The Modeling of Anisotropic Fuselage Lining Material

Yeon June Kang
Purdue University

J Stuart Bolton
Purdue University, bolton@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

http://docs.lib.purdue.edu/herrick/149

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.
THE MODELING OF ANISOTROPIC FUSELAGE LINING MATERIAL

Y. J. Kang and J. S. Bolton

Ray W. Herrick Laboratories
School of Mechanical Engineering
Purdue University, West Lafayette IN47907
 INTRODUCTION

- Objective:
 - development of a theoretical model that can account for the effect of lining anisotropy on sound transmission through fuselage structures

- Present Work:
 - measurements of physical properties of polyimide foam samples
 - measurements of random incidence transmission loss
 - numerical simulations of random incidence transmission loss with isotropic and anisotropic models
Physical Properties to be Measured

- Bulk Density
- Flow Resistivity*
- Bulk Modulus* & Loss Factor
- Bulk Shear Modulus*
- Porosity
- Tortuosity*

* anisotropic in polyimide foam
HORIZONTALLY CUT vs. VERTICALLY CUT SAMPLES

foam rise direction

150 cm

75 cm

horizontally cut sample

vertically cut sample
Flow Resistivity Measurement

Horizontally cut sample
5.81×10^4 mks Rayls/m

Vertically cut sample
9.64×10^4 mks Rayls/m
Bulk Modulus Measurement

Horizontally cut sample
$1.5 \times 10^5 (1+j0.33) \text{ Pa}$

Vertically cut sample
$8.7 \times 10^4 (1+j0.28) \text{ Pa}$
Bulk Shear Modulus Measurement

Horizontally cut sample
\(1.1 \times 10^5 (1+j0.06) \text{ Pa}\)

Vertically cut sample
\(6.0 \times 10^4 (1+j0.11) \text{ Pa}\)
\[\sigma_x = (2N + A)e_x + Fe_x + Me \varepsilon \]
\[\sigma_z = Fe_z + Ce_z + Qe \varepsilon \]
\[\tau_{zx} = \tau_{xz} = G\gamma_{zx} \]
\[s = Me_x + Qe_z + Re \varepsilon \]
EQUATIONS OF MOTION

\[
\begin{align*}
\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xz}}{\partial z} &= \rho_1 \frac{\partial^2 u_x}{\partial t^2} + \rho_2 (q_1^2 - 1) \frac{\partial^2 (u_x - U_x)}{\partial t^2} \\
&\quad + b_3 \frac{\partial}{\partial t} (u_x - U_x) \\
\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \sigma_z}{\partial z} &= \rho_1 \frac{\partial^2 u_z}{\partial t^2} + \rho_2 (q_2^2 - 1) \frac{\partial^2 (u_z - U_z)}{\partial t^2} \\
&\quad + b_2 \frac{\partial}{\partial t} (u_z - U_z)
\end{align*}
\]

\[
\begin{align*}
\frac{\partial \sigma_z}{\partial x} + \frac{\partial \tau_{zx}}{\partial z} &= \rho_1 \frac{\partial^2 U_x}{\partial t^2} + \rho_2 (q_1^2 - 1) \frac{\partial^2 (U_x - U_x)}{\partial t^2} \\
&\quad + b_3 \frac{\partial}{\partial t} (u_x - U_x) \\
\frac{\partial \tau_{zx}}{\partial x} + \frac{\partial \sigma_x}{\partial z} &= \rho_2 \frac{\partial^2 U_x^2}{\partial t^2} + \rho_2 (q_2^2 - 1) \frac{\partial^2 (U_z - U_z)}{\partial t^2} \\
&\quad + b_2 \frac{\partial}{\partial t} (U_z - u_z)
\end{align*}
\]
System of Governing Differential Equations in 2-Dim.

From Dynamic Relations and Stress-Strain Relations,

Solid Phase:

\[
\left[N \frac{\partial^2 u_x}{\partial x^2} + G \frac{\partial^2 u_x}{\partial z^2} \right] + \frac{\partial}{\partial x} \left[N \frac{\partial u_x}{\partial x} + (G + F - A) \frac{\partial u_x}{\partial z} \right] + \frac{\partial}{\partial x} (Ae_s + M\varepsilon) = -\omega^2 (\rho_{111}^* u_x + \rho_{121}^* U_x)
\]

Fluid Phase:

\[
\frac{\partial}{\partial x} (Me_s + R\varepsilon) + (Q - M) \frac{\partial^2 u_x}{\partial z^2} = -\omega^2 (\rho_{121}^* u_x + \rho_{221}^* U_x)
\]

where \(u_x, u_z, U_x, U_z \) are solid and fluid displacements

\(e_s = \frac{\partial u_x}{\partial x} + \frac{\partial u_z}{\partial z} \) is volumetric strain of solid phase

\(\varepsilon = \frac{\partial U_x}{\partial x} + \frac{\partial U_z}{\partial z} \) is volumetric strain of fluid phase

\(A, C, F, G, M, N, Q \) are elastic coefficients
STEP 1 Substitute assumed solutions for displacement fields into the system of governing equations.

Incident sound field: $\Phi_i = e^{-j(k_0 x + k_0 z)}$

Assumed solutions:
- $u_x = a_i e^{-j(k_0 x + k_0 z)}$
- $u_z = b_i e^{-j(k_0 x + k_0 z)}$
- $U_x = c_i e^{-j(k_0 x + k_0 z)}$
- $U_z = d_i e^{-j(k_0 x + k_0 z)}$
STEP 2 Solve the characteristic equations for wavenumbers of three types of waves within polyimide foam layer

\[
\begin{bmatrix}
\lambda_{11} & \lambda_{12} & \lambda_{13} & \lambda_{14} \\
\lambda_{21} & \lambda_{22} & \lambda_{23} & \lambda_{24} \\
\lambda_{31} & \lambda_{32} & \lambda_{33} & \lambda_{34} \\
\lambda_{41} & \lambda_{42} & \lambda_{43} & \lambda_{44}
\end{bmatrix} \begin{bmatrix}
a_i \\
b_i \\
c_i \\
d_i
\end{bmatrix} = 0
\]

\[A_1 k_{iz}^6 + A_2 k_{iz}^4 + A_3 k_{iz}^2 + A_4 = 0\]
Rewrite assumed solutions for displacement fields in terms of 6 unknown coefficients using calculated wavenumbers

- Solid Phase Displacements:

 \[u_x = e^{-j k_x x} \left(\sum_{i=1}^{4} \alpha_i C_i e^{-j k_{i_x} z} + \sum_{i=5}^{6} C_i e^{-j k_{i_z} z} \right) \]

 \[u_z = e^{-j k_x x} \left(\sum_{i=1}^{4} C_i e^{-j k_{i_z} z} + \sum_{i=5}^{6} \alpha_i C_i e^{-j k_{i_z} z} \right) \]

- Fluid Phase Displacements:

 \[U_x = e^{-j k_x x} \sum_{i=1}^{6} \beta_i C_i e^{-j k_{i_z} z} \]

 \[U_z = e^{-j k_x x} \sum_{i=1}^{6} \gamma_i C_i e^{-j k_{i_z} z} \]
STEP 4. Express the solid and fluid stresses of the foam in terms of displacement field solutions

- **Solid Phase Stress:**

\[
\sigma_z = - je^{-j k_z x} \left[\sum_{i=1}^{4} \{ k_x (F \alpha_i + Q \beta_i) + k_{iz} (C + Q \gamma_i) \} C_i e^{-j k_{iz} z} \\
+ \sum_{i=5}^{6} \{ k_x (F + Q \beta_i) + k_{iz} (C \alpha_i + Q \gamma_i) \} C_i e^{-j k_{iz} z} \right]
\]

\[
\tau_{xz} = - je^{-j k_z x} G \left[\sum_{i=1}^{4} (k_x + k_{iz} \alpha_i) C_i e^{-j k_{iz} z} + \sum_{i=5}^{6} (k_x \alpha_i + k_{iz}) C_i e^{-j k_{iz} z} \right]
\]

- **Fluid Phase Stress:**

\[
s = - je^{-j k_z x} \left[\sum_{i=1}^{4} \{ k_x (M \alpha_i + R \beta_i) + k_{iz} (Q + R \gamma_i) \} C_i e^{-j k_{iz} z} \\
+ \sum_{i=5}^{6} \{ k_x (M + R \beta_i) + k_{iz} (Q \alpha_i + R \gamma_i) \} C_i e^{-j k_{iz} z} \right]
\]
SOLUTION PROCEDURE

STEP 5
Apply the appropriate boundary conditions and solve for reflection and/or transmission coefficients along with 6 unknown coefficients.

[Diagram showing sound panel and regions with symbols for incident sound, reflection, and transmission coefficients.]
BOUNDARY CONDITIONS

PANEL

(i) \(v_{1z} = j\omega W_t \)
(ii) \(v_{2z} = j\omega W_t \)
(iii) \(R_1 - P_2 = (DK_z^2 - \omega^2 m_z)W_t \)

OPEN SURFACE

(i) \(-hP = s \)
(ii) \(-(1-h) = \sigma_z \)
(iii) \(v_z = j\omega (1-h)u_z + j\omega hU_z \)
(iv) \(\tau_{xz} = 0 \)
BOUNDARY CONDITIONS

SEALED SURFACE

(i) \(v_z = j\omega W_t \)
(ii) \(u_z = W_t \)
(iii) \(U_z = W_t \)
(iv) \(u_x = W_p (-/+ \) \(\frac{h_p}{2} \frac{dW_t}{dx} \)
(v) \((+/-) \tau_{xx} = (D_p k_x^2 - \omega^2 m_x) W_p \)
(vi) \((+/-) P (-/+ \) \(q_p - jk_x \frac{h_p}{2} \tau_{xx} \)
\[= (Dk_x^4 - \omega^2 m_x) W_t \]
Sound Transmission Loss Measurement

Reverberation Room 255 m³

Foam Lined Panel Structure

B & K 4166 Pressure Microphone

Speaker #1

Speaker #2

B & K 2131

Power Amplifier

Bandpass Filters

Source #1

Source #2

B & K 2032

B & K 3520 Probe

Semi-anechoic Enclosure

aluminum panels

foam layer

Bonded-Bonded

aluminum panels

foam layer

Unbonded-Unbonded
Transmission Loss for Horizontally Cut Layer

Unbonded-Unbonded

- measured
- isotropic theory
- anisotropic theory

![Graph showing transmission loss vs. frequency](image.png)
Effect of Parameter Change on the Transmission Loss

Anisotropy in Flow Resistivity

<table>
<thead>
<tr>
<th></th>
<th>Res_x</th>
<th>Res_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>isotropic</td>
<td>5.81×10^4</td>
<td>5.81×10^4</td>
</tr>
<tr>
<td>anisotropic (original)</td>
<td>9.64×10^4</td>
<td>5.81×10^4</td>
</tr>
<tr>
<td>anisotropic (case 1)</td>
<td>9.64×10^3</td>
<td>5.81×10^4</td>
</tr>
</tbody>
</table>

![Graph showing transmission loss vs. frequency](image)
Effect of Parameter Change on the Transmission Loss

Anisotropy in Flow Resistivity

<table>
<thead>
<tr>
<th></th>
<th>Res_x</th>
<th>Res_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>isotropic (case 2)</td>
<td>5.81×10^3</td>
<td>5.81×10^3</td>
</tr>
<tr>
<td>anisotropic (case 3)</td>
<td>9.64×10^3</td>
<td>5.81×10^3</td>
</tr>
<tr>
<td>anisotropic (case 4)</td>
<td>9.64×10^4</td>
<td>5.81×10^3</td>
</tr>
</tbody>
</table>

Transmission Loss (dB)

Frequency (Hz)
Effect of Boundary Conditions on Transmission Loss

![Graph showing transmission loss vs. frequency for Unbonded-Unbonded (anisotropic) and Bonded-Bonded (anisotropic) boundary conditions.](image)
CONCLUSIONS

- Development of a theory to model anisotropic fuse lining material.
- Anisotropic theory can give closer agreement to measurement than isotropic theory.
- In the anisotropic case:
 - Layer resonances may exist at higher frequencies.
 - The magnitude of flow resistivity normal to the layer is more important parameter than the anisotropy in flow resistivity.