Purdue University

Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

12-1-1995

An Evaluation of Implementations of the CMB
Parallel Simulation Algorithm on Distributed
Memory Multicomputers

José Miguel
Purdue University School of Electrical and Computer Engineering

Agustin Arruabarrena
UPV/EHU Dep. de Arquitectura y Tecnologia de Cornputadores

Ramon Beivide
Universidad de Cantabria Departamento de Electr6nica

José A.B. Fortes
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

Miguel, José; Arruabarrena, Agustin; Beivide, Ramon; and Fortes, José A..B., "An Evaluation of Implementations of the CMB Parallel
Simulation Algorithm on Distributed Memory Multicomputers" (1995). ECE Technical Reports. Paper 160.
http://docs.lib.purdue.edu/ecetr/160

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages

AN EVALUATION OF
IMPLEMENTATIONSOF THE CMB
PARALLEL SIMULATION ALGORITHM
ON DISTRIBUTED M EMORY
MULTICOMPUTERS

JOSE MIGUEL

AGUSTIN ARRUABARRENA
RAMON BEIVIDE

Jost A. B. FORTES

TR-ECE 95-28
DEeEceMBER 1995

" “%. ScHOOL OF ELECTRICAL
<I§’§‘§ AND COMPUTER ENGINEERING
s PURDUE UNIVERSITY
WEST LAFAYETTE, INDIANA 47907-1285

An Evaluation of Implementations of the
CMB Parallel Simulation Algorithm on
Distributed Memory Multicomputers

José Miguell.2, Agustin Arruabarrena2, Ramén Beivide3 and José A.B. Fortesl

1School of Electrical and 2Dep. de Arquitectura y 3Departamento de Electrénica
Computer Engineering Tecnologiade Cornputadores Universidad de Cantabria
Purdue University UPV/EHU Av. delos Castros s/n
1285 EE Building - Apdo. 649 39005 Santander
West Lafayette, IN 47907-1285 20080 San Sebastian Spain
UA Spain

acpmialj@si.ehu.es, acparfra@si.ehu.es, beivide@ccucvz.unican.es, fortes@ecn.purdue.edu

This research has been done under the partial support o the CICYT, Spain, under contract
TIC95-0378, and the National Science Foundation, USA, under grants MIP-9500673 and
CDA-9015696. The first author is currently a Visiting Scholar at the School of Electrical and
Computer Engineering, Purdue University.

Table of contents

N 01 =0 AT 131
o IR 100 o |6 Tox 1o) P TP 1
2 Themodd uNder StUAY.......cuereinremiinin s 4
21 Description d the mode <, 4
22 IR/ 01X 0 =YL= S 5
23 OULPUL AaLta rersssersmsssanmmmmsnmmmmnmmnen s . 7
3 THE SIMUI SLOIS +exrsesesrnrsrsrarsrarararasasasesesssnsssssssssssrsrarasasasasasasassssssssnsssnsnsnss 8..
31 Input parametersfor the SIMUIatorS.....ccvrnin . 8
32 Supernode implementation «ssssseesre30
33 Paragon impl EMENLALI QN #=rrrersrsasirsrararararararassnsnsnrnssssssssssasassrasarasasanass 4
4 Expen [NEINES s rersrreesrasanmtnimetaimersressmeraimesstesamessressmessmresstessntessrasanressne 17
4.1 Description and results on the SUPernOde «s««:«sssssermmsmmmmmsnnmnnnnn. 17
42 Analysis o the results on the SUPErNOde ... 18
43 Descri ption and results on the Paragon e, 21
45 Description and results on the network d workstations «««ssessssssssees 24
5 CONCIUSIONS +e e rrrararsnsssarassnssarsssssramsmssrarassssarasssr s arassassarsnssrarassssnns 27
REf O EINCES: e rererererararararararararararasasarararase s s s sasasnansnsnsnsnsnss 28
TaADIES rerererrirririrr e 30
Fi QJUIE S rr et e et 32

Abgsract

A model of a message-passing network is used to analyze the behavior o three
implementations o the Chandy-Misra-Bryant parallel simulation algorithm. The
characteristics of the model, the organization o thelogical processesthat constitute
the simulator and the characteristics o the host parallel computer have a definite
influence on the achieved performance, measured i n terms of speedup. Large, loaded
models help CMB to synchronize with a minimum overhead, efficiently exploiting
the available parallelism. Mapping several LPs onto each processor achievesa better
use o the available processing power, because while a LPis blocked (synchronizing)
others can use the CPU. However, it is not convenient to map too many LPs onto
each processor because the synchronization cost would be too high. The
communication demands o CMB reduce its efficiency i n environments where the
cost o passing messages i s too high: the performance o CMB running on a network
o workstations is quite poor; in contrast, good speedups can be achieved using
commercial multicomputers.

Keywords

Parallel discrete event simulation, conservative synchronization, multicomputer
programming, performance evaluation, message passing networks.

77}

| ntr oduction

During the last years a substantial effort has been devoted to the parallel
implementation of discrete event simulators. The objectivesincluded. (1)to exploit
the parallelism available in current multicomputers and multiprocessors and,
mainly, (2) to accelerate simulation runs.

For some simulation studiesit is necessary to run the simulator many times, in
order to study the influence of a certain set of parameters on the system under
study. In these cases, the most convenient way of accelerating the study issimply to
run as many simulations as processors are available, each one with a different set of
input parameters. This technique is called replication. The efficiency achieved is
very good, because the simulations are completely independent and, therefore,
communication and synchronization among the processorsare not needed.

Unfortunately, it is not always possible to replicate the simulator. For some
studiesit is necessary to have the results of one simulation before starting the next
one, thisisthe case whenthe aimisto tune a set of parameters. |t may also happen
that the memory available in each processor is not large enough to keep a complete
copy o the simulator. These limitations d the replication approach justify the need
for waysto parallelize a single simulation run.

Sometimes replication isfeasible, because each one o the processorsavailable to
perform the study is powerful enough to run an individual simulation, but it
happens that there are more processors than experiments to perform. Under these
circumstances, replication would not fully utilize the available resources; it would be
more cost-efficient to use many processors for each experiment, combining
replication with other forms o parallel simulation.

The most promising set of parallel simulation techniques use the model
decomposition principle: the system being simulated i s decomposed into several sub-
systems, and each sub-system is assigned to a logical process(LP). The collection of
LPs can run concurrently, each one simulating its part of the whole. However, in
order to maintain the causal relationships among the events during the simulation,
a synchronization mechanism is needed. Three broad families of algorithms based
on model decomposition can be found in the literature. They differ in the way LPs
synchronize [FT94]:

e Parallel simulation may be synchronous. This means that all the LPs which
form the simulator share the same vison o time, asif they had a global clock.

2

Events are simulated in the same order asin a sequential simulator. The only
events that are ssmulated in parallel are the ones that are scheduled for the
sametime.

* Parallel simulation may aso beasynchronous. In this caseeach LP hasits own,
local view o time. In order to perform a simulation globally correct, each LP
needs to obey the following rule: execute all the incoming events in non-
decreasing timestamp order. This rule is not easy to follow because, after
executing a sequence o events, a new one might be triggered by another LP,
with a timestamp smaller than that d the last executed event, thusimpeding
the receiver LP from obeying the stated rule.

- Aconservative simulator never dlows these situations to happen. To do
0, LPs block before executingevents, until it istotally safe to proceed.

- An optimistic simulator allows erroneous situations to arise, but those
are detected and arollback is performed, i.e. a jump back to an error-
free point in the (ssmulated) past.

Thiswork focuses on one particular asynchronous, conservative algorithm, known
as CMB (Chandy-Misra-Bryant) [Brya77, CM79]. One problem o conservative
algorithms is that the blocking synchronization mechanism can lead to deadlocks
which prevent the simulator from advancing. For this reason, CMB includes a
deadlock avoidance mechanism based on the interchange o null messages. CMB is
described in detail in [Misr86, Wagn89].

The motivation behind our interest in parallel simulation algorithmsis twofold.
First, we use simulation to evaluate our architectural proposals for the design o
new massively parallel computers, and we would like to have a fast tool to perform
these simulations. Second, we would like to broaden the spectrum o applications
that can be efficiently executed on current multicomputers (i.e., to perform
something more than " number crunching").

For this study we have had access to three parallel computing systems. All of
them use message passing for communication and synchronization, although with
different features. These systemsare:

* A transputer-based Supernode [Inmo89, Pars89], with 34 processing elements.
The programming environment is the Inmos C Tool set [Inmo90].

* An Intel Paragon [Inte93], with 140 processing elements (i860). The NX library
provides an comprehensiveset of functionsto develop parallel programs.

e A small network of 4 Sun SPARCstation 5, connected via an Ethernet local
area network. A MPI library [MPI94] provides the support for programming
parallel applications.

The objective o this study isto evaluate the influence that the following factors
have on the performance of CMB running on a distributed memory parallel
computer:

The parameters o the mode being simulated.
The architectural characteristics d the host multicomputer.
¢ Theorganization o the simulator.

The rest of the paper is organized as follows. We start in Section 2 with a
description of the model used in the simulation experiments: a network of message
routers. In Section 3 three implementations of CMB are described: one for each one
of the available parallel computing environments. Section 4 presents the results
obtained after running a collection of experiments using the three CMB
implementations. Finally, the conclusionsdf thiswork are summarized in Section 5.

4
2 Themodd under study

I n this section we describe the modd used to perform an exhaustive study of our
three implementations of CMB. We selected this particular model because its
behavior was already known [Arrua93] and, therefore, a reference point to confirm
the correctness of the parallel simulations was available.

21 Description of themodd

We study a network of message routers designed to be used as the communication
infrastructure of a multicomputer system. Similar models have been identified as
suitable candidates for parallel ssimulation; seefor example[BH95, KY91, LPD95].

Each node of the network is composed of a processor and a router joined by a
message interface. Processors are the source as well as the final destination of
messages. Routers actually move messages from sourceto destination.. It isassumed
that message length is fixed; it is measured inflits (flow control digits, [Dall86]).
Each message has a 1-flit header, which contains the necessary information to make

routing decisions. Figure 1 shows a sketch of a message router. Its main components
are:

* 4input ports, used to receive messages from the neighboring routers, through

the corresponding input links. Each port is capable of storing one flit.
4 output ports, used to send messages to the neighbors through the
corresponding output links. The storage capacity isaso oneflit. A FIFO transit
queue 1S associated with each output port, that stores messages temporarily
when the corresponding link is busy. Each queue has 10 buffers, each one with
capacity for a full message.

* Aninjection port, used to receive messages from the local processor, and a
consumption port, used to send messages to the local processor. These ports
connect to the message interface. A small FIFO injection queue inside the
message interface has enough space to temporarily store up to 4 local
messages, when the corresponding output queues are full.

¢ A routing automaton, which decidesthrough which output port a message will
be sent.

5

The network o routers works synchronoudy: in 1 cyde, aflit is moved from port
to port, from queue to port, or from port to queue.

In theliterature about message passing networks, many alternatives for topology,
message flow-control and routing strategy can be found. In order to restrict the
number o experimentsto perform, we have decided to simulate only torus networks
with cut-through flow-control and oblivious routing. The reasons behind this choice
can befound in [Arru93, ABIM93].

It isassumed that processors immediately consume received messages, o they
never force a message to stay in a router wasting resources. Processors generate
messages following a given traffic pattern. The patterns most commonly used are
random, hot-spot, local trafficand several permutations (perfect shuffle, bit reversal,
matrix transpose, etc.). In this work we have only considered the random pattern,
i.e., each node can generate messagesfor any other nodein the network, with equal
probability. When a new message is generated at a node and it cannot beinjected in
the routing network because the corresponding output port, the transit queue and
the injection queue are full, the messageis rejected (i.e., it islost); if this situation
arises, the network is saturated.

There are three parameters o the mode whose values can be changed to assess
their influence on the performanced the simulator. These are:

* Network sze (D). We consider square torus networks o DxD nodes.
Messagelength (M), measured in flits.
Network load (L), measured as a percentage d the bandwidth o the network
bisection, for arandom traffic pattern.

These three parameters are needed to compute the time interval between the
generation d two consecutive messages at a given node. Thelength o this interval
Is exponentially distributed, with a mean directly proportional to D and M, and
inversely proportional to L. The actual expression for the mean is(12.5xDxM)/L.

26 Typesd events

Once we have the general descriptiond the modd, it is essential to determinethe
data structures that will represent the elements o a router, and the events that
would be able to modify those elements. That is, we need to express our modd in a
way that can be simulated by an event-drivensimulator. The definition should aso

6

be independent of the simulators used. However, the class d parallel simulators
under consideration (based on the distribution of simulation tasks among a set o
logical processes), and the available computing systems (distributed memory
multicomputers) prevents the use d any kind o shared data structure, because the
LPs constituting a simulator may be distributed among different processors. The
design o the set d events needs to take this restriction into account.

Each router o the simulated network i s represented in the obvious way: a record
with fields representing ports, queues, etc., plus some additional fieldsfor statistics
gathering.

The events that represent in the simulator the evolution o the system are as
follows

INJECTION: thelocal processor generates a new message for another node.

STEP: the router tries to send the header of a message from an output port to an
input port in a neighboring router.

PERMISSION: the neighboring router acceptsthe message.

ADVANCE: after the computation of the routing function, a header flit of a
message i s advanced from an input port to an output port or, if busy, to an
output queueinside the router.

FREE-INP: an input port has been freed, o new messages can be accepted.

CONSUMPTION: a message has reached its destination.

FREE-OUT: thelast flit o a message abandons an output port.

FREE-QUEUE: thelast flit d a message abandons an output queue.

In the CMB implementations all the events except STEP and PERMISSION are
always internal (i.e., scheduled to be consumed in the same LP that generates
them); therefore, they never need to be encapsulated into messages sent to other
LPs. In contrast, these two events can be either internal or external, depending on
whether the involved routers are being simulated i n the same or in different LPs.
We will explain the mapping d routers onto LPs i n the next section.

In a sequential simulator, PERMISSION events are not needed, because it is
possible to directly check the availability of spacein a neighboring router ssmply by
accessing the data structure that represents it. In fact, they are included in the
parallel version precisely because global information is not available and all the
interactions must be done via messages.

23 Output data

The description o the modd is detailed enough to dlow ample insight into the
behavior of the network of routers, such as message latencies, queue sizes, number
o consumed messages, etc. Thisinformationis very valuable becauseit has already
been gathered in previous studies, and it adlowsa validation d the correctnessd our
simulations. However, as the focus d this work is more on the behavior o the
simulators than on the modd, no output data will be shown.

3 Thesamulators

In this section we present the details of three implementations o CMB, one per
available parallel computer. These implementationsd CMB use the description of
the algorithm given in [Wagn89]. A sequential event-driven simulator that can run
on any o the three parallel system has aso beenimplemented. For a given machine,
the execution times d the sequential simulator running the optimized version o the
modd (i.e., the one that uses global information)is taken as the reference point to
computethe speedups o the parallel version.

All the simulators share as much code as possible, in order to be fair when
making comparisons and to reduce development effort. In particular, @inall the cases
an efficient set of functions based on a heap data structure have been used to
mani pul ate event lists, following the recommendationsin [CSR93].

31 Input parametersfor thesmulators

In addition to selecting the parameters o the simulated modd (sizeD, load L and
message length M), a user running the simulators has to facilitate a series o
additional parameters. These are enumerated in Table 1. Thefirst two parameters
(cycles, seed) are needed for all the simulators, sequential and parallel. The number
of processing elements must be given for CMB. A mapping o the simulated network
d routers onto the physical network o processing elements (PEs) in the target
multicomputer (or network d workstations) must be done. The number d PEs is
aways a square d PxP elements, where P must be a perfect divisor o D (the
number o routers per dimension in the simulated network). Under this condition,
the partition o the modd and its mapping onto the network d PEs issmplified (a
square o size DIP routersis ssmulated in each PE) and perfectly balanced (all the
PEs have the sameload).

When more than onerouter isassigned to each PE (and thisisaways the casefor
the experimentswe have performed), there are several possbleorganizations for the
simulator. A CMB simulator always consists o a collection o collaborating LPs,
where each LPis a Unix process (inthe Paragon or in MPI) or a transputer process
(in the Supernode). Mapping the mode onto the host computer requires two steps.

mapping routers onto LPs, and mapping LPs onto PEs. There are two trivial
possibilities:

1 Map each router onto a single LP, and then map groups of (D/P)2 LPs onto each
PE. We say that the grain size o the LPis minimum. A large amount of
interprocess communication is needed, because all the STEP and
PERMISSION events are external (i.e., they need to be sent as messages,
although they do not necessarily need to go from one PE to another).

2 Map (D/P)2 routers onto one LP, and then each LP onto a different PE. We say
that the grain size of the LPis maximum. In this case, many o the STEP and
PERMISSION events are internal and the interprocess communication is
significantly reduced.

Note that other grain size alternatives are possible. For example, Figure 2, shows
a case where D/P = 4. Figures 2a and 2c represents the mappings for maximum and
minimum grain sizes respectively, and Figure 2b represents a mapping for
intermediate grain size. If the mappings are always square, there can exist either
none, one (likein the example) or several cases o intermediate grain size.

The last parameter in Table 1 indicates whether or not the LPs try to extract
lookahead from the modd.[Fuji89]. To improve the performanced CMB, itishighly
recommended to analyze the simulated modd to determineif some lookahead can be
extracted, and to tailor the simulator to use this lookahead. If this could be
effectively done, timestamps of null messages would have higher values and the
overall number o required null messages would be reduced, allowing a faster clock
advance of the LPs.

If an LP simulates only one router (i.e., the grain size is minimum), then the
behavior of the simulation is quite predictable, and lookahead can be easily
extracted. Let us suppose that, at time t, a router has sent a message header
through an output port; the L P can guess that no new header will be sent through
the same port at least until t+M, where M is the message length, because messages
advance a flit per cycle. The difference between the current value o the LP’s clock
and t+Misthelookahead. In contrast, when the grain sizeis not minimum, the cost
of computing lookahead is high, and the obtained values are low. In fact, in most
cases the obtained value is one, a minimum that can be assumed without any
computation. For this reason, we decided to ignore the lookahead ability of the
model, except for minimum grain size configurations.

10

32 Supenodeimplementation

The Parsys Supernode SN-1000 [Pars89] is a multicomputer with Inmos
transputers [Inmo89] as processing el ements. Each transputer includes, in addition
to a CPU and someloca memory, four serial communication links d 10 Mb/sec each.
In the Supernode, the transputer links are all connected to a collection of
programmable switches, in such a way that the user can specify the topology of the
Interconnection network.

Each transputer can house many concurrent processes, which are efficiently
managed by a built-in scheduler. Two transputer processes communicate via
unidirectional channels. If the communicating processesrun on the same transputer
the channel isinternal, just a word in memory. It is aso possble to map a channel
onto a communication link, if the communicating processes run on neighboring
transputers. A maximum d two channels can be mapped onto onelink, onein each
direction. Communication via shared memory is possible, for processes running on
the same transputer.

In order to run a CMB simulator on the Supernode, a group o transputersis
arranged to form a torus network o worker transputers with a monitor transputer
inserted in one o the wrap-around links. The number o processesassigned to each
worker transputer depends on the grain size of the LPs. The LPs in one transputer
can bejoined directly viainternal channels, whilethe external links are needed only
iIf two logical neighbors are mapped onto different transputers. Since several logica
neighbors need to communicate through a single externa link, link sharing is
needed. Some multiplexer processes perform this function. Obviously, if maximum
grain size is used (only one LP per transputer), multiplexers are not needed;
therefore, they are not used, in order to reduce overheads. Figure 3 shows the
arrangement d processesin two neighboring worker transputers.

A monitor process, placed in a separate transputer outside the network of
workers, collectsstatistics (output data d the simulation, see $2.3)and summarizes
them. Additionally, duetoitslocationin the network, it hasto act as a bypass. every
message received from the east/west has to be sent to the west/east. Thus, the
workers do not perceiveits presencein the network.

The set o LPs constitutes the core o the ssimulator. All the other components
(monitor, multiplexers) are only needed to build aworking system. Internally, an LP
Iscomposed d three communicating processes (Figure4):

11

* Aninput process, which manages the input queues and the internal event
calendar o the LP. It recelves messages (events) from the neighboring LPs, and
inserts them into the appropriate input queue. It also updates i mportant
information as the channel clocks (each channel clock stores the timestamp o
the last message received through the channel) and the message-acceptance
horizon (the reference point that allows to determine what messages can be
consumed and what others must still wait).

¢ Asimulator process, which consumes the events. It interacts with the input
process, using channel pet to request messages, which are received through
channel sig. When an event is consumed, new events might be scheduled.
Those that will be consumedin the same LP are sent to the input process using
channel loc. Events for other LPs are sent to the output processthrough s2o.
When the simulator reaches the end-of -smulation time, a block with statistics
is generated and sent to the output process.

* An output process, which manages messages to be sent to other LPs or to the
monitor. It implements minimal routing mechanisms, for the rnanagement of
statistics blocks. An input process may receive statistics blocksfrom other LPs;
the output process forwards these blocks towards the monitor. These two
processes communicatevia a shared queue.

The divison d the LPinto three different sub-processes allows the decoupling of
the event consumption and message interchange activities. If the design o the LPs
were monolithic, communication deadlocks could easily happen. This is due to the
way communication is accomplished in the transputer: simultaneous send() and
receive() operations are needed to complete a message interchange. If a monolithic
LPA wanted to send a message to a busy neighbor B, A would block (wastingtime)
until B invokes the peer operation. A deadlock would immediately happen if B was
also blocked while trying to send a message to A . More complex deadlock scenarios,
involving more than two LPs, are also possible.

With the proposed design the simulator process never blocksin a send(), because
the corresponding output process is aways ready to respond to it. The simulator
might block in a receive(), but only if no suitable event is ready to be consumed (as
the CMB algorithm requires). Meanwhile, all the incoming messages can be received
and stored by the input process, which is a greedy receiver. This design avoids
communication deadlocks, while allowing events to be managed as early as possible.

12

321 Simulator process

The basic scheme d the simulator processis asfollows:

process sinul ator:
repeat {
send (pet, * ");
receive(sig, m);
clock = m.timestamp;
if (m.type == WLL- BLOCK) send- nulls();
el se consume(m) ;
if (clock > end- of - simulation)
bui | d- and- send- stati sticso;

The simulator process runs concurrently with theinput and output processes. The
consume0 function first determines the type of the message and then proceeds
simulating its effect in the (simulated) routing network. This is done in three
phases: first, the status o the appropriate router is examined, then this statusis
modified and, finally, eventsfor the same or other routers are scheduled, if needed.
If the destination router is being simulated in the same LP, then the event is
internal, so a message is sent through loc. Otherwise, it has to be sent to another
L P, soa messageis sent through s2o for the output processto manageit.

The loop never stops. When the clock reaches the end-of-simulation value, the
simulator collectsa block o statistics, that is sent to the output process which, in
turn, forwards it to the monitor. This operation is done only once, although the
simulator goes on working. The monitor process is responsible for stopping the
simulation.

A CMB LP must block when no message is able to be consumed. This happens
when no stored message has a timestamp beow the message-acceptance horizon. In
this situation, the input process sends a WILL_BLOCK message to the simulator
process, instead of a useful message. This means that, if no new messages are
received, the next time an event to be consumed i s requested no one will be given—
s0 the simulator will block. The simulator, as always, updates its clock, and then
sends null messages to itsfour neighbors. The timestamp o those null messagesis
computed as the value of the local dock plus one, unless special effort i s devoted to
extract lookahead. A null messageis not sent if it does not produce an increment of
the receiver's linkclock.

Once the null messages have been managed, the simulator process blocks waiting
for an input from sig. Only the reception of new messages from other LPs would be

13

able to wake-up this process, as a consequence of the (possible) increment they
produce on the message-acceptance horizon o the LP. Thisis a task for the input
process.

3.22 Input process

The input process manages all the messages that will be consumedin an LP. It
maintains four input queues, plus a local queue. Requests of messages to be
consumed are received from pet, messagesfor thelocal queue are received from loc
and messages from the neighboring LPs are received from the four input channels.

process input :
in =wait-for-input();

if (in == pet) deliver- message();
el se {
receive(in, m);
if (in == loc) insert_local_gueue(m);

else if (is_external_channel(in)) ¢
insert_input_gueue(in, m);
check- bl ocked- sinmul ator();

}

functi on deliver_message:
h = acceptance_horizon():;

ts = minimum_timestamp () ;
if (ts «& h) {
s = message_with_minimum_ timestamp();

send(sig, s);

else if (h -m clock) send(sig, W LL- BLOCK- nessage);
el se bl ocked- sinulator = TRUE;

Function deliver—-message() computes the message-acceptance horizon (the
minimum among the LP’s channel clocks), as wel as the value of the minimum
timestamp among all the messages awaiting to be consumed. If this timestamp falls
below the acceptance horizon, then the corresponding message can be safely
removed from its queue and consumed (sent by sig). Thisis the expected behavior o
aCMB LP.

When no message i s ready to be consumed a WILL_BLOCK messageissent to the
simulator, in order to increment its clock and allow the other LPs to advance. Next
time the simulator asksfor a message, no one will be delivered, which will force the
simulator to block. Theinput process activates the flag blocked_simulator.

If a new message arrives, the corresponding linkclock i s advanced and, if it is not
a null message, itisinserted initsqueue. Null messages need not be stored, because

14

their only purposeis the advance they producein thelinkclocks. A linkclock advance
(dueto a null or a useful message) may increase the message-acceptance horizon
and, therefore, may alow an awaiting message to be consumed. For this reason,
each time a new message i s received, function check_blocked_simulator() i sinvoked.
Thisfunction, whichis similar to deliver-message(),eventually unblocks the blocked
simulator process, and allows the consumption of a message. When the acceptance
horizon computed by check-blocked-simulator() surpasses the local clock, the
simulator is awaked by means of a WILL-BLOCK message. This way no useful
message is consumed, but the clock is advanced and this advance can be
communicated to other LPs.

3.2.3 Output process

This process has to accept messages from the simulator and send them to the
other LPs. The routing effortis minimum, becauseall the messages are labeled with
aport number that clearly states which channel the messages have to be sent
through.

33 Paragon implementation

The Intel Paragon {Inte93] isa multicomputer organized as a rectangular mesh o
nodes. Each node has one i860 to perform computation, another i860 to manage
message passing, and an interface to a high-speed interconnection network. This
network, composed of custom-designed routing chips, is able to carry messages
between any two nodesat up to 200 MB/sec.

Parallel programs can be developed using Intel's proprietary NX library, which
provides a comprehensive set o functions to manage processes and passing
messages among them. Although in theory it is possible to run many concurrent
processes on each node, in practiceitis not efficient to do so, because a process does
not relinquish the CPU when it is awaiting to complete a communication operation
and, therefore, it is not possibleto overlap one process computation with another's
communication.

Porting the CMB implementation from the Supernode to the Paragon required
basically to cope with two differences between the programming environments of
these systems. synchronization among processes and node multiprocessing ability.
The Supernode implementation exploits the efficient multiprocessing abilities o the

15

transputer: each transputer contains several processes (I.Ps and multiplexers)
which, in turn, are structured in several sub-processes. Two main reasons justify
thisdesign. Firstly, the synchronousnature d message passing functions requires a
decoupling of message management (reception, storage, sending) and message
consumption tasks, in order to avoid communication deadlocks. The divison d an
LPinto input, simulator and output processes providesthis decoupling. Secondly, it
IS very efficient to share a transputer among several LPs: one LP can be working
while others are blocked awaiting for communicationl. The transputer built-in
scheduler relinquishes the CPU from a process as soon as it blocks for
communication.

None o these considerations apply in the case o the Paragon and, for this reason,
a re-design d the simulator was necessary. The main differences between the
Supernode and the Paragon versionsd CMB are:

* The multiplexer processesand d the bypass functionsd the monitor have been
removed. These simplifications have been possible because, in the Paragon,
messages can be interchanged between any pair of processes, independently of
their position. Routing, link sharing and other functions related to message
passing are managed by a separate network o message routers (very much like
the object of our study), without interfering with the activity of the processes.
An application controlling process on a separate PE acts as the monitor. Its
purpose is to launch the LPs and to gather statistics at the end d the
simulationr un.

* The input, output and simulation processes (the three sub-processes which
form an LP in the transputer) have been combined into a single process. This
new design is possible because d the buffered nature d the communicationin
the Paragon, and necessary because d the poor multiprocessing abilitiesd the
Paragon.

* Minimum and medium grain sizes alternatives for the LPs have been
eliminated, that is, only maximum grain sizeis considered. This means than
only one LP runs on each PE, again because d the inefficient scheduling policy
o the Paragon.

Thealgorithmd the LPisasfollows

1 Thiswill be seen when analyzing the performanceof the Supernodeimplementation.

16

process LP:
repeat {
h = acceptance- horizon();
ts = mninmum tinmestanpO ;
if (ts «a h) {
m = message _with minimum_ timestamp() ;
clock = m.timestamp;
consume (m) ;
if (clock > end- of-simulation) build- and- send- stati sticso;

el se {
clock = h;
send- nul I s () ;
m = receive(); /* Blocking */
insert_local_calendar (m) ;

Note that messages from other LPs are received only when the LP needs to
increment its channel cdocksin order to advance. While an LP i s busy, messages can
arrive from the neighbors, and they are stored i n system buffers until the LP decides
to actually receive them. This buffering provides enough decoupling to alow a
collection d LPs to progress without communicationdeadl ock.

Except for changesin the communication functions, therest o the simulator code
isthe sameas the Supernode's.

34 MPI Implementation

The third CMB implementation was designed to run on a small network o 4 Sun
SPARCstation 5, connected via an Ethernet locd area network. An MPI (Message
Passing Interface, [MPI24]) library provides the support for programming parallel
applications.

The MPI implementation d CMB isvery similar to that for the Paragon. The only
relevant difference is the substitution of the NX functions by their MPI
counterparts. The change was straightforward, because these two libraries (NX and
MPI) are semantically very close; furthermore, only a limited number o
communication functions were used i n the programs.

17
4 EXperiments

In this section we present the results obtained after running a collection of
experiments using the three implementations of CMB. We start with the Supernode
version, then the Paragon version and, finaly, the MPI version running on a
network of workstations. We made many experiments with different model
parameters (network size, message length and load) and simulator parameters
(number of PEs, grain size d the LPs, use of lookahead information). Most of the
times identical sets of parameters have been used with the three simulators.
However, some experiments have been specifically designed to stress some
particular characteristics o agivensimulator.

The obtained results are displayed as a collection of speedup curves. The
speedups have been calculated after running an optimized sequential, event-driven
simulator with the same set of model parameters.

41 Descriptionand resultson the Supernode

In this section we present the results d seven experiments performed with the
Supernode version of CMB. An analysis d these resultsis donein the next section.
Tables 2, 3, 4 and 5 summarize the parameters used in the experiments. The first
three parameters o Table 2 (network size, message length and load') are related to
the model, while the next three (number o processing elements, grain size and use
of lookahead information) are related to organization o the simulator. All the
experiments ran for 4000 simulated cycles. The obtained results are plotted in
Figures5 (experiments 1S to 6S) and 6 (experiment 7S).

Experiments 1S—48S deal with a relatively small model o 16x16 routers, with
message length 4 or 32, and runningin 4 or 16 transputers. With these experiments
we wanted to test the following hypothesis:

1 Results are better with 4-flit messages than with 32-flit messages. For the
same network load, 4-flit messages means at least 8 times more simulation
events than 32-flit messages. Execution times should be longer for both the
sequential and the CMB simulators, but thelatter will have more opportunities
to self-synchronize without null messages, therefore reducing the
synchronization overhead. This should be confirmed by comparing 1S with 38
and 25 with 4S.

18

2 Performance improveswhen the load increases. Again, the higher theload the
larger the number o events managed by the simulator, therefore allowing the
system to salf-synchronize. This should be confirmed by all the experiments.

3 The simulator scales with the number of processors, i.e., the speedup obtained
with 16 transputers is better than the speedup obtained with 4 transputers.
This should be confirmed by comparing 1S with 2S, and 3S with 4S. Another
experiment, 7S, consders this aspectin more detail .

Additionally, we wanted to test the impact that the different grain sizes have on
the performance, as well as the effect d extracting lookahead information from the
modd.

Experiments 58 and 6S work with a modd four timeslarger than that usedin the
previous set. We wanted to confirm that the ssmulator performance improves with
larger workloads. More work can be assigned to an LP by mapping onto it a larger
number o routers.

Experiment 7S is a scalability test. The same modd isrun on 4, 9, 16 and 25
transputers. As we will see, the simulator performance strongly depends on the
grain size d the LPs. Sometimes a wide range d grain sizes are possible, whilein
others cases there are only two: maximum and minimum. In Figure 6 we only show
the curvesfor the grain sze alternative which gives better results, which is aways
an intermediate value. An exception isthe 25-transputer case, wherel the mode has
been dlightly increased to dlow a balanced partitioning, and no intermediate grain
Szeis possble—so the maximum has been used.

46 Analyssdf theresultson the Supernode

After showing the experimental results, we proceed to analyze the effect that each
parameter o the mode or o the simulator has on the execution time. When
convenient, several parameters are grouped and studied together.

421 Nework size, messagelength and load

Itisclear, from any d the speedup curves, that the following parameters o the
modd have a significant impact on the execution time d the simulation: load,
message length and network size. The best situation arises with large and highly
loaded systems that interchange short messages. Interestingly enough, thisis the
worst possible scenario for the sequential simulator. When the modd has the

19

opposite characteristics, the performanceis not impressive, but the actual execution
timeisnot very long.

The reason for this behavior can be found in the way LPs synchronize in a CMB
simulator. All the mentioned parameters affect the number o "useful" messages
(i.e., non-null messages) managed by the simulator. An increment in the number o
these messages means that the LPs have more opportunities to synchronize, while
doing useful computation. Null messages are needed | ess often, because LPs do not
block frequently. We can say that there is a high degree of "natural"
synchronization. When there are only a few useful messages to process, LPs block
often, and null messages are needed to maintain the LPs’ clocks updated.
Consequently, LPs spend most of their (real) time blocked or processing null
messages (i.e., Ssynchronizing, instead a making progress).

422 Grain size

Looking at the results o the first four experiments and comparing maximum vs.
minimum grain size, it isevident that coarsegrain simulationis more effectivethan
fine grain simulation for low and medium loads. This because a small number of LPs
synchronizing with null messages resultsin lower overhead.

If now we compare the results for minimum and maximum grain size with those
for intermediate grain size, it is clear that the latter are the best for intermediate
and high loads. Only for very low loaded systems maximum grain size gives,
sometimes, better performance than intermediate values. An analyis of the time
used for synchronization in the simulator can explain this behavior:

* With maximum grain size, an LP can advance autonomously most of the time,
due to the large number of interactions between the routers assigned to it.
Nevertheless, sometimes the LP has to co-ordinate with the others, which
causes the LP to send null messages and then block. This behavior is extremely
inefficient because the LP is the only user o the transputer and, if it blocks,
thefreed CPU power iswasted.

e With minimum grain size, thereis no problemif an LP blocks: plenty of others
are awaiting to use the CPU. Here the problemisthat, thelarger the number
of LPs, the larger the number of null messages needed to keep the system
synchronized. Furthermore, since fine-grain LPs have very little work to do,
they block very often—making things even worse.

20

* Withintermediate valuesd grain sizeitis possible to find a balance: there are
few LPs, each one with enough work to do, so null messages are not needed
very often. In addition to that, as several LPs share a transputer, the
probability d wasting CPU time decreases.

In conclusion, we can state that for the transputer, where communication
operationsare blocking and context switchesare quitefast, coarse grain simulations
are faster than fine-grain simulations. However, it is even more efficient to use
intermediate grain sizes, with several LPs sharing a processor, in order to avoid idle
processors and make the maximum usage o the available CPU power.

423 Lookahead

From the description d how lookahead is computed (seeend o §3.1), it should be
clear that an LP might obtain large lookahead values when (1) messages are long
and (2)the LP has recently interacted withits neighbors.

Thefirst situation can be clearly observed by comparing experiments 1S and 3S
(Figure5). For 4-flit messages curves 4min and 4minL. (minimumgrain size, with
and without using lookahead information, respectively) give nearly the same results;
hovever, for 32-flit messages 4minL is clearly better than 4min. The second
situation can be seen in experiments 3S and 4S: in highly loaded systems, the LPs
interact often and, if they have to block, the computation o the timestamp o the
null messages can take advantage o the knowledge d which ports have recently
sent header flits. At any rate, as lookahead can only be effectively exploited for
minimum grain size, and this is not the best situation for this implementation o
CMB, we do not see any advantage d using the lookahead information provided by
this particular modd.

424 Number of processngdements

From the complete set d experiments, and especially from experiment 7S, it can
be seen that the performance d the parallel ssmulator scales well with the number
d processors, although not linearly. Thereare, though, some factors that can help to
understand why the speedup curvein Figure6is not perfectly linear:

e Our way o distributing the workload among processors and processes, using
squares, does not always alow to find the optimum grain size value. For
example, the 25x25 network o experiment 7S, when simulated over 5x5

21

processors, only allows maximum and minimum grain sizes, each processor
must simulate 5x5 routers, and 5 is a prime number, which means that no
intermediate alternatives are possible.

* The processors used in our experiments were not all identical. In most cases,
T805 transputers running at 30 MHz were used but, as only 14 processors of
this kind were available, in those experiments involving 16 or 25 processors
some 20 MHz T800 were used. Those processors are a bottleneck, imposing
their rate of execution on the others. For this reason the resulting speedupsare
not as good as they should.

* Since the problem size does not increase with the number o resources, the
processors are not fully utilized. When the number o processors (and o LPs)
increases, the probability of having a blocked LP increases too, sO some
processing power is wasted and more null messages are needed. To confirm this
assertion, we have represented in Figure 7 the ratio of the number of useful
messages to total number d messages managed by the simulator in experiment
7S. Note how thisratio reduces when the number of processorsisincreased.

Note also that the chosen set o modd parameters (D,M and L) for experiment 7S
constitutes neither the best possible scenario for the parallel simulator, nor the

worst for the sequential one. With a higher load the results would be more favorable
to the parallel ssimulator.

43 Descriptionand resultson the Paragon

The experiments performed with the Paragon implementation o CMB are
summarized in Table 6. The corresponding results are shown in Figures 8 and 9.
Experiments 1P through 7P are basically the same as those run on the Supernode
(1S—78). In 7P, it has been possible to run the 24x24 moded using up to 64 Paragon
PEs. Experiment 8P is another scalability test specialy re-designed to make a
better use df the larger number of PEs available in the Paragon: a large modd o
90x90 routersissimulated, using 4, 9, 25, 36, 81 and 100 processing elements.

As previously mentioned, the Paragon implementation of CMB only alows one
mapping of routers onto LPs: maximum grain size. This means that only one LP
(which simulates a group o routers) is assigned to each Paragon PE. As a
consequence o this restriction, no effort isdoneto exploit the lookahead potential of
the moddl.

22

For experiments 1P through 7P simulationsran for 4000 cycles. For experiment
8P, this number was reduced to 1000. It should be noticed that some o these
experiments are not well dimensioned for the Paragon. Execution times are very
short (lessthan 3 secondsin some cases) and, therefore, a minimum variation in the
time measurement provided by the system can result in a significant variation in
speedup, 0 trends are more significant than actual values.

Most o the conclusions drawn from the Supernode experiments apply to the
Paragon too, except for the discussions about grain size and the use of |ookahead
information, which cannot be applied here. In summary, the best performanceis
obtained with large, highly loaded modds managing short messages. This scenario
Is a challenge for sequential simulators, while it alows CMB to minimize the
synchroni zation effort.

Speedups are better for the Paragon than they are for the Supernode. For
example, for experiments 6S and 5P (which areidentical for both machines) the
peak speedup on the Supernodeis slightly less than 8, while on the Paragon it is
very closeto 12. Scalability tests 7S and 7P are dso equal for 4,9 and 16 processors,
in the latter case, the Supernode implementation reaches a speedup o 4.55, while
the Paragon reaches 10.

The reason o this performance difference can be found in the architectural
dissimilarities between the two machines and in the differencesin the LP’s design.
In the Paragon, all message manipulations are done by a network o hardware
message routers plus a second processor i n each node (amessage co-processor). This
frees the computing node & most o the overheads d message handling. In the
Supernode, however, there is neither routing hardware, nor message Co-processors,
and, therefore, each transputer has to divide its time between computation and
message handling.

Another architectural difference comesfrom the fact that in the Paragon all the
PEs are identical, while in the Supernode a mixture o 20 MHz and 30 MHz
transputers are used in some experiments. Since the reference point (the execution
time d the sequential ssimulator) was taken with respect to a 30 MHz transputer,
the reported speedupsfor the Supernode are not as good as they should be.

Regarding the design d the LPs, in the Paragon case they have a monoalithic
structure, while in the Supernode they are divided into three sub-processes. This
arrangement in the Supernode was necessary to avoid communication deadlocks.
However, this does not come without an added cost. These sub-processes
communicate mostly via internal channels; therefore, messages are copied from

23

memory to memory several times in their life cycle. A message generated at a
simulator processin one transputer that needsto be consumed at another simulator
In a neigbouring transputer needs four internal copies (messages between processes
in the same transputer) plus one external copy (message that actually traverses a
link). In the case o the Paragon, due to the monolithic design o the LPs, nointernal
copiesare necessary.

Figure 9 showsthe resultsfor experiments 7P and 8P, the scalability tests. Note
that CMB scales fairly well: the curves are nearly straight lines. The workload is
high enough to keep all the PEs busy most o the time, even for a large number of
PEs. The efficiency achieved in experiment 8P is higher than that o 7P. For
example, in the case o 36 processorsthe speedupsare 24.3in 8P and 21in7P. The
larger workload assigned to the LPs in 8P makes them achieve higher performance.
Figure 10 characterize one o the behavioral differences between these two
experiments:. the number of null messages needed to keep the simulator
synchronized. In 8P the proportion of null messagesisvery low, lessthan 1%for the
case of 4, 9 and 25 PEs, about 3% for 81 PEs and less than 4% for 100 PEs. In
contrast, this proportion risesto nearly a 40%for 7P in 64 processors.

The number o null messages is directly related to the required synchronization
effort. However, null messages are not the only source of overhead. If many d these
messages are being sent, thisisbecause LPs are blocking very often, spending time
awaiting for incoming messagesthat eventually will increase the acceptance horizon
and allow the simulation to advance. Figure 11 has been obtained by running
experiments 7P and 8P with an instrumented version of CMB that monitors the
way PEs use their time. Total execution time has been divided into three
components:

Tsim: time spent executing events, inserting messagesin thelocal event list and
in the input queues, and sending messages to other LPs. Thisis the time the
L P devotesto advancing the simulation.

Trec: time spent receiving messages from other LPs. This includes receiving
useful as well as null messages. Asthe receive() operation is blocking, thistime
can be considered mainly synchronization effort.

Thr: time spent performing other synchronization tasks, namely: (1) sending null
messages (thisincludes computing whether a null messageis necessary or not)
and (2) computing the message acceptance horizon at each step of the simulator
main loop.

24

From Figure 11.it is clear that if the workload assigned to an LP is low, the
corresponding PE spends too much time synchronizing instead o executing events.
In the case o 7P on 64 PEs, each PE simulates 3x3 routers and the achieved
proportion of effective work is 55%. In contrast, for 82 on 100 PEs, each PE
simulating 9x9 routers (9times larger that in 7P), CMB achieves a 75% efficiency.
The 62%effective simulation timein 7P with 36 PEs versus the 83%in 8P with the
same number d processorsjustifiesthe previoudy observed speedup difference.

45 Description and resultson the network o wor kstations

The number o Sun workstations available for the experiment with the MPI
implementation of CMB was limited to four. From the experience gained with the
Supernode and the Paragon, speedups over 2 should be expected. The experiments
described in Table 7 were set up to confirm this hypothesis. Note that experiment
8M is no longer a scalability test, because o the limited number d available
workstations. The other experiments are similar to their counterparts in the
Supernodeand the Paragon. Asin the case d the Paragon, the grain size d the LPs
Is always maximum, and the lookahead ability o the mode is not exploited. The
resulting speedup curvesarein Figure12.

It iseasy to observe how the performanceimproves when:

Problem sizeisincreased: compare 1M (16x16), 5M (32x32)and 8M (90x90).

* Messagelength isreduced: compare 1M (4 flits) with 3M (32flits), or 5M with
6M.

o Theloadisincreased. All curves show this.

This behavior is the same observed in the other two implementations. The
outstanding point is that the overall results are really poor. Since the programs are
the same we used in the Paragon (except for minor details), we must find the
reasons behind this poor performancein the characteristicsd the computing system
used i n the experiments.

The main difference between the Paragon or the Supernode and the network of
workstations i s the way interprocess communicationis performed. Even thoughin
the three cases a message passing mechanism is used for synchronization and
communication, the Supernode and the Paragon use high-speed, special purpose

interconnection networks, while the workstations are connected via a general
purpose Ethernet local area network, with the TCP/IP protocolsover it. This means
that communicationin thisenvironment isrelatively dow, because:

The peak datarate d Ethernet is 10 Mb/s. In the Supernode each transputer
provides 10 Mb/s per each o its 4 links, while in the Paragon the interface
between a node and the communication network allows a processor to
send/receive information at 1400 Mby/s.

Ethernet allows all the devices connected to the network to share the available
bandwidth, whether they are part o the simulation or not. In the Supernode
the channels are used exclusively by the transputers that work in a simulation.
In the Paragon the interconnection network is shared among all the
simultaneous users, but as the network is able to move information at 1600
Mb/s (i.e., faster than the generation rate o the nodes) and the! users work in
clusters which do not overlap, the sharing effect is barely noticeable.

The use of several layers of protocols (Ethernet, 1P, TCP, MPI) imposes a
significant overhead. The communication protocols used inside a
multicomputer are much simpler; in particular, there are fewer layers. Because
layering means encapsulation (i.e., addition of control information) its effects
are worse for short messages than for long messages2.

I n order to compute the communication capabilities o the three parallel systems,
(instead o using the raw data offered by the manufacturers) we ran a test where
four processors are arranged in a logical unidirectional ring (in the case o the
Transputer, theringisalso physical). Thefirst processor in the ring sends messages
of various sizes to the next one, which simply executes a store-and-forward
procedure to send the received messages to the next processor in the ring. When a
message arrives back to thefirst processor,it computesthe real timethat it took to
complete the ring. Using this time and the message size, the data rate is computed.
Message sizes varying from 1.to 218 have been tested; the achieved data rates for
those message sizes are plotted in Figure 13. In all the casesit can be seen how the
data rate increases with the message size, until it stabilizes at a point not far from
the theoretical maximum.

2 |In this context we are speaking about real messages interchanged between processing

elements, not about simulated messages.

26

Unfortunately, the actual messages managed by our simulators are very short:
about 32 bytes. For thissize, the achieved data rateisfar from the maximumin the
case d the Paragon and the network d workstations (see the vertical line cutting
the curvesin Figure 13). The Supernode, however, achieves a data rate closetoits
peak value even for short messages.

In conclusion, the computation to communication ratio of the network o
workstationsis not as balanced asin the other two systems. This would not be true
if the CPUs d the workstationswere proportionally slower, but thisiis not the case.
A comparison o the raw computing capabilitiesd each system has been done taking
into consideration experiment 5 (58, 5P and 5M), which has been performed for the
3 systems using the sequential as wel as the parallel simulators. Table 8
summarizes the execution times o the sequential simulator running this
experiment with load 90. A Sun SPARCstation 5 is dightly faster than a Paragon
processing element, and about 7 timesfaster than a 30MHz T805 transputer (for the
kind o computation we are doing). In contrast, the data rate achieved using MPI
over Ethernet is more than 66 times smaller than that achieved using the Paragon
interconnection network, or a set d interconnected transputers.

Our conclusion is that the communication demands d CMB (in particular, the
need d a frequent interchange d short messages) makeit unsuitable for thiskind d
paralel computing platform. I n other words, CMB works specialy wdl in fine-grain
parallel computers, while a network of workstations might be used efficiently only
for coarse grain problems.

27
5 Conclugons

In this paper we have presented, analyzed and coompared our experiences
implementing and using CMB on three different multicomputingenvironments. The
CMB simulators have been used to study a modd o a message passing network
designed to be used as the communication infrastructure d a multicomputer.

The characteristics o the simulated mode have a definite influence on the
achieved performance. In order to take advantage d CMB, a model with a high
degree o internal communication is needed, which allows processes to remain
synchronized without needing null messages. For the model used in this study, this
happens when network size is large, load is high and messages are short. These
three parameters have the strongest i nfluence on the performance of'the simul ator.
It is interesting to observe that, conveniently, the best scenario for the CMB
simulator is the worst for the sequential event-driven simulator: speedups are best
precisely when they are most needed, and are poor only in cases where simulation
runs are very short with the sequential but also with the parallel version.

If CMB isrunning on a set o processesstatically assignedto a set d processors, it
Isimportant to use coarse grain processes, that is, to assign a significant amount o
work to each process. This way, less processes are used to run the :modd, and the
synchronization overhead is reduced. Thisidea should not lead usto the extreme d
assigning only one processto a processor, becauseif the processblocks, the processor
staysidle. If the host parallel computer dlowsit, more than one process should be
mapped onto each processor. For example, in the Supernode the best performance
was achieved usingintermediate grain sizes.

The knowledge o the behavior o the mode may allow CMB to exploit some
lookahead information, which helps maintain a good performance when the
workload does not allow the simulator to self-synchronize. Unfortunately, the
lookahead ability o our network o message routersis, in general, poor, particularly
when an LP simulates a set d routers instead d only one (that is, when the grain
sizeis not minimum). It is more advantageous to use intermediate or maximum
grain sizes, evenif that means renouncing to exploit the lookahead of'the modd.

The communication demands d CMB are very strong, making it; unsuitable for
environmentssuch as a network d workstations, were communication costs are very
high compared to computation costs. In contrast, the performance achieved in two
commercial multicomputers, Supernode and Paragon, are reasonably good—better
in thelatter than in theformer.

28

References

[ABIM93]

[Arru93]

[BHO5]

[Brya77]

[CM79]

[CSR93]

[Dall86]

[F'T94]

[Fujis9]

[Inmo89]

[Inmo90]
[Inte93]
[KY91]

A. Arruabarrena, R. Beivide, C. Izu and J. Migud. "A performance
evaluation of adaptive routing in bi-dimensional cut-through networks".
Parallel ProcessingLettersVal. 3 No. 4, 1993, 469—484.

A. Arruabarrena. Andlisis y evaluacién de sistemas de interconexién
para procesadores masivamente paralelos. PhD dissertation,
Departamento de Arquitectura y Tecnologiade Computadores,
Universidad del Pais Vasco, Sept. 1993.

C. Benveniste and P. Heidelberger. Parallel simulation ojfthelBM SP-2
interconnection network. IBM Research Report RC 20161 (8/15/95). To
appear in the proceedingsd the 1995 Winter Simulation Conference.

R.E. Bryant. Smulation of packet communications architecture
computer systems. MIT-LCS TR-188, Massachusetts | nstitute of
Technology, 1977.

K.M. Chandy and J. Misra. "Distributed simulation: a case study in
design and verificationd distributed programs'. |EEE Transactions on
Software Engineering, Val. SE-5, No. 5, Sept. 1979, 440—452.

K. Chung, J. Sang and V. Rego. "A performance comparison o event
calendar algorithms: an empirical approach”. Software— Practiceand
Experience, Vadl. 23(10), Oct. 1993, 1107—1138.

W.J. Daly. AVLSI architecture for concurrent data structures. Ph.D.
dissertation, Californialnstitute d Technology, 1986.

A. Ferschaand S.K. Tripathi. Parallel and distributed simulation of
discrete event systems. CS-TR-3336 Dept. of Computer Science,
University o Maryland, Aug. 1994.

R.M. Fujimoto. " Performance measurements d distributed simulation
strategies”. Trans. of The Society for Comp. Simulation, Vol. 6, No. 2,
1989, 89—132.

The Transputer Databook. Inmos Databook Series, Inmos Ltd., Bristol,
U.K., 1989.

ANSI C toolset. Inmos Ltd., Bristol, U.K., 1990.
Paragon user's guide. Intel Corporation,1993.
P. Konas and P-C. Yew. "Parallel discrete event simulation on shared

memory multiprocessors’. Proc. of the 24th Annual Simulation
Symposium, New Orleans, Luisiana, April 1991, 134—148.

[LPD95]

[MAB95]

[MABF96]

[MAIB95]

[Misr86]

[MPI94]

[Pars89]

[Wagn89]

29

W. Liu, G. Petit and E. Dirkx. "Performance assessment of alarge ATM
switching network with parallel simulation tool". Proc. 1995 Int. Conf.
on Parallel Processing, Vaol. ITI, 142—145.

J.Miguel, A. Arruabarrena, R. Beivide. " Conservative parallel
simulation of a message-passing network: a performance study".
Proceedings Summer Computer Simulation Conference SCSC’95.
Ottawa, Canada, July 1995,825 — 830.

J.Miguel, A.Arruabarrena, R. Beivide and J. Fortes. "An empirical
evaluation o techniquesfor parallel discrete-event simulation of
interconnection networks". Proc. 4rd. Euromicro Workshop on Parallel
and Distributed Processing PDP’96. Braga, Portugal, Jan. 1996.

J. Miguel, A.Arruabarrena, C. |zu and R. Beivide. “Parallel simulation
of message routing networks". Proc. 3rd. Euromicro Workshop on
Parallel and Distributed Processing PDP’95. San Remo, Italy, Jan.
1995.138 — 145.

J. Misra. "Distributed discrete-event simulation™. Computer Surveys,
Vol. 18, No. 1, March 1986, 39—65.

Message Passing Interface Forum. "MPI: a message-passing interface
standard. International Journal of Supercomputer Applications, 8(3/4),
1994. Available at http://www.mcs.anl.gov/mpi.

Idris and Supernode SN1000 series manuals. ParsysLtd..U.K., 1989

D.B. Wagner. Conservative parallel discrete-event simulation: principles
and practice. Ph.D. dissertation, Department of Computer Science and
Engineering, Univ. of Washington, 1989.

30

Tables
Parameter M eaning
Cycles Duration o the simulation, in terms d cycles.
Seed Seed for the random number generators.
Number of PEs | Number o processing elementsused in the simulation.
Grainsize Number of routers assigned to each logical process of the parallel simulator.
L ookahead A boolean value, indicating whether or not specia effort must be done to
extract lookahead from the model.

Table 1. Parameters of the simulators.

1S 2S 3S 4S 58 6S 7S
Network size 16x16 16x16 16x 16 16x16 32x32 32x32 24x 24
(25%25)
M essage length 4 4 32 32 4 32 4
L oad 5—90 5-90 5--90 5-90 5—90 5-90 50
Number of PEs 4 16 4 16 16 16 4— 25
Grain size, Table3 | Table4 |Table3 |Table4 | Table5 |Table5 | Interm.,
lookahead no
Table 2. Experiments performed with CMB in the Supernode.
LPs per Transp. Routersper LP lookahead
| 4Max 1 64 no
4ih 4 16 no
4il 16 4 no
4min 64 1 no
4minL 64 1 yes

Table 3. Values of the parameters grain size and lookahead for experiments 1S and 3S.

LPs per Transp. Routers per | P lookahead
16Max 1 16 no
16i 4 no
16min 16 1 no
16minL 16 1 yes
Table 4. Values o the parameter grain sizefor experiments 2S and 4S.
LPs per Transp. Routersper LP lookahead
ih 4 16 no
il 16 4 no
Table 5. Values of the parameter grain sizefor experiments 58S and 6S.
1P 2P 3P 4P &P 6P P 8P
Network size 16x16 | 16x16 | 16x16 | 16x16 | 32x32 |32x32 | 24x24 | 90x90
M essagelength 4 4 32 32 4 32 4 4
L oad 5-90 |5-90 [5-90 [5-90 [5-90 |50 50 50
Number of PEs 4 16 4 16 16 16 4-44 | 4--100

Table 6. Experiments performed with CMB in the Paragon.

31

IM M 5M 6M SM
Network size 16x16 16x16 32x32 32x32 90x90
M essagelength 4 32 4 32 4 |
L oad 50 5-90 5D 5—90 590 |

Table 7. Experiments performed with MPI in a network of workstations.

Computingsystem Datar ate (Mb/s) Execution time
Supernode 4 5597
Paragon 4 904
NOW with MPI 0.06 817

Table 8. Communication and computation abilities d the multicomputers used in the
experiments. Thedatarate isfor 32-byte messages. The execution times are those of the
sequential simulator running experiment 5 at load 90.

32

Figures

E

-

Consumption

Message rt——m—
Injection interface| From/to the
local processor

Figure 1. Model of message router.

Figure 2. Mapping anetwork of 4x4 routers onto a PE. (a) Maximum grain size. (b)
Intermediate grain size. {¢) Minimum grain size.

33

Figure 3. Organization of processes in a worker transputer. Circlesrepresent LPs.
Multiplexers are needed to sharelinks.

.
/

Input chammels
N
—
Simulator
process
|
statistics
N i
ARR
Output channds

Figure 4. Structure of alogical processin the Supernode implementation of CMB.

3 : LI I T 1T | L I T 17T I T 1 71 :
25 F 3
2 E 3
=% o -
-§ o 3
L5 —
2, u 3
72 - -
- — e 4Max]
E —o— 4ih]
C —a—4il]
05 —0— 4min
C —a— 4minL, 3
0 Cog o oo by v b by
0 20 100

40 60
Load

18. 16x16 routers, 4-flit mess., 4 transp.

3 L T 1 1 I T 1 1 I L I T T 7T I T T :
5 F —e— 4Max E
25 F —o—dih 1
i) .
2 | ——4nin 3
s —&—4minl 3
815 E -
[=9 N N
« o 3
1 F 7
05 | =
0 C [T SR BT R s

0 20 100

40 60 80
Load

38. 16x16 routers, 32-flit mess., 4 transp.

12 Ty T[T T T[T rryrr roroyrr

10 — e—1ih

—0—il

lI_LlllIIIIII

Speedup
=)}

Tllllllilrllllllllllll

J_I_LIIII’[II

0 [ESEN TN A AN AN SV B AN ST

o

20 40 60 80
Load

S

56S. 32x32routers, 4-flit mess., 16 transp.

12 T 1T I L I T T T I T 1 71] T T l—

10 F —e—16Max J

- —o— 160 :

s L —a— l6min 4

= r]
1 :
w -]
4 = J

2 C -

0 1 1 1 I 1 J_I_LI 11 I 11) l 1.1 1

0 20 40 80 100

60
Load

28. 16x16 routers, 4-flit mess., 16 transp.

12 —|l|||‘||||l||'rl|||_
10 - —e— 16Max 3
I —o— 16i
¢ [—=— lémin i
e [—o— 16minL]
= L p
2 6 =
] - .
& r 1
4 o]
L 4]
-
2 - a 7]
0 C lllllllllll—

0 20 40 60 80 100
Load

48. 16x16 routers, 32-flit mess., 16 transp.

12

_I1llIIIIIlT|IIIIII!

[—o—il]
g - _

r 1

=x = -3

g F o]

8 6 [-]

=)

v r]
4 7
2 Fa E
Oplllllllllllllllllll_
0 20 40 60 80 100

Load

8S. 32x32 routers, 32-flit mess., 16 transp.

Figure5. Resultsof experiments18—68.

35

1600 _TI T T I TrIrrr l TTTT I TITrT | TT7T] 25
[a h
1400 ' - -a--Executiontime -
r 320
1200 & ‘\ —e&—— Speedup]
3 Eo]
g ' —H15 «»
S 1000 i
g F 1%
z o - o
g 800 A J10 S
E £ N]
= 600 [\ .
400
200 :|1|||1|11||||1[|1|||||||'A0

o

5 10 15 20 25
Number of processors

Figure 6. Resultsof experiment 7S. Simulation, using 4—25 transputers, of a network of
24x24routers (25x25for the case of 25 transputer s) with 4-flit messages at.load 50.

1 TTT ULLEE LN BASAS BREA RARE

0.9

038

0.7

0.6

0.5

Proportion of useful messages

lIIllIlIIlIllIIIIIlIl"IIIIII

s lovaad gy boaaalaaea ey

04 v b by e bagaadaag

5 100 15 20 25
Number of processors

o
w
o

Figure 7. Ratio of useful to total messagesfor experiment 7S.

3 LANLNL IR TN N L L L L B

\

IIIIIllllIIIIIIlllllllLlllll|

Speedup
&
1IIIIIIIlIIIlI]lllIIIIIlIIII

0 I RSN SNV A BT M B VR

o

20 40 60 80
Load

8

1P. 16x16 routers, 4-flit mess., 4 PEs.

w3
1

IlIIIIIIIIIIIIIIII[IIIIIIIII
IlIlII||I|Illl|lllllllllllll

0 cas by b s by byag

o

20 40 60 80 100
Load

3P. 16x16 routers, 32-flit mess., 4 PEs.

12 rT T[T rr[rrr[rrrjz

10

Speedup
[=,}
l‘IIIIIIIITIII Illlll

IlIlIIIIIIIIIIIIIlIII]

0 v by e By b e by

o

20 40 60 80
Load

8

BP. 32x32 routers, 4-flit mess., 16 PEs.

36

12

10

Speedup
N

LIS LN LB LY L L

LLINLIN LI L L N (L B L L

v e s b by e b g

T NN N N N

20 40 60 80 100

Load

2P. 16x16 routers, 4-flit mess., 16 PEs.

12

10

Speedup
N

JLELEN LIRLEL AN LR B LR ML 0 BB

LI S I AL L L L LA LN

S BRI B S AR ST S S B

VIS ITEN AN BNUEN W ATEN AT AN A A AT

20 4OL 60 80 100

oad

4P. 16x16 routers, 32-flit mess., 16 PEs.

12

10

Speedup
=N

I1l|ilI|lll|lllllll|ll

l1|[l|||||||lll||ll

lllllllllllllll'lilill

oo by s Py BTww g by

o

20 40 60 80
Load

=
o
o

6P. 32x32 routers, 32-flit mess., 16 PEs.

Figure 8. Results of experiments 1P—6P.

Time (seconds)

250

200

150

100

50

0

IIIIIIIII,]II]'I¥I‘|IIIII‘II

- - & - - Execution time
—e—— Speedup

IlllLI__I_l_l_I_LL.ID
-

Illllllll

Ill

60

50

40

30

20

10

0O 10 20 3D 40 50
Number of processors

60

TP. 24x24 routers, 4--64 PEs.

dnpoadg

37

1000

800

600

400

Time (seconds)

200

LI I LI l T 1T 1 l T T 1 I T T I- 100
‘:_ - - & - - Execution time Jso
j —e— Speedup 1
[, »
M — 60 w
\ 4
: 1 f
- 4 g
% 147
L 4
[20
L | le_L—P:l_l_lerr'l—h'l—l-l;\O
0 20 40 60 80 100

Number of processors

8P. 90x90 routers, 4--100 PEs.

Figure 9. Results of experiments 7P and 8P, the scalability tests.

0.9

0.8

07

0.6

05

Proportion of useful messages

lllilllllllllllllll]lllllll_l_l7

lllIlIlIIIIIlIlIIIl

04

o

20

40 60

80 100

Number of processors

Figure 10. Ratio of useful to total messagesfor experiments 7P and 8P

Proportion of total time

38

4 9 16 36 64
Number of processors

TP. 24x24 routers, 4--64 PEs.

Proportion of total time

9 25 36 81 100
Number of processors

8P.90x90 routers, 4--100 PEs.

Figure 11. Distribution of total execution time among simulation and synchronization for
experiments 7P and 8P. Thn = time spent computing the acceptance horizon and
sending null messages; Trec = time spent receiving messages (null messages included);

Tsim = time spent executing events and sending hon-null messages.

0,7 | ¥ T T I T T T T T T T T T]
06 :
C —e— 1M]
05 [—o—3M 7
L —a—5M
C —3—6M]
= N]
=S]
&, C]
“ 0,3 -
02]
0.1 [-
0L -
0 20 40 60 80 100

Load

Figure 12. Resultsof the experiments 1M —8M.,

39

1000 ¢ :

E i ||]1]7q rTlllr]TI'] llllll"'l 1 Ill”lll [R R -I-I’—r'rr%
100 |- -
E ?
_ 1oL d -
g - ~ 1
g 1, -7 -
g ¥ :
g Coe]
< - . .
S o i MPI i
F A e Paragon 3
E — -- - - Supernode %
0.01 = .
O llJlIIﬂl 1 llllllll IIM lllllllll 1 IIIIHII 1 llllll]

1 10 100 1000 10000 100000 1000000

M essage size (bytes)

Figure 13. Achieved dataratesasafunction of the message sizein the three
multicomputer systemsused in the experiments.

	Purdue University
	Purdue e-Pubs
	12-1-1995

	An Evaluation of Implementations of the CMB Parallel Simulation Algorithm on Distributed Memory Multicomputers
	José Miguel
	Agustin Arruabarrena
	Ramon Beivide
	José A..B. Fortes

