Localized Heating Near a Rigid Spherical Inclusion in a Viscoelastic Binder Material Under Compressional Plane Wave Excitation

Jesus O. Mares
Purdue University

Daniel C. Woods
Purdue University

Caroline E. Baker
Purdue University

Steven F. Son
Purdue University

Jeffrey F. Rhoads
Purdue University

See next page for additional authors

Follow this and additional works at: http://docs.lib.purdue.edu/herrick
Authors
Jesus O. Mares, Daniel C. Woods, Caroline E. Baker, Steven F. Son, Jeffrey F. Rhoads, J Stuart Bolton, and Marcial Gonzalez

This presentation is available at Purdue e-Pubs: http://docs.lib.purdue.edu/herrick/139
Localized Heating due to Stress Concentrations Induced in a Lossy Elastic Medium via the Scattering of Compressional Waves by a Rigid Spherical Inclusion

Jesus Mares, Daniel Woods, Caroline Baker, Dr. Steven Son, Dr. Jeffrey Rhoads, Dr. Stuart Bolton, Dr. Marcial Gonzalez

School of Mechanical Engineering, Purdue University
Energetic materials in a binder

- Common use of energetic crystals involves embedding them in a binder
- Behaviors of interest include mechanical interactions between crystals, mechanical behavior of the binder and crystals separately, and interactions between the binder and crystals.
- Loading conditions include impact and periodic excitation
- Periodic excitation involves high strain-rate behaviors, even if overall strain rate is low
- Complex structure makes coupled mechanisms difficult to isolate
Experimental Motivation

750-800 µm AP crystals to undergo excitation

Surface temperature rise of 750-800 µm AP particles after 2 s excitation

Single-crystal sample under ultrasonic excitation

(image adapted from Miller et al., *J. Appl. Phys.*, 2016)

ΔT ≈ 7°C

Insulated boundary

d = 1.45 mm

q = 0.162 W

ΔT ≈ 74.24°C

Point heat source in semi-infinite medium
Experimental Crystal Heating Rates

- Analytical approximation using semi-infinite medium solution for heat source magnitude \(q \) and depth \(d \) (varies due to morphology)
- Particle surface temperature is found by applying the same solution with given \(q \) at the particle radius
- 37°C/s for 750-950 µm HMX in Sylgard® at 215 kHz
- 125°C/s for 400-500 µm AP in Sylgard® at 215 kHz

Assumptions:
- Rigid spherical particle (no intrinsic heating)
- Linear viscoelastic binder
- Planar incident wave
- Perfect bonding between binder and particle (no particle/binder friction)
- Thermal stresses negligible
- Temperature-independent parameters

Boundary conditions:
- Displacement of binder = displacement of particle at boundary
- Newton’s second law: stresses integrated over particle surface produce acceleration

Numerical Solution parameters:
- 1-µm wave amplitude
- 500-µm HMX particle
- Sylgard binder
- 500-kHz excitation frequency

Simplified diagram of single-particle embedded in a viscoelastic binder

Mares, et.al., IMECE 2016
Stress Solution

- Solved by Pao and Mao in 1963 for linear elastic binder
- Expanded to lossy viscoelastic binder by Gaunard and Uberall in 1978
- Solved for lossy inclusion by Hinders, et. al. in 1994
- Solved with FE simulation by Chervinko in 2007

Real component of radial stress: $\mathcal{R}(\tilde{\sigma}_{rr})$

Real component of shear stress: $\mathcal{R}(\tilde{\sigma}_{r\theta})$

1-μm, 500-kHz harmonic plane wave excitation using Gaunard and Uberall expressions
Periodic Excitation of a Single Spherical Particle

- 1-μm, 500-kHz harmonic plane wave excitation
- 500-μm diameter HMX crystal in Sylgard

Radial Stress, $|\tilde{\sigma}_{rr}|$ (MPa)

Shear Stress, $|\tilde{\sigma}_{r\theta}|$ (MPa)

“Polar” Stress, $|\tilde{\sigma}_{\theta\theta}|$ (MPa)

Azimuthal Stress, $|\tilde{\sigma}_{\phi\phi}|$ (MPa)
Viscoelastic Heating Model

- Based on losses in strain energy density per cycle of applied harmonic stress (hysteretic damping)

Time-averaged heat generation (W/m^3):

\[
q = \frac{\omega}{2\pi} \int_{t_0}^{t_0+2\pi/\omega} \left(\sigma_{rr} \frac{\partial \varepsilon_{rr}}{\partial t} + \sigma_{\theta\theta} \frac{\partial \varepsilon_{\theta\theta}}{\partial t} + \sigma_{\phi\phi} \frac{\partial \varepsilon_{\phi\phi}}{\partial t} + 2\sigma_{r\theta} \frac{\partial \varepsilon_{r\theta}}{\partial t} + 2\sigma_{r\phi} \frac{\partial \varepsilon_{r\phi}}{\partial t} + 2\sigma_{\theta\phi} \frac{\partial \varepsilon_{\theta\phi}}{\partial t} \right) dt
\]
Heat Generation in HMX-Sylgard System

Fourier’s law of conduction:

\[m c_p \cdot m = k_m \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial T}{\partial r} \right) + \frac{1}{r^2 \sin \frac{\partial}{\partial \theta}} \left(\sin \frac{\partial T}{\partial \theta} \right) \right] + q_m \]

Time-averaged Heat Generation (W/mm³)

Temperature Increases (°C) from 0.05 to 0.5 s

For the temperature solution, a free convective surface condition was applied at a large outer radius

\[1-\mu m, \; 500\text{-kHz harmonic plane wave excitation} \]

Animation shows 0.05 s increments, with one frame shown per second
Temperature Increase in HMX-Sylgard System

- 1-μm, 500-kHz harmonic plane wave excitation

Transient Max. Temperature Increase of Crystal and Binder

Temperature Distribution (°C) at t = 0.5 s

Compares well to Mares, et. al. (2014) in which heating rate were estimated to be between 37 to 125°C/s depending on shape, size, and identity of inclusion
Future Modeling Efforts

- Effect of temperature-dependent parameters
- Non-linear viscoelasticity
- Thermal stress effects
- Debonding effects
- Effect of binder and particle properties

Mares et al., J. Appl. Mech., 2016 (Submitted).
Future modeling efforts: Particle morphology

- Particle size and shape have a significant effect on stress amplitudes
- Relationship between frequency and particle size affects phase also
- Denser particle has larger vibrational amplitude

Adapted from Oien, 1973
Questions?
System dynamics

Particle motion described by Newton’s second law:

\[
\frac{4\pi a^3}{3} \rho \ddot{U} = \iiint (\sigma_{rr} \cos \theta - \sigma_{r\theta} \sin \theta) a^2 \sin \theta \, d\theta \, d\phi \bigg|_{r=a}
\]

Particle density affects vibration amplitude
Thermal Analysis Boundary Conditions

\[k_2 \frac{\partial T}{\partial r}(0, \theta, t) = -k_2 \frac{\partial T}{\partial r}(0, \theta + \pi, t), \]

\[T(a^-, \theta, t) = T(a^+, \theta, t), \]

\[k_2 \frac{\partial T}{\partial r}(a^-, \theta, t) = k_1 \frac{\partial T}{\partial r}(a^+, \theta, t), \]

\[k_1 \frac{\partial T}{\partial r}(R, \theta, t) = U_0 [T_0 - T(R, \theta, t)], \]

\[k_m \frac{\partial T}{\partial \theta}(r, 0, t) = 0, \]

\[k_m \frac{\partial T}{\partial \theta}(r, \pi, t) = 0, \]