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SELECTING CLASS WEIGHTS TO MINIMIZE CLASSIFICATION 

BIAS IN ACREAGE ESTlMATION* 

W. M. Belcher and T. C. Minter 

Lockheed Electronics Company, Inc./Aerospace Systems Division, Houston, Texas 

I. ABSTRACT 

Classification of multispectral data 
by the use of a maximum likelihood classi
fier is dependent upon knowing in advance 
a set of prior probabilities. Therefore, 
the selection of an optimal set of prior 
probabilities is critical to the estimation 
of proportions for each class. In the pro
posed procedure, a function is minimized 
to yield a set of optimal prior probabil
ities for a specific data set. Classifica
tion results using optimal, actual, and 
default (equal prior probabilities for each 
class) values are compared. 

II. INTRODUCTION 

Often, when classifying multispectral 
data, the proportion of each crop (or 
class) in a given area is estimated by 
counting the number of pixels (picture 
elements) classified into each class and 
nurmalizing this with the total number of 
pixels in the area. This proportion esti
mate is sometimes biased by the Bayes 
decision rule used in the classification. 
The decision rule for assigning a sample X 
(a pixel from a multispectral image) to 
class i is 

l,···,m (l) 

j 'I i 

where k i , i = l,···,m, is the class weight, 

which is usually taken to be an estimate 
of the class prior probability. The class 
conditional density function is denoted by 
P(X/i), i = l,···,m, where m is the number 
of classes. The sample X is assumed to be 
a random p-dimensional measurement vector 
drawn independently from the sample. 

*The material for this paper was developed 
under Contract NAS 9-12200 for the Earth Observa
tions Division, Science and Applications Directorate, 
Lyndon B. Johnson Space Center, National Aeronautics 
and Space Administration, Houston, Texas. 
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This paper presents preliminary 
results of experimentation being done ~o 
select optimal class weights for use w~th 
the maximum likelihood classifier. These 
weights will be optimal in the sense that 
the bias will be minimized in the propor
tion estimate obtained from the classi
fication results by sample counting. 

Results will be presented for the 
special case where m = 2 (i.e., wheat and 
nonwheat). The use of optimal class 
weights will be compared with the use of 
equal class weights and the use of the 
true proportions for class weights. 

III. MEAN SQUARE ESTIMATION OF OPTIMUM 
VALUES FOR THE CLASS WEIGHTS 

In this section an analytic-al pro
cedure is presented for estimating 
optimum values for the class weights 
(k., i = l,···,m) based on historical 

J. 
values for the class (crop) proportions. 
Mean square error criteria will be mini
mized to obtain optimal values for k i , 
i = l,···,m. The values for k i , 

i = l,···,m, obtained from minimizing these 
criteria are optimal in the sense that the 
bias in the proportion estimate obtained 
from the classification results is minimum. 

Let the vector Qt = {qi,qi,···,q!} be 

the historical estimates of proportions for 
the m classes (crops) in the area during 
the tth year past. Also, it is assum~d 
that historical data on class proport~ons 
are available for n past years; i.e., 
t = l,···,n. Each class is assumed ~o be 
normally distributed with class cond~
tional probability density function 
p{X/j), j = l,···,m. The mean vectors 

~j' j = l,·.·,m, and covariance matrices 

L
j

, j l, ••• ,m, forp(X/j), j = l,···,m, 

are assumed to have been estimated from 



the current year's multispectral imagery 
data. 

Based on historical class proportions 
from the tth year, Qt' the overall mixture 
density is 

m 

L t 
qj p(X/j) (2) 

j=l 

For a given k i , i = l,···,m, and 

Pt(X) (as defined using proportions Qt from 

year t), the proportion of samples classi
fied as class i is 

Prt(X€Rilkl,k2,···,km) = fR.Pt(X)dX 
~ 

(3 ) 

where R. is the Bayes region for class i; 
~ 

for Q, 1, .• . ,m 

For the ith class in the tth year the 
error in the proportion estimate provided 
by prt(X€Rilkl,k2,···,km) is 

Based on historical proportions 
Qt' t = l,···,n, for n years past and 

considering m classes, the following mean 
square error criterion is proposed to 
evaluate the error in the proportion esti
mate obtained from the classification 
results for a particular set of class 
weights k., i l,···,m; 

~ 

J n m [t 2: L qi 
I 

nm 
t=l i=l 

- prt(X€Rilkl,k2,···,km)]2Wt (6) 

The year weights W
t

, t = l,···,n, may be 

selected in order to give more weight to 
more recent information on crop propor
tions and therefore adapt for trends. 

The minimization of these criteria 
with respect to k., i = l,···,m, is con

~ 

sidered next. The class weights will be 
subject to the following constraints: 

k. > 0 
~ - i=l,···,m (7 ) 

3A-12 

m 

L 
i=l 

k. 
~ 

I 

Using a Lagrange multiplier, the second 
constraint (eq. 8) may be enforced by mod_ 
ifying equation (6) to 

1 n m [ t 
J = nm L: 2: qi 

t=l i=l 

prt(X€Rilkl,k2,···,km)]2Wt 

(9) 

The optimum values for the class weights 
may be found by using the expression for 

ClJ . ClJ J, ak.' ~ = l,···,m, and ax (eqs. 9, 21, 
~ 

and 22) in a numerical optimization 
1 

procedure. 

In the narrative that follows, the 
differentiation of J (eq. 9) with respect 
to k., i = l,···,m, and A is discussed. 

~ 

In order to differentiate J (eq. 9) 
with respect to k., i = l,···,m, an alter-

~ 

native form for prt(X€Rilkl,k2'··· ,km) 

(eq. 3) must be obtained which can be 
differentiated. 

The Bayes region for class i, 
defined (eq. 4) as 

R., is 
~ 

R. = {Xlk.p(X/i) ~ k.p(X/j)} (10) 
~ ~ ] 

for j = l,···,m 

j :I i 

The following function sgn(y) is 
defined: 

where 

sgn (y .. ) = 
~J 1

1 if 

o if 

y .. 2! 0 
~J 

y .. < 0 
~J 

y .. = k.p(X/i) - k.p(X/j). 
~J ~ ] 

(11) 

(12) 

The Bayes region for class i, R., is 
now redefined as ~ 

sgn (y .. ) 
~J 

(13) 

j 



r 
substituting [! + ! 

2 2 
tanh (sy .. )] 

1.) 
for 

sgn(y .. ), it can be seen that 
1.J 

> 0 -[l + l tanh(SYij~ = 1.J 11 if y .. 
(14 ) 

o if y .. < 0 
1.J 

where s is a large positive real number. 
(Note: When y .. = 0, this function has 

1.J 
the value 1/2, but this can be ignored 
since it would occur on a set of measure 
zero. ) 

Let 1 1 
Z .. = -2 + -2 tanh (sy .. ) 

1.J 1.) 
(15) 

The Bayes region for class i, Ri , can 
be written (using eq. 15) as 

, 
From equation (16), let 

m 

fi (k l ,k 2 ,···,km) = Jl[Zij 

j=l 
j~i 

(16 ) 

(17) 

The expression for prt(XERi!kl,k2,···,km)' 

equation (3), is now rewritten in a form 
that is differentiable. 

JOOPt(X)fi(kl,k2"",km)dX (18) 
·_00 

substituting equation (18) into equa
tion (9), the criteria J is rewritten as 

J 

(19) 
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The partial derivative of J with respect 
to k. is 

aJ 
ak. 

1. 

1 

• JooPt(X)~ p(x/i) 
_00 

1J sech
2 

(sy .. lj dx + 

This can be expressed in 
expected value 

m 

[(gt) L 
j=1 
j~i 

A ( 20) 

terms of an 

aJ 2 n m [ t { }] - = - ~ ~ q. - E
t 

f~ (k1 ,k2 ,···,km) ak. nm L.J L.J 1 ... 
1 t=l i=1 

• E §.p(X/i) 
t 2 t (fIz. )seCh

2 
(sy .. ) j=1 r=1 1r 1) 

j~i r~j 
r~i 

(21) 

where expectation operator Et is defined 

The partial derivative of J (eq. 19) with 
respect to A is 

aJ 
aT 

m 

~k. - 1 
i=1 1 

(22) 



IV. DESCRIPTION OF EXPERIMENT 

A. The Data 

The procedure was tested using Landsat 
multispectral scanner (MSS) data from an 
8- by 9.6-kilometer (5- by 6-mile) area of 
ground truth in Finney County, Kansas. 
Data consisted of four passes. However, 
one channel of data on the first pass was 
of such poor quality that it was not 
usable. 

A set of 35 training fields was se
lected at random from the site conditioned 
on the field containing 19 pixels or more. 
The set was then divided into two classes, 
wheat and nonwheat, and clustered into 
three and five subclasses, respectively, 
thus allowing the investigation of a two
class, eight-subclass case. 

Actual prior probabilities for the two 
classes were computed by dividing the 
number of acres in each class by the total 
number of acres in the test site. 

B. Results 

The results for Finney County, Kansas, 
are summarized in table 1. The bias in 
table 1 was calculated from 

Bias = Estimated wheat proportion 
minus true wheat proportion 

decrease in wheat proportion bias was 
slight (see table 1); i.e., approximately 
2 percent. 

C. Analysis of Results 

The decrease in proportion bias 
obtained for the simulated data, when opt~
mal class weights were used instead of 
equal class weights, was not observed when 
imagery data were used. In addition, for 
the data sets used (i.e., for simulated and 
imagery data), very little decrease in pro
portion bias for wheat was observed using 
true proportions for class weights in place 
of optimal class weights (1.1 percent for 
both data sets). 

There are several possible explana
tions for these results. The differences 
observed in the results between the simu
lated data and the imagery data may be 
attributable to (1) unrepresentative train
ing statistics (i.e., not all classes 
represented, the presence of boundary 
pixels, etc.) and (2) inappropriate esti
mates of the true proportions of the wheat 
and nonwheat subclasses (each subclass of 
wheat and nonwheat was given equal weight 
within the class for purposes of estimating 
optimal class weights). 

The lack of differences observed in 
proportions estimated using true propor
tions for class weights, instead of the 

Table 1. Experiment Results 

True 
proportions 

Wheat 

Nonwheat 

0.25 

0.75 

Bias observed for wheat 
in the simulated data 

using the class weights 
indicated below 

Equal True 

K 0.5 proportions 
w K 0.25 

K 0.5 w = 0.75 0 K = 0 

17.4% -1.1% 

SUbstantial reduction in bias was realized 
in the simulated data when the optimal set 
of class weights was used for classifica
tion instead of the equal (0.5, 0.5) class 
weights (17.4 percent). Very little 
improvement was observed when the true 
proportions were used for class weights 
(-1.1 percent). When equal class weights, 
true proportion, and optimal class weights 
(i.e., the optimal class weights computed 
using the simulated data) were used to 
classify Finney County imagery data, the 
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Bias observed for wheat in the Finney 
County imagery data using the class 

weights indicated below 

Equal True Optimal 
K 0.5 proportions K 0.254 

w K 0.25 w 
K 0.5 w K 0.745 = 0.75 = 

0 K = 0 
0 

20.4% 19.5% 18.4% 

optimal class weights, can probably be 
attributed to having well-separated classes 
(the probability of correct classification 
for wheat was 93.6 percent and 93.3 percent 
for nonwheat). 

D. Conclusions 

A procedure for selecting class 
weights for the maximum likelihood classi
fier which minimizes the bias in the 
proportion estimate obtained. by sample 



r 

counting has been presented. An experiment 
was run using simulated data and imagery 
data from Finney County, Kansas. The bias 
in proportion estimates from classification 
was compared when using (1) equal class 
weights, (2) the true proportions for class 
weights, and (3) optimal class weights. 
Use of optimal class weights and use of 
true proportions were found to be superior 
to the use of equal class weights for this 
example. Little difference was noted in 
proportion bias between the use of optimal 
class weights and the use of true propor
tions for class weights. It was noted that 
the classes were well separated in this 
example, which might explain the lack of 
differences in the results. 
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