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Abstract
Quantifying the tip–sample interaction forces in amplitude-modulated atomic force microscopy
(AM-AFM) has been an elusive yet important goal in nanoscale imaging, manipulation and
spectroscopy using the AFM. In this paper we present a general theory for the reconstruction of
tip–sample interaction forces using integral equations for AM-AFM and Chebyshev polynomial
expansions. This allows us to reconstruct the tip–sample interactions using standard amplitude
and phase versus distance curves acquired in AM-AFM regardless of tip oscillation amplitude
and in both the net attractive and repulsive regimes of oscillation. Systematic experiments are
performed to reconstruct interaction forces on polymer samples to demonstrate the power of the
theoretical approach.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

In dynamic atomic force microscopy (dAFM), the tip–sample
interaction forces are not directly measured but rather need
to be extracted or reconstructed from measured frequency or
amplitude or phase shifts as the oscillating probe is brought
closer to the sample surface. Knowledge of these interaction
forces reveals valuable information about nanoscale local
material properties including chemical composition [1], short
and long range forces [2], elasticity [3], plasticity [4] and
friction [5]. This remarkable capability to quantitatively
measure material properties at the nanoscale has propelled
efforts to reconstruct interaction forces in dAFM.

The reconstruction of tip–sample interaction forces has
for the most part been the privilege of frequency-modulated
AFM (FM-AFM) [6, 7] where a phase-locked loop tracks
the nonlinear resonance frequency of the oscillating nanotip
as it is brought close to a sample surface. The theoretical
basis for the reconstruction tip–sample interaction forces in
FM-AFM is the integral equation developed originally by
Dürig [8, 9] using Hamilton–Jacobi perturbation theory. This
theory applies to the free, undamped oscillations of the
AFM probe that are perturbed by the presence of nonlinear
tip–sample interaction forces.This integral equation allows
the inversion of the measured nonlinear frequency shifts to

the tip–sample interaction forces. Dürig implemented the
large amplitude assumption or short range interaction force
assumption, under which the integral equation becomes the
Abel integral equation [10] and can be inverted to reconstruct
the interaction forces. This method has become by far
the most popular method in FM-AFM force spectroscopy
and has been used to chemically identify individual surface
atoms [11, 12] and even measure the three-dimensional force
fields with atomic resolution [13, 14]. Recently, Sader and
Jarvis [15, 16] have modified the integral equation inversion
routine to reconstruct general tip–sample interactions without
being limited by the large amplitude or short range forces
assumption. Dürig [17] theoretically proposed a technique
which uses all the amplitudes and phase of higher harmonics
through Chebyshev polynomial expansion to reconstruct the tip
sample interaction forces. This method is promising for small
amplitude operations in which the amplitude is much smaller
than the decay length of the interaction forces.

In contrast, the theoretical basis for force reconstruction
in AM-AFM or tapping mode AFM is poorly developed. In
AM-AFM the drive frequency is constant and the amplitude
and phase of oscillation are monitored during approach to the
sample. Hölscher [18] developed an integral equation for AM-
AFM that allows the inversion of experimentally measured
amplitude and phase distance curves into interaction forces.
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Figure 1. Schematic diagram of the dynamic cantilever configurations with harmonic base excitation Fdrive cos(τ).

However in [18] it is also assumed that the tip amplitude is
large relative to the decay length of the tip–sample interaction
forces allowing the inversion of Abel’s integral equation; as a
result the theory is not general enough to include applications
with long range interaction forces. Moreover, jumps can occur
in the amplitude and phase versus distance curves in AM-AFM
and thus in Hölscher’s approach the data points after the jump
cannot be used for a reliable reconstruction of the repulsive
interaction forces; only the attractive interaction forces can
be reconstructed. Sugawara et al [19] suggested overcoming
this jump problem with the phase-modulation method. In this
technique, the phase difference between the excitation and the
oscillation of the microcantilever is used as the feedback signal,
and the amplitude is kept constant by an additional feedback
which is added to the electronics of a conventional AM-
AFM. Hölscher [20] demonstrated that the phase-modulation
technique is capable of measuring tip–sample forces without
any jumps caused by instabilities. However, this technique
needs significant hardware electronics modification to the
conventional AM-AFM. Recently, Lee and Jhe [21] proposed
a general theoretical method to reconstruct interaction forces
in AM-AFM using Laplace transform and modified Bessel
functions. However, a systematic reconstruction of interaction
forces from the experimental measured amplitude and phase
distance curves has not been performed.

In this paper, we derive integral equations of AM-AFM
with fewer restrictions on the nonconservative forces than in
Lee and Jhe [21], and solve it using the Chebyshev polynomial
expansion method that ensures excellent convergence of the
reconstruction. This theoretical approach allows the use of
standard amplitude and phase distance curves to reconstruct
interaction forces in both the attractive and repulsive regimes,
regardless of tip oscillation amplitude. Moreover the theory
can be used to predict the peak interaction forces directly from
amplitude and phase distance curves, thus allowing the direct
measurement of imaging forces exerted on the sample without
the need for specialized cantilevers or signal processing
methods. Because the method uses Chebyshev polynomial
expansions, it can be easily included as a MATLAB routine in
commercial AFM systems allowing experimentalists to deduce
interaction forces from experimental amplitude and phase
distance curves. We illustrate the method using numerical
simulations and detailed experiments on polymer samples
under ambient conditions.

2. An integral equation for AM-AFM

Based on a one-mode discretization of the continuous
dynamic cantilever model [22], the tip motion in a specific
microcantilever eigenmode can be approximately described by
an equivalent point mass model [23] after scaling natural time
t by the driving frequency ω(τ = ωt),

�2 d2x

dτ 2
+ �

Q

dx

dτ
+ x = Fts(z, ż)

kc
+ Fdrive cos(τ )

kc
, (1)

where x(τ ) is the tip motion, and z(τ ) is the instantaneous gap
between the nanoscale tip and the sample (see figure 1). Let Z
be the cantilever sample separation so that z(τ ) ≈ Z + x(τ ).
Fts(z, ż) is the tip sample interaction force that depends on
instantaneous gap and tip velocity kc is the equivalent stiffness
of the driven mode of the microcantilever [22]. � = ω/ω0,
where ω0 is a linear resonance frequency of the cantilever, and
Q is the quality factor of the chosen mode of the cantilever.
Fdrive is the magnitude of the driving inertial or magnetic force.

In order to derive an integral equation for AM-AFM,
we use the one-term harmonic balance method [24, 25]
and substitute the assumed harmonic tip motion x(τ ) =
A cos(θ) = A cos(τ + ϕ) into equation (1)

�2 A cos(τ + ϕ) − �

Q
A sin(τ + ϕ) + A cos(τ + ϕ)

= Fts(z, ż)

kc
+ Fdrive cos(τ )

kc
. (2)

Assuming the conservative interaction force as Ftsc(z) =
[Fts(z, ż) + Fts(z,−ż)]/2 [16], and the nonconservative
interaction force as Ftsnc(z, ż) = [Fts(z, ż) − Fts(z,−ż)]/2,
we have

Fts(z, ż) = Ftsc(z) + Ftsnc(z, ż), and

Ftsnc(z, ż) = −Ftsnc(z,−ż).
(3)

This implies that the nonconservative interactions are
an odd function of tip velocity, a key requirement for
physically realistic nonconservative interactions such as
surface hysteresis, viscoelasticity, and long range hysteresis.
Notice that instantaneous gap and its rate are given by z(τ ) =
Z + x(τ ) = Z + A cos(θ) and ż(τ ) = −A sin(θ) which can
be substituted into equation (3) yielding:

Fts(z, ż) = F̄ts[Z + A cos(θ),−A sin(θ)]
= F̄tsc[Z + A cos(θ)] + F̄tsnc[A cos(θ),−A sin(θ)].
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Expanding Fts(z, ż) into a Fourier series we have

Fts(z, ż) = F̄ts[Z + A cos(θ),−A sin(θ)]
= Fts cos cos(θ) + Fts sin sin(θ) + higher harmonics, (4)

where Fts cos and Fts sin are the cosine and sine Fourier
coefficients. By invoking the antisymmetry with respect
to tip velocity of the nonconservative forces Ftsnc(z, ż) =
−Ftsnc(z,−ż), it can be shown that (see the appendix for
details)

Fts cos = 1

π

∫ 2π

0
F̄tsc[Z + A cos(θ)] cos(θ) dθ,

Fts sin = 1

π

∫ 2π

0
F̄tsnc[Z + A cos(θ),−A sin(θ)] sin(θ) dθ.

(5)
Because the quality factor Q is high in ambient conditions

the higher order terms of the Fourier series can be neglected.
Following the one-term harmonic balance method or the
describing function method [24, 25], we substitute equation (5)
into equation (2) and equate the sine and cosine terms on both
sides of the equation, to get

Fdrive sin(ϕ) = −2A�ζe,

Fdrive cos(ϕ) = A
(
�2

e − �2
)
,

(6)

where the effective nonlinear damping factor ζe and effective
nonlinear frequency �e are

ζe = 1

2Q
+ 1

2π A�kc

∫ 2π

0
Ftsnc[Z + A cos(θ),

−A sin(θ)] sin(θ) dθ, (7)

�2
e = 1 − 1

π Akc

∫ 2π

0
Ftsc[Z + A cos(θ)] cos(θ) dθ. (8)

Thus the conservative and nonconservative interactions
can be decoupled in the sense that Ftsnc is only related to the
effective nonlinear damping factor ζe as shown in equation (7)
and Ftsc is only related to the nonlinear resonance frequency
�e as shown in equation (8). Recalling the amplitude
response of the driven probe far from the sample F2

drive =
A2

0[ �2

Q2 + (1 − �2)2], where A0 is the initial amplitude when
tip is far away from the sample and defining amplitude setpoint
ratio Aratio = A/A0, equation (6) becomes

sin(ϕ)

Aratio

√
�2

Q2
+ (1 − �2)2 = −2�ζe, (9)

cos(ϕ)

Aratio

√
�2

Q2
+ (1 − �2)2 + �2 − 1 = �2

e − 1. (10)

Notice that sin(ϕ)/Aratio measures the effective nonlinear
damping factor ζe and cos(ϕ)/Aratio measures the effective
nonlinear resonance frequency �e. �e changes due to
conservative nonlinear interactions as shown in equation (8).

Equations (9) and (10) are the general integral equations
that can be used to reconstruct the interaction forces. In this
article we focus on reconstructing the conservative interaction
forces using equation (10). In equation (10) the ratio of drive

frequency to resonance frequency �, the amplitude ratio Aratio,
the quality factor Q and the phase ϕ are all experimentally
measurable quantities. Furthermore, the nonlinear frequency
shift (�2

e − 1) can be measured from the amplitude and phase
versus distance curves using equation (10). Then from the
definition of the nonlinear resonance frequency �e given in
equation (8), we have

−πkc A(�2
e − 1) =

∫ 2π

0
Ftsc[Z + A cos(θ)] cos(θ) dθ. (11)

We define the nearest tip sample distance as D = Z − A so
that the nearest tip sample distance D is the negative of the
indentation δ when tip is in contact with sample. Noting that
the instantaneous tip–sample gap z(τ ) = Z + x(τ ) = Z +
A cos(θ), cos(θ) = (z − D − A)/A, and − sin(θ) dθ = dz/A,
the integral equation (11) can be transformed to

−πkc A2

2
(�2

e −1) =
∫ D+2A

D
Ftsc(z)

z − D − A√
A2 − (z − D − A)2

dz.

(12)
Substituting equation (12) into equation (10), we obtain,

−πkc A2

2

[
�2 − 1 + cos(ϕ)

Aratio

√
�2

Q2
+ (1 − �2)2

]

=
∫ D+2A

D
Ftsc(z)

z − D − A√
A2 − (z − D − A)2

dz. (13)

When the drive frequency equals the linear resonance
frequency, (� = 1), we obtain,

− πkc A2 cos(ϕ)

2Aratio Q
=

∫ D+2A

D
Ftsc(z)

z − D − A√
A2 − (z − D − A)2

dz.

(14)
Every data point in the amplitude and phase distance curves
corresponds to one such equation with a specific nearest
approach distance D. Solving these integral equations then
enables the reconstruction of the conservative tip sample
interaction force Ftsc as a function of instantaneous gap z.

Our strategy is to expand interaction force Ftsc as a series
expansion of special functions. If these special functions
can be integrated, then we can solve the resulting algebraic
matrix equation for the coefficients of the special functions
and reconstruct Ftsc with these coefficients. Since Ftsc is
non-periodic and defined in a bounded domain, Chebyshev
polynomials of the first kind are expected to be an optimal
basis for the reconstruction of the interaction force [26].
Chebyshev polynomials are expected to be an optimal basis
sets due to their following properties: (i) ease of computation
(ii) completeness, which means that any solution can be
represented to an arbitrarily high degree of accuracy by taking
N , the truncation, to be sufficiently large and (iii) rapid
convergence. In fact, Chebyshev polynomials are so-called
‘entire functions’ or functions without singularities anywhere
in the complex plane except at ∞. Furthermore, they
have ‘supergeometric’ convergence [26] which means that the
expansion coefficients versus N , the number of terms in the
expansion has a progressively negative slope (rather than a
constant slope) on a log-linear graph.

3
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During the measurement of a dynamic amplitude distance
curve, the instantaneous gap between the tip and the sample
z would vary between Dmin and Dmax, where Dmin and Dmax

correspond to the minimum and maximum value of z in
the whole dynamic distance curve. Since the Chebyshev
polynomial of the first kind Tn [27] is defined in the domain
[−1, 1], so the reconstructed interaction force Ftsc(z) should
also be defined in a bounded domain, say z ∈ [D1, D2].
In principle, D1 should be Dmin, the minimum value for the
lower limit of the integral, and D2 should be Dmax + 2A,
the maximum value of the upper limit of the integral for the
entire amplitude or phase distance curve. In practice though
the Ftsc ≈ 0 for a large range of z < Dmax + 2A. Thus D2

can be chosen to be <Dmax + 2A, assuming that Ftsc ≈ 0 for
z > D2. As we will see later this has an added advantage
since the convergence of the reconstructed force is faster if
performed over a smaller range of z values. Once D1 and D2

are decided upon, we can map z to ẑ, so that ẑ ∈ [−1, 1],

ẑ = 2z − D1 − D2

D2 − D1
. (15)

Expanding Ftsc[ẑ] as Chebyshev polynomials, we have,

Ftsc(ẑ) = Ftsc

[
2z − D1 − D2

D2 − D1

]
=

∞∑
n=0

Cn Tn(ẑ)

≈
N∑

n=0

Cn Tn(ẑ) (16)

where Cn are the Chebyshev polynomial coefficients, and Tn

are Chebyshev polynomials of the first kind. Substituting the
expanded Ftsc into equation (14), we obtain,

−πkc A2 cos(ϕ)

2Aratio Q

=
∫ D+2A

D

N∑
n=0

Cn Tn(ẑ)
z − D − A√

A2 − (z − D − A)2
dz. (17)

Switching the order of integration and summation and noticing
that Ftsc(z) ≈ 0 for z > D2, and we obtain

N∑
n=0

Cn

∫ D2

D
Tn(ẑ)

z − D − A√
A2 − (z − D − A)2

dz

≈ −πkc A2 cos(ϕ)

2Aratio Q
. (18)

Setting In = ∫ D2

D Tn(ẑ)
z−D−A√

A2−(z−D−A)2
dz, the final algebraic

equation is given as follows,

N∑
n=0

Cn In = −πkc A2 cos(ϕ)

2Aratio Q
. (19)

Notice that for every nearest tip–sample distance D,1 there
is one such equation. If the measured amplitude and phase

1 In the experiments, the absolute value of nearest distance D is unknown.
However for any nearest distance D, any change in choice of D will result in
the same amount of change in the tip sample distance z in the reconstructed
force distance curve. Therefore, we can assume an arbitrary nearest distance
D and reconstruct the corresponding force distance curve. In the reconstructed
force distance curve, the tip sample distance z only has a relative meaning.

distance curves have M points, then we have the following
matrix equation⎛
⎜⎝

I0(D1) I1(D1) I2(D1) . . . IN (D1)

I0(D2) I1(D2) I2(D2) . . . IN (D2)

. . . . . . . . . . . . . . .

I0(DM ) I1(DM ) I2(DM) . . . IN (DM )

⎞
⎟⎠

⎛
⎜⎝

C0

C1

. . .

Cn

⎞
⎟⎠

=

⎛
⎜⎜⎝

−πkc A2 cos(ϕ(D1))

2Aratio Q

−πkc A2 cos(ϕ(D2))

2Aratio Q
. . .

−πkc A2 cos(ϕ(DM))

2Aratio Q

⎞
⎟⎟⎠ . (20)

The matrix in (equation (20)) can be inverted to determine
the Chebyshev polynomial coefficients (C0, C1, . . . , Cn) using
the QR decomposition method in MATLAB. Finally, the
reconstructed the interaction force will then be

Ftsc(ẑ) ≈
N∑

n=0

Cn Tn(ẑ). (21)

The key step in the Chebyshev polynomial expansion method
is to compute the integrals In . We evaluate the integral for
every D value using the adaptive Lobatto quadrature [28]
numerical integral routine ‘quadl’ in MATLAB to compute In .
This ensures an accurate calculation of the integrals.

3. Convergence studies using numerical simulations

In order to demonstrate the feasibility of the above
reconstruction algorithm, we first apply the method on data
acquired from numerical simulations. The Fortran DDASKR
routine in DASKR package [29] which is capable of solving
stiff, nonlinear and nonsmooth ordinary differential equations
is used to numerically simulate the dynamic approach curves
of a Silicon tip on a soft elastic sample using equation (1) with
the Derjaguin–Muller–Toporov (DMT) interaction model. In
the DMT interaction model, van der Waals and DMT contact
forces (FvdW, FDMT) between a sphere (tip apex) with radius
R and a flat surface (sample) are assumed. For this sphere-flat
surface geometry, the conservative tip sample interaction force
(Ftsc) is defined piecewise as

Ftsc(z) =

⎧⎪⎪⎨
⎪⎪⎩

− H R

6z2
, for z > a0

− H R

6a2
0

+ 4

3
E∗√R(a0 − z)3/2, for z � a0

(22)
where H is the Hamaker constant (Joules), R the tip
radius, and z the instantaneous tip–sample separation, a0 the
intermolecular distance at which contact is initiated. E∗ is the
effective elastic modulus of tip and sample and given by

1

E∗ = 1 − ν2
t

Et
+ 1 − ν2

s

Es
, (23)

where νt, Et, νs, and Es are respectively the Poisson’s ratio and
the Young’s modulus of the tip and sample.

For viscoelastic polymer samples, the nonconservative
forces are mainly due to the Kelvin–Voigt viscoelastic contact

4
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Figure 2. Numerically simulated (a) amplitude, phase and (b) nearest tip–sample distance D using the DMT interaction model versus
cantilever sample gap Z , (c) frequency shift (�2

e − 1) versus nearest tip–sample distance D. D1 and D2 define the range of z for which the
Ftsc(z) is reconstructed, i.e. D1 � z � D2, D1 = −2.14 nm, and D2 = 10.00 nm. Reliable simulation data are not available in
−1.77 � z � −0.80 nm region, (d) the reconstructed conservative tip–sample interaction forces Ftsc with 5 term, 10 term, 20 term, 30 term,
and 40 term Chebyshev polynomial expansions are compared with the original DMT force Ftsc used in the numerical simulation. The RMS
difference between 40 term reconstruction and original Ftsc is about 0.83 nN.

Table 1. Constants and properties of the MikroMasch NSC15
silicon microcantilever and the PVC (poly vinyl chloride) and HDPE
(high density poly ethylene) polymer samples.

Description Value

Bending stiffness kc = 65.34 N m−1

1st natural frequency f1 = 322.42 kHz
Q factor (in air) Q = 980.42
Tip radius R = 10 nm
Effective elastic modulus (Si-PVC) E∗ = 3.0 GPa
Effective elastic modulus (Si-HDPE) E∗ = 1.1 GPa

damping [30]. When the tip is in contact with the sample, the
nonconservative contact damping force may be represented as
follows,

Ftsnc(z, ż) = ηż
√

R(a0 − z), (24)

where, η is the sample viscosity.
For this simulation, � = 1, Q = 400, A0 = 30 nm,

kc = 40 N m−1, E∗ = 1.2 GPa, H = 7.1×10−20 J, R = 20 nm
and a0 = 0.164 nm (from Garcı́a and San Paulo [31], see
table 1).

The procedure to reconstruct the tip–sample interaction
forces is as follows.

(1) Based on the amplitude versus distance curve (A versus
Z ) as shown in figure 2(a), we can generate a curve for the
nearest tip–sample distance D = Z − A as a function of
cantilever sample gap Z as shown in figure 2(b).

(2) D1 and D2 define the limits of the tip–sample gap z ∈
[D1, D2] for which the interaction force Ftsc(z) is to be
reconstructed. D1 is chosen as the minimum value of
D from figure 2(b), D1 = Dmin = −2.14 nm, while
the choice of D2 is somewhat open to interpretation.
Generally, D2 should be chosen in a region that interaction
force Ftsc is nearly zero and D decreases proportionally
with the decrease of cantilever sample gap Z . For the D
versus Z curve in figure 2(b), for instance we could choose
D2 = 10 nm. A convergence study on the influence of the
choice of D2 on the reconstruction is presented in the latter
part of this section.

(3) Since we have the relationship between D and Z (as
shown in figure 2(b)), we can plot the frequency shift
(�2

e − 1) using equation (11) as a function of the nearest
tip–sample distance D as shown in figure 2(c). The

5
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Figure 3. (a) The reconstructed conservative tip–sample interaction forces Ftsc (in dashed lines) are compared with the original DMT force
Ftsc (in solid line) used in the numerical simulation as a function of distance z, (b) the reconstructed peak interaction forces Fpeak (in solid
lines) are compared with the numerically simulated peak attractive force Fatt

peak (in dotted lines) and peak repulsive forces F rep
peak (in dashed

lines) as a function of Z gap, (c) the reconstructed peak repulsive interaction forces F rep
peak (in solid lines) are compared with the numerically

simulated (in dashed lines) and analytically predicted (in circles) F rep
peak as a function of Aratio. 40 term Chebyshev polynomial expansion is

used for initial amplitude A0 = 30 (in black), 30 (in red), 60 (in green), 90 nm (in blue) and corresponding viscosity η = 0, 500, 0, 0 Pa s.

frequency shift �2
e − 1 is positive in the net repulsive

regime and negative in the attractive regime. When Z
decreases to −0.8 nm, the tip oscillation jumps from
the attractive regime to the net repulsive regime. This
transition implies that the minimum tip–sample approach
D undergoes a jump from −0.80 to −1.77 nm as shown
in figure 2(b). Since this range of D values is not
accessible in this particular simulation, the force cannot be
reconstructed for these values of tip–sample gap. However
in our method it is possible to reconstruct the interaction
forces once the tip is in the net repulsive regime; this is not
possible using Hölscher’s method [18].

(4) Then the integrals In = ∫ D2

D Tn(ẑ)
z−D−A√

A2−(z−D−A)2
dz

are integrated numerically with the ‘quadl’ numerical
integration routine in MATLAB. Finally, the matrix
equation equation (20) can be inverted with QR
decomposition method in MATLAB to solve for the
Chebyshev coefficients and to reconstruct the conservative
tip–sample interaction forces with equation (21).

Consider first the reconstruction of Ftsc from the above
simulation using D1 = Dmin = −2.14 and D2 =
10 nm. The reconstructed conservative tip–sample interaction
forces Ftsc with 5 term, 10 term, 20 term, 30 term and 40
term Chebyshev polynomial expansion are compared with
the original DMT contact force Ftsc used in the numerical
simulation in figure 2(d). Notice that because there is no
reliable data for D ∈ [−1.77,−0.80] nm, the reconstructed
Ftsc does not converge in this region and is not shown in
figure 2(d). The tendency to converge with the inclusion
of more Chebyshev polynomials is obvious as shown in
figure 2(d) for D outside [−1.77,−0.80] nm. We find that
the use of N = 40 reconstructs the original DMT interaction
model to within 0.8 nN error (root mean squared) and the
solution is deemed to be converged. Notice that in spite of the
excellent convergence with N = 40 as shown in figure 2(d), the
reconstructed force error is large near the slope discontinuity
in the force model (z ≈ a0) as expected due to the Gibbs
phenomenon.

6
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(a)

(b)

(c)

(c)

Figure 4. Experimentally measured (a) amplitude, phase and (b) nearest tip–sample distance D versus cantilever sample gap Z ,
(c) experimentally measured frequency shift (�2

e − 1) versus nearest tip–sample distance D on the PVC polymer sample, (d) the
reconstructed conservative tip–sample interaction forces Ftsc with 10 term, 20 term, 30 term, and 40 term Chebyshev polynomial expansion as
a function of distance z from the experimentally measured dynamic force distance curve on the PVC polymer sample. D1 and D2 defines the
distance z domain (D1 � z � D2) for the reconstructed interaction force Ftsc(z), D1 = Dmin = −3.9 nm and D2 = −5D1 = 19.5 nm. Initial
amplitude A0 = 59 nm. The inset image is the topology image of PVC sample.

In order to systematically study the influence on
reconstruction error of the number of polynomial terms and
choice of D2 values, the root mean square (RMS) value of
the force error is studied with increasing number of Chebyshev
polynomial terms for D2 = 2, 6, 8, 10, 20, 30 nm. The RMS
errors decrease with an increase of terms indicating that the
Chebyshev polynomial expansion converges. We also find that
for this simulation, for any D2 � 4 nm the convergence of the
RMS error is quite good. However, in experiments, long range
interaction forces could occur, and so D2 should be chosen to
ensure not only good convergence but to span the length scale
over which significant interactions are expected. With this in
mind, in all the reconstructions from experimental data, we will
maintain D2 = −5D1.

In addition to the reconstruction of tip–sample interaction
force, it is possible to use the present method to reconstruct
peak interaction forces from amplitude and phase distance
curves. Since the graph of D versus Z is single-valued, as
shown in figure 2(b), at each Z value we know uniquely the
nearest approach distance of the tip (D). If the interaction
forces are primarily conservative in nature then the peak
interaction force corresponds to the reconstructed interaction
force evaluated at the closest approach distance. This peak

value corresponds to the peak attractive force in the attractive
regime and peak repulsive force in the net repulsive regime.

Finally we demonstrate that the reconstructed interaction
forces are independent of the sample viscosity and initial
amplitude chosen for the simulation. The amplitude and
phase distance curves for two different initial amplitudes
A0 = 60 and 90 nm are numerically simulated to reconstruct
the conservative interaction forces Ftsc and peak interaction
forces Fpeak. In addition, the conservative interaction force is
reconstructed from a numerical simulation for A0 = 30 nm but
with the Kelvin–Voigt viscoelastic contact model [31] using a
viscosity η = 500 Pa s. For all these cases, D2 = −5D1 and
a 40 term Chebyshev polynomial expansion is implemented.
As shown in figure 3(a), reconstructed conservative interaction
forces Ftsc for A0 = 30, 60, 90 nm match well with the
original DMT force model. Also notice from figure 3(a) that
the inclusion of sample viscosity has very little effect to the
reconstruction of the conservative interaction forces Ftsc. This
is because the nonconservative interactions only affect the
effective nonlinear damping factor ζe and should not affect the
effective nonlinear resonance frequency �e.

In summary, our approach to reconstruct the conservation
interactions works well even in the presence of nonconserva-
tive interactions. The reconstructed peak interaction forces
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(a)

(b)

(c)

Figure 5. Error bar plot for (a) the reconstructed conservative tip–sample interaction forces Ftsc versus distance z, (b) the reconstructed peak
interaction force Fpeak versus Z gap, (c) the reconstructed peak interaction force Fpeak versus Aratio with 40 term Chebyshev polynomial
expansion with initial amplitude A0 = 10 (in dashed lines), 30 (in dashdot lines), 59 (in dotted lines), 89 nm (in solid lines). The standard
deviation is computed from five experimentally measured dynamic force distance curves on the PVC polymer sample.

Fpeak for the above simulations also are very close to the nu-
merically simulated peak forces as shown in figure 3(b). Fi-
nally, the reconstructed peak repulsive forces match excellently
with the numerical simulations and analytical predictions given
in Hu and Raman [32] for all the above cases.

4. Interaction force reconstruction from
experimental data

In order to test the validity of the reconstruction algorithm
described above, extensive experiments have been carried out
using MikroMasch NSC15 silicon microcantilevers on HDPE
(high density poly ethylene) polymer and PVC (poly vinyl
chloride) polymer samples. The properties of the silicon
cantilever are listed in table 1. The quality factor Q is
calibrated with the modal circle-fit method [33] which uses
information of frequency response in the entire resonance
bandwidth. The cantilever stiffness is calibrated with Sader’s
method [34].

The experiments are performed on a commercial Agi-
lent Picoplus™ AFM system, together with an external Signal
Recovery™ lock-in amplifier, using a MikroMasch™ Ultra-
Sharp NSC15 diving-board silicon microcantilever (properties
are shown in table 1).

The experimental procedure is as follows. The amplitude
and phase distance curves with four different initial amplitudes
A0 = 10, 30, 59, 89 nm are measured with the drive frequency
equals the linear resonance frequency (� = 1). Each set
amplitude and phase distance curve is repeated at least five
times.

First consider the reconstruction from data acquired on
the PVC sample using A0 = 59 nm. The amplitude and
phase versus distance curves for A0 = 59 nm are shown in
figure 4(a). Then the closest tip sample distance D versus Z
curve is computed based on the amplitude distance curve as
shown in figure 4(b). Notice that unlike in the simulations,
the Z values in experiments are not absolute but rather relative
quantities. Thus the experimentalist has to define or choose the
location of Z = 0. Fortunately, the reconstruction method
is insensitive to the choice of Z = 0 because this choice
only causes a linear shift in the z axis of the reconstructed
force plot. Then the frequency shift (�2

e − 1) is computed
using equation (10) as a function of the nearest tip–sample
distance D as shown in figure 4(c). The frequency shift �2

e − 1
is positive in the net repulsive regime and negative in net
attractive regime. The experimentally measured Frequency
shift �2

e − 1 is relatively smooth compared to the numerical
simulations. Then the conservative interaction force Ftsc is
reconstructed using the Chebyshev expansion method with
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Figure 6. Error bar plot for (a) the reconstructed conservative tip–sample interaction forces Ftsc versus distance z, (b) the reconstructed peak
interaction force Fpeak versus Z gap, (c) the reconstructed peak interaction force Fpeak versus Aratio with 40 term Chebyshev polynomial
expansion with initial amplitude A0 = 10 (in dashed lines), 30 (in dash–dot lines), 61 (in dotted lines), 93 nm (in solid lines). The standard
deviation is computed from five experimentally measured dynamic force distance curves on the HDPE polymer sample. The inset image is the
topology image of HDPE sample.

D1 = Dmin = −3.9 nm and D2 = −5D1 = 19.5 nm. The
reconstructed Ftsc with 10 term, 20 term, 30 term and 40 term
expansions are shown in figure 4(d) indicating that a 40 term
expansion is sufficient for the purpose.

To demonstrate the consistence of the Chebyshev
expansion method, the reconstructed Ftsc with A0 = 10,
30, 59, 89 nm, with five different trials each are plotted in
figure 5(a). The standard deviation (error bar) is computed
from five different trials. From figure 5(a) it is clear that the
reconstructed Ftsc for different initial amplitudes collapse on
top of each other thus demonstrating the robustness of this
method. The peak interaction forces are also reconstructed
as a function of Z and Aratio from the experimental data in
figures 5(b) and (c).

Next we consider the results based on experiments
performed on a HDPE sample (E∗ ≈ 1.1 GPa) which is softer
than the PVC sample (E∗ ≈ 3.0 GPa). As shown in figure 6(a),
the reconstructed Ftsc of the HDPE sample is smaller (both
attractive and repulsive) than that of the PVC sample while the
indentation is about twice of the PVC sample.

From the reconstructions performed on PVC and HDPE it
is clear that (a) smaller A0 values lead to smaller peak forces,

(b) smaller E∗ leads to smaller peak forces, and (c) peak forces
reach their maxima at Aratio ≈ 50–60%. All these general
trends agree with the analytical predictions given in [31].
The experimental analysis clearly shows that the proposed
method is robust and leads to repeatable reconstruction and
measurement of tip–sample interaction forces. From the
reconstructed interaction forces shown in figures 5 and 6,
there are significant attractive forces and adhesion forces for
all the polymer samples tested. Moreover a simple Herzian
contact model may not be accurate to describe the repulsive
interactions in these polymer samples. PVC samples were
found to have relatively large adhesion forces (around 8 nN)
compared to the HDPE samples (around 4 nN).

5. Summary and conclusions

The integral theory and reconstruction algorithm for AM-AFM
proposed in this work offers several advantages.

(1) The reconstruction of conservation interactions and
peak interaction forces is relatively robust and can
be implemented with the presence of nonconservative
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interactions and the instabilities due to the jump from
attractive to repulsive regime.

(2) The theoretical approach is not limited to the large
amplitude or short range force assumption.

(3) This method only requires the experimentally measured
amplitude and phase distance curves in AM-AFM that are
routinely accessible in all commercial AFM systems with
commercially available cantilevers. Therefore it can be
easily implemented compared to other methods requiring
access to the real time series data and its detailed analysis,
or a significant modification of the type of microcantilever
used for AFM.

(4) Finally the proposed method is model independent,
thus opening the door to many different interaction
measurements including chemical, electrostatic, and
magnetic forces.

In spite of the above advantages, the reconstruction error is
expected to be rather high in the net repulsive range for harder
samples because the indentation D = Z − A is very small.
In such a situations unless A is measured very accurately,
the reconstructed indentations and forces can be erroneous.
Ultimately though, the use of AM-AFM for the reconstruction
of conservative interactions cannot be as accurate as FM-
AFM based methods because shifts in frequency can be
detected much more sensitively (parts per million) compared
to changes in amplitude (parts per thousand). However given
the popularity of AM-AFM among AFM users, the theoretical
approach outlined here will prove extremely useful to extract
tip–sample interactions in AM-AFM.

In summary, in this paper, a theory and an algorithm for
the reconstruction of tip–sample interaction forces in AM-
AFM are developed by deriving and solving the underlying
integral equation with Chebyshev polynomial expansion
method. The peak interaction forces are also estimated
with the reconstructed interaction forces. The feasibility of
the approach and detailed convergence studies are performed
using numerically simulated data. Experimentally measured
amplitude and phase distance curves on polymer samples are
used to reconstruct the conservative interaction forces and the
peak interaction forces. This approach opens the door for
quantitative interaction forces measurements and nanoscale
dynamic material analysis (Nano DMA) in AM-AFM for
most AFM experimentalists. Ultimately one can imagine that
this algorithm will allow the AFM user to finally ‘see’ the
unseeable imaging forces exerted on the sample in tapping
mode AFM.
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Appendix. Fourier coefficients of the
interaction force

Noticing that instantaneous gap and its rate are given by z(τ ) =
Z +x(τ ) = Z + A cos(θ), and ż(τ ) = −A sin(θ), we therefore
have z = Z ± √

1 − ż2. Using this relation, we have

Fts cos = 1

π

∫ 2π

0
[Ftsc(z) + Ftsnc(z, ż)] cos(θ) dθ

= 1

π

∫ 2π

0
F̄tsc[Z + A cos(θ)] cos(θ) dθ

+ 1

π

[ ∫ π/2

0
Ftsnc(z, ż) cos(θ) dθ

+
∫ π

π/2
Ftsnc(z, ż) cos(θ) dθ

+
∫ 3π/2

π

Ftsnc(z, ż) cos(θ) dθ

+
∫ 2π

3π/2
Ftsnc(z, ż) cos(θ) dθ

]

= 1

π

∫ 2π

0
F̄tsc[Z + A cos(θ)] cos(θ) dθ

− 1

π A

[ ∫ −1

0
Ftsnc(Z +

√
1 − ż2, ż) dż

+
∫ 0

−1
Ftsnc(Z −

√
1 − ż2, ż) dż

+
∫ 1

0
Ftsnc(Z −

√
1 − ż2, ż) dż

+
∫ 0

1
Ftsnc(Z +

√
1 − ż2, ż) dż

]

= 1

π

∫ 2π

0
F̄tsc[Z + A cos(θ)] cos(θ) dθ

− 1

π A

∫ −1

0
[Ftsnc(Z +

√
1 − ż2, ż)

+ Ftsnc(Z +
√

1 − ż2,−ż)] dż

− 1

π A

∫ 0

−1
[Ftsnc(Z −

√
1 − ż2, ż)

+ Ftsnc(Z −
√

1 − ż2,−ż)] dż

= 1

π

∫ 2π

0
F̄tsc[Z + A cos(θ)] cos(θ) dθ. (A.1)

Thus the assumption that the nonconservative forces are
antisymmetric with respect to tip velocity, Ftsnc(z, ż) =
−Ftsnc(z,−ż), leads to

Fts cos = 1

π

∫ 2π

0
F̄tsc[Z + A cos(θ)] cos(θ) dθ. (A.2)

Similarly, we have

Fts sin = 1

π

∫ 2π

0
[Ftsc(z) + Ftsnc(z, ż)] sin(θ) dθ

= − 1

π A

[ ∫ Z−A

Z+A
Ftsc(z) dz +

∫ Z+A

Z−A
Ftsc(z) dz

]
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+ 1

π

∫ 2π

0
F̄tsnc[Z + A cos(θ),−A sin(θ)] sin(θ) dθ

= 1

π

∫ 2π

0
F̄tsnc[Z + A cos(θ),−A sin(θ)] sin(θ) dθ. (A.3)
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