
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

12-1-1995

An Evaluation of Implementations of the CMB
Parallel Simulation Algorithm on Distributed
Memory Multicomputers
José Miguel
Purdue University School of Electrical and Computer Engineering

Agustin Arruabarrena
UPV/EHU Dep. de Arquitectura y Tecnologia de Cornputadores

Ramon Beivide
Universidad de Cantabria Departamento de Electr6nica

José A..B. Fortes
Purdue University School of Electrical and Computer Engineering

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Miguel, José; Arruabarrena, Agustin; Beivide, Ramon; and Fortes, José A..B., "An Evaluation of Implementations of the CMB Parallel
Simulation Algorithm on Distributed Memory Multicomputers" (1995). ECE Technical Reports. Paper 160.
http://docs.lib.purdue.edu/ecetr/160

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F160&utm_medium=PDF&utm_campaign=PDFCoverPages

AN EVALUATION OF

IMPLEMENTATIONS OF THE CMB
PARALLEL SIMULATION ALGORIITHM
ON DISTRIBUTED MEMORY

MULTICOMPUTERS

TR-ECE 95-28
DECEMBER 1995

An Evaluation of Implementations of the

CMB Parallel Simulation Algorithm on

Distributed Memory Multicomputers

Jose Miguell22, Agustin Arruabar rena2 , Ram6n Beivide3 and Jose A..B. For tes1

l~chool of Electrical and 2Dep. de Arquitectura y 3Departamento de Electr6nica

Computer Engineering Tecnologia de Cornputadores Universidad de Cantabria

Purdue University UPVLEHU Av. de los Castros sln

1285 EE Building ' Apdo. 649 39005 Santander

West Lafayette, IN 47907-1285 20080 San Sebastih Spain

USA Spain

This research has been done under the partial support of the CICYT, Spain, under contract

TIC95-0378, and the National Science Foundation, USA, under grants MIP-9500673 and

CDA-9015696. The first author is currently a Visiting Scholar a t the School of Electrical and

Computer Engineering, Purdue University.

Table of contents
... .. Abstract IU

.. 1 Introduction 1
.. 2 The model under study 4

.. 2.1 Description of the model 4

... 2.2 Types of events 5

.. 2.3 Output data 7

... 3 The simulators 8
.. 3.1 Input parameters for the simulators 8

.. 3.2 Supernode implementation 10
.. 3.3 Paragon implementation 14

... 3.4 MPI Implementation 16
... 4 Experiments 17

... 4.1 Description and results on the Supernode 17
... 4.2 Analysis of the results on the Supernode 18

... 4.3 Description and results on the Paragon 21

................... 4.5 Description and results on the network of workstations 24
... 5 Conclusions 27

... References 28
... Tables 30
.. Figures 32

Abstract

A model of a message-passing network is used to analyze the behavior of three

implementations of the Chandy-Misra-Bryant parallel simulation algorithm. The
characteristics of the model, the organization of the logical processes that constitute

the simulator and the characteristics of the host parallel computer have a definite
influence on the achieved performance, measured in terms of speedup. Large, loaded
models help CMB to synchronize with a minimum overhead, efficiently exploiting
the available parallelism. Mapping several LPs onto each processor achieves a better

use of the available processing power, because while a LP is blocked (synchronizing)

others can use the CPU. However, it is not convenient to map too many LPs onto

each processor because the synchronization cost would be too high. The
communication demands of CMB reduce its efficiency in environments where the

cost of passing messages is too high: the performance of CMB running on a network
of workstations is quite poor; in contrast, good speedups can be a.chieved using
commercial multicomputers.

Keywords

Parallel discrete event simulation, conservative synchronization, mu1 ticomputer
programming, performance evaluation, message passing networks.

Introduction

During the last years a substantial effort has been devoted to the parallel
implementation of discrete event simulators. The objectives included. (1) t o exploit
the parallelism available in current multicomputers and multiprocessors and,
mainly, (2) to accelerate simulation runs.

For some simulation studies it is necessary to run the simulator many times, in
order to study the influence of a certain set of parameters on the system under
study. In these cases, the most convenient way of accelerating the study is simply to
run as many simulations as processors are available, each one with a different set of
input parameters. This technique is called replication. The efficiency achieved is
very good, because the simulations are completely independent and, therefore,
communication and synchronization among the processors are not needed.

Unfortunately, it is not always possible to replicate the simulator. For some
studies it is necessary to have the results of one simulation before starting the next
one; this is the case when the aim is to tune a set of parameters. It may also happen
that the memory available in each processor is not large enough to keep a complete
copy of the simulator. These limitations of the replication approach justify the need
for ways to parallelize a single simulation run.

Sometimes replication is feasible, because each one of the processors available to
perform the study is powerful enough t o run an individual simulation, but i t
happens that there are more processors than experiments to perform. Under these
circumstances, replication would not fully utilize the available resources; it would be
more cost-efficient to use many processors for each experiment, combining
replication with other forms of parallel simulation.

The most promising set of parallel simulation techniques use the model
decomposition principle: the system being simulated is decomposed into several sub-
systems, and each sub-system is assigned t o a logical process (LP). The collection of
LPs can run concurrently, each one simulating its part of the whole. However, in
order to maintain the causal relationships among the events during the simulation,
a synchronization mechanism is needed. Three broad families of algorithms based
on model decomposition can be found in the literature. They differ i.n the way LPs
synchronize [FT94]:

Parallel simulation may be synchronous. This means that all the LPs which
form the simulator share the same vision of time, as if they had a global clock.

Events are simulated in the same order as in a sequential simulator. The only
events that are simulated in parallel are the ones that are scheduled for the
same time.
Parallel simulation may also be asynchronous. In this case each LIP has its own,
local view of time. In order to perform a simulation globally correct, each LP
needs to obey the following rule: execute all the incoming events in non-
decreasing timestamp order. This rule is not easy to follow because, after
executing a sequence of events, a new one might be triggered by another LP,
with a timestamp smaller than that of the last executed event, thus impeding
the receiver LP from obeying the stated rule.

- A conservative simulator never allows these situations to happen. To do

so, LPs block before executing events, until it is totally safe to proceed.
- An optimistic simulator allows erroneous situations to a:rise, but those

are detected and a rollback is performed, i.e. a jump back to an error-
free point in the (simulated) past.

This work focuses on one particular asynchronous, conservative algorithm, known
as CMB (Chandy-Misra-Bryant) [Brya77, CM791. One problem of conservative
algorithms is that the blocking synchronization mechanism can leald to deadlocks
which prevent the simulator from advancing. For this reason, CMB includes a
deadlock avoidance mechanism based on the interchange of null messages. CMB is
described in detail in [Misr86, Wagn891.

The motivation behind our interest in parallel simulation algorithms is twofold.
First, we use simulation to evaluate our architectural proposals foir the design of
new massively parallel computers, and we would like to have a fast tool to perform
these simulations. Second, we would like to broaden the spectrum of applications
that can be efficiently executed on current multicomputers (i.e., to perform
something more than "number crunching").

For this study we have had access to three parallel computing systems. All of
them use message passing for communication and synchronization, although with
different features. These systems are:

A transputer-based Supernode [Inmo89, Pars891, with 34 processing elements.
The programming environment is the Inmos C Toolset [Inmo90].

An Intel Paragon [Inte93], with 140 processing elements (i860). The NX library

provides an comprehensive set of functions to develop parallel programs.
A small network of 4 Sun SPARCstation 5, connected via an Ethernet local
area network. A MPI library [MPI94] provides the support for programming

parallel applications.

The objective of this study is to evaluate the influence that the following factors

have on the performance of CMB running on a distributed memory parallel

computer:

The parameters of the model being simulated.
The architectural characteristics of the host multicomputer.
The organization of the simulator.

The rest of the paper is organized as follows. We start in Section 2 with a

description of the model used in the simulation experiments: a network of message

routers. In Section 3 three implementations of CMB are described: one for each one

of the available parallel computing environments. Section 4 presents the results
obtained after running a collection of experiments using the three CMB
implementations. Finally, the conclusions of this work are summarized in Section 5.

2 The model under study

In this section we describe the model used to perform an exhaustive study of our
three implementations of CMB. We selected this particular model because its
behavior was already known [Arrua931 and, therefore, a reference point to confirm
the correctness of the parallel simulations was available.

2.1 Description of the model

We study a network of message routers designed to be used as the c;omrnunication
infrastructure of a multicomputer system. Similar models have bee:n identified as
suitable candidates for parallel simulation; see for example [BH95, KIT9 1, LPD951.

Each node of the network is composed of a processor and a router joined by a
message interface. Processors are the source as well as the final destination of
messages. Routers actually move messages from source to destination.. It is assumed
that message length is fixed; it is measured in flits (flow control digits, [Dal186]).
Each message has a 1-flit header, which contains the necessary information to make
routing decisions. Figure 1 shows a sketch of a message router. Its main components
are:

4 input ports, used to receive messages from the neighboring routers, through
the corresponding input links. Each port is capable of storing one flit.
4 output ports, used to send messages to the neighbors through the
corresponding output links. The storage capacity is also one flit. A FIFO transit
queue is associated with each output port, that stores messages temporarily
when the corresponding link is busy. Each queue has 10 buffers, each one with
capacity for a full message.
An injection port, used to receive messages from the local processor, and a
consumption port, used to send messages to the local processor. These ports
connect to the message interface. A small FIFO injection qu.eue inside the
message interface has enough space to temporarily store up to 4 local
messages, when the corresponding output queues are full.
A routing automaton, which decides through which output port a message will
be sent.

The network of routers works synchronously: in 1 cycle, a flit is moved from port
to port, from queue to port, or from port to queue.

In the literature about message passing networks, many alternatives for topology,
message flow-control and routing strategy can be found. In order .to restrict the
number of experiments to perform, we have decided to simulate only torus networks
with cut-through flow-control and oblivious routing. The reasons behind this choice
can be found in [Arru93, ABIM931.

It is assumed that processors immediately consume received messages, so they
never force a message to stay in a router wasting resources. Processors generate
messages following a given traffic pattern. The patterns most comn~only used are
random, hot-spot, local traffic and several permutations (perfect shuffle, bit reversal,
matrix transpose, etc.). In this work we have only considered the ra.ndom pattern,
i.e., each node can generate messages for any other node in the network, with equal
probability. When a new message is generated at a node and it cannot be injected in
the routing network because the corresponding output port, the transit queue and
the injection queue are full, the message is rejected (i.e., it is lost); if this situation
arises, the network is saturated.

There are three parameters of the model whose values can be changed to assess
their influence on the performance of the simulator. These are:

Network size (D). We consider square torus networks of DxD nodes.

Message length (M), measured in flits.
Network load (L), measured as a percentage of the bandwidth of the network
bisection, for a random traffic pattern.

These three parameters are needed to compute the time interval between the
generation of two consecutive messages at a given node. The length of this interval
is exponentially distributed, with a mean directly proportional to D and M, and
inversely proportional to L. The actual expression for the mean is (12.5xDxWL.

2 6 Types of events

Once we have the general description of the model, it is essential to determine the
data structures that will represent the elements of a router, and the events that
would be able to modify those elements. That is, we need to express our model in a
way that can be simulated by an event-driven simulator. The definition should also

be independent of the simulators used. However, the class of parallel simulators
under consideration (based on the distribution of simulation tasks among a set of
logical processes), and the available computing systems (distributed memory
multicomputers) prevents the use of any kind of shared data structure, because the
LPs constituting a simulator may be distributed among different p:rocessors. The
design of the set of events needs to take this restriction into account.

Each router of the simulated network is represented in the ob~ioufi way: a record
with fields representing ports, queues, etc., plus some additional fields for statistics
gathering.

The events that represent in the simulator the evolution of the system are as
follows:

INJECTION: the local processor generates a new message for another node.
STEP: the router tries to send the header of a message from an output port to an

input port in a neighboring router.
PERMISSION: the neighboring router accepts the message.
ADVANCE: after the computation of the routing function, a header flit of a

message is advanced from an input port to an output port or, if busy, to an
output queue inside the router.

FREE-INP: an input port has been freed, so new messages can be accepted.
CONSUMPTION: a message has reached its destination.
FREE-OUT: the last flit of a message abandons an output port.
FREE-QUEUE: the last flit of a message abandons an output queue.

In the CMB implementations all the events except STEP and PERMISSION are
always internal (i.e., scheduled to be consumed in the same LP that generates
them); therefore, they never need to be encapsulated into messages sent to other
LPs. In contrast, these two events can be either internal or external, depending on
whether the involved routers are being simulated in the same or in different LPs.
We will explain the mapping of routers onto LPs in the next section.

In a sequential simulator, PERMISSION events are not needed, because it is
possible to directly check the availability of space in a neighboring router simply by
accessing the data structure that represents it. In fact, they are included in the
parallel version precisely because global information is not available and all the
interactions must be done via messages.

2.3 Output data

The description of the model is detailed enough to allow ample insight into the
behavior of the network of routers, such as message latencies, queue sizes, number
of consumed messages, etc. This information is very valuable because it has already
been gathered in previous studies, and it allows a validation of the correctness of our

simulations. However, as the focus of this work is more on the behavior of the

simulators than on the model, no output data will be shown.

3 The simulators

In this section we present the details of three implementations of CMB, one per
available parallel computer. These implementations of CMB use the description of

the algorithm given in [Wagnag]. A sequential event-driven simulator that can run
on any of the three parallel system has also been implemented. For a given machine,
the execution times of the sequential simulator running the optimizedl version of the
model (i.e., the one that uses global information) is taken as the reference point to

compute the speedups of the parallel version.
All the simulators share as much code as possible, in order to be fair when

making comparisons and t o reduce development effort. In particular, :in all the cases
an efficient set of functions based on a heap data structure have been used t o

manipulate event lists, following the recommendations in [CSR931.

3.1 Input parameters for the simulators

In addition to selecting the parameters of the simulated model (size D, load L and
message length M), a user running the simulators has to facilitate a series of
additional parameters. These are enumerated in Table 1. The first two parameters
(cycles, seed) are needed for all the simulators, sequential and parallel. The number
of processing elements must be given for CMB. A mapping of the simulated network

of routers onto the physical network of processing elements (PEs:) in the target
multicomputer (or network of workstations) must be done. The number of PEs is
always a square of PxP elements, where P must be a perfect divisor of D (the

number of routers per dimension in the simulated network). Under this condition,

the partition of the model and its mapping onto the network of PEs is simplified (a
square of size DIP routers is simulated in each PE) and perfectly balanced (all the
PEs have the same load).

When more than one router is assigned to each PE (and this is always the case for

the experiments we have performed), there are several possible organizations for the
simulator. A CMB simulator always consists of a collection of collaborating LPs,
where each LP is a Unix process (in the Paragon or in MPI) or a transputer process
(in the Supernode). Mapping the model onto the host computer requires two steps:
mapping routers onto LPs, and mapping LPs onto PEs. There are two trivial
possibilities:

1 Map each router onto a single LP, and then map groups of (D/P)2 LPs onto each
PE. We say that the grain size of the LP is minimum. A large amount of
interprocess communication is needed, because all the STEP and
PERMISSION events are external (i.e., they need to be sent as messages,
although they do not necessarily need to go from one PE to another).

2 Map (D/P)2 routers onto one LP, and then each LP onto a different PE. We say
that the grain size of the LP is maximum. In this case, many of the STEP and
PERMISSION events are internal and the interprocess communication is
significantly reduced.

Note that other grain size alternatives are possible. For example, Figure 2, shows
a case where DIP = 4. Figures 2a and 2c represents the mappings for maximum and
minimum grain sizes respectively, and Figure 2b represents a. mapping for
intermediate grain size. If the mappings are always square, there c;an exist either
none, one (like in the example) or several cases of intermediate grain size.

The last parameter in Table 1 indicates whether or not the LPs try to extract
lookahead from the model. [Fuji89]. To improve the performance of CMB, it is highly
recommended to analyze the simulated model to determine if some lookahead can be
extracted, and to tailor the simulator to use this lookahead. If this could be
effectively done, timestamps of null messages would have higher values and the
overall number of required null messages would be reduced, allowing a faster clock
advance of the LPs.

If an LP simulates only one router (i.e., the grain size is minimum), then the
behavior of the simulation is quite predictable, and lookahead can be easily
extracted. Let us suppose that, a t time t, a router has sent a message header

through an output port; the LP can guess that no new header will be sent through
the same port at least until t+M, where M is the message length, because messages
advance a flit per cycle. The difference between the current value of the LP's clock
and t+M is the lookahead. In contrast, when the grain size is not minimum, the cost
of computing lookahead is high, and the obtained values are low. I:n fact, in most
cases the obtained value is one, a minimum that can be assumed without any
computation. For this reason, we decided to ignore the lookaheatl ability of the
model, except for minimum grain size configurations.

32 Supernode implementation

The Parsys Supernode SN-1000 [Pars891 is a multicomputer with Inmos
transputers [Inmo891 as processing elements. Each transputer includ.es, in addition

to a CPU and some local memory, four serial communication links of 10 Mblsec each.

In the Supernode, the transputer links are all connected to a. collection of
programmable switches, in such a way that the user can specify the topology of the
interconnection network.

Each transputer can house many concurrent processes, which are efficiently

managed by a built-in scheduler. Two transputer processes conlrnunicate via

unidirectional channels. If the communicating processes run on the same transputer

the channel is internal, just a word in memory. It is also possible to map a channel

onto a communication link, if the communicating processes run oln neighboring

transputers. A maximum of two channels can be mapped onto one link, one in each

direction. Communication via shared memory is possible, for procesises running on

the same transputer.

In order to run a CMB simulator on the Supernode, a group of transputers is

arranged t o form a torus network of worker transputers with a monitor transputer
inserted in one of the wrap-around links. The number of processes assigned to each
worker transputer depends on the grain size of the LPs. The LPs in one transputer
can be joined directly via internal channels, while the external links are needed only

if two logical neighbors are mapped onto different transputers. Since several logical

neighbors need to communicate through a single external link, link sharing is

needed. Some multiplexer processes perform this function. Obviousl.y, if maximum

grain size is used (only one LP per transputer), multiplexers are not needed;

therefore, they are not used, in order to reduce overheads. Figure 3 shows the

arrangement of processes in two neighboring worker transputers.

A monitor process, placed in a separate transputer outside tihe network of

workers, collects statistics (output data of the simulation, see $2.3) and summarizes

them. Additionally, due to its location in the network, it has to act as a bypass: every
message received from the easuwest has to be sent to the westhast. Thus, the

workers do not perceive its presence in the network.
The set of LPs constitutes the core of the simulator. All the other components

(monitor, multiplexers) are only needed to build a working system. Internally, an LP

is composed of three communicating processes (Figure 4):

An input process, which manages the input queues and the internal event
calendar of the LP. It receives messages (events) from the neighboring LPs, and
inserts them into the appropriate input queue. It also updates important
information as the channel clocks (each channel clock stores the timestamp of
the last message received through the channel) and the message-acceptance
horizon (the reference point that allows to determine what messages can be

consumed and what others must still wait).
A simulator process, which consumes the events. It interacts with the input
process, using channel pet to request messages, which are received through
channel sig. When an event is consumed, new events might be scheduled.
Those that will be consumed in the same LP are sent to the input process using
channel loc. Events for other LPs are sent t o the output process through s20.
When the simulator reaches the end-of-simulation time, a block with statistics
is generated and sent to the output process.
An output process, which manages messages to be sent to other LPs or to the
monitor. It implements minimal routing mechanisms, for the rnanagement of
statistics blocks. An input process may receive statistics blocks from other LPs;
the output process forwards these blocks towards the monitor. These two
processes communicate via a shared queue.

The division of the LP into three different sub-processes allows the decoupling of
the event consumption and message interchange activities. If the de'sign of the LPs

were monolithic, communication deadlocks could easily happen. This is due to the
way communication is accomplished in the transputer: simultane~ous send() and

receive0 operations are needed to complete a message interchange. If a monolithic
LP A wanted to send a message to a busy neighbor B, A would block (wasting time)
until B invokes the peer operation. A deadlock would immediately h.appen if B was
also blocked while trying to send a message to A . More complex deadlock scenarios,
involving more than two LPs, are also possible.

With the proposed design the simulator process never blocks in a send(), because
the corresponding output process is always ready to respond to it. The simulator
might block in a receive(), but only if no suitable event is ready to be consumed (as
the CMB algorithm requires). Meanwhile, all the incoming messages can be received
and stored by the input process, which is a greedy receiver. This design avoids
communication deadlocks, while allowing events to be managed as early as possible.

3.2.1 Simulator process

The basic scheme of the simulator process is as follows:

process simulator:
repeat {

send(pet, " ") ;
receive(sig, m);
clock = m.timestamp;
if (m-type == WILL-BLOCK) send-nulls();
else consume (m) ;

I if (clock > end-of-simulation)
build-and-send-statisticso;

The simulator process runs concurrently with the input and output processes. The
consume0 function first determines the type of the message and then proceeds
simulating its effect in the (simulated) routing network. This is done in three
phases: first, the status of the appropriate router is examined, then this status is
modified and, finally, events for the same or other routers are scheduled, if needed.
If the destination router is being simulated in the same LP, then the event is
internal, so a message is sent through loc. Otherwise, i t has to be sent to another
LP, so a message is sent through s20 for the output process to manage it.

The loop never stops. When the clock reaches the end-of-simulation value, the
simulator collects a block of statistics, that is sent to the output process which, in
turn, forwards i t to the monitor. This operation is done only once, although the
simulator goes on working. The monitor process is responsible for stopping the
simulation.

A CMB LP must block when no message is able to be consumed. This happens
when no stored message has a timestamp below the message-accepta.nce horizon. In
this situation, the input process sends a WILLBLOCK message to the simulator

process, instead of a useful message. This means that, if no neur messages are
received, the next time an event to be consumed is requested no one will be given-
so the simulator will block. The simulator, as always, updates its (:lock, and then
sends null messages to its four neighbors. The timestamp of those null messages is
computed as the value of the local clock plus one, unless special effort is devoted to
extract lookahead. A null message is not sent if i t does not produce an increment of
the receiver's linkclock.

Once the null messages have been managed, the simulator process blocks waiting
for an input from sig. Only the reception of new messages from other LPs would be

able to wake-up this process, as a consequence of the (possible) increment they
produce on the message-acceptance horizon of the LP. This is a task for the input
process.

3.2.2 Input process

The input process manages all the messages that will be consumed in an LP. It
maintains four input queues, plus a local queue. Requests of messages to be
consumed are received from pet, messages for the local queue are received from loc
and messages from the neighboring LPs are received from the four input channels.

1 process input :
in = wait-for-input();
if (in == pet) deliver-message();
else {

receive (in, m) ;
if (in == loc) insert-local-queue(m);
else if (is-external-channel(in)) {

insert-input-queue(in, m);
check-blocked-simulator();

1

function deliver-rnessage:

ts = minimum_timestamp();
if (ts <= h) (

else if (h >= clock) send(sig, WILL-BLOCK-message);
else blocked-simulator = TRUE;

Function deliver-message() computes the message-acceptance horizon (the
minimum among the LP's channel clocks), as well as the value of'the minimum
timestamp among all the messages awaiting to be consumed. If this timestamp falls
below the acceptance horizon, then the corresponding message can be safely
removed from its queue and consumed (sent by sig). This is the expected behavior of
a CMB LP.

When no message is ready to be consumed a WILLBLOCK message is sent to the
simulator, in order to increment its clock and allow the other LPs to advance. Next
time the simulator asks for a message, no one will be delivered, which will force the
simulator to block. The input process activates the flag blocked-simur!ator.

If a new message arrives, the corresponding linkclock is advanced and, if it is not
a null message, it is inserted in its queue. Null messages need not be stored, because

their only purpose is the advance they produce in the linkclocks. A linkclock advance
(due t o a null or a useful message) may increase the message-acceptance horizon
and, therefore, may allow an awaiting message to be consumed. For this reason,
each time a new message is received, function check-blocked-simulator() is invoked.
This function, which is similar to deliver-message(), eventually unb1oc:ks the blocked
simulator process, and allows the consumption of a message. When the acceptance
horizon computed by check-blocked-simulator() surpasses the local clock, the
simulator is awaked by means of a WILL-BLOCK message. This way no useful
message is consumed, but the clock is advanced and this advance can be
communicated to other LPs.

3.2.3 Output process

This process has to accept messages from the simulator and send them to the
other LPs. The routing effort is minimum, because all the messages are labeled with
aport number that clearly states which channel the messages hisve to be sent
through.

3.3 Paragon implementation

The Intel Paragon [Inte93] is a multicomputer organized as a rectangular mesh of
nodes. Each node has one i860 to perform computation, another i860 to manage
message passing, and an interface to a high-speed interconnection network. This
network, composed of custom-designed routing chips, is able to carry messages
between any two nodes a t up to 200 MBIsec.

Parallel programs can be developed using Intel's proprietary NX library, which
provides a comprehensive set of functions to manage processe:s and passing
messages among them. Although in theory i t is possible to run mrmy concurrent

processes on each node, in practice it is not efficient to do so, because a process does
not relinquish the CPU when it is awaiting to complete a communication operation

and, therefore, it is not possible to overlap one process' computation with another's
communication.

Porting the CMB implementation from the Supernode to the Paragon required
basically to cope with two differences between the programming environments of
these systems: synchronization among processes and node multiprocessing ability.

The Supernode implementation exploits the efficient multiprocessing abilities of the

transputer: each transputer contains several processes (LPs and multiplexers)

which, in turn, are structured in several sub-processes. Two main rseasons justify
this design. Firstly, the synchronous nature of message passing functi.ons requires a

decoupling of message management (reception, storage, sending) and message
consumption tasks, in order to avoid communication deadlocks. The division of an
LP into input, simulator and output processes provides this decoupling. Secondly, it
is very efficient to share a transputer among several LPs: one LP c.an be working

while others are blocked awaiting for communicationl. The transputer built-in
scheduler relinquishes the CPU from a process as soon as it blocks for

communication.
None of these considerations apply in the case of the Paragon and, for this reason,

a re-design of the simulator was necessary. The main difference:^ between the
Supernode and the Paragon versions of CMB are:

The multiplexer processes and of the bypass functions of the monitor have been
removed. These simplifications have been possible because, i11 the Paragon,

messages can be interchanged between any pair of processes, independently of
their position. Routing, link sharing and other functions related to message

passing are managed by a separate network of message routers (very much like
the object of our study), without interfering with the activity of? the processes.

An application controlling process on a separate PE acts as the monitor. Its

purpose is to launch the LPs and to gather statistics at the end of the
simulation run.
The input, output and simulation processes (the three sub-processes which

form an LP in the transputer) have been combined into a single process. This

new design is possible because of the buffered nature of the communication in

the Paragon, and necessary because of the poor multiprocessing abilities of the

Paragon.
Minimum and medium grain sizes alternatives for the LIPs have been

eliminated, that is, only maximum grain size is considered. This means than
only one LP runs on each PE, again because of the inefficient scheduling policy

of the Paragon.

The algorithm of the LP is as follows:

This will be seen when analyzing the performance of the Supernode implementation.

process LP:
repeat (

h = acceptance-horizon();
ts = minimum-timestamp0 ;
if (ts <= h) {

m = message~with~minimum~timestamp();
clock = m.timestamp;
consume (m) ;
if (clock > end-of-simulation) build-and-send-statisticso;

3
else {

clock = h;
send-nulls () ;
m = receive(); / * Blocking * /

Note that messages from other LPs are received only when the LP needs to
increment its channel clocks in order to advance. While an LP is busy, messages can
arrive from the neighbors, and they are stored in system buffers until the LP decides
to actually receive them. This buffering provides enough decoupling to allow a
collection of LPs to progress without communication deadlock.

Except for changes in the communication functions, the rest of the simulator code
is the same as the Supernode's.

3.4 MPI Implementation

The third CMB implementation was designed to run on a small network of 4 Sun
SPARCstation 5, connected via an Ethernet local area network. An MPI (Message
Passing Interface, [MPI94]) library provides the support for prograinming parallel
applications.

The MPI implementation of CMB is very similar to that for the Paragon. The only
relevant difference is the substitution of the NX functions by their MPI
counterparts. The change was straightforward, because these two libraries (NX and
MPI) are semantically very close; furthermore, only a limited number of
communication functions were used in the programs.

4 Experiments

In this section we present the results obtained after running a collection of
experiments using the three implementations of CMB. We start with the Supernode
version, then the Paragon version and, finally, the MPI version running on a
network of workstations. We made many experiments with different model
parameters (network size, message length and load) and simulator parameters
(number of PEs, grain size of the LPs, use of lookahead information). Most of the
times identical sets of parameters have been used with the three simulators.
However, some experiments have been specifically designed to stress some
particular characteristics of a given simulator.

The obtained results are displayed as a collection of speedup curves. The
speedups have been calculated after running an optimized sequential, event-driven
simulator with the same set of model parameters.

4.1 Description and results on the Supernode

In this section we present the results of seven experiments performed with the
Supernode version of CMB. An analysis of these results is done in the next section.
Tables 2, 3, 4 and 5 summarize the parameters used in the experiments. The first
three parameters of Table 2 (network size, message length and load') are related to
the model, while the next three (number of processing elements, grain size and use
of lookahead information) are related to organization of the simiulator. All the
experiments ran for 4000 simulated cycles. The obtained results are plotted in
Figures 5 (experiments IS to 6S) and 6 (experiment 75).

Experiments 15-45 deal with a relatively small model of 16x16 routers, with

message length 4 or 32, and running in 4 or 16 transputers. With these experiments
we wanted to test the following hypothesis:

1 Results are better with 4-flit messages than with 32-flit messages. For the
same network load, 4-flit messages means a t least 8 times more simulation
events than 32-flit messages. Execution times should be longer for both the
sequential and the CMB simulators, but the latter will have moioe opportunities
to self-synchronize without null messages, therefore reducing the
synchronization overhead. This should be confirmed by comparing 15 with 35
and 25 with 45.

2 Performance improves when the load increases. Again, the higher the load the
larger the number of events managed by the simulator, therefore allowing the
system to self-synchronize. This should be confirmed by all the experiments.

3 The simulator scales with the number of processors, i.e., the speedup obtained
with 16 transputers is better than the speedup obtained with ,4 transputers.
This should be confirmed by comparing 1s with S, and 3s wikh 4s. Another
experiment, 75, considers this aspect in more detail.

Additionally, we wanted to test the impact that the different grain sizes have on
the performance, as well as the effect of extracting lookahead information from the

model.

Experiments 5S and 6S work with a model four times larger than that used in the
previous set. We wanted to confirm that the simulator performance improves with

larger workloads. More work can be assigned to an LP by mapping onto it a larger

number of routers.

Experiment 75 is a scalability test. The same model is run on 4:, 9, 16 and 25
transputers. As we will see, the simulator performance strongly d.epends on the
grain size of the LPs. Sometimes a wide range of grain sizes are possible, while in

others cases there are only two: maximum and minimum. In Figure (3 we only show

the curves for the grain size alternative which gives better results, which is always

an intermediate value. An exception is the 25-transputer case, where! the model has

been slightly increased to allow a balanced partitioning, and no intermediate grain
size is possible-so the maximum has been used.

4 6 Analysis of the results on the Supernode

After showing the experimental results, we proceed to analyze the effect that each

parameter of the model or of the simulator has on the execution time. When

convenient, several parameters are grouped and studied together.

4.2.1 Network size, message length and load

It is clear, from any of the speedup curves, that the following parameters of the
model have a significant impact on the execution time of the simulation: load,

message length and network size. The best situation arises with large and highly
loaded systems that interchange short messages. Interestingly enough, this is the

worst possible scenario for the sequential simulator. When the model has the

opposite characteristics, the performance is not impressive, but the actual execution
time is not very long.

The reason for this behavior can be found in the way LPs synchroilize in a CMB
simulator. All the mentioned parameters affect the number of "useful" messages
(i.e., non-null messages) managed by the simulator. An increment in the number of
these messages means that the LPs have more opportunities to synchronize, while
doing useful computation. Null messages are needed less often, because LPs do not
block frequently. We can say that there is a high degree of "natural"
synchronization. When there are only a few useful messages to process, LPs block
often, and null messages are needed to maintain the LPs' clocks updated.
Consequently, LPs spend most of their (real) time blocked or processing null
messages (i.e., synchronizing, instead of making progress).

4.2.2 Grain size

Looking a t the results of the first four experiments and comparing maximum vs.
minimum grain size, it is evident that coarse grain simulation is more effective than
fine grain simulation for low and medium loads. This because a small number of LPs
synchronizing with null messages results in lower overhead.

If now we compare the results for minimum and maximum grain size with those
for intermediate grain size, i t is clear that the latter are the best for intermediate
and high loads. Only for very low loaded systems maximum grain size gives,
sometimes, better performance than intermediate values. An anal:& of the time
used for synchronization in the simulator can explain this behavior:

With maximum grain size, an LP can advance autonomously most of the time,
due to the large number of interactions between the routers assigned to it.
Nevertheless, sometimes the LP has t o co-ordinate with the others, which
causes the LP to send null messages and then block. This behavior is extremely
inefficient because the LP is the only user of the transputer a:nd, if it blocks,

the freed CPU power is wasted.
With minimum grain size, there is no problem if an LP blocks: plenty of others
are awaiting to use the CPU. Here the problem is that, the larger the number
of LPs, the larger the number of null messages needed to keep the system
synchronized. Furthermore, since fine-grain LPs have very little work to do,
they block very often-making things even worse.

With intermediate values of grain size it is possible to find a balance: there are
few LPs, each one with enough work to do, so null messages a.re not needed
very often. In addition t o that, as several LPs share a transputer, the
probability of wasting CPU time decreases.

In conclusion, we can state that for the transputer, where communication

operations are blocking and context switches are quite fast, coarse grain simulations
are faster than fine-grain simulations. However, it is even more efficient to use
intermediate grain sizes, with several LPs sharing a processor, in order to avoid idle

processors and make the maximum usage of the available CPU power.

4.2.3 Lookahead

From the description of how lookahead is computed (see end of $3.1)) it should be

clear that an LP might obtain large lookahead values when (1) messages are long

and (2) the LP has recently interacted with its neighbors.

The first situation can be clearly observed by comparing experiments 15 and S
(Figure 5). For 4-flit messages curves 4min and 4minL (minimum grain size, with

and without using lookahead information, respectively) give nearly the same results;

hovever, for 32-flit messages 4minL is clearly better than 4mi11. The second

situation can be seen in experiments 35 and 45: in highly loaded systems, the LPs
interact often and, if they have t o block, the computation of the timestamp of the

null messages can take advantage of the knowledge of which ports have recently

sent header flits. At any rate, as lookahead can only be effectivel:~ exploited for

minimum grain size, and this is not the best situation for this implementation of

CMB, we do not see any advantage of using the lookahead information provided by
this particular model.

4.2.4 Number of processing elements

From the complete set of experiments, and especially from experiment 75, it can

be seen that the performance of the parallel simulator scales well with the number

of processors, although not linearly. There are, though, some factors that can help to
understand why the speedup curve in Figure 6 is not perfectly linear:

Our way of distributing the workload among processors and processes, using

squares, does not always allow to find the optimum grain size value. For
example, the 25x25 network of experiment 75, when simulated over 5x5

processors, only allows maximum and minimum grain sizes; each processor
must simulate 5x5 routers, and 5 is a prime number, which rneans that no

intermediate alternatives are possible.
The processors used in our experiments were not all identical. In most cases,
T805 transputers running a t 30 MHz were used but, as only 14 processors of
this kind were available, in those experiments involving 16 o r 25 processors
some 20 MHz T800 were used. Those processors are a bottleneck, imposing
their rate of execution on the others. For this reason the resultin,g speedups are
not as good as they should.
Since the problem size does not increase with the number of resources, the
processors are not hlly utilized. When the number of ~~~~~~~~~~s (and of LPs)
increases, the probability of having a blocked LP increases; too, so some
processing power is wasted and more null messages are needed. 'To confirm this
assertion, we have represented in Figure 7 the ratio of the number of useful
messages to total number of messages managed by the simulator in experiment
75. Note how this ratio reduces when the number of processors is increased.

Note also that the chosen set of model parameters (D, M and L) for experiment 75
constitutes neither the best possible scenario for the parallel simulator, nor the
worst for the sequential one. With a higher load the results would be more favorable
to the parallel simulator.

4.3 Description and results on the Paragon

The experiments performed with the Paragon imp1ementatio:n of CMB are
summarized in Table 6. The corresponding results are shown in Figures 8 and 9.
Experiments 1P through 7 P are basically the same as those run on the Supernode
(IS-7s). In 7P, i t has been possible to run the 24x24 model using up to 64 Paragon

PEs. Experiment 8P is another scalability test specially re-desig:ned t o make a
better use of the larger number of PEs available in the Paragon: a large model of
90x90 routers is simulated, using 4,9,25,36,81 and 100 processing elements.

As previously mentioned, the Paragon implementation of CMB only allows one
mapping of routers onto LPs: maximum grain size. This means that only one LP
(which simulates a group of routers) is assigned t o each Paragon PE. As a
consequence of this restriction, no effort is done to exploit the lookahead potential of
the model.

For experiments 1P through 7P simulations ran for 4000 cycles. For experiment

8P, this number was reduced to 1000. It should be noticed that some of these

experiments are not well dimensioned for the Paragon. Execution times are very

short (less than 3 seconds in some cases) and, therefore, a minimum variation in the
time measurement provided by the system can result in a significant variation in

speedup, so trends are more significant than actual values.

Most of the conclusions drawn from the Supernode experiments apply to the
Paragon too, except for the discussions about grain size and the use of lookahead
information, which cannot be applied here. In summary, the best performance is

obtained with large, highly loaded models managing short messages. This scenario

is a challenge for sequential simulators, while it allows CMB to minimize the

synchronization effort.

Speedups are better for the Paragon than they are for the Supernode. For
example, for experiments 6s and 59 (which are identical for both machines) the

peak speedup on the Supernode is slightly less than 8, while on the Paragon it is
very close to 12. Scalability tests 75 and 7P are also equal for 4,9 ancl 16 processors;
in the latter case, the Supernode implementation reaches a speedup of 4.55, while

the Paragon reaches 10.
The reason of this performance difference can be found in the architectural

dissimilarities between the two machines and in the differences in tbe LP's design.

In the Paragon, all message manipulations are done by a network of hardware

message routers plus a second processor in each node (a message co-processor). This
frees the computing node of most of the overheads of message handling. In the

Supernode, however, there is neither routing hardware, nor message co-processors,

and, therefore, each transputer has to divide its time between co:mputation and
message handling.

Another architectural difference comes from the fact that in the Paragon all the

PEs are identical, while in the Supernode a mixture of 20 MHz and 30 MHz

transputers are used in some experiments. Since the reference point; (the execution

time of the sequential simulator) was taken with respect to a 30 M:Hz transputer,
the reported speedups for the Supernode are not as good as they shocdd be.

Regarding the design of the LPs, in the Paragon case they have a monolithic

structure, while in the Supernode they are divided into three sub-processes. This
arrangement in the Supernode was necessary to avoid communica.tion deadlocks.

However, this does not come without an added cost. These sub-processes

communicate mostly via internal channels; therefore, messages are copied from

memory to memory several times in their life cycle. A message generated a t a
simulator process in one transputer that needs to be consumed at another simulator
in a neigbouring transputer needs four internal copies (messages between processes
in the same transputer) plus one external copy (message that actually traverses a
link). In the case of the Paragon, due to the monolithic design of the LPs, no internal
copies are necessary.

Figure 9 shows the results for experiments 7P and 8P, the scalability tests. Note
that CMB scales fairly well: the curves are nearly straight lines. The workload is
high enough to keep all the PEs busy most of the time, even for a large number of
PEs. The efficiency achieved in experiment 8P is higher than that of 7P. For
example, in the case of 36 processors the speedups are 24.3 in 8P and 21 in 7P. The
larger workload assigned to the LPs in 8P makes them achieve higher performance.
Figure 10 characterize one of the behavioral differences between these two
experiments: the number of null messages needed to keep the simulator
synchronized. In 8P the proportion of null messages is very low, less than 1% for the

case of 4, 9 and 25 PEs, about 3% for 81 PEs and less than 4% Glr 100 PEs. In
contrast, this proportion rises to nearly a 40% for 7 P in 64 processors.

The number of null messages is directly related to the required synchronization
effort. However, null messages are not the only source of overhead. If many of these
messages are being sent, this is because LPs are blocking very often, spending time
awaiting for incoming messages that eventually will increase the acceptance horizon
and allow the simulation to advance. Figure 11 has been obtained by running
experiments 7P and 8P with an instrumented version of CMB tha.t monitors the
way PEs use their time. Total execution time has been divided into three
components:

Tsim: time spent executing events, inserting messages in the local event list and
in the input queues, and sending messages to other LPs. This is the time the
LP devotes to advancing the simulation.

Trec: time spent receiving messages from other LPs. This includes receiving
useful as well as null messages. As the receive() operation is blocking, this time
can be considered mainly synchronization effort.

Thn: time spent performing other synchronization tasks, namely: ((1) sending null
messages (this includes computing whether a null message is necessary or not)
and (2) computing the message acceptance horizon at each step (of the simulator
main loop.

From Figure 11 it is clear that if the workload assigned to an :LP is low, the
corresponding PE spends too much time synchronizing instead of executing events.
In the case of 7P on 64 PEs, each PE simulates 3x3 routers and the achieved

proportion of effective work is 55%. In contrast, for SP on 100 PEs, each PE
simulating 9x9 routers (9 times larger that in 7P), CMB achieves a 75% efficiency.

The 62% effective simulation time in 7P with 36 PEs versus the 83% in 8 P with the
same number of processors justifies the previously observed speedup difference.

4.5 Description and results on the network of workstations

The number of Sun workstations available for the experiment with the MPI
implementation of CMB was limited to four. From the experience gained with the
Supernode and the Paragon, speedups over 2 should be expected. The experiments
described in Table 7 were set up to confirm this hypothesis. Note that experiment
8M is no longer a scalability test, because of the limited number of available
workstations. The other experiments are similar to their counterparts in the
Supernode and the Paragon. As in the case of the Paragon, the grain size of the LPs
is always maximum, and the lookahead ability of the model is not exploited. The
resulting speedup curves are in Figure 12.

It is easy to observe how the performance improves when:

Problem size is increased: compare 1M (16x16), 5M (32x32) and 8M (90x90).

Message length is reduced: compare 1IM (4 flits) with 3M (32 flits), or 5M with
6M.
The load is increased. All curves show this.

This behavior is the same observed in the other two implementations. The

outstanding point is that the overall results are really poor. Since th.e programs are
the same we used in the Paragon (except for minor details), we must find the
reasons behind this poor performance in the characteristics of the co~nputing system
used in the experiments.

The main difference between the Paragon or the Supernode and the network of
workstations is the way interprocess communication is performed. :Even though in

the three cases a message passing mechanism is used for synch.ronization and
communication, the Supernode and the Paragon use high-speed, special purpose

interconnection networks, while the workstations are connected via a general
purpose Ethernet local area network, with the TCPIIP protocols over it. This means
that communication in this environment is relatively slow, because:

The peak data rate of Ethernet is 10 Mbls. In the Supernode each transputer
provides 10 Mbls per each of its 4 links, while in the Paragon the interface

between a node and the communication network allows a. processor to

send/receive information at 1400 Mbls.

Ethernet allows all the devices connected to the network to share the available
bandwidth, whether they are part of the simulation or not. In the Supernode

the channels are used exclusively by the transputers that work iin a simulation.

In the Paragon the interconnection network is shared among all the
simultaneous users, but as the network is able to move information a t 1600

Mbls (i.e., faster than the generation rate of the nodes) and the! users work in

clusters which do not overlap, the sharing effect is barely noticea.ble.

The use of several layers of protocols (Ethernet, IP, TCP, MPI) imposes a
significant overhead. The communication protocols used inside a

multicomputer are much simpler; in particular, there are fewer 1.ayers. Because

layering means encapsulation (i.e., addition of control information) its effects
are worse for short messages than for long messages2.

In order to compute the communication capabilities of the three parallel systems,

(instead of using the raw data offered by the manufacturers) we ran a test where

four processors are arranged in a logical unidirectional ring (in the case of the

Transputer, the ring is also physical). The first processor in the ring sends messages

of various sizes to the next one, which simply executes a store-and-forward

procedure to send the received messages to the next processor in the ring. When a
message arrives back to the first processor, it computes the real time that it took to
complete the ring. Using this time and the message size, the data rate is computed.

Message sizes varying from 1 to 218 have been tested; the achieved data rates for

those message sizes are plotted in Figure 13. In all the cases it can be seen how the

data rate increases with the message size, until it stabilizes at a point not far from
the theoretical maximum.

In this context we are speaking about real messages interchanged between processing

elements, not about simulated messages.

Unfortunately, the actual messages managed by our simulators are very short:

about 32 bytes. For this size, the achieved data rate is far from the maximum in the

case of the Paragon and the network of workstations (see the vertical line cutting

the curves in Figure 13). The Supernode, however, achieves a data rate close to its
peak value even for short messages.

In conclusion, the computation to communication ratio of the network of

workstations is not as balanced as in the other two systems. This would not be true

if the CPUs of the workstations were proportionally slower, but this iis not the case.
A comparison of the raw computing capabilities of each system has been done taking
into consideration experiment 5 (5S75P and 5M), which has been performed for the

3 systems using the sequential as well as the parallel simulators. Table 8

summarizes the execution times of the sequential simulator running this
experiment with load 90. A Sun SPARCstation 5 is slightly faster than a Paragon
processing element, and about 7 times faster than a 30MHz T805 transputer (for the

kind of computation we are doing). In contrast, the data rate achieved using MPI
over Ethernet is more than 66 times smaller than that achieved usirig the Paragon
intercomection network, or a set of interconnected transputers.

Our conclusion is that the communication demands of CMB (in particular, the

need of a frequent interchange of short messages) make it unsuitable for this kind of

parallel computing platform. In other words, CMB works specially well in fine-grain

parallel computers, while a network of workstations might be used efficiently only
for coarse grain problems.

Conclusions

In this paper we have presented, analyzed and coompared our experiences

implementing and using CMB on three different multicomputing envi.ronments. The
CMB simulators have been used to study a model of a message passing network
designed to be used as the communication infrastructure of a multicomputer.

The characteristics of the simulated model have a definite influence on the

achieved performance. In order to take advantage of CMB, a model with a high

degree of internal communication is needed, which allows processes t o remain

synchronized without needing null messages. For the model used in ithis study, this

happens when network size is large, load is high and messages are short. These
three parameters have the strongest influence on the performance of'the simulator.

It is interesting to observe that, conveniently, the best scenario1 for the CMB
simulator is the worst for the sequential event-driven simulator: speedups are best

precisely when they are most needed, and are poor only in cases wh~ere simulation

runs are very short with the sequential but also with the parallel version.

If CMB is running on a set of processes statically assigned to a set of processors, it

is important to use coarse grain processes, that is, to assign a significant amount of
work to each process. This way, less processes are used to run the :model, and the

synchronization overhead is reduced. This idea should not lead us to the extreme of
assigning only one process to a processor, because if the process block;^, the processor

stays idle. If the host parallel computer allows it, more than one process should be

mapped onto each processor. For example, in the Supernode the best performance

was achieved using intermediate grain sizes.

The knowledge of the behavior of the model may allow CMB to exploit some

lookahead information, which helps maintain a good performance when the

workload does not allow the simulator to self-synchronize. Unfortunately, the
lookahead ability of our network of message routers is, in general, poor, particularly

when an LP simulates a set of routers instead of only one (that is, .when the grain

size is not minimum). It is more advantageous to use intermediate or maximum

grain sizes, even if that means renouncing to exploit the lookahead of'the model.
The communication demands of CMB are very strong, making it; unsuitable for

environments such as a network of workstations, were communication costs are very

high compared to computation costs. In contrast, the performance achieved in two

commercial multicomputers, Supernode and Paragon, are reasonably good-better
in the latter than in the former.

References

[ABIM93] A. Arruabarrena, R. Beivide, C. Izu and J. Miguel. "A performance
evaluation of adaptive routing in bi-dimensional cut-through networks".
Parallel Processing Letters Vol. 3 No. 4, 1993,46-84.

[Arm931 A. Arruabarrena. Analisis y evaluaci6n de sistemas de interconexi6n
para procesadores masivamente paralelos . PhD dissertati.on,
Departamento de Arquitectura y Tecnologia de Computatlores,
Universidad del Pais Vasco, Sept. 1993.

[BH95] C. Benveniste and P. Heidelberger. Parallel simulation ojfthe IBM SP-2
interconnection network. IBM Research Report RC 20161 (8/15/95). To
appear in the proceedings of the 1995 Winter Simulation Conference.

[Brya77] R.E. Bryant. Simulation of packet communications architecture
computer systems. MIT-LCS-TR-188, Massachusetts Institute of
Technology, 1977.

[CM791 K.M. Chandy and J. Misra. "Distributed simulation: a case study in
design and verification of distributed programs". IEEE Transactions on
Software Engineering, Vol. SE-5, No. 5, Sept. 1979,440-452.

[CSR93] K. Chung, J. Sang and V. Rego. "A performance comparison of event
calendar algorithms: an empirical approach". Software-Practice and
Experience, Vol. 23(10), Oct. 1993, 1107-1 138.

[Dal186] W.J. Dally. A VLSI architecture for concurrent data structures. Ph.D.
dissertation, California Institute of Technology, 1986.

[FT94] A. Ferscha and S.K. Tripathi. Parallel and distributed siimulation of
discrete event systems. CS-TR-3336 Dept. of Computer Science,
University of Maryland, Aug. 1994.

[Fuji891 R.M. Fujimoto. "Performance measurements of distributed simulation
strategies". Trans. of The Society for Comp. Simulation, 'Vol. 6, No. 2,
1989,89-132.

[Inmo89] The Transputer Databook. Inmos Databook Series, Inmos Ltd., Bristol,
U.K., 1989.

[Inmo9O] ANSI C toolset. Inmos Ltd., Bristol, U.K., 1990.

[Inte93] Paragon user's guide. Intel Corporation, 1993.

[KYgll P. Konas and P-C. Yew. "Parallel discrete event simulation on shared
memory multiprocessors". Proc. of the 24th Annual Simulation
Symposium, New Orleans, Luisiana, April 1991, 134-1148.

[LPD95] W. Liu, G. Petit and E. Dirkx. "Performance assessment of a large ATM
switching network with parallel simulation tool". Proc. 1995 Int. Conf
on Parallel Processing, Vol. 111, 142-145.

[MAB95] J. Miguel, A. Arruabarrena, R. Beivide. "Conservative pa:rallel
simulation of a message-passing network: a performance study".
Proceedings Summer Computer Simulation Conference SCSC'95.
Ottawa, Canada, July 1995,825-830.

[MABF96] J. Miguel, A.Arruabarrena, R. Beivide and J. Fortes. "An empirical
evaluation of techniques for parallel discrete-event simulation of
interconnection networks". Proc. 4rd. Euromicro Workshop on Parallel
and Distributed Processing PDP'96. Braga, Portugal, Jan. 1996.

W I B 9 5 1 J. Miguel, AArruabarrena, C. Izu and R. Beivide. "Parallel simulation
of message routing networks". Proc. 3rd. Euromicro Workshop on
Parallel and Distributed Processing PDP'95. San Remo, Italy, Jan.
1995.138-145.

[Misr86] J. Misra. "Distributed discrete-event simulation". Computer Surveys,
Vol. 18, No. 1, March 1986,39-65.

IMP1941 Message Passing Interface Forum. "MPI: a message-passing interface
standard. International Journal of Supercomputer Applications, 8(3/4),
1994. Available a t http://www.mcs.anl.gov/mpi.

[Pars891 Idris and Supernode SNlOOO series manuals. Parsys Ltd.. U.K., 1989

Nagn891 D.B. Wagner. Conservative parallel discrete-event simulation: principles
and practice. Ph.D. dissertation, Department of Computer Science and
Engineering, Univ. of Washington, 1989.

Parameter
Cvcles

Meaning
Duration of the simulation. in terms of cvcles.

Seed
Number of PEs
Grain size
Lookahead

Seed for the random number generators.
Number of processing elements used in the simulation.
Number of routers assigned to each logical process of the
A boolean value, indicating whether or not special effort
extract lookahead from the model.

Message length
Load
Number of PEs

I I LPs per Transp. I Routers per LP I l o o k a h ~ q

Table 1. Parameters of the simulators.

4 4 32 32 4

5-90 5-90 5--90 5-90 5--90 5-90
4 16 4 16 16 16 4-- 25

Grain size,
lookahead

, I LPS ~ e r trans^. I ~outers ~ e r LP 1 l o o k a h e n

Table 2. Experiments performed with CMB in the Supernode.

Table 3

4min
4minL

1 16minL 1 16 1 Yes 1
Table 4. Values of the parameter grain size for experiments 2s and 4s.

Table 4

Table 3. Values of the parameters grain size and lookahead for experiments :IS and 35.

64
64

ih

Table 3 ' Table 4

1

1

I I

[Number of PEs 1 4 1 16 14 1 16 1 16 1 16 1 4 - 44 1 4--100 1
Table 6. Experiments performed with CMB in the Paragon.

Yes d

LPs per Transp.
4

I

Table 5

4 il

Table 5 1 z r m . , 1

Routers per LP
16

Table 5. Values of the parameter grain size for experiments 5s and 16s.
16

no

Network size
Message length
Load

2P
16x16
4
5-90

1P
16x16
4
5-90

3P
16x16
32
5- 90

5P
32x32
4
5-90

4P
16x16
32
5-90

6P
32x32

32
5-90

4
50

Network size
Message length
Load

1M
16x 16

Computing system
1 Supernode
Paragon
NOW with MPI

Table 7. Experiments performed with MPI in a network of workstations.

4

5-90

3M
16x16

Table 8. Communication and computation abilities of the multicomputers utjed in the
experiments. The data rate is for 32-byte messages. The execution times are those of the

sequential simulator running experiment 5 a t load 90.

Data rate (Mb/s)
4
4

0.06

32
5-90

Execution time

904
5597 817 3

5M
32x32
4

5-90

61M
32x32 90x910
32
5 - 4 0 5-90 4

Figures

s t I t i~essa~ek-
Injection interface From/to the
I local processo1

Figure 1. Model of message router.

0 Roiuter

0 Logical process

Figure 2. Mapping a network of 4x4 routers onto a PE. (a) Maximum grain size. (b)
Intermediate grain size. (c) Minimum grain size.

Figure 3. Organization of processes in a worker transputer. Circles represent LPs.
Multiplexers are needed to share links.

Input charnels

Figure 4. Structure (of CMB.

It * t t pet \
'?

Input
F'=C=s

sig , Snuulator
process

loc -
\ JJ

I

I

I
a20

!
statistics

'L

Output channels

of a logical process in the Supernode implementation

0 20 40 60 80 100 0 20 40 60 80 100
Load Load

1s. 16x16 routers, 4-flit mess., 4 transp. 2s. 16x16 routers, 4-flit mess., 16 transp.

0 20 40 60 80 100 0 20 40 60 80 100
Load Load

3s. 16x16 routers, 32-flit mess., 4 transp. 45.16~16 routers, 32-flit mess., 16 transp.

0 20 40 60 80 100
Load

0 20 40 60 80 100
Load

6s. 32x32 routers, 4-flit mess., 16 transp. 6s. 32x32 routers, 32-flit mess., 16 transp.

Figure 5. Results of experiments 1 S 4 S .

:::I 25 - - a - - Execution time 20

0 5 10 15 20 25
Number of processors

Figure 6. Results of experiment 75. Simulation, using 4--25 transputers, of a network of
24x24 routers (25x25 for the case of 25 transputers) with 4-flit messages at. load 50.

0.4
0 5 10 15 20 25 30

Number of processors

Figure 7. Ratio of useful to total messages for experiment 75.

0 20 40 60 80 100
Load

0 20 40 60 80 100
Load

1P. 16x16 routers, 4-flit mess., 4 PEs. 2P. 16x16 routers, 4-flit mess., 16 PEs.

0 20 40 60 80 100 0 20 40 60 80 100
Load Load

3P. 16x16 routers, 32-flit mess., 4 PEs. 4P. 16x16 routers, 32-flit mess., 16 PEs.

0 20 40 60 80 100
Load

0 20 40 60 80 100
Load

5P. 32x32 routers, 4-flit mess., 16 PEs. 6P. 32x32 routers, 32-flit mess., 16 PEs.

Figure 8. Results of experiments 1P-4P.

- - h - - Execution time r - j 1; - - h - - Execution time - Speedup

0 10 20 30 40 50 60
Number of processors

0 20 40 60 80 100
Number of processors

7P. 24x24 routers, 4--64 PEs. 8P. 90x90 routers, 4--100 PEs.

Figure 9. Results of experiments 7P and 8P, the scalability tests.

Number of processors

Figure 10. Ratio of useful to total messages for experiments 7P and 8P

4 9 16 36 64 4 9 25 36 81 100

Number of processors Number of processors

7P. 24x24 routers, 4--64 PEs. 8P. 90x90 routers, 4--100 PEs.

Figure 11. Distribution of total execution time among simulation and synchronization for
experiments 7P and 8P. Thn = time spent computing the acceptance horizon and

sending null messages; Trec = time spent receiving messages (null messages included);
Tsim = time spent executing events and sending non-null messages.

0 20 40 60 80 100
Load

Figure 12. Results of the experiments 1M--8M.

k """"I """"I " """I """"I """" I " "T _ _ _ _ - - - - - - - - _
..- . -,

-
- -

Message size (bytes)

Figure 13. Achieved data rates as a function of the message size in the three
multicomputer systems used in the experiments.

	Purdue University
	Purdue e-Pubs
	12-1-1995

	An Evaluation of Implementations of the CMB Parallel Simulation Algorithm on Distributed Memory Multicomputers
	José Miguel
	Agustin Arruabarrena
	Ramon Beivide
	José A..B. Fortes

