Thinking and problem solving has been an issue in basic psychological research since its beginnings in the 19th century. The first ideas came from Oswald Külpe who—in the late 1890s—-invented in his Würzburg lab the method of “systematic experimental introspection,” a technique that required extensive retrospective reports from trained subjects about their perceived internal processes during their problem-solving activities while working on complex intellectual tasks. This method provoked Wilhelm Wundt, the experimentalist, who rejected introspection for methodological reasons. The early Gestaltists (Karl Duncker, Max Wertheimer) followed a systems approach to thinking that was based on perceptual processes of restructuring. Their problems relied on visualization and processes near to perception, forming a Gestalt solution out of the problem particles.

With the advent of behaviorism and with the reign of terror during World War II, that analysis of higher cognitive processes has gone lost. The recovered interest in problem solving in the times of the Cognitive Revolution around the mid 1950s led to an increasing interest in internal processes and the search for a General Problem Solver. But, as Stellan Ohlsson (1995), as well as Dörner (1997), using microworlds and computer-simulated scenarios as tools for the assessment of problem solving (see Brehmer & Dörner, 1993; Gray, 2002). The growing interest has to do with several developments, one of them being a recent shift in the understanding of problem solving by the OECD (Organization for Economic Cooperation and Development, Paris) that runs the international large-scale assessment enterprise called PISA (Programme for International Student Assessment). PISA is intended to compare and improve the quality of national education systems because the next generation’s workforce needs better education than ever. On their webpage (http://www.oecd.org/pisa/about-pisa/), the OECD describes PISA as follows: “Since the year 2000, every three years, a randomly selected group of fifteen-year-olds take tests in the key subjects: reading, mathematics and science, with focus given to one subject in each year of assessment. The students and their school principals also fill in background questionnaires to provide information on the students’ family background and the way their schools are run. Some countries and economies also choose to have parents fill in a questionnaire. In 2000 the focus of the assessment was reading, in 2003 mathematics and problem solving, in 2006 science and in 2009 reading again.” In 2012, about 500,000 pupils from more than 60 countries have been assessed and the focus domain in that wave has been problem solving!

As I said before: there was a major shift in the conceptualization of problem solving competencies: whereas in PISA 2003 (when problem solving was first in the focus) analytical,
static problem solving was assessed by means of paper-pencil-tasks, in PISA 2012 (when problem solving was again in the focus) dynamic, interactive problem solving was assessed for the first time in PISA by means of computer-based testing (see Greiff et al., 2013).

Therefore, I see a growing interest in problem solving as an issue in itself. All world-wide or at least nation-wide operating large-scale assessments that are currently on the run besides PISA (e.g., ATC21, Assessment and Teaching of 21st Century Skills, http://atc21s.org/; P21, Partnership for 21st Century Skills, http://www.p21.org/; PIAAC, Program for the International Assessment of Adult Competencies, http://nces.ed.gov/surveys/piaac/) do include measures for problem solving. Problem solving is seen as a key competency in a world full of uncertainty (Osman, 2010) and full of potential obstacles on our way to societal goal states of peace, food, and justice. Isn’t that a success story? Accordingly, the absolute number of publications with the keyword “problem solving” (in all fields) per year that can be found in the PsycInfo database shows a steady increase (see Figure 1).

In the period between 2005 and 2010 especially, one can see a marked increase that supports my assumption of a growing interest in our issues, the increase in the total documents being steeper than in the peer-reviewed ones—once again a potential indicator for public interest that is responsible for the higher number of non-peer-reviewed papers.

The diversity of outlet journals has also increased: whereas in 2010, only 56 different journals were mentioned, in 2012 it is the amazing number of 171 journal titles from all fields of psychology and above. Concerning different sections in the following bibliography, in most areas slight to moderate increases can be documented, with education having a

Figure 1.
Number of publications with keyword “PROBLEM SOLVING” in any field between 1980 and 2013, from PsycInfo database (in 5-year groups). Solid line: total number, dashed line: peer-reviewed publications only.
strong growth from 15 to 39 publications. Reasons for that have been mentioned before. Also, the new clinical category (with \(n=34 \) starting on a high level) shows the high application interest in our topic. Against expectations, the “Neuroscience” category has only a small increase (from 5 to 9); maybe problem solving (as a coordinated action of higher order processes) is not easily analyzed by means of functional imaging techniques.

THREE “MAYBES” AS RECOMMENDATIONS FOR FUTURE BIBLIOGRAPHIES

1. Maybe the restriction to one year of publication activity is a time window too small for the identification of trends. To iterate the bibliography not every year but every two years seems reasonable—but to have a time window of one year might be a bit short. Recommendation 1: Why not choose a time window of two years that is reported every two years?

2. Maybe “problem solving” should not be the only key-word to search for. Research on complex problem solving, for example, comes under different labels like “dynamic decision making” (Coty Gonzalez, e.g., Gonzalez & Dutt, 2011), “complex dynamic control” (Magda Osman, e.g., 2010), or “naturalistic decision making” (Gary Klein, e.g., 2008). Search in databases is restricted to certain keywords that sometimes do not reflect the broader context and the similarities in content despite of different labels. Recommendation 2: Why not enlarge the search space in terms of broader keywords?

3. Maybe PsycInfo should not be the only database to rely on because interdisciplinary work on problem solving does not completely show up there. For example, my own work with the mathematician Sebastian Sager (on the optimization methods for complex problem solving in the case of the microworld “Tailorshop”; Sager et al., 2011) is published in one of the mathematical journals (SIAM Journal on Optimization) that were not indexed in PsycInfo. As a consequence, one should search for problem solving more carefully also in other related databases to reach a nearly complete coverage. Recommendation 3: Why not enlarge the search space in terms of more databases?

CONCLUSION

For me, the fate of problem solving research looks fine! For good or for bad, the world around us is full of problems (always remember the saying from Sir Karl Popper: “all life is problem solving”) and we are not finished with our research duties! Progress in theory is urgently needed, but as it happens often in science: with the advent of new research paradigms also new theoretical constructs do emerge. With the advent of computer-based microworlds, new methods for process tracing have been (and still have to be) developed, new constructs have to be defined, theories have to be adjusted. I am quite optimistic that problem solving research is not only increasing in the next years but that society is in urgent need for new insights about the way humans deal with complexity and uncertainty.

ACKNOWLEDGMENTS

This research was supported by a grant from the German Research Foundation (DFG Fu 173/14-2) to the author.

REFERENCES

LIST OF JOURNALS

(The number of publications per each journal, if greater than one, is shown in parentheses)

Academy of Management Learning & Education
Acta Paediatrica
Acta Psychiatrica Scandinavica
Acta Psychologica Sinica (3)
Addictive Behaviors
Advances in Developing Human Resources
Advances in Health Sciences Education
AIP Conference Proceedings
American Annals of the Deaf
American Journal of Community Psychology
American Journal of Primatology (2)
Animal Behaviour
Animal Cognition
Annales Médico-Psychologiques
Applied Cognitive Psychology (3)
Applied Psychological Measurement
Applied Psychology: An International Review
Archives of Suicide Research (2)
Brain and Cognition (2)
Brain Stimulation
British Journal of Educational Psychology
British Journal of Educational Technology (2)
British Journal of Health Psychology
Bulletin of Educational Psychology
Canadian Journal of Occupational Therapy / Revue Canadienne D’Ergothérapie
Child Development
Chinese Journal of Clinical Psychology
Cognition and Emotion
Cognitive Processing
Cognitive Science
Cognitive Systems Research
Cognitive Therapy and Research
Comprehensive Psychiatry
Computers & Education (8)
Computers in Human Behavior (4)
Consciousness and Cognition: An International Journal (5)
Contemporary Educational Psychology
Creativity Research Journal (4)
Critical Social Policy
Cultural Diversity and Ethnic Minority Psychology
Current Directions in Psychological Science
Development & Change
Developmental Cognitive Neuroscience (2)
Developmental Neuropsychology
Drug and Alcohol Review
Early Childhood Education Journal (2)
Early Childhood Research Quarterly
Education & Treatment of Children
Educational Technology Research and Development (3)
Electronic Journal of Research in Educational Psychology
Eurasia Journal of Mathematics, Science & Technology Education
European Journal of Engineering Education
European Journal of Psychology of Education
Experimental Aging Research
Expert Systems: International Journal of Knowledge Engineering and Neural Networks
Family & Community Health: The Journal of Health Promotion & Maintenance
Family Court Review
Farmers Weekly
Games and Economic Behavior
Group Decision and Negotiation
Health Psychology
Human Factors and Ergonomics in Manufacturing & Service Industries
Human Relations
Industrial Marketing Management
Instructional Science
Intelligence
Intelligent Data Analysis
International Journal of Early Years Education
International Journal of Geriatric Psychiatry (4)
International Journal of Intercultural Relations
International Journal of Psychophysiology
Japanese Journal of Special Education
Journal for the Education of the Gifted
Journal for the Scientific Study of Religion
Journal of Applied Psychology
Journal of Autism and Developmental Disorders
Journal of Behavior Therapy and Experimental Psychiatry
Journal of Business Ethics (2)
Journal of Classroom Interaction
Journal of Clinical Nursing
The first figure represents the absolute value in 2012 for the given category, the second the change compared to 2010.

DEVELOPMENTAL (16, +11)

EDUCATION (39, +24)

APPLIED (37, +18)

ARTIFICIAL INTELLIGENCE (7, -1)

Tabassian, M., Ghaderi, R., & Ebrahimpour, R. (2012). Com-
Sun, Y., Zhang, L., & Gu, X. (2012). A hybrid co-evolutionary
cultural algorithm based on particle swarm optimization
for solving global optimization problems. Neurocomput-
org/10.1016/j.neucom.2011.08.043
Tabassian, M., Ghaderi, R., & Ebrahimpour, R. (2012). Com-
bining complementary information sources in the Demp-
ster–Shafer framework for solving classification problems
with imperfect labels. Knowledge-Based Systems, 27, 92–
102. http://dx.doi.org/10.1016/j.knosys.2011.10.010

COMPLEX PROBLEM SOLVING (18, NEW)

Abele, S., Greiff, S., Geschwendtner, T., Wüstenberg, S., Nick-
Problemlösekompetenz. Ein bedeutsamer Prädiktor von
Problemlöseleistungen in technischen Anforderungskon-
texten? [The importance of general cognitive determinants
in mastering job demands. Some research on the example
of dynamic and technical problem solving]. Zeitschrift
org/10.1007/s11618-012-0277-9
Dandurand, F., Shultz, T. R., & Rey, A. (2012). Including cog-
nitive biases and distance-based rewards in a connection-
ist model of complex problem solving. Neural Networks,
Eseryel, D., Guo, Y., & Law, V. (2012). Interactivity³ design
and assessment framework for educational games to pro-
mote motivation and complex problem-solving skills. In
D. Ifenthaler, D. Eseryel & X. Ge (Eds.), Assessment in
game-based learning: Foundations, innovations, and per-
Fischer, A., Greiff, S., & Funke, J. (2012). The process of solv-
ing complex problems. Journal of Problem Solving, 4(1),
19–42. http://dx.doi.org/10.7771/1932-6246.1118
(Ed.), Encyclopedia of the sciences of learning (pp. 682–
685). Heidelberg: Springer.
Greiff, S. (2012). Assessment and theory in Complex Prob-
lem Solving. A continuing contradiction? Journal of Educa-
tional and Developmental Psychology, 2, 49–56.
Greiff, S., Wüstenberg, S., & Funke, J. (2012). Dynamic Prob-
lem Solving: A new measurement perspective. Applied
org/10.1177/0146621612439620
Kim, M. K. (2012). Theoretically grounded guidelines for as-
sessing learning progress: Cognitive changes in ill-struk-
tured complex problem-solving contexts. Educational
Technology Research and Development, 60(4), 601–622.
http://dx.doi.org/10.1007/s11423-012-9247-4
Kim, M. K. (2012). Cross-validation study of methods and
 technologies to assess mental models in a complex problem
 solving situation. Computers in Human Behavior, 28(2),
instruction on effectiveness, efficiency, and engagement with
ill-structured problem solving. Instructional Science, 40(3),
Leutner, D., Fleischer, J., Wirth, J., Greiff, S., & Funke, J.
(2012). Analytische und dynamische Problemlösekom-
petenz im Lichte internationaler Schulleistungsver-
gleichsstudien: Untersuchungen zur Dimensionalität
[Analytic and dynamic problem solving competence in
international student assessments: Studies in dimension-
ality]. Psychologische Rundschau, 63(1), 34–42. http://
dx.doi.org/10.1026/0033-3042/a000108
Malin, J., & Makel, M. C. (2012). Gender differences in gifted
students’ advice on solving the world’s problems. Journal
dx.doi.org/10.1177/1090457311439620
Problem solving processes and video games: The Sim City
Creator case. Electronic Journal of Research in Educational
Psychology, 10(3), 1493–1521.
Scherer, R., & Tiemann, R. (2012). Factors of problem-
solving competency in a virtual chemistry environment:
The role of metacognitive knowledge about strategies. Com-
org/10.1016/j.compedu.2012.05.020
Sonnenleitner, P., Brunner, M., Greiff, S., Funke, J., Keller, U.,
ceptance and psychometric characteristics of a comput-
 ber-based microworld assessing complex problem solving.
Psychological Test and Assessment Modeling, 54(1), 54–72.
Wüstenberg, S., Greiff, S., & Funke, J. (2012). Complex prob-
 lem solving—More than reasoning? Intelligence, 40(1),
Yang, Y.-T. C. (2012). Building virtual cities, inspiring in-
telligent citizens: Digital games for developing students’
problem solving and learning motivation. Computers &
compedu.2012.01.012
A convergent approach to cognitive load measurement.
http://dx.doi.org/10.1111/j.1467-8535.2010.01169.x

INSIGHT PROBLEM SOLVING (11, NEW)

Cushen, P. J., & Wiley, J. (2012). Cues to solution, restruc-
turing patterns, and reports of insight in creative problem
solving. Consciousness and Cognition: An International
J. Funke Human Problem Solving in 2012

CLINICAL (34, NEW)

Dissertations (36, +25)

Crerar, A. M. (2012). Predicting career interests from problem-solving style with high school students. Retrieved from ProQuest Dissertations and Theses. (UMI 3452786.)

Glew, B. (2012). Reducing the use of seclusion and restraint in segregated special education school settings through implementation of the Collaborative Problem Solving Model. Retrieved from ProQuest Dissertations and Theses. (UMI 3491431.)

BOOK CHAPTERS (9, NEW)

BOOKS (7, +7)

