Enhanced Acoustic Transmission into Dissipative Solid Materials through the Use of Inhomogeneous Plane Waves

Daniel C. Woods
Purdue University, woods41@purdue.edu

J Stuart Bolton
Purdue University, Bolton@purdue.edu

Jeffrey F. Rhoads
Purdue University, jfrhoads@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/herrick
Enhanced Acoustic Transmission into Dissipative Solid Materials through the Use of Inhomogeneous Plane Waves

Daniel C. Woods, J. Stuart Bolton, and Jeffrey F. Rhoads

School of Mechanical Engineering,
Ray W. Herrick Laboratories,
and Birck Nanotechnology Center,
Purdue University
West Lafayette, Indiana, USA

July 4, 2016
Introduction

• Study of inhomogeneous plane waves
• Seek to tune the incident wave parameters to maximize energy transmission into dissipative solids

Exemplary Lossless Fluid—Solid Interface: Magnitude of Reflection Coefficient

(adapted from Woods et al., 2015)
Introduction

- Potential applications for enhanced acoustic energy transmission into solid materials:
 - Nondestructive structural testing
 - Medical ultrasound imaging and ablation
 - Other, non-contact ultrasound applications
Plane Wave Representation in Dissipative Media

Attenuation vector, \(\vec{A} \)

Propagation vector, \(\vec{P} \)

\[\gamma (\text{inhomogeneity}) \] also affects \(\vec{P} \) and \(\vec{A} \) according to the material wavenumber condition \(\vec{K} \cdot \vec{K} = k^2 \)

Wavevector components:

\[\tilde{k}_x = |\vec{P}| \sin(\theta) - j|\vec{A}| \sin(\theta - \gamma) \]
\[\tilde{k}_z = |\vec{P}| \cos(\theta) - j|\vec{A}| \cos(\theta - \gamma) \]

Degree of inhomogeneity, \(0^\circ \leq \gamma < 90^\circ \)

Complex wavevector, \(\vec{K} = \vec{P} - j\vec{A} \)
Dissipative Fluid–Solid Interface

- Semi-infinite fluid—solid interface, linear viscoelastic model (hysteretic damping)
- Boundary conditions at interface \(z = 0 \)
 \[
 \tilde{\sigma}_{zz}(x, 0) = \tilde{\sigma}'_{zz}(x, 0) \\
 \tilde{u}_z(x, 0) = \tilde{u}'_z(x, 0) \\
 \tilde{\sigma}'_{xz}(x, 0) = 0
 \]
- Trace wavenumber continuity
 \[
 \tilde{k}_{L,x} = \tilde{k}'_{L,x} = \tilde{k}'_{S,x}
 \]
Water—Stainless Steel Interface

Magnitude of Reflection Coefficient (10 MHz)

Effect of Incidence Angle (Homogeneous Plane Wave)

Reduction of Reflection Coefficient Near Rayleigh Angle

Spatial resonance of induced longitudinal and shear particle motions

(Image credit: http://www.sjvgeology.org/oil/Rayleigh_surface_waves2.gif)
Water—Stainless Steel Interface

Magnitude of Reflection Coefficient (10 MHz)

Effect of Incidence Angle (Homogeneous Plane Wave)

Effect of Wave Inhomogeneity Near Rayleigh Angle
Water—Stainless Steel Interface

Magnitude of Reflection Coefficient (10 MHz)

Effect of Incidence Angle (Homogeneous Plane Wave)

Effect of Wave Inhomogeneity Near Rayleigh Angle

![Graph showing the magnitude of the reflection coefficient as a function of incidence angle.]

![Graph showing the effect of wave inhomogeneity near the Rayleigh angle.]
Water—Stainless Steel Interface

Magnitude of Reflection Coefficient (10 MHz)

Effect of Wave Inhomogeneity and Incidence Angle

Effect of Wave Inhomogeneity ($\theta_L \approx 30.83^\circ$)

Minimum value at $\gamma_L \approx 88.85^\circ$
Transmitted Energy Flux

Incident wave amplitude set as 1 Pa at $x = z = 0$

Normal Intensity in Solid

$$I_z = \frac{1}{T} \int_0^T -\left(\sigma_{zz} v_z + \sigma_{xz} v_x \right) \, dt$$

Transmitted Normal Intensity

(at the point $x = z = 0$)

Transmitted Normal Intensity Distributions (mW/m3)

Degree of Inhomogeneity, γ_L

Homogeneous incident wave

Inhomogeneous incident wave
Transmitted Energy Flux

Incident wave amplitude set as 1 Pa at \(x = z = 0 \)

Normal Intensity in Solid

\[
I_z = \frac{1}{T} \int_0^T - (\sigma_{zz} v_z + \sigma_{xz} v_x) \, dt
\]

Transmitted Normal Intensity
(at the point \(x = z = 0 \))

Homogeneous incident wave

Inhomogeneous incident wave
Transmitted Energy Flux

Incident wave amplitude set as 1 Pa at $x = z = 0$

Normal Intensity in Solid

$$I_z = \frac{1}{T} \int_0^T - (\sigma_{zz} v_z + \sigma_{xz} v_x) \, dt$$

Transmitted Normal Intensity
(at the point $x = z = 0$)

$|\vec{R}|$

Degree of Inhomogeneity, γ_L

Transmitted Normal Intensity Distributions (mW/m3)

Homogeneous incident wave

Inhomogeneous incident wave

D. C. Woods Purdue University 12
Effect of Increasing Material Dissipation

Magnitude of Reflection Coefficient vs. Dissipation Level (10 MHz)
Effect of Increasing Material Dissipation

Magnitude of Reflection Coefficient vs. Dissipation Level (10 MHz)
Effect of Increasing Material Dissipation

Magnitude of Reflection Coefficient vs. Dissipation Level (10 MHz)
Conclusions and Future Work

• Inhomogeneous plane waves incident at dissipative fluid–solid interfaces
 • Significant energy transmission increases for low-loss solids
 • No improvement for higher-loss solids
• Future work:
 • Incorporate frequency-dependence of attenuation
 • Use of bounded wave profiles
 • Generation through phased arrays of sources
The authors would like to thank the U.S. Office of Naval Research for its support of this research under ONR Grant No. N00014-10-1-0958
Plane Wave Representation in Dissipative Media

• Helmholtz equation requires consistency of complex wavevector \(\tilde{K} = \tilde{P} - j\tilde{A} \) with material wavenumber condition:

\[
\tilde{K} \cdot \tilde{K} = \tilde{k}^2 = \left(\frac{\omega}{\nu_H} - j\alpha_H \right)^2
\]

• It follows that \(\gamma \) (inhomogeneity) affects \(|\tilde{P}|\) and \(|\tilde{A}|\):

 • Inhomogeneous waves (\(\gamma \neq 0^\circ \)):

\[
|\tilde{P}|^2 = \frac{1}{2} \left(\text{Re}[\tilde{k}^2] + \sqrt{\left(\text{Re}[\tilde{k}^2]\right)^2 + \left(\frac{\text{Im}[\tilde{k}^2]}{\cos^2(\gamma)}\right)^2} \right) > \left(\frac{\omega}{\nu_H} \right)^2,
\]

\[
|\tilde{A}|^2 = \frac{1}{2} \left(-\text{Re}[\tilde{k}^2] + \sqrt{\left(\text{Re}[\tilde{k}^2]\right)^2 + \left(\frac{\text{Im}[\tilde{k}^2]}{\cos^2(\gamma)}\right)^2} \right) > (\alpha_H)^2
\]
Approximation for Critical Dissipation Level

- Assumed negligible losses in fluid, small losses in solid

\[\alpha'_S^* \approx \frac{1}{4} \left(\frac{\rho v_L}{\rho' v'_S} \right) \left(\frac{v'_R y}{\sqrt{v'_R y^2 - v_L^2}} \right) \frac{\omega}{V} \]

Magnitude of Reflection Coefficient

Phase of Reflection Coefficient