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Abstract 

A model of a message-passing network is used to analyze the behavior of three 

implementations of the Chandy-Misra-Bryant parallel simulation algorithm. The 
characteristics of the model, the organization of the logical processes that constitute 

the simulator and the characteristics of the host parallel computer have a definite 
influence on the achieved performance, measured in terms of speedup. Large, loaded 
models help CMB to synchronize with a minimum overhead, efficiently exploiting 
the available parallelism. Mapping several LPs onto each processor achieves a better 

use of the available processing power, because while a LP is blocked (synchronizing) 

others can use the CPU. However, it  is not convenient to map too many LPs onto 

each processor because the synchronization cost would be too high. The 
communication demands of CMB reduce its efficiency in environments where the 

cost of passing messages is too high: the performance of CMB running on a network 
of workstations is quite poor; in contrast, good speedups can be a.chieved using 
commercial multicomputers. 

Keywords 

Parallel discrete event simulation, conservative synchronization, mu1 ticomputer 
programming, performance evaluation, message passing networks. 



Introduction 

During the last years a substantial effort has been devoted to the parallel 
implementation of discrete event simulators. The objectives included. (1) t o  exploit 
the parallelism available in current multicomputers and multiprocessors and, 
mainly, (2) to accelerate simulation runs. 

For some simulation studies it is necessary to run the simulator many times, in 
order to study the influence of a certain set of parameters on the system under 
study. In these cases, the most convenient way of accelerating the study is simply to 
run as many simulations as processors are available, each one with a different set of 
input parameters. This technique is called replication. The efficiency achieved is 
very good, because the simulations are completely independent and, therefore, 
communication and synchronization among the processors are not needed. 

Unfortunately, it is not always possible to replicate the simulator. For some 
studies it is necessary to have the results of one simulation before starting the next 
one; this is the case when the aim is to tune a set of parameters. It may also happen 
that the memory available in each processor is not large enough to keep a complete 
copy of the simulator. These limitations of the replication approach justify the need 
for ways to parallelize a single simulation run. 

Sometimes replication is feasible, because each one of the processors available to 
perform the study is powerful enough t o  run an individual simulation, but i t  
happens that there are more processors than experiments to perform. Under these 
circumstances, replication would not fully utilize the available resources; it  would be 
more cost-efficient to use many processors for each experiment, combining 
replication with other forms of parallel simulation. 

The most promising set of parallel simulation techniques use the model  
decomposition principle: the system being simulated is decomposed into several sub- 
systems, and each sub-system is assigned t o  a logical process (LP). The collection of 
LPs can run concurrently, each one simulating its part of the whole. However, in 
order to maintain the causal relationships among the events during the simulation, 
a synchronization mechanism is needed. Three broad families of algorithms based 
on model decomposition can be found in the literature. They differ i.n the way LPs 
synchronize [FT94]: 

Parallel simulation may be synchronous. This means that all the LPs which 
form the simulator share the same vision of time, as if they had a global clock. 



Events are simulated in the same order as in a sequential simulator. The only 
events that are simulated in parallel are the ones that are scheduled for the 
same time. 
Parallel simulation may also be asynchronous. In this case each LIP has its own, 
local view of time. In order to  perform a simulation globally correct, each LP 
needs to  obey the following rule: execute all the incoming events in non- 
decreasing timestamp order. This rule is not easy to  follow because, after 
executing a sequence of events, a new one might be triggered by another LP, 
with a timestamp smaller than that of the last executed event, thus impeding 
the receiver LP from obeying the stated rule. 

- A conservative simulator never allows these situations to happen. To do 

so, LPs block before executing events, until it is totally safe to proceed. 
- An optimistic simulator allows erroneous situations to a:rise, but those 

are detected and a rollback is performed, i.e. a jump back to an error- 
free point in the (simulated) past. 

This work focuses on one particular asynchronous, conservative algorithm, known 
as CMB (Chandy-Misra-Bryant) [Brya77, CM791. One problem of conservative 
algorithms is that the blocking synchronization mechanism can leald to deadlocks 
which prevent the simulator from advancing. For this reason, CMB includes a 
deadlock avoidance mechanism based on the interchange of null messages. CMB is 
described in detail in [Misr86, Wagn891. 

The motivation behind our interest in parallel simulation algorithms is twofold. 
First, we use simulation to evaluate our architectural proposals foir the design of 
new massively parallel computers, and we would like to have a fast tool to perform 
these simulations. Second, we would like to broaden the spectrum of applications 
that can be efficiently executed on current multicomputers (i.e., to perform 
something more than "number crunching"). 

For this study we have had access to three parallel computing systems. All of 
them use message passing for communication and synchronization, although with 
different features. These systems are: 

A transputer-based Supernode [Inmo89, Pars891, with 34 processing elements. 
The programming environment is the Inmos C Toolset [Inmo90]. 



An Intel Paragon [Inte93], with 140 processing elements (i860). The NX library 

provides an comprehensive set of functions to develop parallel programs. 
A small network of 4 Sun SPARCstation 5, connected via an  Ethernet local 
area network. A MPI library [MPI94] provides the support for programming 

parallel applications. 

The objective of this study is to evaluate the influence that the following factors 

have on the performance of CMB running on a distributed memory parallel 

computer: 

The parameters of the model being simulated. 
The architectural characteristics of the host multicomputer. 
The organization of the simulator. 

The rest of the paper is organized as follows. We start in Section 2 with a 

description of the model used in the simulation experiments: a network of message 

routers. In Section 3 three implementations of CMB are described: one for each one 

of the available parallel computing environments. Section 4 presents the results 
obtained after running a collection of experiments using the three CMB 
implementations. Finally, the conclusions of this work are summarized in Section 5. 



2 The model under study 

In this section we describe the model used to perform an exhaustive study of our 
three implementations of CMB. We selected this particular model because its 
behavior was already known [Arrua931 and, therefore, a reference point to confirm 
the correctness of the parallel simulations was available. 

2.1 Description of the model 

We study a network of message routers designed to be used as the c;omrnunication 
infrastructure of a multicomputer system. Similar models have bee:n identified as 
suitable candidates for parallel simulation; see for example [BH95, KIT9 1, LPD951. 

Each node of the network is composed of a processor and a router joined by a 
message interface. Processors are the source as well as the final destination of 
messages. Routers actually move messages from source to destination.. It is assumed 
that message length is fixed; it is measured in flits (flow control digits, [Dal186]). 
Each message has a 1-flit header, which contains the necessary information to make 
routing decisions. Figure 1 shows a sketch of a message router. Its main components 
are: 

4 input ports, used to  receive messages from the neighboring routers, through 
the corresponding input links. Each port is capable of storing one flit. 
4 output ports, used to send messages to the neighbors through the 
corresponding output links. The storage capacity is also one flit. A FIFO transit 
queue is associated with each output port, that stores messages temporarily 
when the corresponding link is busy. Each queue has 10 buffers, each one with 
capacity for a full message. 
An injection port, used to receive messages from the local processor, and a 
consumption port, used to send messages to the local processor. These ports 
connect to  the message interface. A small FIFO injection qu.eue inside the 
message interface has enough space to temporarily store up to 4 local 
messages, when the corresponding output queues are full. 
A routing automaton, which decides through which output port a message will 
be sent. 



The network of routers works synchronously: in 1 cycle, a flit is moved from port 
to port, from queue to port, or from port to queue. 

In the literature about message passing networks, many alternatives for topology, 
message flow-control and routing strategy can be found. In order .to restrict the 
number of experiments to perform, we have decided to simulate only torus networks 
with cut-through flow-control and oblivious routing. The reasons behind this choice 
can be found in [Arru93, ABIM931. 

It is assumed that processors immediately consume received messages, so they 
never force a message to  stay in a router wasting resources. Processors generate 
messages following a given traffic pattern. The patterns most comn~only used are 
random, hot-spot, local traffic and several permutations (perfect shuffle, bit reversal, 
matrix transpose, etc.). In this work we have only considered the ra.ndom pattern, 
i.e., each node can generate messages for any other node in the network, with equal 
probability. When a new message is generated at a node and it cannot be injected in 
the routing network because the corresponding output port, the transit queue and 
the injection queue are full, the message is rejected (i.e., it is lost); if this situation 
arises, the network is saturated. 

There are three parameters of the model whose values can be changed to assess 
their influence on the performance of the simulator. These are: 

Network size (D). We consider square torus networks of DxD nodes. 

Message length (M), measured in flits. 
Network load (L), measured as a percentage of the bandwidth of the network 
bisection, for a random traffic pattern. 

These three parameters are needed to compute the time interval between the 
generation of two consecutive messages at a given node. The length of this interval 
is exponentially distributed, with a mean directly proportional to D and M, and 
inversely proportional to L. The actual expression for the mean is (12.5xDxWL. 

2 6  Types of events 

Once we have the general description of the model, it is essential to determine the 
data structures that will represent the elements of a router, and the events that 
would be able to modify those elements. That is, we need to express our model in a 
way that can be simulated by an event-driven simulator. The definition should also 



be independent of the simulators used. However, the class of parallel simulators 
under consideration (based on the distribution of simulation tasks among a set of 
logical processes), and the available computing systems (distributed memory 
multicomputers) prevents the use of any kind of shared data structure, because the 
LPs constituting a simulator may be distributed among different p:rocessors. The 
design of the set of events needs to take this restriction into account. 

Each router of the simulated network is represented in the ob~ioufi way: a record 
with fields representing ports, queues, etc., plus some additional fields for statistics 
gathering. 

The events that represent in the simulator the evolution of the system are as 
follows: 

INJECTION: the local processor generates a new message for another node. 
STEP: the router tries to send the header of a message from an output port to an 

input port in a neighboring router. 
PERMISSION: the neighboring router accepts the message. 
ADVANCE: after the computation of the routing function, a header flit of a 

message is advanced from an input port to an output port or, if busy, to an  
output queue inside the router. 

FREE-INP: an input port has been freed, so new messages can be accepted. 
CONSUMPTION: a message has reached its destination. 
FREE-OUT: the last flit of a message abandons an output port. 
FREE-QUEUE: the last flit of a message abandons an output queue. 

In the CMB implementations all the events except STEP and PERMISSION are 
always internal (i.e., scheduled to  be consumed in the same LP that generates 
them); therefore, they never need to be encapsulated into messages sent to other 
LPs. In contrast, these two events can be either internal or external, depending on 
whether the involved routers are being simulated in the same or in different LPs. 
We will explain the mapping of routers onto LPs in the next section. 

In a sequential simulator, PERMISSION events are not needed, because it is 
possible to directly check the availability of space in a neighboring router simply by 
accessing the data structure that represents it. In fact, they are included in the 
parallel version precisely because global information is not available and all the 
interactions must be done via messages. 



2.3 Output data 

The description of the model is detailed enough to allow ample insight into the 
behavior of the network of routers, such as message latencies, queue sizes, number 
of consumed messages, etc. This information is very valuable because it has already 
been gathered in previous studies, and it allows a validation of the correctness of our 

simulations. However, as the focus of this work is more on the behavior of the 

simulators than on the model, no output data will be shown. 



3 The simulators 

In this section we present the details of three implementations of CMB, one per 
available parallel computer. These implementations of CMB use the description of 

the algorithm given in [Wagnag]. A sequential event-driven simulator that can run 
on any of the three parallel system has also been implemented. For a given machine, 
the execution times of the sequential simulator running the optimizedl version of the 
model (i.e., the one that uses global information) is taken as the reference point to  

compute the speedups of the parallel version. 
All the simulators share as much code as possible, in order to be fair when 

making comparisons and t o  reduce development effort. In particular, :in all the cases 
an efficient set of functions based on a heap data structure have been used t o  

manipulate event lists, following the recommendations in [CSR931. 

3.1 Input parameters for the simulators 

In addition to selecting the parameters of the simulated model (size D, load L and 
message length M), a user running the simulators has to  facilitate a series of 
additional parameters. These are enumerated in Table 1. The first two parameters 
(cycles, seed) are needed for all the simulators, sequential and parallel. The number 
of processing elements must be given for CMB. A mapping of the simulated network 

of routers onto the physical network of processing elements (PEs:) in the target 
multicomputer (or network of workstations) must be done. The number of PEs is 
always a square of PxP elements, where P must be a perfect divisor of D (the 

number of routers per dimension in the simulated network). Under this condition, 

the partition of the model and its mapping onto the network of PEs is simplified (a 
square of size DIP routers is simulated in each PE) and perfectly balanced (all the 
PEs have the same load). 

When more than one router is assigned to  each PE (and this is always the case for 

the experiments we have performed), there are several possible organizations for the 
simulator. A CMB simulator always consists of a collection of collaborating LPs, 
where each LP is a Unix process (in the Paragon or in MPI) or a transputer process 
(in the Supernode). Mapping the model onto the host computer requires two steps: 
mapping routers onto LPs, and mapping LPs onto PEs. There are two trivial 
possibilities: 



1 Map each router onto a single LP, and then map groups of (D/P)2 LPs onto each 
PE. We say that the grain size of the LP is minimum. A large amount of 
interprocess communication is needed, because all the STEP and 
PERMISSION events are external (i.e., they need to be sent as messages, 
although they do not necessarily need to go from one PE to another). 

2 Map (D/P)2 routers onto one LP, and then each LP onto a different PE. We say 
that the grain size of the LP is maximum. In this case, many of the STEP and 
PERMISSION events are internal and the interprocess communication is 
significantly reduced. 

Note that other grain size alternatives are possible. For example, Figure 2, shows 
a case where DIP = 4. Figures 2a and 2c represents the mappings for maximum and 
minimum grain sizes respectively, and Figure 2b represents a. mapping for 
intermediate grain size. If the mappings are always square, there c;an exist either 
none, one (like in the example) or several cases of intermediate grain size. 

The last parameter in Table 1 indicates whether or not the LPs try to extract 
lookahead from the model. [Fuji89]. To improve the performance of CMB, it is highly 
recommended to analyze the simulated model to determine if some lookahead can be 
extracted, and to tailor the simulator to use this lookahead. If this could be 
effectively done, timestamps of null messages would have higher values and the 
overall number of required null messages would be reduced, allowing a faster clock 
advance of the LPs. 

If an LP simulates only one router (i.e., the grain size is minimum), then the 
behavior of the simulation is quite predictable, and lookahead can be easily 
extracted. Let us suppose that, a t  time t, a router has sent a message header 

through an  output port; the LP can guess that no new header will be sent through 
the same port at least until t+M, where M is the message length, because messages 
advance a flit per cycle. The difference between the current value of the LP's clock 
and t+M is the lookahead. In contrast, when the grain size is not minimum, the cost 
of computing lookahead is high, and the obtained values are low. I:n fact, in most 
cases the obtained value is one, a minimum that can be assumed without any 
computation. For this reason, we decided to ignore the lookaheatl ability of the 
model, except for minimum grain size configurations. 



32  Supernode implementation 

The Parsys Supernode SN-1000 [Pars891 is a multicomputer with Inmos 
transputers [Inmo891 as processing elements. Each transputer includ.es, in addition 

to a CPU and some local memory, four serial communication links of 10 Mblsec each. 

In the Supernode, the transputer links are all connected to  a. collection of 
programmable switches, in such a way that the user can specify the topology of the 
interconnection network. 

Each transputer can house many concurrent processes, which are efficiently 

managed by a built-in scheduler. Two transputer processes conlrnunicate via 

unidirectional channels. If the communicating processes run on the same transputer 

the channel is internal, just a word in memory. It is also possible to map a channel 

onto a communication link, if the communicating processes run oln neighboring 

transputers. A maximum of two channels can be mapped onto one link, one in each 

direction. Communication via shared memory is possible, for procesises running on 

the same transputer. 

In order to  run a CMB simulator on the Supernode, a group of transputers is 

arranged t o  form a torus network of worker transputers with a monitor transputer 
inserted in one of the wrap-around links. The number of processes assigned to each 
worker transputer depends on the grain size of the LPs. The LPs in one transputer 
can be joined directly via internal channels, while the external links are needed only 

if two logical neighbors are mapped onto different transputers. Since several logical 

neighbors need to  communicate through a single external link, link sharing is 

needed. Some multiplexer processes perform this function. Obviousl.y, if maximum 

grain size is used (only one LP per transputer), multiplexers are not needed; 

therefore, they are not used, in order to  reduce overheads. Figure 3 shows the 

arrangement of processes in two neighboring worker transputers. 

A monitor process, placed in a separate transputer outside tihe network of 

workers, collects statistics (output data of the simulation, see $2.3) and summarizes 

them. Additionally, due to  its location in the network, it has to  act as a bypass: every 
message received from the easuwest has to  be sent to  the westhast. Thus, the 

workers do not perceive its presence in the network. 
The set of LPs constitutes the core of the simulator. All the other components 

(monitor, multiplexers) are only needed to  build a working system. Internally, an LP 

is composed of three communicating processes (Figure 4): 



An input process, which manages the input queues and the internal event 
calendar of the LP. It receives messages (events) from the neighboring LPs, and 
inserts them into the appropriate input queue. It also updates important 
information as the channel clocks (each channel clock stores the timestamp of 
the last message received through the channel) and the message-acceptance 
horizon (the reference point that allows to determine what messages can be 

consumed and what others must still wait). 
A simulator process, which consumes the events. It interacts with the input 
process, using channel pet to request messages, which are received through 
channel sig. When an  event is consumed, new events might be scheduled. 
Those that will be consumed in the same LP are sent to the input process using 
channel loc. Events for other LPs are sent t o  the output process through s20. 
When the simulator reaches the end-of-simulation time, a block with statistics 
is generated and sent to the output process. 
An output process, which manages messages to be sent to other LPs or to the 
monitor. It implements minimal routing mechanisms, for the rnanagement of 
statistics blocks. An input process may receive statistics blocks from other LPs; 
the output process forwards these blocks towards the monitor. These two 
processes communicate via a shared queue. 

The division of the LP into three different sub-processes allows the decoupling of 
the event consumption and message interchange activities. If the de'sign of the LPs 

were monolithic, communication deadlocks could easily happen. This is due to the 
way communication is accomplished in the transputer: simultane~ous send() and 

receive0 operations are needed to complete a message interchange. If a monolithic 
LP A wanted to send a message to a busy neighbor B, A would block (wasting time) 
until B invokes the peer operation. A deadlock would immediately h.appen if B was 
also blocked while trying to  send a message to A .  More complex deadlock scenarios, 
involving more than two LPs, are also possible. 

With the proposed design the simulator process never blocks in a send(), because 
the corresponding output process is always ready to respond to it. The simulator 
might block in a receive(), but only if no suitable event is ready to be consumed (as 
the CMB algorithm requires). Meanwhile, all the incoming messages can be received 
and stored by the input process, which is a greedy receiver. This design avoids 
communication deadlocks, while allowing events to be managed as early as possible. 



3.2.1 Simulator process 

The basic scheme of the simulator process is as follows: 

process simulator: 
repeat { 

send(pet, " " ) ;  
receive(sig, m); 
clock = m.timestamp; 
if (m-type == WILL-BLOCK) send-nulls(); 
else consume (m) ; 

I if (clock > end-of-simulation) 
build-and-send-statisticso; 

The simulator process runs concurrently with the input and output processes. The 
consume0 function first determines the type of the message and then proceeds 
simulating its effect in the (simulated) routing network. This is done in three 
phases: first, the status of the appropriate router is examined, then this status is 
modified and, finally, events for the same or other routers are scheduled, if needed. 
If the destination router is being simulated in the same LP, then the event is 
internal, so a message is sent through loc. Otherwise, i t  has to be sent to another 
LP, so a message is sent through s20 for the output process to manage it. 

The loop never stops. When the clock reaches the end-of-simulation value, the 
simulator collects a block of statistics, that is sent to the output process which, in 
turn, forwards i t  to the monitor. This operation is done only once, although the 
simulator goes on working. The monitor process is responsible for stopping the 
simulation. 

A CMB LP must block when no message is able to be consumed. This happens 
when no stored message has a timestamp below the message-accepta.nce horizon. In 
this situation, the input process sends a WILLBLOCK message to the simulator 

process, instead of a useful message. This means that, if no neur messages are 
received, the next time an event to be consumed is requested no one will be given- 
so the simulator will block. The simulator, as always, updates its (:lock, and then 
sends null messages to its four neighbors. The timestamp of those null messages is 
computed as the value of the local clock plus one, unless special effort is devoted to 
extract lookahead. A null message is not sent if i t  does not produce an increment of 
the receiver's linkclock. 

Once the null messages have been managed, the simulator process blocks waiting 
for an input from sig. Only the reception of new messages from other LPs would be 



able to wake-up this process, as a consequence of the (possible) increment they 
produce on the message-acceptance horizon of the LP. This is a task for the input 
process. 

3.2.2 Input process 

The input process manages all the messages that will be consumed in an LP. It 
maintains four input queues, plus a local queue. Requests of messages to be 
consumed are received from pet, messages for the local queue are received from loc 
and messages from the neighboring LPs are received from the four input channels. 

1 process input : 
in = wait-for-input(); 
if (in == pet) deliver-message(); 
else { 

receive (in, m) ; 
if (in == loc) insert-local-queue(m); 
else if (is-external-channel(in)) { 

insert-input-queue(in, m); 
check-blocked-simulator(); 

1 

function deliver-rnessage: 

ts = minimum_timestamp(); 
if (ts <= h) ( 

else if (h >= clock) send(sig, WILL-BLOCK-message); 
else blocked-simulator = TRUE; 

Function deliver-message() computes the message-acceptance horizon (the 
minimum among the LP's channel clocks), as well as the value of'the minimum 
timestamp among all the messages awaiting to be consumed. If this timestamp falls 
below the acceptance horizon, then the corresponding message can be safely 
removed from its queue and consumed (sent by sig). This is the expected behavior of 
a CMB LP. 

When no message is ready to be consumed a WILLBLOCK message is sent to the 
simulator, in order to increment its clock and allow the other LPs to advance. Next 
time the simulator asks for a message, no one will be delivered, which will force the 
simulator to block. The input process activates the flag blocked-simur!ator. 

If a new message arrives, the corresponding linkclock is advanced and, if it is not 
a null message, it is inserted in its queue. Null messages need not be stored, because 



their only purpose is the advance they produce in the linkclocks. A linkclock advance 
(due t o  a null or a useful message) may increase the message-acceptance horizon 
and, therefore, may allow an awaiting message to  be consumed. For this reason, 
each time a new message is received, function check-blocked-simulator() is invoked. 
This function, which is similar to deliver-message(), eventually unb1oc:ks the blocked 
simulator process, and allows the consumption of a message. When the acceptance 
horizon computed by check-blocked-simulator() surpasses the local clock, the 
simulator is awaked by means of a WILL-BLOCK message. This way no useful 
message is consumed, but the clock is advanced and this advance can be 
communicated to other LPs. 

3.2.3 Output process 

This process has to accept messages from the simulator and send them to the 
other LPs. The routing effort is minimum, because all the messages are labeled with 
aport  number that clearly states which channel the messages hisve to be sent 
through. 

3.3 Paragon implementation 

The Intel Paragon [Inte93] is a multicomputer organized as a rectangular mesh of 
nodes. Each node has one i860 to perform computation, another i860 to manage 
message passing, and an interface to a high-speed interconnection network. This 
network, composed of custom-designed routing chips, is able to carry messages 
between any two nodes a t  up to 200 MBIsec. 

Parallel programs can be developed using Intel's proprietary NX library, which 
provides a comprehensive set of functions to manage processe:s and passing 
messages among them. Although in theory i t  is possible to run mrmy concurrent 

processes on each node, in practice it is not efficient to do so, because a process does 
not relinquish the CPU when it is awaiting to complete a communication operation 

and, therefore, it is not possible to overlap one process' computation with another's 
communication. 

Porting the CMB implementation from the Supernode to the Paragon required 
basically to cope with two differences between the programming environments of 
these systems: synchronization among processes and node multiprocessing ability. 

The Supernode implementation exploits the efficient multiprocessing abilities of the 



transputer: each transputer contains several processes (LPs and multiplexers) 

which, in turn, are structured in several sub-processes. Two main rseasons justify 
this design. Firstly, the synchronous nature of message passing functi.ons requires a 

decoupling of message management (reception, storage, sending) and message 
consumption tasks, in order to avoid communication deadlocks. The division of an 
LP into input, simulator and output processes provides this decoupling. Secondly, it 
is very efficient to  share a transputer among several LPs: one LP c.an be working 

while others are blocked awaiting for communicationl. The transputer built-in 
scheduler relinquishes the CPU from a process as soon as it blocks for 

communication. 
None of these considerations apply in the case of the Paragon and, for this reason, 

a re-design of the simulator was necessary. The main  difference:^ between the 
Supernode and the Paragon versions of CMB are: 

The multiplexer processes and of the bypass functions of the monitor have been 
removed. These simplifications have been possible because, i11 the Paragon, 

messages can be interchanged between any pair of processes, independently of 
their position. Routing, link sharing and other functions related to  message 

passing are managed by a separate network of message routers (very much like 
the object of our study), without interfering with the activity of? the processes. 

An application controlling process on a separate PE acts as the monitor. Its 

purpose is to  launch the LPs and to gather statistics at  the end of the 
simulation run. 
The input, output and simulation processes (the three sub-processes which 

form an LP in the transputer) have been combined into a single process. This 

new design is possible because of the buffered nature of the communication in 

the Paragon, and necessary because of the poor multiprocessing abilities of the 

Paragon. 
Minimum and medium grain sizes alternatives for the LIPs have been 

eliminated, that is, only maximum grain size is considered. This means than 
only one LP runs on each PE, again because of the inefficient scheduling policy 

of the Paragon. 

The algorithm of the LP is as follows: 

This will be seen when analyzing the performance of the Supernode implementation. 



process LP: 
repeat ( 

h = acceptance-horizon(); 
ts = minimum-timestamp0 ; 
if (ts <= h) { 

m = message~with~minimum~timestamp(); 
clock = m.timestamp; 
consume (m) ; 
if (clock > end-of-simulation) build-and-send-statisticso; 

3 
else { 

clock = h; 
send-nulls ( ) ; 
m = receive(); / *  Blocking * /  

Note that messages from other LPs are received only when the LP needs to  
increment its channel clocks in order to advance. While an LP is busy, messages can 
arrive from the neighbors, and they are stored in system buffers until the LP decides 
to actually receive them. This buffering provides enough decoupling to  allow a 
collection of LPs to  progress without communication deadlock. 

Except for changes in the communication functions, the rest of the simulator code 
is the same as the Supernode's. 

3.4 MPI Implementation 

The third CMB implementation was designed to run on a small network of 4 Sun 
SPARCstation 5, connected via an Ethernet local area network. An MPI (Message 
Passing Interface, [MPI94]) library provides the support for prograinming parallel 
applications. 

The MPI implementation of CMB is very similar to that for the Paragon. The only 
relevant difference is the substitution of the NX functions by their MPI 
counterparts. The change was straightforward, because these two libraries (NX and 
MPI) are semantically very close; furthermore, only a limited number of 
communication functions were used in the programs. 



4 Experiments 

In this section we present the results obtained after running a collection of 
experiments using the three implementations of CMB. We start with the Supernode 
version, then the Paragon version and, finally, the MPI version running on a 
network of workstations. We made many experiments with different model 
parameters (network size, message length and load) and simulator parameters 
(number of PEs, grain size of the LPs, use of lookahead information). Most of the 
times identical sets of parameters have been used with the three simulators. 
However, some experiments have been specifically designed to stress some 
particular characteristics of a given simulator. 

The obtained results are displayed as a collection of speedup curves. The 
speedups have been calculated after running an optimized sequential, event-driven 
simulator with the same set of model parameters. 

4.1 Description and results on the Supernode 

In this section we present the results of seven experiments performed with the 
Supernode version of CMB. An analysis of these results is done in the next section. 
Tables 2, 3, 4 and 5 summarize the parameters used in the experiments. The first 
three parameters of Table 2 (network size, message length and load') are related to  
the model, while the next three (number of processing elements, grain size and use 
of lookahead information) are related to organization of the simiulator. All the 
experiments ran for 4000 simulated cycles. The obtained results are plotted in 
Figures 5 (experiments IS to 6S ) and 6 (experiment 75 ). 

Experiments 15-45 deal with a relatively small model of 16x16 routers, with 

message length 4 or 32, and running in 4 or 16 transputers. With these experiments 
we wanted to test the following hypothesis: 

1 Results are better with 4-flit messages than with 32-flit messages. For the 
same network load, 4-flit messages means a t  least 8 times more simulation 
events than 32-flit messages. Execution times should be longer for both the 
sequential and the CMB simulators, but the latter will have moioe opportunities 
to self-synchronize without null messages, therefore reducing the 
synchronization overhead. This should be confirmed by comparing 15 with 35 
and 25  with 45. 



2 Performance improves when the load increases. Again, the higher the load the 
larger the number of events managed by the simulator, therefore allowing the 
system to self-synchronize. This should be confirmed by all the experiments. 

3 The simulator scales with the number of processors, i.e., the speedup obtained 
with 16 transputers is better than the speedup obtained with ,4 transputers. 
This should be confirmed by comparing 1s with S, and 3s wikh 4s. Another 
experiment, 75, considers this aspect in more detail. 

Additionally, we wanted to  test the impact that the different grain sizes have on 
the performance, as well as the effect of extracting lookahead information from the 

model. 

Experiments 5S and 6S work with a model four times larger than that used in the 
previous set. We wanted to  confirm that the simulator performance improves with 

larger workloads. More work can be assigned to an LP by mapping onto it a larger 

number of routers. 

Experiment 75 is a scalability test. The same model is run on 4:, 9, 16 and 25 
transputers. As we will see, the simulator performance strongly d.epends on the 
grain size of the LPs. Sometimes a wide range of grain sizes are possible, while in 

others cases there are only two: maximum and minimum. In Figure (3 we only show 

the curves for the grain size alternative which gives better results, which is always 

an intermediate value. An exception is the 25-transputer case, where! the model has 

been slightly increased to allow a balanced partitioning, and no intermediate grain 
size is possible-so the maximum has been used. 

4 6  Analysis of the results on the Supernode 

After showing the experimental results, we proceed to analyze the effect that each 

parameter of the model or of the simulator has on the execution time. When 

convenient, several parameters are grouped and studied together. 

4.2.1 Network size, message length and load 

It is clear, from any of the speedup curves, that the following parameters of the 
model have a significant impact on the execution time of the simulation: load, 

message length and network size. The best situation arises with large and highly 
loaded systems that interchange short messages. Interestingly enough, this is the 

worst possible scenario for the sequential simulator. When the model has the 



opposite characteristics, the performance is not impressive, but the actual execution 
time is not very long. 

The reason for this behavior can be found in the way LPs synchroilize in a CMB 
simulator. All the mentioned parameters affect the number of "useful" messages 
(i.e., non-null messages) managed by the simulator. An increment in the number of 
these messages means that the LPs have more opportunities to synchronize, while 
doing useful computation. Null messages are needed less often, because LPs do not 
block frequently. We can say that there is a high degree of "natural" 
synchronization. When there are only a few useful messages to process, LPs block 
often, and null messages are needed to maintain the LPs' clocks updated. 
Consequently, LPs spend most of their (real) time blocked or processing null 
messages (i.e., synchronizing, instead of making progress). 

4.2.2 Grain size 

Looking a t  the results of the first four experiments and comparing maximum vs. 
minimum grain size, it is evident that coarse grain simulation is more effective than 
fine grain simulation for low and medium loads. This because a small number of LPs 
synchronizing with null messages results in lower overhead. 

If now we compare the results for minimum and maximum grain size with those 
for intermediate grain size, i t  is clear that the latter are the best for intermediate 
and high loads. Only for very low loaded systems maximum grain size gives, 
sometimes, better performance than intermediate values. An anal:& of the time 
used for synchronization in the simulator can explain this behavior: 

With maximum grain size, an LP can advance autonomously most of the time, 
due to the large number of interactions between the routers assigned to it. 
Nevertheless, sometimes the LP has t o  co-ordinate with the others, which 
causes the LP to send null messages and then block. This behavior is extremely 
inefficient because the LP is the only user of the transputer a:nd, if it blocks, 

the freed CPU power is wasted. 
With minimum grain size, there is no problem if an LP blocks: plenty of others 
are awaiting to use the CPU. Here the problem is that, the larger the number 
of LPs, the larger the number of null messages needed to keep the system 
synchronized. Furthermore, since fine-grain LPs have very little work to do, 
they block very often-making things even worse. 



With intermediate values of grain size it is possible to find a balance: there are 
few LPs, each one with enough work to  do, so null messages a.re not needed 
very often. In addition t o  that, as several LPs share a transputer, the 
probability of wasting CPU time decreases. 

In conclusion, we can state that for the transputer, where communication 

operations are blocking and context switches are quite fast, coarse grain simulations 
are faster than fine-grain simulations. However, it is even more efficient to use 
intermediate grain sizes, with several LPs sharing a processor, in order to  avoid idle 

processors and make the maximum usage of the available CPU power. 

4.2.3 Lookahead 

From the description of how lookahead is computed (see end of $3.1)) it should be 

clear that an LP might obtain large lookahead values when (1) messages are long 

and (2) the LP has recently interacted with its neighbors. 

The first situation can be clearly observed by comparing experiments 15 and S 
(Figure 5). For 4-flit messages curves 4min and 4minL (minimum grain size, with 

and without using lookahead information, respectively) give nearly the same results; 

hovever, for 32-flit messages 4minL is clearly better than 4mi11. The second 

situation can be seen in experiments 35 and 45: in highly loaded systems, the LPs 
interact often and, if they have t o  block, the computation of the timestamp of the 

null messages can take advantage of the knowledge of which ports have recently 

sent header flits. At any rate, as lookahead can only be effectivel:~ exploited for 

minimum grain size, and this is not the best situation for this implementation of 

CMB, we do not see any advantage of using the lookahead information provided by 
this particular model. 

4.2.4 Number of processing elements 

From the complete set of experiments, and especially from experiment 75, it can 

be seen that the performance of the parallel simulator scales well with the number 

of processors, although not linearly. There are, though, some factors that can help to 
understand why the speedup curve in Figure 6 is not perfectly linear: 

Our way of distributing the workload among processors and processes, using 

squares, does not always allow to find the optimum grain size value. For 
example, the 25x25 network of experiment 75, when simulated over 5x5 



processors, only allows maximum and minimum grain sizes; each processor 
must simulate 5x5 routers, and 5 is a prime number, which rneans that no 

intermediate alternatives are possible. 
The processors used in our experiments were not all identical. In most cases, 
T805 transputers running a t  30 MHz were used but, as only 14 processors of 
this kind were available, in those experiments involving 16 o r  25 processors 
some 20 MHz T800 were used. Those processors are a bottleneck, imposing 
their rate of execution on the others. For this reason the resultin,g speedups are 
not as good as they should. 
Since the problem size does not increase with the number of resources, the 
processors are not hlly utilized. When the number of ~~~~~~~~~~s (and of LPs) 
increases, the probability of having a blocked LP increases; too, so some 
processing power is wasted and more null messages are needed. 'To confirm this 
assertion, we have represented in Figure 7 the ratio of the number of useful 
messages to total number of messages managed by the simulator in experiment 
75. Note how this ratio reduces when the number of processors is increased. 

Note also that the chosen set of model parameters (D,  M and L) for experiment 75 
constitutes neither the best possible scenario for the parallel simulator, nor the 
worst for the sequential one. With a higher load the results would be more favorable 
to  the parallel simulator. 

4.3 Description and results on the Paragon 

The experiments performed with the Paragon imp1ementatio:n of CMB are 
summarized in Table 6. The corresponding results are shown in Figures 8 and 9. 
Experiments 1P through 7 P  are basically the same as those run on the Supernode 
(IS-7s). In 7P, i t  has been possible to  run the 24x24 model using up to  64 Paragon 

PEs. Experiment 8P is another scalability test specially re-desig:ned t o  make a 
better use of the larger number of PEs available in the Paragon: a large model of 
90x90 routers is simulated, using 4,9,25,36,81 and 100 processing elements. 

As previously mentioned, the Paragon implementation of CMB only allows one 
mapping of routers onto LPs: maximum grain size. This means that only one LP 
(which simulates a group of routers) is assigned t o  each Paragon PE. As a 
consequence of this restriction, no effort is done to exploit the lookahead potential of 
the model. 



For experiments 1P through 7P simulations ran for 4000 cycles. For experiment 

8P, this number was reduced to 1000. It should be noticed that some of these 

experiments are not well dimensioned for the Paragon. Execution times are very 

short (less than 3 seconds in some cases) and, therefore, a minimum variation in the 
time measurement provided by the system can result in a significant variation in 

speedup, so trends are more significant than actual values. 

Most of the conclusions drawn from the Supernode experiments apply to  the 
Paragon too, except for the discussions about grain size and the use of lookahead 
information, which cannot be applied here. In summary, the best performance is 

obtained with large, highly loaded models managing short messages. This scenario 

is a challenge for sequential simulators, while it allows CMB to  minimize the 

synchronization effort. 

Speedups are better for the Paragon than they are for the Supernode. For 
example, for experiments 6s and 59 (which are identical for both machines) the 

peak speedup on the Supernode is slightly less than 8, while on the Paragon it is 
very close to 12. Scalability tests 75 and 7P are also equal for 4,9 ancl 16 processors; 
in the latter case, the Supernode implementation reaches a speedup of 4.55, while 

the Paragon reaches 10. 
The reason of this performance difference can be found in the architectural 

dissimilarities between the two machines and in the differences in tbe LP's design. 

In the Paragon, all message manipulations are done by a network of hardware 

message routers plus a second processor in each node (a message co-processor). This 
frees the computing node of most of the overheads of message handling. In the 

Supernode, however, there is neither routing hardware, nor message co-processors, 

and, therefore, each transputer has to  divide its time between co:mputation and 
message handling. 

Another architectural difference comes from the fact that in the Paragon all the 

PEs are identical, while in the Supernode a mixture of 20 MHz and 30 MHz 

transputers are used in some experiments. Since the reference point; (the execution 

time of the sequential simulator) was taken with respect to  a 30 M:Hz transputer, 
the reported speedups for the Supernode are not as good as they shocdd be. 

Regarding the design of the LPs, in the Paragon case they have a monolithic 

structure, while in the Supernode they are divided into three sub-processes. This 
arrangement in the Supernode was necessary to avoid communica.tion deadlocks. 

However, this does not come without an added cost. These sub-processes 

communicate mostly via internal channels; therefore, messages are copied from 



memory to memory several times in their life cycle. A message generated a t  a 
simulator process in one transputer that needs to be consumed at another simulator 
in a neigbouring transputer needs four internal copies (messages between processes 
in the same transputer) plus one external copy (message that actually traverses a 
link). In the case of the Paragon, due to the monolithic design of the LPs, no internal 
copies are necessary. 

Figure 9 shows the results for experiments 7P and 8P,  the scalability tests. Note 
that CMB scales fairly well: the curves are nearly straight lines. The workload is 
high enough to keep all the PEs busy most of the time, even for a large number of 
PEs. The efficiency achieved in experiment 8P is higher than that of 7P. For 
example, in the case of 36 processors the speedups are 24.3 in 8P and 21 in 7P. The 
larger workload assigned to the LPs in 8P makes them achieve higher performance. 
Figure 10 characterize one of the behavioral differences between these two 
experiments: the number of null messages needed to keep the simulator 
synchronized. In 8P the proportion of null messages is very low, less than 1% for the 

case of 4, 9 and 25 PEs, about 3% for 81 PEs and less than 4% Glr 100 PEs. In 
contrast, this proportion rises to nearly a 40% for 7 P  in 64 processors. 

The number of null messages is directly related to the required synchronization 
effort. However, null messages are not the only source of overhead. If many of these 
messages are being sent, this is because LPs are blocking very often, spending time 
awaiting for incoming messages that eventually will increase the acceptance horizon 
and allow the simulation to advance. Figure 11 has been obtained by running 
experiments 7P and 8P with an instrumented version of CMB tha.t monitors the 
way PEs use their time. Total execution time has been divided into three 
components: 

Tsim: time spent executing events, inserting messages in the local event list and 
in the input queues, and sending messages to other LPs. This is the time the 
LP devotes to advancing the simulation. 

Trec: time spent receiving messages from other LPs. This includes receiving 
useful as well as null messages. As the receive() operation is blocking, this time 
can be considered mainly synchronization effort. 

Thn: time spent performing other synchronization tasks, namely: ((1) sending null 
messages (this includes computing whether a null message is necessary or not) 
and (2) computing the message acceptance horizon at each step (of the simulator 
main loop. 



From Figure 11 it is clear that if the workload assigned to  an :LP is low, the 
corresponding PE spends too much time synchronizing instead of executing events. 
In the case of 7P on 64 PEs, each PE simulates 3x3 routers and the achieved 

proportion of effective work is 55%. In contrast, for SP on 100 PEs, each PE 
simulating 9x9 routers (9 times larger that in 7P), CMB achieves a 75% efficiency. 

The 62% effective simulation time in 7P with 36 PEs versus the 83% in 8 P  with the 
same number of processors justifies the previously observed speedup difference. 

4.5 Description and results on the network of workstations 

The number of Sun workstations available for the experiment with the MPI 
implementation of CMB was limited to  four. From the experience gained with the 
Supernode and the Paragon, speedups over 2 should be expected. The experiments 
described in Table 7 were set up to confirm this hypothesis. Note that experiment 
8M is no longer a scalability test, because of the limited number of available 
workstations. The other experiments are similar to their counterparts in the 
Supernode and the Paragon. As in the case of the Paragon, the grain size of the LPs 
is always maximum, and the lookahead ability of the model is not exploited. The 
resulting speedup curves are in Figure 12. 

It is easy to observe how the performance improves when: 

Problem size is increased: compare 1M (16x16), 5M (32x32) and 8M (90x90). 

Message length is reduced: compare 1IM (4 flits) with 3M (32 flits), or 5M with 
6M. 
The load is increased. All curves show this. 

This behavior is the same observed in the other two implementations. The 

outstanding point is that the overall results are really poor. Since th.e programs are 
the same we used in the Paragon (except for minor details), we must find the 
reasons behind this poor performance in the characteristics of the co~nputing system 
used in the experiments. 

The main difference between the Paragon or the Supernode and the network of 
workstations is the way interprocess communication is performed. :Even though in 

the three cases a message passing mechanism is used for synch.ronization and 
communication, the Supernode and the Paragon use high-speed, special purpose 



interconnection networks, while the workstations are connected via a general 
purpose Ethernet local area network, with the TCPIIP protocols over it. This means 
that communication in this environment is relatively slow, because: 

The peak data rate of Ethernet is 10 Mbls. In the Supernode each transputer 
provides 10 Mbls per each of its 4 links, while in the Paragon the interface 

between a node and the communication network allows a. processor to 

send/receive information at  1400 Mbls. 

Ethernet allows all the devices connected to the network to  share the available 
bandwidth, whether they are part of the simulation or not. In the Supernode 

the channels are used exclusively by the transputers that work iin a simulation. 

In the Paragon the interconnection network is shared among all the 
simultaneous users, but as the network is able to move information a t  1600 

Mbls (i.e., faster than the generation rate of the nodes) and the! users work in 

clusters which do not overlap, the sharing effect is barely noticea.ble. 

The use of several layers of protocols (Ethernet, IP, TCP, MPI) imposes a 
significant overhead. The communication protocols used inside a 

multicomputer are much simpler; in particular, there are fewer 1.ayers. Because 

layering means encapsulation (i.e., addition of control information) its effects 
are worse for short messages than for long messages2. 

In order to compute the communication capabilities of the three parallel systems, 

(instead of using the raw data offered by the manufacturers) we ran a test where 

four processors are arranged in a logical unidirectional ring (in the case of the 

Transputer, the ring is also physical). The first processor in the ring sends messages 

of various sizes to the next one, which simply executes a store-and-forward 

procedure to  send the received messages to the next processor in the ring. When a 
message arrives back to the first processor, it  computes the real time that it took to 
complete the ring. Using this time and the message size, the data rate is computed. 

Message sizes varying from 1 to 218 have been tested; the achieved data rates for 

those message sizes are plotted in Figure 13. In all the cases it can be seen how the 

data rate increases with the message size, until it stabilizes at  a point not far from 
the theoretical maximum. 

In this context we are speaking about real messages interchanged between processing 

elements, not about simulated messages. 



Unfortunately, the actual messages managed by our simulators are very short: 

about 32 bytes. For this size, the achieved data rate is far from the maximum in the 

case of the Paragon and the network of workstations (see the vertical line cutting 

the curves in Figure 13). The Supernode, however, achieves a data rate close to  its 
peak value even for short messages. 

In conclusion, the computation to  communication ratio of the network of 

workstations is not as balanced as in the other two systems. This would not be true 

if the CPUs of the workstations were proportionally slower, but this iis not the case. 
A comparison of the raw computing capabilities of each system has been done taking 
into consideration experiment 5 (5S75P and 5M), which has been performed for the 

3 systems using the sequential as well as the parallel simulators. Table 8 

summarizes the execution times of the sequential simulator running this 
experiment with load 90. A Sun SPARCstation 5 is slightly faster than a Paragon 
processing element, and about 7 times faster than a 30MHz T805 transputer (for the 

kind of computation we are doing). In contrast, the data rate achieved using MPI 
over Ethernet is more than 66 times smaller than that achieved usirig the Paragon 
intercomection network, or a set of interconnected transputers. 

Our conclusion is that the communication demands of CMB (in particular, the 

need of a frequent interchange of short messages) make it unsuitable for this kind of 

parallel computing platform. In other words, CMB works specially well in fine-grain 

parallel computers, while a network of workstations might be used efficiently only 
for coarse grain problems. 



Conclusions 

In this paper we have presented, analyzed and coompared our experiences 

implementing and using CMB on three different multicomputing envi.ronments. The 
CMB simulators have been used to study a model of a message passing network 
designed to be used as the communication infrastructure of a multicomputer. 

The characteristics of the simulated model have a definite influence on the 

achieved performance. In order to  take advantage of CMB, a model with a high 

degree of internal communication is needed, which allows processes t o  remain 

synchronized without needing null messages. For the model used in ithis study, this 

happens when network size is large, load is high and messages are short. These 
three parameters have the strongest influence on the performance of'the simulator. 

It is interesting to  observe that, conveniently, the best scenario1 for the CMB 
simulator is the worst for the sequential event-driven simulator: speedups are best 

precisely when they are most needed, and are poor only in cases wh~ere simulation 

runs are very short with the sequential but also with the parallel version. 

If CMB is running on a set of processes statically assigned to a set of processors, it 

is important to  use coarse grain processes, that is, to assign a significant amount of 
work to  each process. This way, less processes are used to  run the :model, and the 

synchronization overhead is reduced. This idea should not lead us to  the extreme of 
assigning only one process to  a processor, because if the process  block;^, the processor 

stays idle. If the host parallel computer allows it, more than one process should be 

mapped onto each processor. For example, in the Supernode the best performance 

was achieved using intermediate grain sizes. 

The knowledge of the behavior of the model may allow CMB to exploit some 

lookahead information, which helps maintain a good performance when the 

workload does not allow the simulator to  self-synchronize. Unfortunately, the 
lookahead ability of our network of message routers is, in general, poor, particularly 

when an LP simulates a set of routers instead of only one (that is, .when the grain 

size is not minimum). It is more advantageous to  use intermediate or maximum 

grain sizes, even if that means renouncing to exploit the lookahead of'the model. 
The communication demands of CMB are very strong, making it; unsuitable for 

environments such as a network of workstations, were communication costs are very 

high compared to computation costs. In contrast, the performance achieved in two 

commercial multicomputers, Supernode and Paragon, are reasonably good-better 
in the latter than in the former. 
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Parameter 
Cvcles 

Meaning 
Duration of the simulation. in terms of cvcles. 

Seed 
Number of PEs 
Grain size 
Lookahead 

Seed for the random number generators. 
Number of processing elements used in the simulation. 
Number of routers assigned to each logical process of the 
A boolean value, indicating whether or not special effort 
extract lookahead from the model. 

Message length 
Load 
Number of PEs 

I I LPs per Transp. I Routers per LP I l o o k a h ~ q  

Table 1. Parameters of the simulators. 

4 4 32 32 4 

5-90 5-90 5--90 5-90 5--90 5-90 
4 16 4 16 16 16 4-- 25 

Grain size, 
lookahead 

, I LPS ~ e r   trans^. I ~outers  ~ e r  LP 1 l o o k a h e n  

Table 2. Experiments performed with CMB in the Supernode. 

Table 3 

4min 
4minL 

1 16minL 1 16 1 Yes 1 
Table 4. Values of the parameter grain size for experiments 2s and 4s. 

Table 4 

Table 3. Values of the parameters grain size and lookahead for experiments :IS and 35. 

64 
64 

ih 

Table 3 ' Table 4 

1 

1 

I I 

[ Number of PEs 1 4 1 16 14 1 16 1 16 1 16 1 4 - 44  1 4--100 1 
Table 6. Experiments performed with CMB in the Paragon. 

Yes d 

LPs per Transp. 
4 

I 

Table 5 

4 il 

Table 5 1 z r m . ,  1 

Routers per LP 
16 

Table 5. Values of the parameter grain size for experiments 5s and 16s. 
16 

no 

Network size 
Message length 
Load 

2P 
16x16 
4 
5-90 

1P 
16x16 
4 
5-90 

3P 
16x16 
32 
5- 90 

5P 
32x32 
4 
5-90 

4P 
16x16 
32 
5-90 

6P 
32x32 

32 
5-90 

4 
50 



Network size 
Message length 
Load 

1M 
16x 16 

Computing system 
1 Supernode 
Paragon 
NOW with MPI 

Table 7. Experiments performed with MPI in a network of workstations. 

4 

5-90 

3M 
16x16 

Table 8. Communication and computation abilities of the multicomputers utjed in the 
experiments. The data rate is for 32-byte messages. The execution times are those of the 

sequential simulator running experiment 5 a t  load 90. 

Data rate (Mb/s) 
4 
4 

0.06 

32 
5-90 

Execution time 

904 
5597 817 3 

5M 
32x32 
4 

5-90 

61M 
32x32 90x910 
32 
5 - 4 0  5-90 4 
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I local processo1 

Figure 1. Model of message router. 

0 Roiuter 

0 Logical process 

Figure 2. Mapping a network of 4x4 routers onto a PE. (a) Maximum grain size. (b) 
Intermediate grain size. (c) Minimum grain size. 



Figure 3. Organization of processes in a worker transputer. Circles represent LPs. 
Multiplexers are needed to share links. 
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Figure 4. Structure (of CMB. 

It * t t  pet \ 
'? 

Input 
F'=C=s 

sig , Snuulator 
process 

loc - 
\ JJ 

I 

I 

I 
a20 

! 
statistics 

'L 

Output channels 

of a logical process in the Supernode implementation 



0 20 40 60 80 100 0 20 40 60 80 100 
Load Load 

1s. 16x16 routers, 4-flit mess., 4 transp. 2s. 16x16 routers, 4-flit mess., 16 transp. 

0 20 40 60 80 100 0 20 40 60 80 100 
Load Load 

3s. 16x16 routers, 32-flit mess., 4 transp. 45.16~16 routers, 32-flit mess., 16 transp. 

0 20 40 60 80 100 
Load 

0 20 40 60 80 100 
Load 

6s. 32x32 routers, 4-flit mess., 16 transp. 6s. 32x32 routers, 32-flit mess., 16 transp. 

Figure 5. Results of experiments 1 S 4 S .  



:::I 25 - - a - - Execution time 20 

0 5 10 15 20 25 
Number of processors 

Figure 6. Results of experiment 75. Simulation, using 4--25 transputers, of a network of 
24x24 routers (25x25 for the case of 25 transputers) with 4-flit messages at. load 50. 
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Number of processors 

Figure 7. Ratio of useful to total messages for experiment 75. 
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Load 

0 20 40 60 80 100 
Load 

1P. 16x16 routers, 4-flit mess., 4 PEs. 2P. 16x16 routers, 4-flit mess., 16 PEs. 

0 20 40 60 80 100 0 20 40 60 80 100 
Load Load 

3P. 16x16 routers, 32-flit mess., 4 PEs. 4P. 16x16 routers, 32-flit mess., 16 PEs. 

0 20 40 60 80 100 
Load 

0 20 40 60 80 100 
Load 

5P. 32x32 routers, 4-flit mess., 16 PEs. 6P. 32x32 routers, 32-flit mess., 16 PEs. 

Figure 8. Results of experiments 1P-4P. 
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7P. 24x24 routers, 4--64 PEs. 8P. 90x90 routers, 4--100 PEs. 

Figure 9. Results of experiments 7P and 8P, the scalability tests. 

Number of processors 

Figure 10. Ratio of useful to total messages for experiments 7P and 8P 
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Number of processors Number of processors 

7P. 24x24 routers, 4--64 PEs. 8P. 90x90 routers, 4--100 PEs. 

Figure 11. Distribution of total execution time among simulation and synchronization for 
experiments 7P and 8P. Thn = time spent computing the acceptance horizon and 

sending null messages; Trec = time spent receiving messages (null messages included); 
Tsim = time spent executing events and sending non-null messages. 
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Figure 12. Results of the experiments 1M--8M. 



k """"I """"I " """I """"I """" I  " "T _ _ _ _ - - - - -  - - - _  
..- . -, 

- 
- - 

Message size (bytes) 

Figure 13. Achieved data rates as a function of the message size in the three 
multicomputer systems used in the experiments. 
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