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EXPERIMENTS IN ITERATIVE ENHANCEMENT 

OF LINEAR FEATURES 

Gordon J. VanderBrug 

Computer Science Center 
University of Maryland 

College Park, Maryland 20742 

I. ABSTRACT 

Lines and curves in an image are de
tected locally by a template-matching pro
cess which determines the "line-ness" value 
of the image at each point, in a set of 
orientations. The output of the detection 
process is the strongest of these values at 
each point, and the orientation that gave 
rise to this value. The results of this 
approach tend to be noisy, but their noisi
ness can be reduced by examining, for each 
point, the values at nearby points, in the 
direction defined by the preferred orienta
tion, and increasing the point's value if 
the nearby points have high values and 
similar orientations. Iteration of this 
reinforcement process leads to further 
noise reduction. Several variations on 
this scheme are presented. The preferred 
orientations can also be "sharpened" by 
examining the orientation at nearby points 
(in the preferred direction) and biasing 
it toward their average. Experimental re
sults using these methods are obtained for 
LANDSAT. and SKYLAB images containing many 
linear features. 

II. INTRODUCTION 

Lines and curves in an image can be 
detected locally by a template-matching 
process, in which a set of operators, each 
having a preferred orientation, is applied 
to the image at each point. The operators 
may be linear or nonlinear, but it has 
been found that a nonlinear technique gen
erally yields better detection results 
[lJ. The output of the detection process 
at each point is a vect~r whose magnitude 
is the strongest of the operators' outputs 
at that point, and whose orientation is 
the one for which this strongest output 
was obtained. This method of line detec
tion has been tested on LANDSAT and SKYLAB 
imagery containing linear features such as 
r~ads, rivers, and lineaments [2J. 

The results of any local line detec-
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tion operation will be somewhat noisy, 
since image points not lying on lines or 
curves may appear locally line-like, and 
vice versa. This report describes some 
methods of reducing the noisiness by ex
amining, for each point, the output values 
at nearby points, in the direction defined 
by the· preferred orientation, and increas
ing the point's value if the nearby points 
have high values and similar orientations. 
Further noise reduction is obtained by 
iterating this process. Several varia
tions on this approach are described, and 
results are presented for LANDSAT and 
SKYLAB images containing many linear 
features. A method of "sharpening" the 
preferred orientation at each point, by 
examining the orientations at nearby 
points (in the preferred direction) and 
biasing it toward their average, is also 
tested. 

A more elaborate method of improving 
line detection results by iterative local 
processing is presented in [3J. Here a 
probability vector is initially associated 
with each point; its components are the 
probabilities that a line passes through 
the point in each of a set of orienta
tions, or that no line is present. At 
subsequent steps, the probability vectors 
in the neighborhood of the point are ex
amined, and the line and no-line probabi
lities at the point are adjusted accor
dingly: high line probabilities in a 
given direction and orientation reinforce 
the line probability for that orientation, 
while high no-line probabilities reinforce 
the no-line probability. This method has 
led to successful results in a variety of 
tests, as described in [3J. The methods 
described in the present report, which 
were developed concurrently, can be re
garded as simplifications of the approach 
used in [3J; the present methods reinforce 
line intensity, and sharpen line direc
tion, independently of one another. 

Section III describes several varia-



tions on the line intensity enhancement 
process, and the results obtained using 
them. Section IV discusses line orienta
tion sharpening. Section V recapitulates 
the results and recommends directions for 
future studies. 

III. LINE INTENSITY REINFORCEMENT 

The reinforcement algorithm is de
signed to iteratively enhance the output of 
a line detector by rewarding (increasing 
the intensity of) those points on a line, 
and punishing (decreasing the intensity of) 
those points which are not on a line. 

The algorithm assumes the existence of 
a line detector that produces line orienta
tion values as well as line intensity 
values. At each point in the array of line 
intensity values, it examines neighboring 
points in the directions indicated by the 
orientation value. It increases the in
tensity vaJue according to the number and 
intensity of the points that it sees which 
are reasonably well aligned with that 
orientation. Similarly, it decreases the 
point's intensity value according to the 
number and intensity of the points that it 
sees which are not well aligned with that 
orientation. Thus, the amount of reward 
or punishment depends on: 

1) the number of points seen 
2) the intensities of these points 
3) the alignment of these points 

The reinforcement algorithm was 
written to accept the output of a nonlinear 
line detection operation [2J. This non-
1i~ear detector generates output in 16 
or1entations, as follows: -

I 2 ~ 

16 15 

7 

8 

9 

10 

These orientations are used to define 
masks, which are regions (or neighborhoods) 
of a picture point within which the point 
looks for information to use as a basis for 
rewarding or punishing its line intensity 
value. The masks used for Version I of the 
reinforce~ent program are shown in Figure 
1. (Vers10ns II, III, and IV will be de
scribed later.) Only half of the masks for 
orientations 1 through 5 are shown. The 
other half of each mask is constructed by 
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reflecting across the line orthogonal to 
the orientation. Masks 6 through 16 are 
constructed by rotating and reflecting the 
masks shown in Figure 1. 

For each picture point the reinforce
ment algorithm examines all of the points 
within the region defined by its orienta
tion (i .e., within the mask). A vector 
(w O"" ,w8 ) is used to compute the meas~re 
of reward/punishment defined by the points 
within the mask region. Let P1, ... ,Pn and 

q1 , ... ,qn be the line value intensities 
and orientations of the points within the 
mask region defined by a point whose in
tensity is p and orientation is q. The 
quantity 

n 
R = L w 

i=l Ilqi-qll Pi' 

where 0 So II qi -q II So 8 represents the 
absolute difference in orientation between 
the points Pi and p, is a sum of the inten-
sity of the points "seen by p", weighted 
according the differences in orientation. 
The weights contribute to the extent to 
which p is reinforced as follows: 

Wj > 0 - reward 

o neither reward nor punish 

Wj < 0 - punish 

A possible (symmetric) set of weights 
might be 

2 2 2 o -1 -2 -2 -2 

Thus, if R is a large positive number the 
~oi~t ~ should be rewarded substantiail y ; 
1f 1t 1S a large negative number it 
s~o~ld be punished substantia1ly~ and 
slm11ar1y for intermediate values. 

The actual change in p is computed 
from R as follows. Let 

1 

npos 

nneg 

L w. 
w.>O 1 

1 

L I w. I 
w.<O 1 

1 

where npos and nneg are the numbers of 
positive and negative weights, respec-



tively. If R ~ a then 

p .... p + R 
d .PFAC· (63-p) 

pos 

If R < 0 then 

R p .... p + d ·NFAC· P 
neg 

where PFAC and NFAC are parameters which 
are used to control the magnitude of the 

d . h t If R ~ 1 reward an punlS men. d PFAC 
pos' 

then p is set to 63; similarly, if 

d ~NFAC < -1 then p is set to O. (Here 
neg 

o and 63 are the limits of the grayscale 
used to represent line intensity values.) 

The program was run on a l27x127 point 
portion of a LANDSAT image of Kentucky 
(Figure 2) using the following choices of 
weights and parameters: 

1) Symmetric weights: 

2 2 2 o -1 -2 -2 -2 

PFAC = NFAC 630 

2) Same, except with NFAC = 320 

3) Negatively biased weights: 

3 2 a -1 -2 -3 -3 -3 

PFAC = NFAC = 630 

The value 630 chosen for PFAC and NFAC 
(except in case (2)) was arrived at as 
follows: For a strong line in the pre
ferred orientation through the point, 
about 15 of the 24 mask points should have 
this orientation (i .e., zero orientation 
difference); if these points have intensity 
42, we have an R contribution of about 
1 5x4 2. 

Results of experiments using these 
three sets of weights and parameter values 
are shown in Figures 3-5. The results are 
all quite similar, though there is a 
slightly greater elimination of noise when 
the negatively biased weights are used 
(compare Figure 5d with Figure 3d). 

Three other versions of the reinforce
ment scheme were also tested: 

Version II uses the same masks as Version I 
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(as shown in Figure 1), but it only re
wards, never punishes -- i.e., it uses non
negative weights of the form 
222 1 a 0 0 a O. 

Version III uses the shorter, wider masks 
shown in Figure 6, and only re~ards, never 
punishes. 

Version IV uses masks that d~ not involve 
close neighbors of the given point (see 
Figure 7); otherwise, it is identical to 
Version 1. 

Results of experiments using these ver
sions are shown in Figures 8-10. As would 
be expected, Version II does not suppress 
noise (Figure 8a-b), but the curves that 
it enhances can be extracted by threshold
ing (Figure 8c-d). Similar remarks apply 
to Version III (Figure 9), which seems to 
do somewhat better than Version II (com
pare Figures 8c-d and 9c-d). Version IV 
does not appear to do as well as Version I 
(compare Figures 3a-d and lOa-d). But all 
the versions perform quite comparably, 
which is an indication of the robustness 
of the iterative approach. 

Figure lla shows a Skylab image (from 
the S190B camera) of suburban Washington, 
D. C. The output of the line detector and 
four iterations of Version II, which are 
shown in Figure 11b-f, demonstrate that 
the major roads and segments of the subur
ban streets are enhanced. A version with 
no punishment was chosen here because the 
detector output appears to have very little 
noise. 

The progress of the reinforcement 
scheme can be monitored by examining the 
histogram of intensity values at each 
iteration. Such histograms for the case 
in Figure 3 are shown in Figure 12; note 
that they become more bimodal with each 
iteration. 

IV. LINE ORIENTATION ADJUSTMENT 

The orientationa1 adjustment al
gorithm presented here.is a par~11e1, . 
iterative algorithm WhlCh uses lnformatlon 
about the line orientations at a point's 
neighbors to adjust the line orientation 
at the point so as to improve the align
ment. The neighbors that are used to 
obtain this information are defined by 
masks such as those shown in Figures 1, 6, 
and 7. 

The computation at a point p proceeds 
as follows. The orientations of the lines 
at all the points of p's mask are deter
mined, and those orientations which do not 
differ from p's orientation by too much 
are averaged. Points whose orientations 
differ from that at p by large amounts are 
excluded from this computation because 



I! I 

, I 
. ! 

their influence on p would lead to un
desired results. However, if p'S mask con
tains too many such points, one must ques
tion the existence of a line at p itself. 
Also, p'S existence is quest~onable when 
its mask contains too few p01nts whose 
orientations are reasonably well aligned 
with its own. Therefore, the algorithm 
deletes a point if the number of nonaligned 
mask points is too large, or if the numb~r 
of aligned points is too small. Each .po1nt 
which survives has its orientation adJusted 
by some fraction of the difference between 
the original orientation and the computed 
average orientation over the mask. 

The iterative application of the above 
algorithm allows for increasingly more 
global knowledge about orientation to be 
used in the orientational alignment pro
cess. Since the magnitude of the adjust
ment at each stage will in general be a 
fraction of a discrete orientation (16 
orientations were used), the array produced 
at each iteration is real valued. The pro
gress at each iteration can be monitored by 
examining 1) the number of points set to 0 
because of too few aligned points, 2) the 
number of points set to 0 because of too 
many nonaligned points, 3) the number of 
points set to 0 because of both (1) and 
(2), and 4) the average adjustment in the 
orientation of the points which survive. 

The input picture points have the 16 
orientations shown in Section 2. To aver
age two orientations, one cannot simply add 
and divide by 2; the average of orienta
tions 2 and 16 is not 9, but 1. Rather, 
one must average in such a way that the 
smaller angle between the orientations 
(which is less than TI/2) is bisected. This 
is equivalent to adding the orientations 
modulo 16, so that the sum of orientations 
2 and 16 is 2, rather than 18, and their 
average is 2/2 = 1. Alternatively, we can 
average the orientations in the ordinary 
way, and then represent the average modulo 
8, so that the average of 2 and 16 is 9, 
which is the same as 1 modulo 8. 

. T9 comp'ute the average of n orienta-
t10ns 1n th1S way, we must maintain a par-
tial aver.age value, so that at each stage 
the decision as to whether or not the next 
orientation should be adjusted modulo 16 be
fore averaging can be made. Suppose that a. 

1 
is the average of the first i orientations, 
and that b is the i+lst orientation. The 
following algorithm computes a i +l : 

/* Adjust b if necessary */ 
If (a.-b) > 8 then b + b + 16, else if 

1 

(ai-b) < -8 

then b + b - 16 
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/* Average in b */ 

i . a . +b 
1 

i + 1 

/* Adjust computed average so that 

1 So a i + l s.16 */ 

If a i +l > 16 then a i +l + a i +l - 16, 

If a i +l < 1 then ai+l + a i +l + 16 

This algorithm can be viewed as a pro
cedure, Aver, which computes a i +l from a i 
and b; that is, 

a i +l + Aver (a i ,b)* 

In addition to the computation of the 
average orientation, the alignment al
gorithm uses a difference-in-orientation 
computation which we denote by \\q-m\\. 
Here I \q-m\ I represents the signe~ diff
erence modulo 16 between orientations q 
and m. For example, 

1\16 

1\2 
1\8 

21\ 

16 i \ 
41\ 

-2 

2 

4 

This computation is defined as: 

\\q-m\\ ::: if (q-m) > 8 then q-m-16 

else if (q-m) < -8 then q-m+16 

else q-m 

Input Variables 

d - if the absolute value of the dif~ 
erence in orientations at two 
points is So d the points are con
sidered aligned, otherwise they 
are nonaligned. 

tl -if the number of aligned points 
seen is So tl then del ete the 
point. 

*Note that the average of two perpendicu
lar orientations is ambiguous; e.g., the 
average of 4 and 12 could be either 8 or 
16. The program resolves this ambiguity 
in an arbitrary manner. 



t2 - if the number of nonaligned 
points seen is ~ t2 then delete 
the point. 

w - the adjustment fraction. 

Intermediate Variables 

q - orientation at the point p being 
adjusted. 

m - orientation at a point in the 
mask of p. 

a - average (partial or final) of 
orientations of the points in the 
mask of p. 

i,j - counters used to determine 
whether or not a point should be 
deleted. 

For each point p we proceed as 
follows: 

/* Compute average of points in p'S mask */ 

a +- 0; i +- 0; j +- 0 

For each point m of the mask 

If abs(\\q-m\\) :;. d 

then a +- Aver (a, i , m) 

+- i + 1 

else j +- j+l 

/* Delete points which do not have enough 
aligned points, or have too many non
aligned points, in their masks */ 

If i :;. tl or j ~ t2 then q +- 0 

/* Adjust the orientation of the point */ 

q +- q + w - \ \ a - q \ \ 

If q > 16 then q +- q - 16 

elseifq< then q +- q + 16 

The program also maintains the follow
ing statistics for each iteration: 

counter 1 - number of points set to 0 
because there were not 
enough aligned points in 
the mask 

counter 2 - number of points set to 0 
because there were too 
many nonaligned points in 
the mask 
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counter 3 - number of points set to 0 
for both of these reasons 

counter 4 - number of points whose 
orientations were adjust
ed 

aver. diff. - the average orientation 
difference, \\a-q\\, for 
the points that were ad
justed; w times aver. 
diff. gives the average 
adjustment 

Several versions of the alignment 
algorithm have been implemented. The first 
uses the mas ks shown in Fi gure 1. whi 1 e the 
second uses the shorter, wider masks shown 
in Figure 13. A third version, designed 
but not implemented. weights the difference 
between the orientations at p and each mask 
point by the line value of the mask point. 
Specifically, let q, m, a, i be as above, 
let A be the partial sum of the line 
values, and let M be the line value of m; 
then we define Procedure Aver (a, i, m, M) 
as follows: 

If (a-m) > 8 then m +- m + 16 

else if (a-m) < -8 then m +- m - 16 

A-a + M-m 
a +- A+M 

If a ~ 16 then a +- a - 16 

else if a < then a +- a + 16 

The results of running the first two 
versions of the algorithm on the window 
shown in Figure 2 are summarized in 
Figures 14 and 15. In all of these ex
amples. the DIFF parameter was set at 4, 
and the weight factor w at 1/2. It is 
seen that the number of points adjusted 
(Counter 4), and the average difference, 
decrease in every case, so that the pro
cess appears to be convergent. Pointwise 
numerical results for a portion of the 
window are shown in Figure 16; here the 
orientations 1, ... ,16 are represented by 
the characters 1 •... ,9,A, ...• G. Some 
"sharpening" of the orientations is 
apparent in these examples. 

V. CONCLUSIONS 

The experiments reported here confirm 
the utility of local iterative techniques 
for enhancing line intensities. and adjus
ting line orientations, in the output of a 
line detection algorithm. Variations in 
the masks and reinforcement schemes used 
seem to have little effect on the results, 
which indicates that the approach is 



robust. It could be implement~d very 
straightforwardly using parallel hardware. 
Even on a sequential machine, it requires 
only a single pass through the line value 
(or orientation) array per iteration, so 
that its computational cost per iteration 
is comparable to that of the original line 
detection process -- namely, order (picture 
area) operations. 

There are a number of possibilities 
for extending this work. One extension is 
to combine the two approaches by having a 
point reinforce its intensity and align its 
orientation at the same time. The align
ment algorithm can easily be made a func
tion of the intensities of the points seen, 
as well as their orientations. One might 
consider making the level of reinforcement 
inversely proportional to the variance of 
orientations of the points seen. 

Another possibility for future work is 
to give the algorithm some capability for 
extending lines and filling gaps. Pre
sently no such capability is present be
cause neither algorithm does any computa
tion at points where the line detector out
put (i.e., the intensity) is zero. Provid
ing for a line extension capability in a 
brute force manner by examining all orien
tations at all points with zero intensity 
would be computationally very expensive. 
A less costly approach would be based on 
the idea that a point which lies at the end 
of a line can recognize itself as an end
point, and one can then invoke a (local) 
procedure, at the points in the picture 
which are natural extensions of the line, 
in an attempt to extend the line. This 
approach would be computationally feasible 
because, (1) it would not be invoked at 
every zero-intensity picture point, and 
(2) it has some orientational information 
at points where it is invoked. There are 
some potential pitfalls in this approach, 
especially where sharply curved lines are 
present. These problems may be manageable 
by (1) providing wide fields of view at the 
endpoints, and (2) insisting that lines 
cannot be extended for more than a certain 
number of steps except in instances of gap 
filling. 

Another aspect of line enhancement 
which can be incorporated into these 
iterative techniques is thinning. In 
thinning one looks in directions that are 
orthogonal to the directions used for rein
forcement and alignment. The action taken 
should serve to enhance those points which 
are local maxima, since they lie at the 
center of the line. This approach has been 
used successfully on edge detector output 
in[4J. 

Our experiencesindicate that iterative 
enhancement techniques appear promising, 
and extensions and additional experiments, 
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using a wider variety of input data, are 
warranted. 
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Figure 1. Masks used in Version I of the line intensity 
enhancement algorithm. 

Figure 2. 
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image used in experiments. a) - Original 
b) - Output of nonlinear line detection 
applied to Cal. 

(b) (c) 
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xx 

(d) 

Figure 3. Four iterations of Version I of the line intenSity 
enhancement algorithm, applied to Figure 2b: 

Figure 4. 

Weights - 2. 2, 2, 1, 0, -1, -2, -2, -2 
PFAC = NFAC = 630 

(, ) (b) 

Two iterations of Version I of the line intensity 
enhancement algorithm, applied to Figure 2b: 
Weights same as in Figure 3; PFAC. NFAC • 320. 
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Figure 5. Four iterations of Version I of the line intensity 
enhancement algorithm, applied to Figure 2b: 
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Figure 7. 
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Figure 8. Two iterations of Version II of the line intensity 
enhancement algorithm, applied to Figure 2b: 
Weights - 2, 2, 2, 1. 0, 0, 0, 0, O. 
a) First iteration; b) Second iteration ; 
c) Result of thresholding (a) at 35; 
d) Result of thresho l ding (b) at 35. 
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( a ) (b) (c) 

Figure 9. Two iterations of Version III of the line intensity enhance
ment algorithm, applied to Figure 2b; weights and thresholds 
same as in Fi~ure 8. 
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(b) ( c ) 

Figure 10. Four iterations of Version IV of the line intensity enhance-
ment algorithm, applied to Figure 2b; weights same as in Figure 3. 

(a) (b) (c) (d) (. ) (f) 

Figure 11. Experiments on a SKYLAB image of suburban Washington DC. 
a) Original image; bJ Output of nonlinear line detector; 
c) _ f) Four iterations of Version II of the I1ne intensity 
enhancement algorithm. 

~ ~ ~ 
a 1 J 4 

Figure '2, Histograms of the intensities in Figures 2b and J 
(= iterations 0-4) , 
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F 1 9 u re 13, Masks us e d in Version J J of the 11 ne orientation 
al ignment algorithm. 
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Iteration 
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2 

Figure 14. 

Iteration 
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1718 155 671 

1240 0 7 

383 545 281 

700 47 60 

33 0 0 

63 0 0 

Experiments with the first 
version of the alignment 
algorithm. 

1 
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840 

2 

0 

0 

10 

o 

503 

12 

Counters 

3 

0 

0 

35 

7 

3 

o 

424 

29 

Figure 15. Experiments with the second version 
of the alignment algorithm. 
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Figure 16. Results (from top to bottom) of two iterations of Version II 
of the line orientation alignment algorithm. 
Parameters tl = 7, t2 = 7. 
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APPENDIX. COMPUTATION OF 16 ORIENTATIONS 

The nonlinear line detectors used in these experiments were based on comparisons 
between average gray levels measured over 2-by-2 cells. For example. the vertical line 
d~tector was computed as follows: Let A.B •...• I be a block of nine 2-by-2 cells as 
ill ustrated; 

ABC 
D E F 
G H I 

then we say that a vertical line has been detected if six conditions are satisfied: 

IBI>IAI. IBI>lcl. IEI>IDI. IE\>IFI. IHI>IGI. and IHI>I II. where the bars denote 

"average gray level of". 

The 16 orientations were obtained by using similar configurations of cells 
aligned in other directions. The following table shows the arrangements of the cells 
corresponding to each orientation. 

Orientation 

2 

3 

4 

G 

5 

G 

6 

7 

8 

9 

10 

ABC 
D E F 

G H I 

ABC 
D E F 

G H I 

ABC 
D E F 
H I 

D 
H 

A B C 
E F 
I 

D A 
G E B 
H F C 
I 

D A 
G E B 
H F C 
I 

G D A 
H E B 
I F C 

Arrangement(s) 

ABC 
D E F 
G H I 

or 

or 

or 

or 

or 

or 

or 

ABC 
D E F 
G H I 

A B C 
D E F 
G H I 

A B C 
D E F 

G H I 

A 
D B 

G E C 
H F 
I 

D A 
G E B 
H F C 
I 

A 
G D B 
H E C 
I F 

G D A 
H E B 
I F C 

G D A 
H E B 
I F C 

G D A H E B I F C 
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or 

or 

or 

ABC 
D E F 

G H I 

D A 
G E B 
H F C 
I 

G D A 
H E B 
I F C 



Orientation Arrangements(s) 

11 G D G G D H E A or H D A or H A 
I F B I E B I E B 

C F C F C 

12 G D H E 
A or G D I F B H E A 
C I F 

B 
C 

13 G G H I 
H D D E F 
I E A or A B C 

F B 
C 

14 G H I G H I 
D E F or t) E F 
A B C A B C 

15 G H I G H I G H I 
D E F or D E F or D E F 
A B C A B C ABC 

16 G H I G H 
D E F or D E F 
ABC ABC 
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