � A � BK � Z11 � 0 � (20)

We now show that this is equivalent to the second statement in the Proposition. We will assume,

without loss of generality, that � A � B � is in Kalman form, and that K and Z11 are appropriately

partitioned as in (18).

First suppose that the uncontrollable modes of � A � B � (if any) correspond to eigenvalues of A

with positive real part, i.e., the eigenvalues of A22 are in the open right half plane. An argument

similar to the one in the proof of Proposition 7 can be given (in turn, using arguments from the

proof of Proposition 4) to construct Z11 and K such that (20) holds.

Conversely, suppose that (20) holds. In particular, Z̃22 � 0, and Z̃22A �22 � A22Z̃22 � 0 � By

Proposition 2 this implies that the eigenvalues A22 have a positive real part. �
Finally, we present a condition for controllability. We first note the following result, which can

be interpreted as a theorem of alternatives for linear equations.

Proposition 9 Exactly one of the following two statements is true.

1. There exists P � Sn satisfying

P �� 0 � A � P � PA � 0 � PB � 0 (21)

2. With λ1 ��������� λp denoting the uncontrollable modes of � A � B � , λi � λ � j �� 0, 1
�

i � j
�

p.
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Proof. Without loss of generality we can assume that � A � B � is in the Kalman form (16), with

A22 � Cp � p. We partition P accordingly as

P �
�

P11 P12
P �12 P22 � �

First suppose λi � λ � j � 0 for two eigenvalues λi and λ j of A22. Then the Lyapunov equation

A �22P22 � P22A22 � 0 has a nonzero solution P22 (see [HJ91, Th. 4.4.5]). Taking P11 � 0 and P12 � 0,

we obtain a nonzero P that satisfies A � P � PA � 0, PB � 0.

Conversely, if P satisfies (21), then � A � BK � P � P � A � BK � � � 0 for all K. This is only possible

if for all K,

A � BK �
�

A11 � B1K1 A22 � B1K2

0 A22 �
has eigenvalues µi and µ j that satisfy µi � µ � j � 0 (again, see [HJ91, Th. 4.4.5]). The spectrum of

A � BK is the union of the spectrum of A11 � B1K1 and the spectrum of A22. Therefore we must

have λi � λ � j � 0 for two eigenvalues of A22. �

Proposition 10 Exactly one of the following two statements is true.

1. There exists P � Sn satisfying P �� 0 � A � P � PA
�

0 � PB � 0 �
2. The pair � A � B � is controllable.

Proof. Statement 1 is true if the statements 1a or 1b listed below are true.

1a. There exists P � Sn satisfying A � P � PA � 0, PB � 0.

1b. There exists P � Sn satisfying P �� 0, A � P � PA � 0, PB � 0.

By Propositions 9 and 7 the alternatives to these statements are the following:

2a. All uncontrollable modes are nondefective, and correspond to eigenvalues on the imaginary

axis.

2b. With λ1 ������� λp denoting the uncontrollable modes of � A � B � , λi � λ � j �� 0, 1
�

i � j
�

p.

The alternative to 1 is therefore that 2a and 2b are true, i.e., that there are no uncontrollable

modes. �

Remark 7 Alternative proofs of this result appeared in [GND99] and [VB99, Lemma 1]. �
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4 Riccati inequalities

We next consider convex Riccati inequalities, which take the form�
A � P � PA PB

B � P 0 � � M
�

0 � (22)

with A � Cn � n, B � Cn � m. Let M be partitioned as

M �
�

M11 M12

M �12 M22 � �
where M11 � M �11 � Sn. Then, when M22 � 0, inequality (22) is equivalent to

A � P � PA � M11 � � PB � M12 � M � 1
22 � B � P � M �12 � � 1 � 0 �

Such inequalities are widely encountered in quadratic optimal control, estimation theory, and H∞

control; see for example [Wil71, LR91, BLW91].

4.1 Strict Riccati inequalities

Proposition 11 Suppose M22 � 0. Then exactly one of the following two statements is true.

1. There exists P � Sn such that �
A � P � PA PB

B � P 0 � � M � 0 � (23)

2. For some full-rank U � Cn � r, V � Cm � r, and S � Cr � r with S � S � � 0,

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 �

Proof. With A3 as in Example 7 and with A0 � M, the first statement of the theorem is equivalent to

the existence of P � Sn such that A3 � P � � A0 � 0. Then, applying Theorem ALT 1, the alternative

is that there exists a Z � S n � m with

Z �
�

Z11 Z12

Z �12 Z22 � � 0 � Z11A � � AZ11 � Z12B � � BZ �12 � 0 � TrZM
�

0 (24)

We now show that this condition is equivalent to the existence of U � Cn � r , V � Cm � r, and S � Cr � r
with S � S � � 0 such that

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 � (25)
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We must have Z11 � 0, as otherwise we would have Z12 � 0, and the last inequality in (24)

would imply that Z22 � 0, and consequently Z � 0, a contradiction. Therefore, there exist U � Cn � r
and V � Cm � r, where r � RankZ11 � 1. such that�

Z11 Z12
Z �12 Z22 � � � U 0

V V̂ � � U � V �
0 V̂ � �

where U has full rank. The equation Z11A � � AZ11 � Z12B � � BZ �12 � 0, represented in terms of

U and V means that AUU � � BVU � is skew-Hermitian, i.e., it can be written as AUU � � BVU � �
USU � , where S is skew-Hermitian. Since U has full rank, this last equation implies AU � BV � US �
Expressing inequality TrZM

�
0 in terms of U and V , we obtain

Tr � � U � V �
0 V̂ � � M

�
U 0
V V̂ ��� � 0 �

which, since M22 � 0, implies that

Tr � � U � V � � M
�

U
V ��� � 0 �

completing the proof. �
The conclusion of Proposition 11 can be further developed to yield the Kalman-Yakubovich-

Popov Lemma.

Lemma 1 (KYP Lemma) Suppose M22 � 0. There exists P � Sn such that�
A � P � PA PB

B � P 0 � � M � 0 � (26)

if and only for all ω � R,

� jωI � A � u � Bv� � u � v � �� 0 ��� � u � v � � M
�

u
v � � 0 � (27)

Proof. Suppose that there does not exist P � Sn such that (26) holds. From Proposition 11, this is

equivalent to the existence of a full-rank U � Cn � r, V � Cm � r, and S � Cr � r with S � S � � 0, such

that

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 � (28)

We show that (28) is equivalent to the existence of u � Cn and v � Cm, not both zero, such that (27)

does not hold at some ω.

Suppose there exist u � Cn and v � Cm, not both zero, such that (27) does not hold at some ω.

Then, it is easy to verify that (28) holds with

U � �
ℜu ℑu � � V � �

ℜv ℑv � � S �
�

0 � ω
ω 0 � �
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Conversely suppose that there exist full-rank U � Cn � r , V � Cm � r, and S � Cr � r with S � S � �
0, such that (28) holds. We then take the Schur decomposition of S: S � ∑m

i � 1 jωiqiq �i , where

∑i qiq �i � I. We then have

0 � Tr � � U � V � � M
�

U
V ��� � Tr

�
� U � V � � M

�
U
V � ∑

i
qiq �i �

�
m

∑
i � 1

q �i � U � V � � M
�

U
V � qi �

At least one of the m terms in this last expression must be less than or equal to zero. Let k be the

index of that term, and define u � Uqk, v � V qk. (u is nonzero because U has full rank.) We have

� u � v � � M
�

u
v � � 0

and, by multiplying US � AU � BV with qk on the right, Au � Bv � jωku � In other words we have

constructed a u and v showing that (27) does not hold at ω � ωk. �

Remark 8 Our statement of the KYP Lemma is more general than standard versions (see for ex-

ample, [Ran96]), as we allow A to have imaginary eigenvalues. If A has no imaginary eigenvalues,

then (27) simply means that

� B � ��� jωI � A � � � 1 I � M
� � jωI � A � � 1B

I � � 0 � (29)

The following form of the frequency-domain condition is more commonly found in the literature:

the inequality (29) holds for all ω where jωI � A is invertible. If A has imaginary eigenvalues,

then this condition is weaker than requiring that (27) holds for all ω, and it is not equivalent to

feasibility of the LMI (23). Consider for example

A �
�

0 1
� 1 0 � � B � 0 � M � diag ��� I � I ���

It is readily verified that the LMI (26) does not hold for any P. The frequency condition (27) does

not hold at ω � 1, u � � 1 � j � , v � 0:

� jωI � A � u �
�

j � 1
1 j � � 1

j � � 0 � Bv� � u � v � � M
�

u
v � � � 2 �

However the inequality (29) is clearly valid for all ω �� � 1, since B � 0. �
Remark 9 We may give a geometric interpretation to the proof of Lemma 1. The set

C � � Z �
�

Z11 Z12

Z �12 Z22 � ���� Z � 0 � Z �11A � � AZ11 � Z12B � � BZ �12 � 0 �
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is a closed convex cone. Its extreme directions have either the form�
0
w � � 0 w � �

for w �� 0, or

ℜ � � u
v � � u � v � � �

where u, v are not both zero and satisfy � jωI � A � u � Bv for some ω. The construction in the

proof provides a way to decompose any element in C as a positive combination of those extreme

directions.

The inequality TrZM
�

0 defines a halfspace. If C intersects this halfspace (i.e., (24) is fea-

sible), then there must be an extreme direction in the halfspace. Any extreme direction in the

halfspace provides a frequency ω and vectors u, v where

� u � v � � M
�

u
v � � 0 �

We can find at least one extreme direction in the halfspace by taking any Z that satisfies (24), and

decomposing it as a positive combination of extreme directions of C . �
We next use the theorem of alternatives to exhibit the well-known connection between the KYP

lemma and a certain Hamiltonian matrix.

Proposition 12 Suppose that A has no imaginary eigenvalues and that M22 � 0. Then, exactly one

of the following statements is true.

1. There exists P � Sn such that (23) holds.

2. The Hamiltonian matrix

H �
�

A � BM � 1
22 M �12 BM � 1

22 B �
M11 � M12M � 1

22 M �12 � � A � BM � 1
22 M �12 � � �

has an imaginary eigenvalue.

Proof. We established in the proof of Proposition 11 that the condition that there does not exist

P � Sn such that (23) holds is equivalent to the existence of Z � S n � m such that (24) holds. We

now show that this condition is equivalent to H having imaginary eigenvalues.

First suppose that H has an imaginary eigenvalue � jω. We show that we can construct Z11,

Z12, Z22 that satisfy (24). Let V1 � Cn � 2 and V2 � Cn � 2 be such that�
A � BM � 1

22 M �12 BM � 1
22 B �

M11 � M12M � 1
22 M �12 � � A � BM � 1

22 M �12 ��� �
�

V1
V2 � �

�
V1
V2 � � 0 � ω

ω 0 � �
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with V1 and V2 not both zero. Then, it is readily verified that with

Z11 � V1V �1 � Z12 � V1 � V �2 B � V �1 M12 � M � 1
22 � Z22 � M � 1

22 � B � V2 � M �12V1 ��� V �2 B � V �1 M12 � M � 1
22 �

condition (24) holds. (Indeed the last inequality holds with equality.)

Conversely suppose that there exists Z � Sn � m such that (24) holds. From the KYP Lemma,

there exist ω0 � R, u � Cn, and v � Cm such that

Au � Bv � jω0u � � u � v � � M
�

u
v � � 0 �

Eliminating u from the first equality yields

v � � B � ��� jω0I � A � � � 1 I � M
� � jω0I � A � � 1B

I � v
�

0 �

Define

G � ω � � � B � ��� jωI � A � � � 1 I � M
� � jωI � A � � 1B

I � �
Now, as ω � ∞, G � ω � � M22 � 0, and it follows from elementary continuity arguments that for

some frequency ω1, G � ω1 � must be singular. Thus, for some ω1 and w � Cm, we must have

� B � ��� jω1I � A � � � 1 I � M
� � jω1I � A � � 1B

I � w � 0 �

Defining �
ũ
ṽ � ��� � jωI � A � � 1 Bw

� jωI � A � � � 1 � M11 � jωI � A � � 1 B � M12 � w � �
it is readily verified that�

A � BM � 1
22 M �12 BM � 1

22 B �
M11 � M12M � 1

22 M �12 � � A � BM � 1
22 M �12 ��� �

�
ũ
ṽ � � jω1

�
ũ
ṽ � �

i.e., H has an imaginary eigenvalue jω1. �

4.2 Strict Riccati inequality with positive definite P

Proposition 13 Suppose M22 � 0. Exactly one of the following two statements is true.

1. There exists P � Sn such that

P � 0 �
�

A � P � PA PB
B � P 0 � � M � 0 �

2. For some full-rank U � Cn � r, V � Cm � r, and S � Cr � r with S � S � � 0,

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 � (30)
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Proof. With A4 as in Example 8 and with A0 � M, the first statement of the theorem is equivalent to

the existence of P � Sn such that A4 � P � � A0 � 0. Then, applying Theorem ALT 1, the alternative

is that there exists a Z � S n � m 	 Sn with

Z � diag � � Z11 Z12

Z �12 Z22 � � Z2 � � 0 � Z11A � � AZ11 � Z12B � � BZ �12 � Z2 � 0 � Tr Z diag � M � 0 � � 0 �

or equivalently, there exist Z11, Z12, Z22, not all zero, such that�
Z11 Z12
Z �12 Z22 � � 0 � Z11A � � AZ11 � Z12B � � BZ �12 � 0 � Tr

�
Z11 Z12
Z �12 Z22 � M

�
0 � (31)

We now show that this condition is equivalent to the existence of U � Cn � r , V � Cm � r, and S � Cr � r
with S � S � � 0 such

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 �

We must have Z11 � 0, as otherwise the last inequality in (31) would imply that Z22
�

0, a

contradiction. Therefore, there exist U � Cn � r and V � Cm � r such that�
Z11 Z12

Z �12 Z22 � � � U 0
V V̂ � � U � V �

0 V̂ � �
where U has full rank. The equation Z11A � � AZ11 � Z12B � � BZ �12 � 0, represented in terms of U

and V means that AUU � � BVU � has a positive semidefinite symmetric part, i.e., it can be written

as AUU � � BVU � � USU � , where S � S � � 0. Since U has full rank, this last equation implies

AU � BV � US � And inequality Tr ZM
�

0, expressed in terms of U and V , implies that (see proof

of Proposition 11)

Tr � � U � V � � M
�

U
V ��� � 0 �

which completes the proof. �

Frequency-domain interpretations

Recall that we were able to extend Proposition 11 to yield the KYP Lemma, which establishes the

connection between an LMI and a certain frequency-domain condition. Unfortunately, no such

extensions are possible in general with Proposition 13. For example, the existence of full-rank

U � Cn � r , V � Cm � r, and S � Cr � r with S � S � � 0 such that

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0

does not imply that for some s � C with ℜs � 0, there exist u � Cn, and v � Cm such that

� sI � A � u � Bv� � u � v � � M
�

u
v � � 0 � (32)
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The reverse implication is true, however. These facts are well-known; see for example, [Wil74,

Ran96].

In other words, conjectures such as “There exists P � Sn such that

P � 0 �
�

A � P � PA PB
B � P 0 � � M � 0 � (33)

if and only if

� B � � sI � A � � � I � M
� � sI � A � � 1B

I � � 0 (34)

for all s � C with ℜs � 0”, are false. Here is a simple counterexample:

A �
� � 1 1
� 10 � 1 � � B �

�
0�

10 � � M �
�� � 10 � 2 0

� 2 2 0
0 0 1

��
�

It is readily verified that while there does not exist P � S n such that (33) holds, the inequality (34)

holds for all s � C with ℜs � 0.

However, when M satisfies additional constraints, it is possible to provide a frequency-domain

interpretation for Proposition 13.

Proposition 14 Suppose M22 � 0, M11
�

0, and all the eigenvalues of A have negative real part.

There exists P � Sn such that

P � 0 �
�

A � P � PA PB
B � P 0 � � M � 0 (35)

if and only if for all s � C with ℜs � 0,

� B � � sI � A � � � I � M
� � sI � A � � 1B

I � � 0 � (36)

Proof. Suppose (36) does not hold for some s, i.e., there exists a nonzero v � Cm such that

v � � B � � sI � A � � � I � M
� � sI � A � � 1B

I � v
�

0 �

Hence, (30) is satisfied by U � � sI � A � � 1Bv� V � v� S � s � and by Proposition 13 this implies

that (35) is infeasible.

Conversely, suppose (35) is infeasible. As we have seen in the proof of Proposition 13, this

implies that there exists a nonzero Z such that�
Z11 Z12
Z �12 Z22 � � 0 � Z11A � � AZ11 � Z12B � � BZ �12 � Q � Tr

�
Z11 Z12
Z �12 Z22 � M

�
0
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for some Q � Q � � 0. Since all the eigenvalues of A have negative real part, the Lyapunov equation

WA � � AW � Q � 0 has a positive semidefinite solution W . Hence the matrix Z̃, defined as

Z̃ �
�

Z11 � W Z12
Z �12 Z22 � �

satisfies Z̃ � 0 � Z̃11A � � AZ̃11 � Z̃12B � � BZ̃ �12 � 0 � and, because M11
�

0, also

TrM11Z̃11 � 2TrM �12Z̃12 � TrM22Z̃22
�

0 �
We can now proceed as in the proof of Proposition 4.1 and Lemma 1, and construct from Z̃ two

vectors u and v, not both zero, such that for some ω,

� jωI � A � u � Bv� � u � v � � M
�

u
v � � 0 �

This means that

� ��� jωI � A � � � 1 I � M
� � jωI � A � � 1

I � �� 0 �
and hence, (36) does not hold for s � jω.

4.3 Nonstrict Riccati inequalities

Proposition 15 Suppose M22 � 0 and that all uncontrollable modes of � A � B � are nondefective and

correspond to imaginary eigenvalues. Then, exactly one of the following two statements is true.

1. There exists P � Sn such that �
A � P � PA PB

B � P 0 � � M � 0 � (37)

2. For some full-rank U � Cn � n, V � Cm � n, and S � Cn � n with S � S � � 0,

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 �

Proof. With A3 as in Example 7 and with A0 � M, the first statement of the theorem is equivalent

to the existence of P � Sn such that A2 � P � � A0 � 0. From Proposition 7, the condition that all

uncontrollable modes of � A � B � are on the imaginary axis, and have geometric multiplicity one is

equivalent to the nonexistence of P satisfying A � P � � 0. Therefore, from Theorem ALT 2, the

alternative is that there exists a Z � S n � m with

Z �
�

Z11 Z12

Z �12 Z22 � � 0 � Z11A � � AZ11 � Z12B � � BZ �12 � 0 � TrZM
�

0
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It can be shown, using arguments similar to the ones in the proof of Proposition 11, that the second

condition is equivalent to existence of U � Cn � r, V � Cm � r, and S � Cr � r with S � S � � 0 such

that

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 � (38)

�

Proposition 16 Suppose M22 � 0, and that all modes of � A � B � corresponding to eigenvalues with

nonnegative real part are controllable. Then, exactly one of the following two statements is true.

1. There exists P � Sn such that

P � P � � 0 �
�

A � P � PA PB
B � P 0 � � M

�
0 (39)

with the matrices on the left-hand sides of the inequalities (39) not both zero.

2. For some full-rank U � Cn � n, V � Cm � n, and S � Cn � n with S � S � � 0,

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 �

Proof. Similar to the proof of Proposition 15, but using Theorem ALT 2, Proposition 8 and steps

from the proof of Proposition 13. �

Remark 10 The only difference between Propositions 11 and 15 (and respectively Propositions 13

and 16) is that the requirement on the sizes of the matrices U , V and S. �
We are unaware of any simple frequency domain interpretations of the conclusions of Proposi-

tions 15 and 16. However, it turns out that when constraint qualifications are invoked that enable

the application of Theorem ALT 3, the resulting alternatives to the LMI (37) and (39) have inter-

pretations from control theory. We explore these next.

Proposition 17 Suppose M22 � 0 and that all uncontrollable modes of � A � B � are nondefective and

correspond to imaginary eigenvalues. Then, exactly one of the following two statements is true.

1. There exists P � Sn such that �
A � P � PA PB

B � P 0 � � M
�

0 � (40)

2. For some full-rank U � Cn � n, V � Cm � r, and S � Cr � r with S � S � � 0,

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 �
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Proof. With A3 as in Example 7 and with A0 � M, the first statement of the theorem is equivalent

to the existence of P � Sn such that A3 � P � � A0 � 0. From Proposition 7, the condition that all

uncontrollable modes of � A � B � are nondefective and correspond to imaginary eigenvalues, means

that there exists no P such that A3 � P � � 0. Therefore, from Theorem ALT 3, we have a necessary

and sufficient condition for the infeasibility of (40): There exist Z11, Z12, Z22 such that

Z �
�

Z11 Z12

Z �12 Z22 � � 0 � Z11A � � AZ11 � Z12B � � BZ �12 � 0 � TrZM � 0 �

It can be shown, using arguments similar to the ones in the proof of Proposition 11, that this

condition is equivalent to existence of U � Cn � r, V � Cm � r, and S � Cr � r with S � S � � 0 such

that

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 � (41)

�

Remark 11 The conclusions of Proposition 17 are closely related to conditions for the solvabil-

ity of Algebraic Riccati Equations (AREs) and Inequalities (ARIs), derived by Scherer [Sch95a,

Sch95b], for systems with uncontrollable modes on the imaginary axis. Scherer’s approach is to

reduce the original problem to that of solvability of an ARE for a smaller controllable system, with

auxiliary LMIs of the form A � P � PA � S � 0 where A has purely imaginary eigenvalues, and P is

required to be “arbitrarily large”. �
As with Proposition 11, the conclusion of Proposition 17 can be further developed to yield the

nonstrict version of the Kalman-Yakubovich-Popov Lemma.

Lemma 2 (KYP Lemma, nonstrict version) Suppose M22 � 0 and that all uncontrollable modes

of � A � B � are nondefective and correspond to imaginary eigenvalues. There exists P � Sn such that�
A � P � PA PB

B � P 0 � � M
�

0 �

if and only if for all ω � R,

� jωI � A � u � Bv� � u � v � �� 0 ��� � u � v � � M
�

u
v � � 0 �

Remark 12 The conclusions of Proposition 17 have implications for quadratic optimal control.

The mathematical setting of the following discussion is taken from the paper by Willems [Wil71].

Suppose that the linear system ẋ � Ax � Bu � is controllable, and consider the following optimal

control problem.

inf
u � L2e

� ∞

0
� � x � t ��� u � t ��� � M

�
x � t �
u � t � ��� dt � s.t. lim

t � ∞
x � t � � 0 � (42)
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Willems has shown that the infimum in (42) is bounded if and only if there exists P � S n such that�
A � P � PA PB

B � P 0 � � M
�

0 � (43)

We will now show using the theorems of alternatives that if there does not exist P � S n such

that (43) is feasible, then there exists a state-feedback input u � Kx such that the objective in (42)

is unbounded below. If (43) is infeasible, then from Theorem ALT 3, there exist Z11, Z12, Z22 such

that

Z �
�

Z11 Z12
Z �12 Z22 � � 0 � Z11A � � AZ11 � Z12B � � BZ �12 � 0 � TrMZ � 0 �

Proceeding along the lines of the proof of Proposition 11, it is easy to show that there exist full-rank

U � Cn � r , V � Cm � r, and S � Cr � r with S � S � � 0 such that

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 � (44)

Let K � V � U � U � � 1U � . Then (44) can be rewritten as

� A � BK � U � US � Tr � � U � V � � M
�

U
V ��� � 0 �

Thus, there exists a state-feedback input u � t � � Kx � t � such that A � BK has imaginary eigenvalues

(those of S). Moreover as it is easy to show that for some initial condition x � 0 � that lies in the

column space of U (this is the invariant subspace of A � BK corresponding to pure imaginary

eigenvalues), the corresponding objective value

� ∞

0
� � x � t � � u � t � � � M

�
x � t �
u � t � � � dt � 0 � (45)

Of course, this input u � t � � Kx � t � is inadmissible, as limt � ∞ x � t � �� 0. However, it is easy to

establish using continuity-based arguments that we can construct an input u � t � � K̃x � t � such that

x � t � � 0 arbitrarily slowly, yet with the objective being negative, as in (45). This magnitude of

the objective can be made arbitrarily large (owing to the slow decay of x � t � ). Thus, the objective

in (42) is unbounded below. �
Next, we have another variation of Proposition 17, where we impose constraints on P.

Proposition 18 Suppose M22 � 0 and that all uncontrollable modes of � A � B � correspond to eigen-

values with positive real part. Then, exactly one of the following two statements is true.

1. Then there exists P � Sn such that

P � 0 �
�

A � P � PA PB
B � P 0 � � M

�
0 � (46)
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2. For some full-rank U � Cn � n, V � Cm � r, and S � Cr � r with S � S � � 0,

US � AU � BV � Tr � � U � V � � M
�

U
V ��� � 0 � (47)

Proof. With A4 as in Example 8 and with A0 � M, the first statement of the theorem is equivalent

to the existence of P � Sn such that A4 � P � � A0 � 0. From Proposition 8, the condition that all

uncontrollable modes of � A � B � correspond to eigenvalues with positive real part means that there

exists no P such that A4 � P � � 0. Therefore, from Theorem ALT 3, we have a necessary and

sufficient condition for the infeasibility of (46): There exist Z11, Z12, Z22, not all zero, such that

Z �
�

Z11 Z12

Z �12 Z22 � � 0 � Z11A � � AZ11 � Z12B � � BZ �12 � 0 � TrMZ � 0 �

The rest of the proof proceeds along the lines of the proof of Proposition 13. �

Remark 13 When there does not exist P � Sn such that (46) is feasible, it turns out that the

infimum in the quadratic optimal control problem

inf
u � L2e

� ∞

0
� � x � t � � u � t ��� � M

�
x � t �
u � t � ��� dt (48)

is unbounded below (see [Wil71]). (Note the important difference from the problem in (42): In

the problem in (48), there are no terminal constraints on the state x � t � .) Using the theorem of

alternatives, it is possible to construct a state-feedback input u � t � � Kx � t � that demonstrates that

the objective in (48) is unbounded below. The construction of the state-feedback here is much

more tedious than with the remark following Lemma 2. �
5 The linear quadratic regulator problem

In � 4, we considered convex Riccati inequalities, and explored system-theoretic interpretations

of conditions for their feasibility via the theorems of alternatives. In this section, we consider the

Linear Quadratic Regulator (LQR) problem, which is a classical semidefinite program with convex

Riccati inequalities.

Consider the semidefinite program

maximize x �0Px0

subject to

�
A � P � PA � Q PB

B � P I � � 0 � P � 0 � (49)

with Q � 0. The SDP (49) can be rewritten as

minimize 
 c � x � V
subject to A � x ��� A0 � 0

(50)
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where A : S n � Sn � m 	 Sn, A0, and c are defined as

A � P � � diag � � A � P � PA PB
B � P 0 � � P � � A0 � diag �

�
Q 0
0 I � � 0 ��� c � � x0x �0 �

(Of course, the optimal value of Problem (50) is the negative of the optimal value of Problem (49).)

The dual problem of (50) (see � 2.2) is

maximize � 
 A0 � Z � Sn �
subject to Aadj � Z � � c � Z � Z � � 0

(51)

It is readily verified that A adj : Sn � m 	 Sn � V is given by

Aadj � Z � � Z11A � � AZ11 � Z12B � � BZ �12 � Z2 �

where Z � S n � m 	 Sn is partitioned as Z � diag � � Z11 Z12
Z �12 Z22 � � Z2 � , with Z11 � Sn. Thus, prob-

lem (51) can be rewritten as

maximize � TrQZ11 � TrZ22

subject to AZ11 � BZ �12 � Z11A � � Z12B � � x0x �0 � 0 �
�

Z11 Z12
Z �12 Z22 � � 0 � (52)

with variables Z11 � Sn, Z12 � Cn � m, Z22 � Sm.

5.1 Interpretation of the primal problem

Consider the following optimal control problem (cf. Remarks 12 and 13): For the system

ẋ � Ax � Bu � x � 0 � � x0 � (53)

find u � L2e that minimizes J �
� ∞

0
� x � t � � Qx � t ��� u � t � � u � t ��� dt � (54)

with Q � 0, subject to limt � ∞ x � t � � 0. Let Jopt denote the minimum value.

We can write down a lower bound for Jopt using quadratic functions. Suppose for P � 0 we

have
d
dt

x � t � � Px � t � � � � x � t � � Qx � t ��� u � t � � u � t ����� (55)

for all t � 0, and for all x and u satisfying ẋ � Ax � Bu, x � T � � 0. Then, integrating both sides from

0 to T , we get

x �0Px0
� � T

0
� x � t � � Qx � t ��� u � t � � u � t ��� dt �

or we have a lower bound for Jopt.

Condition (55) holds for all x and u (not necessarily those that steer state to zero) if the LMI�
A � P � PA � Q PB

B � P I � � 0
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is satisfied. Thus, the optimal value of the SDP

maximize x �0Px0

subject to

�
A � P � PA � Q PB

B � P I � � 0 � P � 0 �

provides a lower bound to the optimal value of Problem (54). This SDP is the same as (49).

5.2 Interpretation of the dual problem

Suppose � A � B � is stabilizable. Consider system (53) with a constant, linear state-feedback u � Kx

that stabilizes the system: ẋ � � A � BK � x, x � 0 � � x0 � with all the eigenvalues of A � BK having

negative real part. Then the LQR objective J reduces to

JK �
� ∞

0
x � t � � � Q � K � K � x � t � dt �

Clearly, for every K, JK yields an upper bound on the optimum LQR objective Jopt. From standard

results in control theory, JK can be evaluated as Tr Z̃ � Q � K � K � , where Z̃ satisfies

� A � BK � Z̃ � Z̃ � A � BK � � � x0x �0 � 0 �
with all the eigenvalues of A � BK having negative real part. Thus, the best upper bound on Jopt,

achievable using state-feedback control, is given by the optimization problem with the optimization

variables Z̃ and K:

minimize Tr Z̃ � Q � K � K �
subject to Z̃ � 0 � � A � BK � Z̃ � Z̃ � A � BK � � � x0x �0 � 0 �

which has the same objective value as (52) evaluated at Z11 � Z̃, Z12 � Z̃K � , Z22 � KZ̃K � .

5.3 Condition for strict primal feasibility

From Proposition 13, strict primal feasibility is equivalent to the condition that there does not exist

a full-rank U � Cn � r, V � Cm � r, and S � Cr � r with S � S � � 0, such that

US � AU � BV � TrU � QU � V � V � 0 � (56)

As Q � 0, condition (56) is equivalent to QU � 0 and V � 0, or we have AU � US � QU �
0, which is equivalent to � Q � A � having unobservable modes in the closed-right half complex

plane [Rug96]. In other words, primal feasibility is equivalent to � Q � A � having no unobservable

modes corresponding to eigenvalues with nonnegative real part.
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5.4 Condition for strict dual feasibility

Suppose the dual problem is strictly feasible, that is, there exist Z11 � Sn and Z12 � Cn � m such that

Z11 � 0 and AZ11 � BZ �12 � Z11A � � Z12B � � x0x �0 � 0. With K � Z �12Z � 1
11 , we then have

Z11 � 0 � � A � BK � Z11 � Z11 � A � BK � � 0 �
or � A � B � is stabilizable, that is, all the uncontrollable modes are in the open left-half complex

plane [Rug96].

5.5 Optimality conditions

If primal and dual are strictly feasible, then strong duality holds, and primal and dual optima are

attained. By complementary slackness, we have�
Z11 Z12

Z �12 Z22 � � A � P � PA � Q PB
B � P I � � 0 �

i.e., �
I
K � � I K � �

�
A � P � PA � Q PB

B � P I � � 0 �
or

� I K � �
�

A � P � PA � Q PB
B � P I � � 0 �

or K � � B � P, with all the eigenvalues of A � BK having negative real part, and

A � P � PA � Q � PBB� P � 0 � (57)

This is the classical LQR result, that states that when � A � B � is stabilizable and � Q � A � is de-

tectable, then the optimal control u that solves Problem (54) is a constant state-feedback, with the

feedback gain given via the stabilizing solution to the Algebraic Riccati Equation (57).

6 SDP duality and bounds on the H∞-norm

Consider the LTI system

ẋ � Ax � Bu � x � 0 � � 0 � y � Cx � (58)

where A � Cn � n, B � Cn � m, and C � Cp � n, with all the eigenvalues of A having a negative real

part. Let � A � B � C � be a minimal realization, and let H denote the transfer function, i.e., H � s � �
C � sI � A � � 1B.
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The H∞ norm of H is defined as � H � ∞ � supℜs � 0 σmax � H � s ��� , where σmax ��� � denotes the

maximum singular value. It turns out that we also have

� H � ∞ � sup
ω � R

σmax � H � jω ��� (59)

� sup
u � T1 � T2

� � T2

T1

y � t � � y � t � dt ����
� T2

T1

u � t � � u � t � dt
�

1 � � (60)

Equality (60) means that � H � ∞ is the L2 gain of system (58), and equality (59) means that � H � ∞ is

the L2 gain of system (58) over all possible sinusoidal inputs, i.e., it is the L2-gain of system (58)

over all frequencies.

It is well-known (see for example [BEFB94]) that the the optimal value of the SDP

minimize β

subject to

�
A � P � PA � C � C PB

B � P � βI � � 0
(61)

in the variables P � Sn and β � R is equal to � H � 2
∞. If we take V � S n 	 R, and define A : V �

Sn � m, A0 � Sn � m, c � V as

A � P� β � � �
�

A � P � PA PB
B � P � βI � � A0 � �

�
C � C 0

0 0 � � Sn � m � c �
�

0 0
0 1 � �

the SDP (61) can be rewritten as

minimize 
 c � x � V
subject to A � x ��� A0 � 0 � (62)

The dual problem of (62) is

minimize 
 A0 � Z � Sn

subject to Aadj � Z � � c � Z � 0 � (63)

It is readily verified that A adj : Sn � m � V is given by

Aadj �
�

Z11 Z12

Z �12 Z22 � � � diag � Z11A � � AZ11 � Z12B � � BZ �12 � TrZ22 ���

Thus, Problem (63) can be rewritten as

maximize TrCZ11C �

subject to Z11A � � AZ11 � Z12B � � BZ �12 � 0 �
�

Z11 Z12

Z �12 Z22 � � 0 � TrZ22 � 1 �
(64)

with variables Z11 � Sn, Z12 � Cn � m, Z22 � Sm.
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6.1 Control-theoretic interpretations of the lower bound

Any feasible point to Problem (64) yields a lower bound on � H � 2
∞. We now provide control-

theoretic interpretations of such a lower bound.

Time-domain interpretation

We establish the connection between the time-domain control-theoretic interpretation of � H � ∞

from (60), and the lower bound based on the dual problem (64).

Let u � t � be any input that steers the state of system (58) from x � T1 � � 0 to x � T2 � � 0 for some

T1 � T2 � R, with � T2
T1

u � t ��� u � t � dt � 1. Let y � t � be the corresponding output. Then, from (60), the

quantity � T2
T1

y � t ��� y � t � dt serves as a lower bound to � H � 2
∞.

Define

Z11 �
� T2

T1

x � t � x � t � � dt � Z12 �
� T2

T1

x � t � u � t � � dt � Z22 �
� T2

T1

u � t � u � t � � dt �

We have�
Z11 Z12

Z �12 Z22 � �
� T2

T1

�
x � t �
u � t � � � x � t � � u � t � � � � 0 � TrZ22 �

� T2

T1

u � t � � u � t � dt � 1 �

and

AZ11 � BZ �12 � Z11A � � Z12B � �
� T2

T1

d
dt

� x � t � x � t � � � dt � x � T � x � T � � � x � 0 � x � 0 � � � 0 �

Thus, Z11, Z12 and Z22 are dual feasible. The corresponding dual objective is

TrCZ11C � �
� T2

T1

y � t � � y � t � dt �

completing the connection between the control-theoretic interpretation (60), and the dual prob-

lem (64).

Frequency-domain interpretation

We next establish the connection between the frequency-domain control-theoretic interpretation of

� H � ∞ from (59), and the lower bound based on the dual problem (64).

Let ω � R, and let U � Cm with U � U � 1. Define X � � jωI � A � � 1BU , Z11 � ℜXX � , Z12 �
ℜXU � , and Z22 � ℜUU � . Then,�

Z11 Z12
Z �12 Z22 � � ℜ � � X

U � � X � U � � � � 0 �
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and

AZ11 � BZ �12 � Z11A � � Z12B � � ℜ � AXX � � XX � A � � XU � B � � BUX � �
� ℜ ����� jωI � A � XX � � XX � ��� jωI � A � � � XU � B � � BUX � �
� 0 �

Thus, Z11, Z12 and Z22 are dual feasible. The value of the dual objective function is

TrC � CZ11 � X � C � CX � U � B � ��� jωI � A � � � 1C � C � jωI � A � BU �
which, from (59), is a lower bound on � H � 2

∞. The control-theoretic interpretation of the above

development is as follows. Suppose the input to system (58) is a complex exponential u � t � �
e jωtU . (Note that u is not in L2, i.e., � T

0 u � t ��� u � t � dt is unbounded with T . This problem can

be addressed, using the standard technique of restricting u to have finite support, and then nor-

malizing it so that it has unit L2 norm. We will henceforth ignore such technical issues, and

just give the basic idea.) Then, the output of system (58) is y � t � � C � jωI � A � � 1Be jωtU , and� U � B � ��� jωI � A � � � 1C � C � jωI � A � BU is the corresponding L2 gain. Thus, the above develop-

ment demonstrates that for every ω � R, σmax � H � jω � � can be proven to be a lower-bound on the

H∞ via the construction of a feasible solution for Problem (64).

6.2 Relation to Enns-Glover lower bound

Let Wc and Wo be the controllability and observability Gramians of the system (58) respectively,

that is, AWc � WcA � � BB � � 0, and WoA � A � Wo � C � C � 0 � Let z be a unit-norm eigenvector

corresponding to the largest eigenvalue of W 1 � 2
c WoW 1 � 2

c , and let X and Y be the solutions of the

two Lyapunov equations

AY � YA � � W 1 � 2
c zz � W 1 � 2

c � 0 � A � X � XA � W � 1 � 2
c zz � W � 1 � 2

c � 0 �
Define Z as

Z �
�

Z11 Z12

Z �12 Z22 � � � Y � WcXWc WcXB
B � XWc B � XB � �

We verify that Z is dual feasible. Obviously,

Z �
�

Y 0
0 0 � � � Wc

B � � X � Wc B � � 0 �

Secondly,

TrZ22 � TrBB � X � � Tr � AWc � WcA � � X � � TrWc � A � X � XA � � z� z � 1 �
Finally, it is easily verified that

AY � AWcXWc � YA � � WcXWcA � � WcXBB � � BB � XWc � 0 �
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so that Z11A � � AZ11 � Z12B � � BZ �12 � 0 � Moreover the objective value is

TrCZ11C � � TrCYC � � TrCWcXWcC � � TrCYC � � σ̄

where σ̄ is the largest eigenvalue of WcWo. This lower bound on � H � 2
∞ is the well-known Enns-

Glover lower bound [Enn84, Glo84]. Note that the actual duality-based bound

TrCYC � � TrCWcXWcC �

is guaranteed to be at least as good as the Enns Glover bound.

Time-domain interpretation

We may interpret the Enns-Glover lower bound in the context of the time-domain interpretation

for the dual objective, given in � 6.1. Here T1 � � ∞, T2 � ∞, and

u � t � �
�

B � e � A � tW � 1 � 2
c z � t � 0 �

0 � t � 0 �
Then,

x � t � �
�

Wce � A � tW � 1 � 2
c z � t � 0 �

eAtW 1 � 2
c z � t � 0 ���

It is then readily verified that � T2
T1

u � t ��� u � t � dt � 1 � and � T2
T1

y � t ��� y � t � dt � σ̄ �

6.3 New duality-based upper and lower bounds

Noting that every primal feasible point gives an upper bound and every dual feasible point gives

a lower bound, it is possible to generate new bounds for � H � ∞. It is readily checked that these

bounds are often better than existing bounds.

New upper bounds. It is easily checked that � 2Wo � 4λmax � WoBB � Wo � C � C ��� � Sn 	 R is a primal

feasible point, where λmax � R � S � is the maximum generalized eigenvalue of � R � S � . Therefore one

upper bound on � H � ∞ is given by 2 � λmax � WoBB � Wo � C � C ���
Let H̃ be defined by H̃ � s � � H � s � T ; then we have � H � ∞ � � H̃ � ∞, which yields another upper

found for � H � ∞: 2 � λmax � WcC � CWc � BB � ���
New lower bounds. It is easily verified that Z11 � Wc � α, Z12 � B ��� 2α � , Z22 � B � W � 1

c B ��� 4α � ,
where α � Tr � B � W � 1

c B � 4 � , are dual feasible. Therefore a lower bound on � H � ∞ is given by

2 � TrCWcC � ��� TrB � W � 1
c B � �

Once again noting � H � ∞ � � H̃ � ∞, where H̃ � s � � H � s � T , we have another lower bound � H � ∞:

2 � TrB � WoB ��� TrCW � 1
o C � ���
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7 Conclusions

We have explored the application of semidefinite programming duality in order to obtain new

insight, as well as to provide new and simple proofs for some classical results for linear time-

invariant systems. We have also shown how SDP duality can be used to derive new results, such as

new LMI criteria for controllability (and observability) properties, as well as new upper and lower

bounds for the H∞ norm.
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A Proofs of the theorems of alternatives

A.1 Theorem ALT 1

The two statements contradict each other:

0 � 
 A � x ��� A0 � Z � S � 
 x � Aadj � Z ��� V � 
 A0 � Z � S � 
 A0 � Z � S � 0 �
(The first inequality follows from A � x � � A0 � 0 and Z � 0.) Therefore at most one of the two

statements is true.
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To complete the proof, we show that if statement 1 is false, then statement 2 must be true.

Consider the set

C ��� U � S � A � y ��� U � 0 for some y � V ���
Suppose statement 1 is false, i.e., A0 �� C. Since C is open, nonempty, and convex, there must be a

hyperplane strictly separating A0 from C, i.e., there exists a nonzero Z � S that satisfies


 A0 � Z � S � 
 U � Z � S
for all U � C. In other words, Z must satisfy Z �� 0 and


 A0 � Z � S � 
�� A � y ��� X � Z � S � � 
 y � Aadj � Z ��� V � 
 X � Z � S (65)

for all X � 0 and all y � V . The first term in the right-hand side is unbounded below as a function

of y if A adj � Z � �� 0, and equal to zero if A adj � Z � � 0. Therefore if Z defines a separating hyperplane,

it must satisfy Aadj � Z � � 0. The second term is unbounded below as a function of X � 0 if Z �� 0.

This yields a second condition: Z � 0. If Z satisfies both conditions, the right-hand side of (65)

is positive for all X and y, and can take values arbitrarily close to 0. The inequality is therefore

satisfied for all y and all X � 0 if 
 A0 � Z � Sn
�

0. In summary, Z satisfies

Z � 0 � Aadj � Z � � 0 � 
 A0 � Z � S � 0 �

A.2 Theorem ALT 2

The two statements clearly contradict each other:

0 � 
 A � x � � A0 � Z � S � 
 x � Aadj � Z ��� V � 
 A0 � Z � S � 0 �
Therefore at most one of the statements is true.

Let B : W � S be a linear mapping spanning the nullspace of A adj, i.e.,

Aadj � Z � � 0 � � Z � B � y � for some y � W
X � A � x � for some x � V � � Badj � X � � 0 �

We can express any A0 � S as A0 � A � x0 � � A �0 , where x0 � V and Aadj � A �0 � � 0. It is clear

that statement 1 holds if and only if there exists x̃ satisfying A � x̃ ��� A �0 � 0. Statement 2 holds if

and only if there exist Z � 0 such that A adj � Z � � 0, and 
 A0 � Z � S � 
 A �0 � Z � S � 0. The theorem

therefore holds if and only if it holds with A0 replaced by A �0 .

Suppose A0 � A � x0 � for some x0 � V , i.e., A �0 � 0. By the definition of B , we can reformulate

the theorem as follows. Exactly one of the following two statements is true.

1. There exists X � 0 with Badj � X � � 0.
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2. There exists y � W with B � y � � 0.

This result follows immediately from Theorem ALT 1.

Next, suppose A0 is not in the range of A , i.e., A �0 �� 0, and that there exists no x � V with

A � x � � 0. Suppose the second statement is false. In particular, this means there is no Z � S with

Z � 0, Aadj � Z � � 0, and 
 A0 � Z � S � 0. Therefore there exists no y � W such that

diag � B � y ����� 
 A0 � B � y ��� S � � 0 �
By Theorem ALT1 this implies there exists diag � X � λ � � S 	 R, such that

diag � X � λ � � 0 � Badj � X � � λBadj � A0 � � 0 �
The last equality holds if and only if X � λA0 � A � x � for some x � V . Therefore there exist x � V ,

λ � R such that

diag � A � x ��� λA0 � λ � � 0 �
By assumption, λ � 0 is impossible. Therefore λ � 0, and dividing by λ yields an x̃ � x � λ satisfying

A � x̃ ��� A0 � 0. Finally, we note that we must have A � x̃ ��� A0 �� 0 because A0 � A � x0 ��� A �0 with

A �0 nonzero and orthogonal to the range of A . Hence x̃ satisfies the conditions in the first statement.

A.3 Theorem ALT 3

The two statements clearly contradict each other:

0
� 
 A � x ��� A0 � Z � S � 
 A0 � Z � S � 0 �

so at most one of the two statements is true.

If remains to show that at least one of the two statements is true. This is clearly the case if

A0 � A � x0 � for some x0: statement 1 holds with x � � x0; statement 2 is false.

Next, assume that A0 � A � x0 ��� A �0 , where Aadj � A �0 � � 0 and A �0 �� 0, and that there exists no

x � V such that A � x � � 0. Suppose statement 1 is false. Then statement 1 of Theorem ALT 2 is

also false, and by Theorem ALT 2, there exists Z � S , with Z � 0, Aadj � Z � � 0, 
 A0 � Z � S � 0. Since

A �0 �� 0, there exists a small positive t, such that Z̃ � Z � tA �0 satisfies Z̃ � 0 and Aadj � Z̃ � � 0, and

moreover


 A0 � Z̃ � S � 
 A0 � Z � S � t 
 A0 � A �0 � S � 
 A0 � Z � S � t 
 A �0 � A �0 � S � 0 �
Therefore statement 2 of Theorem ALT 3 is true.
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A.4 Theorems ALT 4, ALT 5a, ALT 5b, and ALT 6

Choose a linear mapping C : U � V , where U is some vector space, that satisfies

B � x � � 0 � � x � C � u � for some u � U �
i.e., the range of C is the nullspace of B . The adjoint of C satisfies

C adj � x � � 0 � � x � Badj � w � for some w � W �
Define Ã : U � Sn by Ã � u � � A � C � u ��� . Its adjoint is given by Ãadj � Z � � C adj � Aadj � Z ��� . Therefore,

Ãadj � Z � � 0 � � Aadj � Z � � Badj � w � for some w � W �
The four theorems now follow from Theorems ALT 1–ALT 3 applied to Ã.

B Proof of the duality theorem (Theorem 8)

Weak duality

Weak duality is straightforward. If x is primal feasible and Z is dual feasible, then


 c � x � V � 
 Aadj � Z ��� x � V � 
 Z � A � x ��� S � � 
 Z � A0 � S �
Therefore

popt � inf
A � x � � A0 � 0


 c � x � V � sup
Aadj � Z � � c � Z � 0

� 
 Z � A0 � S � dopt �

Strict primal feasibility implies strong duality

Suppose the primal problem is strictly feasible, i.e., there exists an x0 with A � x0 ��� A0 � 0. Define

X0 � A � x0 ��� A0 and t0 � 
 c � x0 � V . Consider the set

C � � � X � t � � S 	 R � A � x ��� A0 � X � 
 c � x � V � t � for some x � V ���
C is a nonempty convex set.

Suppose popt is finite. Then the point � X � t � � � 0 � popt � is in the boundary of C. Therefore there

exists a supporting hyperplane to C at � 0 � popt � , i.e., there exist Z � S and µ � R, not both zero, that

satisfy


 Z � X ��� µt
�

µpopt (66)

for all � X � t � � C. Note that � X � t � � C for all X
�

X0 and all t � t0. If we fix t � t0, the left-hand

side of (66) is bounded above as a function of X
�

X0 only if Z � 0. If we fix X � X0, it is bounded
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above as a function of t � t0 only if µ
�

0. Next, note that � A � x ��� A0 � 
 c � x � V � � C for all x � V .

Therefore,


 Z � A � x ��� A0 � S � µ 
 c � x � V � 
 Aadj � Z ��� µc � x � V � 
 A0 � Z � S � µpopt

for all x � V . This is only possible if Aadj � Z ��� µc � 0. In summary, Z and µ are not both zero and

satisfy

Z � 0 � µ
�

0 � Aadj � Z ��� µc � 0 � 
 A0 � Z � S � µpopt �
If µ � 0, this reduces to

Z � 0 � Aadj � Z � � 0 � 
 A0 � Z � S � 0 �
By Theorem ALT 1 this contradicts our assumption that the primal problem is strictly feasible.

Therefore we must have µ � 0, and Z̃ � � Z � µ satisfies

Z̃ � 0 � Aadj � Z̃ � � c � � 
 A0 � Z̃ � S � popt �
i.e., Z̃ is dual feasible with an objective value greater than or equal to popt. By weak duality, this is

only possible if Z̃ is dual optimal, i.e., � 
 A0 � Z̃ � S � dop � popt.

Next, suppose popt � � ∞. This means that the primal problem is unbounded below, i.e., for all

t, there exist x such that

A � x ��� A0 � 0 � 
 c � x � V � t �
By Theorem ALT 1 this implies that there exist no t, Z, µ with Z and µ not both zero, that satisfy

Z � 0 � µ � 0 � Aadj � Z � � µc � 
 A0 � Z � S � µt
�

0 �
In particular, taking µ � 1, we see that there is no Z that satisfies Z � 0, A adj � Z � � c, i.e., the dual

problem is infeasible and dopt � � ∞.

Strict dual feasibility implies strong duality

Let B : W � S be a linear mapping satisfying

Aadj � Z � � 0 � � Z � B � y � for some y � W

X � A � x � for some x � V � � Badj � X � � 0 �
Suppose the dual problem is strictly feasible, i.e., there exists a Z0 � 0 with Aadj � Z0 � � c.

Z satisfies Aadj � Z � � c if and only if Z � Z0 � B � y � for some y. Therefore the dual problem

can be reformulated as

maximize � 
 A0 � Z0 � S � 
 Badj � A0 ��� y � W
subject to B � y ��� Z0 � 0 �
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In other words dopt � � 
 A0 � Z0 � S � p̃opt, where p̃opt is the optimal value of the SDP

minimize 
 B adj � A0 ��� y � W
subject to B � y ��� Z0 � 0 �

This problem is strictly feasible (y � 0 is strictly feasible), so it satisfies strong duality, i.e., its

optimal value p̃opt is equal to the optimal value d̃opt of the corresponding dual problem

maximize � 
 Z0 � X � S
subject to Badj � X � � Badj � A0 �

X � 0 �
(67)

X satisfies the equality constraint if and only if X � A0 � A � x � for some x. The SDP (67) is

therefore equivalent to (i.e., has the same optimal value as)

maximize � 
 Z0 � A � x ��� A0 � S � � 
 c � x � V � 
 A0 � Z � S
subject to A � x ��� A0 � 0 �

Comparing this with the original primal problem (6) we conclude that

popt � � 
 A0 � Z0 � S � d̃opt � � 
 A0 � Z0 � S � p̃opt � dopt �

C Proof of the optimality conditions

Suppose popt � dopt and x and Z are primal and dual optimal. Then


 c � x � V � 
 Aadj � Z ��� x � V � 
 Z � A � x ��� S � � 
 Z � A0 � S �
Therefore 
 Z � A � x ��� A0 � S � 0. Since Z � 0 and A � x ��� A0 � 0, this is only possible if

Z � A � x � � A0 � � � A � x ��� A0 � Z � 0 �
The remaining two facts were already proved in Appendix B. For example, we have established

strong duality for a strictly feasible primal problem with finite optimal value p opt, by showing that

there exists a dual feasible Z with objective value popt.
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