
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

1-1-2003

Non-Crossing Ordered BDD for Physical
Synthesis of Regular Circuit Structure
Aiqun Cao

Cheng-Kok Koh

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Cao, Aiqun and Koh, Cheng-Kok , "Non-Crossing Ordered BDD for Physical Synthesis of Regular Circuit Structure" (2003). ECE
Technical Reports. Paper 136.
http://docs.lib.purdue.edu/ecetr/136

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F136&utm_medium=PDF&utm_campaign=PDFCoverPages

Non-Crossing Ordered BDD for Physical Synthesis of Regular

Circuit Structure�

Aiqun Cao and Cheng-Kok Koh

School of Electrical and Computer Engineering

1285 Electrical Engineering Building

Purdue University West Lafayette, IN 47907-1285

fcaoa,chengkokg@ecn.purdue.edu

March 11, 2003

�This research is supported in part by NSF (CAREER Award CCR-9984553).

ii

Contents

1 Introduction 1

2 Non-crossing OBDD (NCOBDD) 2

2.1 Crossing minimization in graph drawings . 3

2.2 NCOBDD construction . 4

2.2.1 Top-down level-by-level sweep . 4

2.2.2 Back-tracing level sweep . 5

3 Physical mapping and wave steering 6

4 Experimental results 7

iii

List of Tables

1 Experiment results. 8

iv

List of Figures

1 NCOBDD vs. YADD. 2

2 Insertion of dummy nodes. . .. 3

3 The structure between 2 levels of NCOBDD. 4

4 Reordering and duplication operation. 4

5 A ROBDD representation. 5

6 Two NCOBDD representations. 5

7 Nodes collapsing. 7

8 Wave steering on YADD (adapted from [14]). 8

v

Abstract

In this paper, we propose a novel compact BDD structure, called Non-crossing ordered BDD (NCOBDD), that

can be mapped directly to a regular circuit structure. Compared with other BDD-based regular structures, NCOBDD-

mapped circuits reduce the costs of area, power and latency, while preserving the regularity of the structure. We

also present an algorithm that uses a top-down level-by-level sweep and a back-tracing mechanism to construct the

minimum sized NCOBDD. Experimental results show that for asymmetric benchmark circuits, the average reduction

on area, power and latency are 57.8%, 49.9% and 68.7%, respectively, compared with Yet Another Decision Diagram

(YADD) [14].

1

1 Introduction

Interconnects play an important role in determining the performance, reliability, and robustness in today’s VLSI cir-

cuits and will continue to do so in the future. Many new design paradigms advocate the incorporation of interconnect

effects at every level of the design process. However, the analysis and prediction of interconnect effects are difficult

in the early design stages. In particular, the irregularity of global interconnects renders the prediction of delay and

crosstalk difficult. In Ref. [8], it was argued that regular circuit structures could overcome the timing closure problem

and offset the process variation, and would scale better with technology. In particular, regular design structures are

desirable because they eliminate irregular global interconnects. Two main categories of regular structures have been

proposed in the recent years: Programmable Logic Array (PLA)-based and Binary Decision Diagram (BDD)-based.

Single-PLA is a regular structure that has the advantage that the implementation of a design does not require

technology mapping, placement, and routing. In order to accommodate more complex logic, a network of PLAs

(NPLA) can be constructed with placement and routing [7]. However, that compromises the global regularity of the

structure. In Ref. [9], a multiple-PLA structure called River PLA (RPLA) and its reconfigurable version, Glacier PLA,

are proposed. The RPLA is a structure with stacked PLAs. The interconnections among stacked PLAs are ordered

and realized via river routing, which is local and regular. Thus, RPLA preserves both global and local regularity.

Whirlpool PLA (WPLA) presented in Ref. [10] is a cyclic four-level Boolean NOR network. It is superior than RPLA

in terms of area and delay, but can implement only smaller logic.

The main idea behind BDD-based regular structure is to represent a given Boolean function with a decision diagram

that has a regular structure. In Refs. [4, 3], a pseudo-symmetric BDD (PSBDD) is presented for FPGA synthesis.

Yet Another Decision Diagram (YADD), proposed in Refs. [14, 13, 12], can be directly mapped to a network of

multiplexers. In both PSBDD and YADD, the number of nodes of each level grows linearly with the number of levels

at the cost of some variables appearing on several levels during the application of Shannon’s expansion. YADD is

more general than PSBDD in the sense that it does not restrict the ordering of child nodes of a parent. In the mapping

of FPGA (from PSBDD) and network of multiplexers (from YADD), only predictable local interconnects are needed.

Although PSBDD and YADD are fairly compact representations for symmetric boolean function, repetition of

variables in several levels is typically needed for non-symmetric functions. In other words, they trade off the height,

and thus area and latency, of the BDDs to achieve structural regularity. As reported in [14] for example, the ROBDD

for one of the primary outputs of the benchmark circuit’alu2’ with 10 primary inputs has 10 levels only, whereas the

number of levels for the corresponding YADD has 33 levels.

Between the PLA-based and BDD-based structures, PLA-based structures have similar area and timing perfor-

mance as standard-cell designs [10, 9]. The YADD structures (with wave-steering) have far superior timing per-

formance when compared to standard-cell designs [14, 13]. However, YADD structures have high area and power

penalties due to the repetition of variables in multiple levels. The objective of this work is to achieve similar timing

performance as YADD structures as well as far superior area and power performance.

In this paper, we propose a more compact BDD structure that can also be directly mapped to a regular circuit

2

structure. The regularity of the proposed BDD structure is achieved by: 1) restricting all connections to be between

adjacent levels, 2) enforcing no crossings between connections of the BDD nodes1. Similar to the ordered BDD

(OBDD), the variables are ordered and one variable appears in only one level. We refer to this regular structure as

Non-crossing OBDD (NCOBDD).

In an NCOBDD, the number of nodes of each level may grow more than linearly with the number of levels, but

the total number of levels is typically smaller than that required by PSBDD or YADD. Figure 1 is a simple example

that illustrate that. In Figure 1 (and subsequent figures), the dash line from nodex (function f) connects to the low

child (cofactorfx=0) and the solid line to the high child (cofactorfx=1). It is also evident from Figure 1 that mapping

an NCOBDD structure to a network of multiplexers is as straightforward as YADD. Although the interconnects in

different levels may have different parameters, they can be accurately predicted as a consequence of the structured

placement of the cells.

D4D3D2D1 D5

C3C2C1 C4

B2B1

A

D4D3D2D1 D5

C3C2C1 C4

B2B1

A

B4B3 B5

NCOBDD YADD

Figure 1: NCOBDD vs. YADD.

NCOBDD preserves the performance and the structural regularity, whereas has less area, power and latency than

YADD. Experimental results show that when compared with YADD, NCOBDD reduces the area by 20.4% and power

by 26.4% averagely for partially symmetric circuits; for asymmetric circuits, the reductions on area, power and latency

in average are 57.8%, 49.9% and 68.7%, respectively. NCOBDDs even have better PDPs (product of delay and power)

than standard-cell designs for bigger asymmetric circuits.

2 Non-crossing OBDD (NCOBDD)

An NCOBDD has the following attributes:

1. It is an ordered Binary Decision Diagram (OBDD);

2. Every variable characterizes only one level of the OBDD;

3. All connections are between two adjacent levels;

4. There are no crossings between connections.

1Strictly speaking, it is not necessary to impose the no crossings restriction as long as the interconnect parasitics can be accurately predicted.

3

Of particular interest is the construction of the minimum NCOBDD, the NCOBDD with minimum number of

nodes, for a given logic function. However, the construction of an NCOBDD from a logic function is more complicated

due to attributes (3) and (4). These two attributes imply that the child nodes of a parent node must be adjacent in the

next level. In this paper, we take the approach of constructing an NCOBDD from an ROBDD of the given logic

function. The key is to reorder and duplicate appropriate nodes in the ROBDD structure. In the ROBDD structure,

however, the connections may not be restricted to between two adjacent levels. To overcome this problem, dummy

nodes can be inserted, as shown in Figure 2.

C2C1

B1

A

C2C1

B1

A

B2 Dummy
node

Figure 2: Insertion of dummy nodes.

2.1 Crossing minimization in graph drawings

A related problem to NCOBDD construction is that of crossing minimization in the drawings of leveled directed

graphs, i.e., creating polyline drawings of directed graphs with nodes arranged in horizontal levels. For a directed

graph with k levels of nodes, the problem of k-level crossing minimization is that of finding the ordering of the nodes

in each level such that the number of edge (straightline) crossings is minimized [1, 5].

Unfortunately, the problem of seeking an ordering for each level in order to minimize the crossings in a leveled

directed graph is NP-hard, even for 2-level directed graphs [6]. Moreover, the 2-level crossing minimization problem

with a fixed node ordering in one level is still NP-hard [5]. Nonetheless, the solution to this problem is the key to

solving the general k-level problem. Several methods have been developed to solve the 2-level crossing minimization

with a fixed node ordering in one level [1, 5].

For the k-level crossing minimization problem, a level-by-level sweep technique is used to decompose the k-level

problem into a series of(k�1) 2-level problem (with a fixed node ordering in one level). First, a vertex ordering of

the top levelL1 is determined. Then, fori = 2;3; � � � ;k, the vertex ordering of levelLi�1 is fixed while the nodes in

level Li are permuted to reduce the number of crossings between edges whose endpoints are in levelLi�1 and level

Li . In this approach, the level-by-level sweep is performed in a top-down fashion. A bottom-up level-by-level sweep

approach, starting from the bottom levelLk, is feasible, too.

4

2.2 NCOBDD construction

By treating the ROBDD as a directed graph of k levels (k is the number of variables, andLk refers to the bottom level),

we refer to the problem of constructing a non-crossing version of it as the k-level non-crossing problem. A straight-

forward solution to the k-level non-crossing problem is to first apply the method for k-level crossing minimization to

the given ROBDD. Then, the remaining crossings can be eliminated by duplicating appropriate nodes. However, such

an approach has two shortcomings. First, duplication cost minimization is not congruent with crossing minimization.

In other words, minimizing the crossing does not guarantee minimization of the number of duplicated nodes. Second,

it does not consider the structure of BDD nodes, i.e., the out-degree of each BDD node (except two terminal nodes)

is 2. Figure 3 shows the structure between two levelsLi�1 andLi of an NCOBDD. It consists of several ”zig-zag”

structures.

. . .

. . .

. . .

. . .

. . .

Figure 3: The structure between 2 levels of NCOBDD.

Similar to the k-level crossing minimization presented in Section 2.1, we also apply a level-by-level sweep ap-

proach to decompose the k-level non-crossing problem into a series of(k�1) 2-level non-crossing problem with the

node ordering in one level fixed. The difference is that besides the reordering of nodes, we also consider the dupli-

cation of appropriate nodes in order to eliminate all crossings. Another difference is that for NCOBDD construction,

only top-down level-by-level sweep is possible. If bottom-up level-by-level sweep is applied, the duplication of a

nodex in the upper levelLi�1 will also lead to the duplication of its child nodes in the lower levelLi in order to avoid

crossings. In other words, it is impossible to fix the node ordering in the lower level while trying to determine the

ordering and duplication in the upper level.

2.2.1 Top-down level-by-level sweep

Assuming that the ordering and the number of nodes in the current upper levelLi�1 are fixed, we perform a left-to-right

sweep of the ordered nodesfV1; � � � ; :::;Vng in level Li�1 to determine the ordering and, if necessary, duplication of

their child nodes in the current lower levelLi .

D3D2D1

C2C1

D2D1D3

C2C1C3

D4 D’3

C3

D4

C4 C4

D’’3

Figure 4: Reordering and duplication operation.

Consider two adjacent nodesVj�1 andVj in level Li�1. If the position of a child node ofVj�1 (Vj) has already

been determined because it is also a child node ofVh, h< j �1, and its connection toVj�1 (Vj) causes crossings, the

duplication of this child node is necessary (see child nodeD3 of C3 in Figure 4). The duplicate replaces the original

5

child node ofVj�1 (Vj). Then, there are three possible scenarios when we consider the relation of the child nodes of

Vj�1 andVj .

(1) If Vj�1 andVj have exactly one common child node in levelLi , the result of reordering should have the

common child node in the middle, the two remaining child nodes ofVj�1 andVj should reside on the left and right of

the common child node, respectively (see nodesC1 andC2 in Figure 4). The next two nodes under consideration in

levelLi�1 areVj+1 andVj+2.

(2) If Vj�1 andVj have no common child nodes, the order between two child nodes ofVj�1 can be arbitrary (see

nodesB1 andB2 in Figure 5). We will discuss in the next subsection how the arbitrariness can be exploited to reduce

the duplication cost of the descendant nodes in the lower levels. The next two nodes to consider areVj andVj+1.

(3) If Vj�1 andVj have two common child nodes, duplication is required. However, any of the two child nodes

can be duplicated (see nodesC3 andC4 in Figure 4). Again, the arbitrariness can be exploited for the reduction of

duplication cost in subsequent levels (see Section 2.2.2). NodesVj+1 andVj+2 are considered next in the left-to-right

sweep.

2.2.2 Back-tracing level sweep

In scenarios (2) and (3) described in section 2.2.1, the ordering and duplication of the child nodes can be arbitrary.

While it may not affect the number of nodes in the current lower level (Li) under consideration, the ordering will affect

the results of reordering and duplication operations on subsequent levels. In Figure 5, we show the original ROBDD

structure. Two different NCOBDDs due to different orderings ofC1 andC2, andC3 andC4 are shown in Figure 6. The

right one has fewer nodes than the left one.

B2

D4D3D2D1 D5

C3C2C1

B1

C4

A

Figure 5: A ROBDD representation.

B2

D2D1D3

C3C2C1

B1

C4

A

D4D3D1D2 D5

C4C1C2 C3

B2B1

A

D’3D4D5

Figure 6: Two NCOBDD representations.

6

Therefore, the question is how we can exploit the arbitrariness introduced at the upper levels during the level-by-

level sweep operations on lower levels. Due to page limitation, we present only the details of the approach that we use

to exploit the arbitrariness introduced in scenario (2). The arbitrariness introduced in scenario (3) can be handled with

a simple extension.

We propose a back-tracing mechanism as follows: For adjacent nodes, if the order between them can be arbitrary,

we collapse them into one super node. For example, Figure 7 shows the collapsing of BDD nodes in Figure 5.

In Figure 7, the collapsed nodesC12 andC34 are considered when we try to eliminate the crossings between levels

C andD. As nodeD3 is the only common child node ofC12 andC34, it should be placed in the middle, i.e., it should

be the last node among all the child nodes ofC12 and the first node among those ofC34. Given the position ofD3, the

order of the nodes within the collapsed nodes, i.e.,C1 andC2, andC3 andC4 can be determined accordingly; We refer

to that as de-collapsing. Subsequently, the ordering of other child nodes ofC1 andC2, andC3 andC4 are considered,

respectively.

The incorporation of node collapsing during the level-by-level sweep operation implies that the order of the nodes

in the current upper level under consideration (Li�1) is no longer completely fixed. In general, there may be multiple

levels of collapsed nodes (see nodeB12 for example in Figure 7). This provides even more flexibility to the node

ordering in levelLi�1 and above; not only is the orderingwithin the collapsed nodes in levelLi�1 not fixed, but the

orderingamongthose collapsed nodes can be changed, too.

For that reason, we first perform a branch and bound algorithm to search for an orderingamongthe collapsed

nodes in levelLi�1 that minimizes the duplication of nodes in the current lower levelLi . (Two different possible

orderings between collapsed nodesC12 andC34 lead to the same optimal number of nodes when we try to minimize

the duplication cost of levelD in Figure 7). Collapsed nodes in higher levelsLj , j < i � 1, are de-collapsed after

this step. However, if the duplication cost is independent of the de-collapsing of a super node, the node will remain

collapsed for future consideration.

After the ordering among the collapsed nodes in levelLi�1 is obtained, the orderingwithin each of those collapsed

nodes is determined with the same goal of minimizing the number of nodes inLi . Some collapsed nodes in levelLi�1

are de-collapsed after this step. The reordering and duplication operations in levelLi are carried out at the same time.

Nodes collapsing in levelLi is also performed.

Although such an back-tracing mechanism in general has exponential time complexity, the number of possible or-

ders to be enumerated using the branch-and-bound algorithm in levelLi�1 in this context is very small as the collapsed

nodes are usually de-collapsed after a few levels. Therefore, the computational overhead is acceptable, as shown by

the run-times reported in Section 4.

3 Physical mapping and wave steering

The mapping of NCOBDD to a physical layout is similar to the physical mapping of YADD. In this section, we review

the physical mapping of YADD and the wave steering technique applied to YADD [14] briefly.

7

B2

D4D3D2D1 D5

B1

A

C2C1 C4C3
C12 C34

B12

Figure 7: Nodes collapsing.

Mapping BDD structure to pass transistor logic is presented in Ref. [2]. Each node in a BDD structure is an ITE

(if-then-else) node, which makes an decision based on the value of the variable characterizing the level. It is equivalent

to a 2-to-1 multiplexer. The 2 data inputs correspond to the two child nodes and the controlling input corresponds to

the variable characterizing the level. All the variants of BDD structure, including PSBDD, YADD, and NCOBDD in

this paper, can be mapped directly to multiplexer-based networks.

For YADD and NCOBDD, the placement of all the multiplexer units can be easily determined. Moreover, there

are no crossings among the interconnects at all and all the signal interconnects are locally abutted between adjacent

units. Therefore, the delay of the interconnects can be computed accurately and the crosstalk easily controlled.

In Ref. [14], wave steering (wave pipelining) is applied to the YADD structure. The function synthesized by the

YADD is evaluated using a two-phase clocking scheme in a bottom-up fashion. Each level alternates between two

modes: “hold” and “evaluate”. While levelLi�1 evaluates, levelLi holds. The results of levelLi�1 are then fed to

level Li�2, which will evaluate in the next clock phase whileLi�1 holds. For the correct operation, the input variable

that characterizes the levelLi holds whenLi is evaluating. It is allowed to change its value whenLi is holding. This

is called wave steering, i.e., there are several computing waves propagating through the circuit at the same time. For

wave steering to work properly without any data corruption or race, the inputs to YADD structure have to be applied

with appropriate phase difference. Figure 8 shows the floorplan of YADD and inputs configuration of wave steering.

In Figure 8, each input is first delayed by a suitable number of flip-flops (FFs) with an appropriate clock phase, and

then driven by a properly sized driver (Dr).CLK1 andCLK2 are 2-phase non-overlapping complementary clocks.

Obviously, the wave steering technique can also be applied to NCOBDD.

4 Experimental results

We evaluate the area, power, and timing performance of the NCOBDD structure using nine MCNC benchmark circuits.

For each circuit, the ROBDD representation is first obtained using the’BuDDy’ BDD package. We use the dynamic

variable reordering feature of ’BuDDy’ to determine the variable ordering of ROBDD (and NCOBDD). Note that

minimized ROBDD does not imply minimized NCOBDD.

8

MUX

FF Dr

FF Dr

FF DrFF

CLK1

CLK2

CLK1

A

B

C FFDr

CLK1

C’

FFDr

CLK2

B’

FFDr FF

CLK1

A’MUX

MUX MUX MUX

MUX MUX MUX MUX

Figure 8: Wave steering on YADD (adapted from [14]).

circuit xor5 xor7 9sym cm138a z4ml rd53 rd73 alu2 alu4
primary inputs 5 7 9 6 7 5 7 10 14
primary outputs 1 1 1 8 4 3 3 6 8

levels 5 7 9 6 7 5 7 10 14
nodes 15 28 33 48 77 35 68 465 3482

run time(s) 1 2 4 3 3 2 3 8 18
NCOBDD area(x1000µm2) 1.532 2.947 4.102 6.682 7.848 3.882 7.603 35.023 210.070

latency(ns) 1.5 2.1 2.7 1.8 2.1 1.5 2.1 3 4.2
power(mW) 0.294 0.499 1.322 0.925 0.912 0.640 1.229 5.635 12.245

PDP(ns x mW) 0.176 0.300 0.793 0.555 0.547 0.384 0.737 3.38 7.347
levels 5 7 9 6 7 5 7 33 43
nodes 15 28 45 168 77 45 84 1369 6264

YADD area(x1000µm2) 1.532 2.947 4.869 12.850 7.848 4.253 8.354 89.021 465.760
latency(ns) 1.5 2.1 2.7 1.8 2.1 1.5 2.1 9.9 12.9
power(mW) 0.294 0.499 1.534 1.601 0.912 0.792 1.761 9.749 28.802

PDP(ns x mW) 0.176 0.300 0.920 0.961 0.547 0.475 1.233 5.849 17.281
area(x1000µm2) 0.627 1.132 2.544 0.996 1.988 0.947 1.584 9.975 48.363

Standard-Cell delay(ns) 0.645 0.678 1.086 0.598 0.862 0.797 0.934 3.36 5.772
power(mW) 0.109 0.298 0.577 0.346 0.389 0.192 0.495 2.698 5.866

PDP(ns x mW) 0.070 0.202 0.627 0.207 0.335 0.153 0.462 9.065 33.859

Table 1: Experiment results.

For each benchmark circuit, the NCOBDD is mapped to a network of multiplexers and wave steering is applied as

described in Section 3. The multiplexer can be implemented by pass transistors. Two pass n-FET transistors are used,

where each cell requires the variable and its complement as the controlling inputs to the two pass transistors. To make

up for the voltage loss due to NMOS-only pass transistor logic, each cell is followed by a level-restoring inverter. A

2-phase non-overlapping clocking scheme is applied. The drivers and flip-flops are carefully designed so that wave

steering can work properly.

The benchmark circuits are implemented with 0:25µm technology. Layout extraction and simulation are done to

obtain the power and timing. The delay of each level is less than 0:3ns, making 1:66GHz (a clock cycle of 0:6ns) the

highest achievable clock frequency with which each circuit can work properly. Table 1 shows the (maximum) number

of levels and the (total) number of nodes for the NCOBDDs constructed for each benchmark circuit. It also reports the

area, the (longest) latency, and the power dissipation of each physically mapped circuit.

9

For comparison, we also synthesize the nine benchmark circuits with YADD. As the source codes for YADD

construction are not available, we reimplement the algorithm described in Ref. [14]. For each circuit, the variable

ordering for YADD is the same as that of NCOBDD. The same layout mapping is applied for YADD using the same

technology. The same clock frequency 1.66GHz can be achieved for YADD mapped circuits. Table 1 also includes

the results of circuits mapped from YADDs.

From Table 1, we can see that for symmetric circuits (xor5 and xor7), NCOBDD has the same area, power and

latency as YADD; (they are exactly the same circuits). For partially symmetric circuits (9sym, cm138a, rd53, and

rd73), NCOBDD reduces the area by 20.4% and power by 26.4%, while maintaining the same latency. For asymmetric

circuits (alu2 and alu4), the reductions on area, power and latency are 57.8%, 49.9% and 68.7%, respectively.

We would like to point out that the area of YADD implementation for some benchmark circuits,’alu2’ and’alu4’ ,

reported in Table 1 are significantly larger than those reported in Ref. [14], after taking into account the different

technology used. (Ref. [14] used 0.5µm technology). To the best of our knowledge [11], the area for each of the two

circuits reported in Ref. [14] are only for one of the primary outputs of the circuit.

We also implement the nine benchmark circuits with standard-cells. We use Cadence Silicon Ensemble to generate

the layout using 0.25µm standard-cell library. Parasitic extraction is then carried out and simulation performed. The

area, timing, and power performance of these standard-cell circuits are also included in Table 1. When compared

with standard-cells, the PDPs of NCOBDD-mapped circuits are better for bigger asymmetric circuits. Of course, the

standard-cell design is the most area efficient among the three.

References

[1] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis.Graph drawing. Prentice Hall, Upper Saddle River, NJ,
1999.

[2] V. Bertacco, S. Minato, P. Verplaetse, L. Benini, and G. De Micheli. Decision diagrams and pass transistor logic
synthesis. InProc. Int. Workshop on Logic Synthesis, pages 1–5, May 1997.

[3] M. Chrzanowska-Jeske, X. Y. Ma, and W. Wang. Pseudo-symmetric functional decision diagrams. InProc. IEEE
Int. Symp. on Circuits and Systems, pages 175–178, 1998.

[4] M. Chrzanowska-Jeske, Z. Wang, and Y. Xu. A regular representation for mapping to fine-grain, locally-
connected FPGAs. InProc. IEEE Int. Symp. on Circuits and Systems, pages 2749–2752, 1997.

[5] P. Eades and S. Whitesides. Drawing graphs in two layers.Theoretical Computer Science, 131(2):361–374,
1994.

[6] M. Garey and D. Johnson. Crossing number is NP-complete.SIAM J. Algebraic Discrete Methods, 4(3):312–316,
1983.

[7] S. P. Khatri, R. K. Brayton, and A. Sangiovanni-Vincentelli. Cross-talk immune VLSI design using a network
of PLAs embedded in a regular layout fabric. InProc. Int. Conf. on Computer Aided Design, pages 412–418,
November 2000.

[8] F. Mo and R. K. Brayton. Regular fabrics in deep sub-micron integrated-circuit design. InProc. Int. Workshop
on Logic Synthesis, pages 7–12, June 2002.

10

[9] F. Mo and R. K. Brayton. River PLAs: a regular circuit structure. InProc. Design Automation Conf, pages
201–206, June 2002.

[10] F. Mo and R. K. Brayton. Whirlpool PLAs: a regular logic structure and their synthesis. InProc. Int. Conf. on
Computer Aided Design, pages 543–550, November 2002.

[11] A. Mukherjee. Personal communication, September 2002.

[12] A. Mukherjee. Wave steering as a means for achieving performance and predictability in DSM circuits. PhD
thesis, University of California, Santa Barbara, 2002.

[13] A. Mukherjee, M. Marek-Sadowska, and S. I. Long. Wave pipelining YADDs - a feasibility study. InProc. IEEE
Custom Integrated Circuits Conf., pages 559–562, May 1999.

[14] A. Mukherjee, R. Sudhakar, M. Marek-Sadowska, and S. I. Long. Wave steering in YADDs: a novel non-iterative
synthesis and layout technique. InProc. Design Automation Conf, pages 466–471, June 1999.

	Purdue University
	Purdue e-Pubs
	1-1-2003

	Non-Crossing Ordered BDD for Physical Synthesis of Regular Circuit Structure
	Aiqun Cao
	Cheng-Kok Koh

