Purdue University

Purdue e-Pubs

LARS Symposia Laboratory for Applications of Remote Sensing

1-1-1976

Experiments in Iterative Enhancement of Linear
Features

Gordon]. VanderBrug

Follow this and additional works at: http://docs.lib.purdue.edu/lars_symp

VanderBrug, Gordon J., "Experiments in Iterative Enhancement of Linear Features" (1976). LARS Symposia. Paper 153.
http://docs.lib.purdue.edu/lars_symp/153

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.


http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Flars_symp%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/lars_symp?utm_source=docs.lib.purdue.edu%2Flars_symp%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/lars?utm_source=docs.lib.purdue.edu%2Flars_symp%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/lars_symp?utm_source=docs.lib.purdue.edu%2Flars_symp%2F153&utm_medium=PDF&utm_campaign=PDFCoverPages

Reprinted from
Symposium on
Machine Processing of

Remotely Sensed Data

June 29 - July 1, 1976

The Laboratory for Applications of
Remote Sensing

Purdue University
West Lafayette
Indiana

IEEE Catalog No.
76CH1103-1 MPRSD

Copyright © 1976 IEEE
The Institute of Electrical and Electronics Engineers, Inc.

Copyright © 2004 IEEE. This material is provided with permission of the IEEE. Such
permission of the IEEE does not in any way imply IEEE endorsement of any of the
products or services of the Purdue Research Foundation/University. Internal or personal
use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or
redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws
protecting it.



EXPERIMENTS IN ITERATIVE ENHANCEMENT

OF LINEAR FEATURES

Gordon J.

VanderBrug

Computer Science Center
University of Maryland

College Park, Maryland

I. ABSTRACT

Lines and curves in an image are de-
tected locally by a template-matching pro-
cess which determines the "line-ness" value
of the image at each point, in a set of
orientations. The output of the detection
process i1s the strongest of these values at
each point, and the orientation that gave
rise to this value. The results of this
approach tend to be noisy, but their noisi-
ness can be reduced by examining, for each
point, the values at nearby points, in the
direction defined by the preferred orienta-
tion, and increasing the point's value if
the nearby points have high values and
similar orientations. Iteration of this
reinforcement process leads to further
noise reduction. Several variations on
this scheme are presented. The preferred
orientations can also be "sharpened" by
examining the orientation at nearby points
{in the preferred direction) and biasing
it toward their average. Experimental re-
sults using these methods are obtained for
LANDSAT and SKYLAB images containing many
lTinear features.

IT. INTRODUCTION

Lines and curves in an image can be
detected locally by a template-matching
process, in which a set of operators, each
having a preferred orientation, is appliied
to the image at each point. The operators
may be linear or nonlinear, but it has
been found that a nonlinear technique gen-
erally yields better detection results
[1]. The output of the detection process
at each point is a vector whose magnitude
is the strongest of the operators' outputs
at that point, and whose orientation is
the one for which this strongest output
was obtained. This method of Tline detec-
tion has been tested on LANDSAT and SKYLAB
imagery containing linear features such as
roads, rivers, and lineaments [2].

The results of any local 1ine detec-

4A~-32

20742

tion operation will be somewhat noisy,
since image points not lying on lines or
curves may appear locally line-like, and
vice versa. This report describes some
methods of reducing the noisiness by ex-
amining, for each point, the output values
at nearby points, in the direction defined
by the preferred orientation, and increas-
ing the point's value if the nearby points
have high values and similar orientations.
Further noise reduction is obtained by
iterating this process. Several varia-
tions on this approach are described, and
resuits are presented for LANDSAT and
SKYLAB images containing many linear
features. A method of "sharpening" the
preferred orientation at each point, by
examining the orientations at nearby
points (in the preferred direction) and
biasing it toward their average, is also
tested.

A more elaborate method of improving
1ine detection results by iterative local
processing is presented in [3]. Here a
probability vector is initially associated
with each point; its components are the
probabilities that a line passes through
the point in each of a set of orienta-
tions, or that no line is present. At
subsequent steps, the probability vectors
in the neighborhood of the point are ex-
amined, and the line and no-line probabi-
Tities at the point are adjusted accor-
dingly: high line probabilities in a
given direction and orientation reinforce
the Tine probability for that orientation,
while high no-1ine probabilities reinforce
the no-line probability. This method has
led to successful results in a variety of
tests, as described in [3]. The methods
described in the present report, which
were developed concurrently, can be re-
garded as simplifications of the approach
used in [3]; the present methods reinforce
1ine intensity, and sharpen line direc-
tion, independently of one another.

Section III describes several varia-



tions on the line intensity enhancement
process, and the results obtained using
them. Section IV discusses line orienta-
tion sharpening. Section V recapitulates
the results and recommends directions for
future studies.

II1. LINE INTENSITY REINFORCEMENT

The reinforcement algorithm is de-
signed to iteratively enhance the output of
a line detector by rewarding (increasing
the intensity of) those points on a line,
and punishing (decreasing the intensity of)
those points which are not on a line.

The algorithm assumes the existence of
a line detector that produces line orienta-
tion values as well as line intensity
values. At each point in the array of line
intensity values, it examines neighboring
points in the directions indicated by the
orientation value. It increases the in-
tensity value according to the number and
intensity of the points that it sees which
are reasonably well aligned with that
orientation. Similarly, it decreases the
point's intensity value according to the
number and intensity of the points that it
sees which are not well aligned with that
orientation. Thus, the amount of reward
or punishment depends on:

1) the number of points seen
2) the intensities of these points
3) the alignment of these points

The reinforcement algorithm was
written to accept the output of a nonlinear
line detection operation [2]. This non-
linear detector generates output in 16
orientations, as follows: ’

t 'S

These orientations are used to define
masks, which are regions (or neighborhoods)
of a picture point within which the point
looks for information to use as a basis for
rewarding or punishing its line intensity
value. The masks used for Version I of the
reinforcement program are shown in Figure
1. (Versions II, III, and IV will be de-
scribed tater.) Only haif of the masks for
orientations 1 through 5 are shown. The
other half of each mask is constructed by

4A-33

reflecting across the line orthogonal to
the orientation. Masks 6 through 16 are
constructed by rotating and reflecting the
masks shown in Figure 1.

For each picture point the reinforce-
ment algorithm examines all of the points
within the region defined by its orienta-
tion (i.e., within the mask). A vector
(wo,...,ws) is used to compute the measwre

of reward/punishment defined by the points
within the mask region. Let p],. -sPy and

Qqs---54, be the 1ine value intensities

and orientations of the points within the
mask region defined by a point whose in-
tensity is p and orientation is q. The
quantity

n
R= 1w P;
i

2y Hag=af | -

where 0 = |[g;-q|| = 8 represents the

abso]u?e difference in orientation between
the points Pj and p, is a sum of the inten-

sity of the points "seen by p", weighted
according the differences in orientation.
The weights contribute to the extent to
which p is reinforced as follows:

w. >0 - reward

J
wj = 0 - neither reward nor punish
Wj < 0 - punish

A possible (symmetric) set of weights
might be

Thus, if R is a large positive number, the
point p should be rewarded substantially;
if it is a large negative number, it
should be punished substantially; and
similarly for intermediate values.

The actual change in p is computed
from R as follows. Let

1
d = 1w
pos "pos Wi>0

i

1
d = ) W,
nes "neg w1.<0I 1I

and n are the numbers of

where npos neg
positive and negative weights, respec-

AL AR




tively. 'If R =z 0 then
pep ot _—H___gﬁfﬁf - (63-p)
pos
If R < 0 then
R

PP+ —g—FFAC " P
» T g NFAC

where PFAC and NFAC are parameters which
are used to control the magnitude of the

reward and punishment. If H———gﬁfﬁg =1
pos
then p is set to 63; similarly, if
R .
I —-WFAC © -1 then p is set to 0. (Here

neg

0 and 63 are the 1imits of the grayscale
used to represent line intensity values.)

The program was run on a 127x127 point
portion of a LANDSAT image of Kentucky
(Figure 2) using the following choices of
weights and parameters:

1) Symmetric weights:

2 2 2 1 0 -1 -2 -2 -2
PFAC = NFAC = 630

2) Same, except with NFAC = 320

3) Negatively biased weights:

321 0 -1 -2 -3 -3 -3

PFAC = NFAC

630

The value 630 chosen for PFAC and NFAC
(except in case (2)) was arrived at as
follows: For a strong line in the pre-
ferred orientation through the point,

about 15 of the 24 mask points should have
this orientation (i.e., zero orientation
difference); if these points have intensity
42, we have an R contribution of about
15x42.

Results of experiments using these
three sets of weights and parameter values
are shown in Figures 3-5. The results are
all quite similar, though there is a
slightly greater elimination of noise when
the negatively biased weights are used
(compare Figure 5d with Figure 3d).

* Three other versions of the reinforce-
ment scheme were also tested:

Versjon II uses the same masks as Versionl

—_— =

4n-~34

(as shown in Figure 1), but it only re-
wards, never punishes -- i.e., it uses non
negative weights of the form

2 2 2 1 0 0 0 0 O

Version III uses the shorter, wider masks
shown in Figure 6, and only rewards, never
punishes. .

Version IV uses masks that do not involve
close neighbors of the given point (see
Figure 7); otherwise, it is identical to
Version I.

Results of experiments using these ver-
sions are shown in Figures 8-10. As would
be expected, Version II does not suppress
noise (Figure 8a-b), but the curves that
it enhances can be extracted by threshold-
ing (Figure 8c-d). Similar remarks apply
to Version III (Figure 9), which seems to
do somewhat better than Version II (com-
pare Figures 8c-d and 9c-d). Version IV
does not appear to do as well as Version I
{(compare Figures 3a-d and 10a-d). But all
the versions perform quite comparably,
which is an indication of the robustness
of the iterative approach.

Figure 1la shows a Skylab image (from
the S190B camera) of suburban Washington,
D. C. The output of the line detector and
four iterations of Version II, which are
shown in Figure 11b-f, demonstrate that
the major roads and segments of the subur-
ban streets are enhanced. A version with
no punishment was chosen here because the
detector output appears to have very little
noise.

The progress of the reinforcement
scheme can be monitored by examining the
histogram of intensity values at each
iteration. Such histograms for the case
in Figure 3 are shown in Figure 12; note
that they become more bimodal with each
iteration.

IV. LINE ORIENTATION ADJUSTMENT

The orientational adjustment al-
gorithm presented here is a parallel,
iterative algorithm which uses information
about the 1ine orientations at a point's
neighbors to adjust the line orientation
at the point so as to improve the align-
ment. The neighbors that are used to
obtain this information are defined by
masks such as those shown in Figures 1, 6,
and 7.

The computation at a point p proceeds
as follows. The orientations of the lines
at all the points of p's mask are deter-
mined, and those orientations which do not
differ from p's orientation by too much
are averaged. Points whose orientations
differ from that at p by large amounts are
excluded from this computation because



their influence on p would lead to un-
desired results. However, if p's mask con-
tains too many such points, one must ques-
tion the existence of a line at p itself.
Also, p's existence is questionable when
its mask contains too few points whose
orientations are reasonably well aligned
with its own. Therefore, the algorithm
deletes a point if the number of nonaligned
mask points is too large, or if the number
of aligned points is too small. Each point
which survives has its orientation adjusted
by some fraction of the difference between
the original orientation and the computed
average orientation over the mask.

The iterative application of the above
algorithm allows for increasingly more
global knowledge about orientation to be
used in the orientational alignment pro-
cess. Since the magnitude of the adjust-
ment at each stage will in general be a
fraction of a discrete orientation (16
orientations were used), the array produced
at each iteration is real valued. The pro-
gress at each iteration can be monitored by
examining 1) the number of points set to O
because of too few aligned points, 2) the
number of points set to 0 because of too
many nonaligned points, 3) the number of
points set to 0 because of both (1) and
(2), and 4) the average adjustment in the
orientation of the points which survive.

The input picture points have the 16
orientations shown in Section 2. To aver-
age two orientations, one cannot simply add
and divide by 2: the average of orienta-
tions 2 and 16 is not 9, but 1. Rather,
one must average in such a way that the
smaller angle between the orientations
{(which is less than w/2) is bisected. This
is equivalent to adding the orientations
modulo 16, so that the sum of orientations
2 and 16 is 2, rather than 18, and their
average is 2/2 = 1. Alternatively, we can
average the orientations in the ordinary
way, and then represent the average modulo
8, so that the average of 2 and 16 is 9,
which is the same as 1 modulo 8.

. To compute the average of n orienta-
tions in this way, we must maintain a par-

tial average value, so that at each stage

. the decision as to whether or not the next

orientation should be adjusted modulo 16 be-
fore averaging can be made. Suppose thatai

is the average of the first i orientations,
and that b is the i+1st orientation. The
following algorithm computes ai41°

/* Adjust b if necessary */
If (ai-b) > 8 then b « b + 16, else if
(a;-b) < -8

then b <« b - 16

4A-35

/* Average in b */

1-ai+b
a. - —

it i+]

/* Adjust computed average so that

1 s 3 =16 */ ,
If a,;q > 16 then a.,, « a;,; - 16,
If a4 < 1 then a1+1 < ag t 16

This algorithm can be viewed as a pro-
cedure, Aver, which computes 341 from a,

and b; that is,

a < Aver (ai,b)*

i+l
In addition to the computation of the J
average orientation, the alignment al- ;
gorithm uses a difference-in-orientation
computation which we denote by |{g-m|].
Here ||g-m|| represents the signed diff-
erence modulo 16 between orientations q

and m. For example,
e - 2[f = -2
H2 - 16f[ = 2
18 - al| = 4

This computation is defined as:

"l

|lq-m|| = if (q-m) > 8 then q-m-16

else if {g-m) < -8 then g-mtl16

else g-m

Input Variables

d - if the absolute value of the diff-
erence in orientations at two
points is = d the points are con-
sidered aligned, otherwise they |
are nonaligned.

t] - if the number of aligned points
seen is = t] then delete the
point.

*Note that the average of two perpendicu-
lar orientations is ambigquous; e.g., the
average of 4 and 12 could be either 8 or
16. The program resolves this ambiguity
in an arbitrary manner.




t2 - if the number of nonaligned
points seen is =2 t2 then delete
the point.

w - the adjustment fraction.

Intermediate Variables

q - orientation at the point p being
adjusted.

m - orientation at a point in the
mask of p.

a - average (partial or- final) of
orientations of the points in the
mask of p.
i,J - counters used to determine

whether or not a point should be
deleted.

For each point p we proceed as
follows:

/* Compute average of points in p's mask */
a«0;1«0; 3«0
For each point m of the mask
If abs(||gq-m||) = d
then a « Aver (a, i, m)
i+ i4]
else j « j+1
/* Delete points which do not have enough
aligned points, or have .too many non-
aligned points, in their masks */
If i s t] or j = t2 then g « 0
/* Adjust the orientation of the point */
g<«q+w- |la-qf]
If g > 16 then g «+ q - 16
else if q <1 then q <« g + 16

The program also maintains the follow-
ing statistics for each iteration:

counter 1 - number of points set to O
because there were not
enough aligned points 1in
the mask

counter 2 - number of points set to O
because there were too
many nonaligned points in
the mask

4A=-36

counter 3 - number of points set to O
for both of these reasons

counter 4 - number of points whose
orientations were adjust-
ed
aver. diff. - the average orientation
difference, ||a-q|], for
the points that were ad-
justed; w times aver.
diff. gives the average
adjustment

Several versions of the alignment
algorithm have been implemented. The first
uses the masks shown in Figure 1, while the
second uses the shorter, wider masks shown
in Figure 13. A third version, designed
but not implemented, weights the difference
between the orientations at p and each mask
point by the line value of the mask point.
Specifically, let q, m, a, i be as above,
Tet A be the partial sum of the line
values, and let M be the line value of m;
then we define Procedure Aver (a, i, m, M)
as follows:

If (a-m) > 8 then m <« m + 16

else if (a-m) < -8 thenbm «<m - 16

A-a + Mem
a =« A+H

If a > 16 then a «+ a - 16

else if a < 1 then a ~ a + 16

The results of running the first two
versions of the algorithm on the window
shown in Figure 2 are summarized in
Figures 14 and 15. In all of these ex-
amples, the DIFF parameter was set at 4,
and the weight factor w at 1/2. It is
seen that the number of points adjusted
{Counter 4), and the average difference,
decrease in every case, so that the pro-
cess appears to be convergent. Pointwise
numerical results for a portion of the
window are shown in Fiqgure 16; here the
orientations 1,...,16 are represented by
the characters 1,...,9,A,...,G. Some
“sharpening" of the orientations is
apparent in these examples.

V. CONCLUSIONS

The experiments reported here confirm
the utility of local iterative techniques
for enhancing line intensities, and adjus-
ting line orientations, in the output of a
Tine detection algorithm. Variations in
the masks and reinforcement schemes used
seem to have little effect on the results,
which indicates that the approach is



robust. It could be implemented very
straightforwardly using parallel hardware.
Even on a sequential machine, it requires
only a single pass through the Tine value
(or orientation) array per iteration, so
that its computational cost per iteration
is comparable to that of the original line
detection process -- namely, order (picture
area) operations.

There are a number of possibilities
for extending this work. One extension is
to combine the two approaches by having a
point reinforce its intensity and align its
orientation at the same time. The align-
ment algorithm can easily be made a func-
tion of the intensities of the points seen,
as well as their orientations. One might
consider making the level of reinforcement
inversely proportional to the variance of
orientations of the points seen.

Another possibility for future work is
to give the algorithm some capability for
extending lines and filling gaps. Pre-
sently no such capability is present be-
cause neither algorithm does any computa-
tion at points where the 1ine detector out-
put (i.e., the intensity) is zero. Provid-
ing for a line extension capability in a
brute force manner by examining all orien-
tations at all points with zero intensity
would be computationally very expensive.

A less costly approach would be based on
the idea that a point which Ties at the end
of a line can recognize itself as an end-
point, and one can then invoke a (local)
procedure, at the points in the picture
which are natural extensions of the line,
in an attempt to extend the line. This
approach would be computationally feasible
because, (1) it would not be invoked at
every zero-intensity picture point, and

(2) it has some orientational information
at points where it is invoked. There are
some potential pitfalls in this approach,
especially where sharply curved lines are
present. These problems may be manageable
by (1) providing wide fields of view at the
endpoints, and (2) insisting that lines
cannot be extended for more than a certain
number of steps except in instances of gap
filling.

Another aspect of 1ine enhancement
which can be incorporated into these
iterative techniques is thinning. In
thinning one looks in directions that are
orthogonal to the directions used for rein-
forcement and alignment. The action taken
should serve to enhance those points which
are local maxima, since they lie at the
center of the line. This approach has been
gs%gjsuccessfu11y on edge detector output
in .

Qur experiencesindicate that iterative
enhancement techniques appear promising,
and extensions and additional experiments,

4A-37

using a wider variety of input data, are
warranted.

[l

(2]

[31]

4]

REFERENCES

G. J. VanderBrug, Semilinear line de-i
tectors, Computer Graphics and Image

Processing 4, 1975, 287-293.

G. J. VanderBrug, Line detection in
satellite imagery, Proc. Symp. on -
Machine Processing of Remotely Sensed &
Data, June 1975; IEEE Trans. on Geo-
science Electronics, vol. GE-14, no.
1, January 1976.

S. W. Zucker, R. A. Hummel, and A.
Rosenfeld, Applications of relaxation j
labelling, 1: Line and curve enhance g
ment, TR-419 Computer Science Center, 3
University of Maryland, October 1975.

R. B. Eberlein, An iterative gradient
edge detection algorithm, TR-382,
Computer Science Center, University
of Maryland, May 1975.




XXX XX XX XX XX
XXX XX KX XX XXX
X XX XX X XX

X X X XX X
X X XX XX X

X XX x X X
X x X X x
X X * X X

p p p P P

Figure 1. Masks used in Version I of the line intensity
enhancement algorithm.

Figure 2. LANDSAT image used in experiments. a) - Original
image. b) - Output of nonlinear line detection
process applied to (a).

e,
ok

(b)

Figure 3. Four iterations of Version I of the line intensity
enhancement algorithm, applied to Figure 2b:
Weights - 2, 2, 2, 1, 0, =1, -2, =2, -2
PFAC = NFAC = 630

(b)

Figure 4. Two iterations of Version I of the line intensity
enhancement algorithm, applied to Figure 2b:
Weights same as in Figure 3; PFAC = NFAC = 320.

4n-38




(d)

Figure 5. Four iterations of Version I of the line intensity
enhancement algorithm, applied to Figure 2b:
Weights - 3, 2, 1, 0, -1, -2, -3, -3, -3
PFAC = NFAC = 630

XXX XXX XXX XXX XX
XXX XX XXX XXX XXX
X XX XX XX XXX
X X XX XX XX

p P p p p

Figure 6. Masks used in Version III of the line intensity
enhancement algorithm.

XXX XX XX XX XX
XXX XX XX XX XXX
X XX XX X XX

x X X XX X

0 0 00 00 0
0 00 0 0 0
0 0 0 0 0

0 0 0 0 0

P P p P P

Figure 7. Masks used in Version IV of the line intensity
enhancement algorithm. Points indicated by 0's

were not used.

Figure 8. Two iterations of Version Il of the line intensity
enhancement algorithm, applied to Figure 2b:
Weights - 2, 2, 2, 1, 0, 0, 0, O, O.
a) First iteration; b) Second iteration;
c; Result of thresholding (a) at 35;
d) Result of thresholding (b) at 35.

4A-39

Py W S I S Ay S S



SRR LR
Py A

i _\:&..F“': %
(a)

Figure 9.

Figure 10.

Figure 11.

Two iterations of Version III of the line

jntensity enhance-

ment algorithm, applied to Figure 2b; weights and thresholds

same as

Four iterations of Version IV of the line
ment algorithm, applied to Figure 2b; weights same as

(b) (

in Figure 8.

c)

intensity enhance-
in Figure 3.

Experiments on a SKYLAB imag

e of suburban Washington DC.

a) Original

image;

b)

Qutput of nonlinear line detector;

Figure 12.

XXX
XXX
XXX
XXX
XXX
XXX

Figure 13.

¢) - f) Four iterations of Version II of the line intensity
enhancement algorithm.
1 2 3 4

Histograms of the intensities in Figures 2b and 3

(= iterations 0-4).
KXXX XXX X XXX i:
XX XX XXX XXX X
XXX XXX XXX XXX
XXX XXX XXX XXX
xX XXX XXX XXX
XX XX %X XXX
P p pXx px

Masks used in Version II of the line orientation
alignment algorithm.

4A-40




AVERAGE

Parameter values Iteration Counters DIFFERENCE
al Y 12 3 4
7 5 1 1718 155 671 1586 .702
2 1240 0 7 339 .475
3 5 1 383 545 281 2921 .859
2 700 47 60 2114 772
0 24 ’ 1 33 0 0 4097 .999
2 63 0 0 4034 .862

Figure 14. Experiments with the first
version of the alignment

algorithm.
AVERAGE
Parameter values Iteration Counters DIFFERENCE
hal Y 12 3 4
0 36 1 5 0 0 4474 .874
2 6 0 0 4462 .736
6 12 1 699 10 35 3735 .786
2 613 1 7 3114 .684
3 340 1 3 2770 .531
4 250 0 0 . 2520 .415
7 7 1 584 503 424 2968 .750
2 840 12 29 2087 .658

Figure 15. Experiments with the second version
of the alignment algorithm.

4A-41




VUUL. 3pu 1 & E A8 "H3 CPR 33 DF 6877F €
UUUe. . Crow g 8F3 267 RE3 RRC F3  DF 6380 F RA e - 33
suosT 3 BsBC 33 733 EF CrRB 86} AA3 »° 3 a3
ulU9. . Coun G 1 RB 8 916 99 3 F32 ' BR7 &u
Uiy, o ot tbe2 P s 616 FE 3En F6 5 33 N
. 41 : . 5
8837' lea o CBK F3 66 :
Ulus. A 2t ABARS BECR 8 F
Uluy, DF gr G F
VBTN ) 5
UUlil. )
Uul:2, te
GO1Ly. °k

£

Ulls.

uulg. 3CH 6
F
C

n
—
=
[*)
m
0
~

UUlp.
Uu17.
UUlese
uuly, C
VUZ20.
uuZle. It
Udgge o
uldne. ) G
(]
9

u £
Cu_F E
c
Selats] Q4
GeR B4 CF
4o~ p

18
55 F F Su 4
BNR 66 4
C F 6

SehRew
TTﬁchhbwﬂu

UUgy. Con

ulZh,
Ulco. AA g,

RRRRQOQAOQ
A8 ARR”R aAcce
F6 4 A

Fedo ]

v
@

e N
CT O NGN
~
ale}
a2

<
[
-
~
-
n
-+
aOT
T
)
et e
[}
m
m

4 66 RET7
4 G 77766
3 1 7¢7

m
o RN

cc RG99 aaapagq3qu
(o 998999988 899  Acr
[

vuze, CCL A £ 87777 gRA 61

oA
&
£

cey F GF E3 EF F 336 ;

a

b:

N W
2
~ !
»n
~
p o]
p

C
c
o
[
fal
RE\V
ale!
om MmN
T PYeEe
NN NG TN
> ,
~
~N>
N
N
>~
™

C

(e}
a0
[alele

I>
OO MM
TT RN
m

_ A999 qoR9§9ag9aqa
nR ngqqqana 999 ap
9 CRA

”94#' GHH . e h66
opgo. RBABCE 7677
sv BCC A 77777

NN
22
@]

Figure 16. Results (from top to bottom) of two iterations of Version II
of the line orientation alignment algorithm.
Parameters t] =7, t2 =

4A-42

i A A .




APPENDIX. COMPUTATION OF 16 ORIENTATIONS

The nonlinear line detectors used in these experiments were based on comparisons
between average gray levels measured over 2-by-2 cells. For example, the vertical lin,
detector was computed as follows: Let A,B,...,I be a block of nine 2-by-2 cells as
illustrated;

WO >
amw

C
F [
I
then we say that a vertical line has been detected if six conditions are satisfied:
|B|>|Al, |BI>|c], |E|>|D]|, |E|>|F|, |H|>|G]|, and |H|>|I|, where the bars denote
"average gray level of".

The 16 orientations were obtained by using similar configurations of cells

aligned in other directions. The following table shows the arrangements of the cells
corresponding to each orijentation.

Orientation Arrangement(s)
1 ABC
DEF
GHI
2 ABC ABC
’ DEF or DEF
GHI G HI
3 ABC ABC . ABC
DEF or DEF or D EF
GHI GHI GHI
4 ABC ABC
DEF or DEF
G.HI G HI
5 ABC A
D EF or D B
GHI G EC
H F
I
A
6 A 6 DB
' D g HEC
G E c or 1 F
HF
1
D A
7 DA A G £ B
GEB or G DB or H F C
HFZC "HEC I
I IF
A
D A G D
8 SEB or HE §
I FC I1 F ™~
9 GDA
HEB
I FC
10 G D G
H E g or H E S
I F I
c FC
4A-43




OoOuw

[ e iy )}

or

<o
oul
(0> I =g

Arrangements(s)
or

< 0O

[ QR TN
(Lo s =g ]

[

o

—

-

[

ey

[ =4 r-—

[ 1} ~—

o

5

o

—

< 0O

(5}
w m
< 0O — <
oW jo i
(2> o i (L
| 1
o o
L MO << MO
[=YFERTH ow .
(> =i 0 T
o o
— —

588

I

wi

G H

or

— ot

o

14

[=e]
<C

AB

E
ABC

G HI

or

— Ll 00
Il <C
(1> ]

or

w o
— o

o<

15

c

-

B

T uw

A

o

or

o
w oo

o<

GHI

16

<«
<
!
<
<




	Purdue University
	Purdue e-Pubs
	1-1-1976

	Experiments in Iterative Enhancement of Linear Features
	Gordon J. VanderBrug




