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Abstract 

I 
MOIRE PATrERNS AND TWO· DIMENSIONAL ALIASING IN 

LINE SCANNER DATA ACQUISITION SYSTEMS 

C. D. McGillem 
T. E. Riemer 

I 
The basic mechanism underlying the generation of Moire patterns in 

line scanner data acquisition systems is examined. A general expression 

1s developed in terms of typical system parameters for the reproduced 

image of such systems and the interaction of the image spectrum; the 

raster frequency and digital sampling frequency of the AID conversion 

process are discussed and examples given. System design requirements 
, 

for avoiding Moire pattern generation and two-dimensional aliasing are 

discussed. 
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, 
MOIRE PATTERNS AND TWO-DIMENSIONAL ALIASING IN 

LINE SCANNER DATA ACQUISITION SYSTEMS 

I. Introduction: 

The flying spot scanner and optical line scanner are widely used 

for converting visual or other two-dimensional radiant signals to 

electrical form for further processing. When this proce88ing is 

accomplished by means of a digital computer, AID conversion of the 

scanner analog output signal is required. Thus in effect, the original 

two-dimensional spatial signal is sampled along two approximately 

orthpgonal axes: by the scanner raster in a dir~ction normal to the 

scan lines, and by the AID sampling in a direction parallel to the Bcan 

lines. Figure 1 shows a typical system of this type used for remote 

sensing of the earth's surface from an aircraft. The transverse motion 

of the field of view of the sensor i8 produced by a rotating mirror, 

while the forward motion is produced by the translation of the platform 

carrying the sensor. AID conversion may be accompli8hed at the time of 

measurement or later at a data processing center from an analog 

recording of the scanner signal. 

The measured signal can be reconstructed as a sampled raster by 



Scanner 
Aperture --~ 
Function 
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'-- ------ -----

Figure 1. Basic Line Scanner Configuration Used in Remote Sensing of 
Earth's Surface. 
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intensity modulating a scanning light beam and recording the signal on 

photographic film or viewing it on a digital display. Figure 2 shows a 

typical picture recorded and reproduced in this manner. The signal was 

recorded by a line scanner operating in the infrared portion of the 

spectrum (0.62 to 0.66 ~). The scanner used to make the picture was 

carried in an aircraft flying at an altitude of 215 meters over typical 

farmland in central Indiana. It is evident in this picture that there 
, 

has been distortion introduced in the form of Moire patterns through 

much of the left center of the picture. Since the analog signal is low 

pass filtered to half the sampling rate of the AID conversion process, 
, . 

the resulting Moire patterns arise principally from the fact that 

sampling and reconstruction were carried out on a signal having signif-

icant spatial frequency components in excess of half the scan line or 

raster spatial sampling frequency. 
I 

Thus, these Moire patterns, because 

of the low pass filtering prior to the AID conversion process, are 

primarily a form of one-dimensional aliasing. Figure 3 shows the magni-

tude of the two-dimensional Fourier transform of Fig. 2. Aliasing along 

the y-spatial frequency axis, corresponding to aliasing about integer 

multiples of the raster sampling frequency, is clearly evident. If the 
, 

low pass filtering is inadequate, then the resulting Moire patterns 

arise from two-dimensional aliasing. 

This type of distortion is particularly insidious because it cannot 

be removed a posteriori without serious loss of information content of 

the picture. Its presence indicates that serious undersamp1ing of the 

image has occurred and that it is impossible to accurately reproduce the 

picture by interpolating between sample points to obtain a continuous 

image. Limitations of this kind are particularly important in connection 



Figure 2. Line Scanner Picture of Earth's Surface (Run 66005202 . Channell, 
Columna 11-256. Lines 511-766). 

Figure 3. Modulus of the Two-Dimensional Fourier Transform of Figure 2. 
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with the problems of correcting geometrical distortion, registration of 

data from images recorded at different times, and combining geometrical 

and spectral characteristics of images to improve classification 

accuracy. The mathematical model of the process whereby this type of 

distortion is produced and certain of the methods for handling it are 

discussed in the following sections. 

II. One-Dimensional Aliasing 

The one dimensional aliasing problem will be considered first as an 

introduction to a more precise two-dimensional alia.ing problem formula-
, 

tion. The generation of Moire patterns by the analyzing of patterns 

containing periodic intensity variations has been known for centuries 

(12] and much analysis has been performed on this .ubject (4, 8, 10, 11]. 

This process can be modelled mathematically as the multiplication of 

two or more two-dtmenaional intensity functiona containing spatial 

frequency components that are nearly equal to one another. In the case 

of a line scanner (or a TV system) where no AID processing is involved, 

the resulting image is taken as the product of the intensity function of 

the image and the scanner intensity function. For this case a Moir~ 

pattern will result whenever there are discrete spatial frequency compo-

nents in the image that approach the spatial frequency components of 

the scanner function. 

I The basic mechanism whereby Moire patterns are generated 1s most 

easily seen by considering the two-dimensional frequency .pectra of the 

image and scanner function.. Let 9(x,y) be the intensity variation of 

the image as a function of the spatial coordinates x and y, ~(x,y) be 

the intensity variation of the scanner function, and y(x,y) be the 

resulting intensity function of the scanned image. These functions can 
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be related by 

y(x,y) • e(x,y) ~(x,y) (1 ) 

Taking the two-dimensional Fourier transform of Eq. 1 gives the fre-

quency spectrum of the scanned image as a two-dimensional convolution 

of the transforms of e(x,y) and ~(x,y); i.e., 

r(fX,fy ) • "61 (f ,f ) ** ¢(f ,f ) , x y x y 

where f and f are the spatial frequency variables of the Fourier x y 

transform. In order to more clearly illustrate the mechanism by which 

the new frequencies (Moir~ patterns) are generated, it is convenient to 

consider the image function to be infinite in extent and the scanned 

image function to be the product of a raster function, ~'(x,y), that is 

infinite in extent and a window function, w(x,y), that is unity over the 

viewing area of the scanner and zero elsewhere. With these stipulations 

Eq. 1 can be rewritten as, 

y(x,y) • e(x,y) ~'(x,y) w(x,y) 

• 3-1{~ (f ,f ) ** ¢'(f ,f )} w(x,y). x y x y 

Thus the scanned image is just the inverse transform of the convolution 

of the image with the infinite extent raster function multiplied by the 

window function to limit the extent of the final image. 

In order to illustrate in a simple manner the mathematical basis of 

I the mechanism whereby Moire patterns are generated, assume for the 

moment that the image intensity function and the line scanner function 

both vary in amplitude in a sinusoidal manner. The frequenciel and 

spatial orientationa for these two functions need not be the same. The 

two-dimensional Fourier transform of this type of function consists of 
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a pair of impulses corresponding to each sinusoidal component. Two 

representative functions and their transforms are shown in Fig. 4. 

The product of the raster function and the image function has a 

transform given by the double convolution of the individual transforms. 

This is readily seen by inspection (since only tmpulses are involved) to 

consist of four tmpulses as shown in Fig. 5. The two impulses near the 

origin represent a low-frequency sinusoidal component. This component 

arises from one-dtmensional aliasing of the y-spatial frequency 

components of the tmage intensity function about the y-frequency 

components of the raster function, and correspond to what is normally 

considered a Moir' pattern. This Moire' pattern has" a frequency of 

! 
f - (fi

2 + f 2 - 2 fi f cos ex) 2 m r r 

and an angle with respect to the y-axis of 

, 

(4 ) 

and would appear as shown in Fig. 5. If the high frequency component, 

fh in Fig. 5, is not filtered out in the reconstruction process, it will 

also be visible as a sinusoidal intenSity variation in a direction 

parallel to a line connecting the two impul8es at fh shown in Fig. 5. 

Further study of Fig. 5 makes it clear that there is considerable 

I interdependence between the Moire pattern and both the frequency and 

orientation of the generating signals. For example a change in orlen-

tat ion of one of the generating patterns can lead to a change in both 
, 

the frequency and orientation of the Moire pattern. 

With this brief introduction a more precise formulation of the two-

dimensional aliasing problem will now be made. 



Figure 4. 
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Figure 5. Moire Pattern and Corresponding Two-Dimensional Fourier Transform 
Resulting from the Product of the Image and Raster Functions of 
Figure 4. 
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III. Scanner-Reproducer System 

The block diagram of a typical line scanner and associated 

reproducing system is shown in Fig. 6. The variables in the system 

of Fig. 6 are defined as follows: 

XI'YI - coordinates of scanned image 

9
S

(XI 'YI) - intensity function of scanned image 

gs(XI'YI) - aperture function of scanner 

ul(t) - analog time varying output signal of scanner 

h(t) - impulse response of signal conditioning and/or low pass 
filter of A/D converter 

u2 (t) - analog output signal of signal conditioner 

TI -. period of sampling interval in A/D converter 

x,y - coordinates of reproduced image 

gr(X,y) - aperture function of reproducer 

9r (X,y) - intensity function of reproduced image 

The output signal from the scanner at any instant of time i8 the 

integral of the product of the aperture function and the image intensity 

function and is given by. 

where 

N + I - number of scan lines in scanned image 

v - velocity of scanner aperture in ~ direction 
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Ay - distance between centers of consecutive scan lines 
measured in Y1 direction 

T • time duration of one scan line. 

The output of the signal conditioner, u2{t), i8 the convolution of 

u1 {t) with h{t) and can be expressed as 

N 
2 

.. S L S S 9s (xl,Yl ) gs[ (xl - vet -1'- nT), Yl- nAY] 
N na--
2 

The output of the sampler of the AID conversion procels, u
3

(t), can 

be approximated by 

where 

A 
2 

u
3 

(t) .. u2 (t ) L 5 (t - aT
l

) 

A 
0---

2 

A+l" number of samples of u2{t) taken during one scan line. 

The reproduced tmage is given by a running average of the repro-

ducer aperture function and the reproducer input signal. u
3

(t), as 

M 
2 

9r {X,y) .. L S u3{t)gr[x-v{t-mT), Y-IIlAY]dt 
M 

DI-2' 
where m+ 1 .. number of scan lines in reproduced i1ll&ge. Substituting 

Eq. 7 and 8 into 9. interchanging the order of integration and 

summation and noting that for synchronous reproduction of the raster 

L1 All integrals are to be interpreted as having infinite limits 
unless otherwise specified. ' 

(8 ) 
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the indices m and n are identical gives 

!! 
2 

A 
2 

6 r (x,y) = L 
N 

n-"2' 

L S S S 6 s (xl 'Y1) gs[ xl - v(aT1 - ,. - nT), Y1- nl:!Y] 
A 

0--"2 

&z.[X- v (at 1 - nT), y- nl:!Y] h(,.) dX1 dY1 d,. • 

(10) 

Considerable insight into the significance of the various factors 

in Eq. 10 can be gained by transforming to the spatial frequency domain. 

Taking the two-dimensional Fourier transform of Eq. 10 gives 

N 
2 

to&! (f ,f ) - G (f ,f) \' r x y r x y ~ 

A -
2 _ j 21J[f v(aT

1 
- nT) + f nl:!yJ I. e x y 

(11) 

The triple integral of Eq. 11 can be recognized as a triple convolution. 

Rewriting Eq. 11 using convolutional notation 

io&I (f ,f ) - G (f ,f ) r x y r x y 

N 
2 

I. 
A 

2 _ j 21J(f v{aT1 - nT) + f 06yJ I. e x y 

where n**" denotes a two-dimensional convolution. Equation 12 can be 
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further simplified by writing the double summation as a double integral 

over a sum of impulses a8 follows 

! A 

2 2 _j 21T(vf x+ f y} L L 0 (x - aT 1 + nT, y - nAy) e x y dx dy 
N A n--'2 a--'2 (13) 

and using the fundamental properties of convolution and multiplication 

of the Fourier transform to give 

~ (f ,f ) - G (f' ,f ) [H(f v} t&t (f ,f ) G (-f ,-f ) ** Q(f ,f }] rxy rX1 x axy s x y xy 

where 

A 
2 

(14.) 

Q (f ,f ) -x y 
L o(x- aT

l 
+ nT, y. utay) e -j 21T(vfxlt't- fyy)dXdy 

-

A a-·-2 

sin 1T(N + 1) T9f x 
--si-n-1r-T-v""!!f~ 

x 

sin 1T(A + 1) Tl vfx 

sin 1TT! vfz 

8 in 1T (N + l) 6y f 
y 

sin 1T 61 f y 
(14b) 

In order to gain further insight into Eq. (14a), consider the 

limiting case in which N~ CD and A~ GO. For this case Sq. (14b) becomes 

(15) 

Using Eq. 15, Eq. l4a can be written as 



G (f ,f ) 
t9t (f ,f ).. r x y 

r x y vTl 6y 
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• 

From Eq. 16 it is evident from the double suam8tions that the 

(16) 

reproduced image contains a superposition of frequency translates, at 

1 1 intervals Of~ and AY along the fx and fy spatial frequency axes, 

relpectively,of the product of the transfer functions of the analog 

lignal conditioner andlor low pass filter of the AID processor, the 

scanned tmage, and the Icanner aperture. Each of these translates is 

weighted by the reproduction aperture transfer function. Figure 7 shows 

hOW the magnitude of • (f ,f ) in Eq. 16 aight look. The degree to r x y 

which portions of the replicated spectra overlap into the spectral 

band - ...L < f <...L -2'1'1 < f < 2'1'1 is the degree to which 
261- y-26y' v - x - v 

1 1 
aliasing occurs and tbe degree to which i .. ge distortion occurs. Lf 

there are discrete components in the spectrum H(vf ) '94 (f ,f ) 
X s x Y 

G (-f ,-f) near any har.nics, 7.;. of tbe raster frequency or, .£. , 
s x y ~ T1v 

of the AID sampling process then these will appear in the reproduced 

image as low frequency components and correspond to what are usually 

called Moir~ patterns. The absence of HairJ patterns in a reproduced 

u.sge does not necessarily imply that no distortion is present, but only 

that it is not present as a spurious narrow-band isolated component. 

Since it is impossible to remove aliasing frOll a sampled image, it 

is important to consider how to avoid the occurrence of this undesirable 

phenomenon. Such avoidance requires that the spectrum 
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Figure 7. Partial Two-Dimensional Replication of the Original Image Spectral 
Components which Contribute to the Spectrum of the Reproduced Image. 
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1 H(vf ) ~ (f ,f ) G (-f ,-f ) have no f components above
2T
-, and f 

x sx y s x y x IV y 

components above 2!_. The factor ~ (f ,f ), the spectrum of the 
"7 s x Y . 

original image, is generally not under the control of the experimenter. 

Therefore, control of the spectrum must be accomplished by means of the 

temporal transfer function of the signal conditioner and/or low pass 

filter of the AID process, H(vf ), and the scanner aperture transfer x 

function, G (f ,f). By causing the product of H(vf ) G (-f ,-f) to sxy x s x Y 
I act as a low pass filter having a cutoff frequency Of

2TIv 
in the fx 

1 direction and 26y in the fy direction, all aliasing will be eliminated. 

Achieving an approximation to the ideal low pass filter character-

istic in the f direction is somewhat more easily accomplished because x 

the spectral transmission in this direction is a function of the product 

H(vf ) G (-f ,-f ), while in the fy direction all the filtering must be x s x y 

provided by G (-f ,-f). The primary constraints governing the choice s x y 

of the impulse response of the analog signal conditioner (the A/D low 

pass filter), h(t), are that it be causal and decay rapidly with time 

having no significant secondary lobes so as not to introduce any ghost 

images in the x-direction. However, an additional constraint is ~mposed 

upon the scanner aperture (or point spread function) for physical 

realizability, namely that it must not be negative. To simplify the 

discussion which follows, it will be assumed that G (f ,f ) is symmetric s x y 

with respect to the f and faxes. Thus the problem of choosing 
x y 

G (f ,f ) so that the necessary low pass filtering in the f direction 
s x y Y 

is obtained will be considered first. 

Although not optimal, an excellent choice for g (x,y) from the s 

standpoint of realizability and shape of its frequency spectrum, 

G (f ,f ), is a Hamming window function. 
s x y 
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g (x,y). 0.54 + 0.46 cos 21r (X2+y2)1/2 
s Zo 

- 0 
, otherwise 

2 
2 2 Zo 

, for x +y S 4 

where z is the diameter of the circular aperture. This function, o 

g (o,y), and its Fourier transform, G (o,f ) are shown in Fig. 8. The 
a s y 

first null of G (o,f ) is at f - L and this can be used to specify the 
. s y y Zo 

width of the aperture zoo Thus placing the first null of G (o,f ) at s y 

2!y specifies that Zo - 46y, or that the scanner aperture be four times 

the width of the spacing between the centera of adjacent scans of 

the image. Having specified G (f ,f ), H(vf ) can be chosen so that 
s x y x 

the product G (-f ,-f ) H(vf ) approximates a low pass filter in the f 
s x Y x x 

direction with a cutoff frequency Of
2T

l • Very often it is desirable to 
lV 

have equal spatial resolution along both axes, for such cases T1v = 6y. 

To illustrate the effectiveness of this filtering action in 

eliminating Moire' patterns, an image was generated, assuming T1v = 61, 

having two distinct sinusoidal frequency components. Figure 9a was 

generated by a low frequency sinusoid 

• 0 0 
fL (x,y) - cos 0.03 6y (x sin I + y cosl ) 

I and Fig. 9b is the Moire pattern produced by a high frequency sinusoid 

Figure 9c is the sum of fL(x,y) and fH(x,y) after sampling and recon-

struction using an impulse approximation for the scanner aperture 

gs(x,y). Figure 9d is the sum of fL(x,y) and fH(x,y) after sampling 

and reconstruction using the Hamming function of Eq. 17 for gs(x,y). 

It is clear that the low frequency Moir' distortion sinusoid (i.e., the 

vertical band of Fig. 9c) is almost completely removed in Fig. 911. 
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Figure 8. Hamming Window Function and Corresponding Fourier Transform. 
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Figure 9a. Low Frequency Sinusoid. 

FiBure 9c. Sum of the Low Frequency 
Sinusoiu of Figure 9a and the Hoir~ 
Pattern of Figure 9b. 

• 

Figure 9b. ~foirti Patt.ern Produced 
by a High Frequency Sinusoid and 
the Scanner Raster. 

Figure 9d. 
Filter with 
as Input. 

Output of a namming Spatial 
the Components of Figure 9c 

Figure 9. Example of Moire Pattern Removal by a Hamming Spatial Filter. 

I 
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IV. Conclusions 

I Moire patterns appearing in the output of line scanner and 

digitally sampled data acquisition systems are a form of two-dimensional 

aliasing resulting from sampling at frequencies 1e8s than twice the 

highest spatial frequency components present in the original data. The 

existence of such patterns indicates that aliasing has occurred but 

their absence does not indicate an absence of aliasing, only that there 

are no discrete spatial frequency components in the data near a harmonic 

of the raster or sampling frequency. It is not possible to remove the 

distortion due to aliasing although specific components such as 
I 

individual Moire patterns can be removed by narrow band spatial fre-

quency filters. The only adequate way to handle the distortion due to 

two-dimensional aliaeins is to avoid it by proper design of the scanner 

aperture and by low paIs filtering of the data before AID conversion 

is carried out. 
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